
Multi-Output Tree Chaining: An Interpretative Modelling
and Lightweight Multi-Target Approach

Saulo Martiello Mastelini1 · Victor Guilherme Turrisi da Costa1 · Everton Jose Santana2 · Felipe Kenji Nakano3 ·
Rodrigo Capobianco Guido4 · Ricardo Cerri3 · Sylvio Barbon Jr.1

Abstract
Multi-target regression (MTR) regards predictive problems with multiple numerical targets. To solve this, machine learning
techniques can model solutions treating each target as a separated problem based only on the input features. Nonetheless,
modelling inter-target correlation can improve predictive performance. When performing MTR tasks using the statistical
dependencies of targets, several approaches put aside the evaluation of each pair-wise correlation between those targets,
which may differ for each problem. Besides that, one of the main drawbacks of the current leading MTR method is its
high memory cost. In this paper, we propose a novel MTR method called Multi-output Tree Chaining (MOTC) to overcome
the mentioned disadvantages. Our method provides an interpretative internal tree-based structure which represents the
relationships between targets denominated Chaining Trees (CT). Different from the current techniques, we compute the
outputs dependencies, one-by-one, based on the Random Forest importance metric. Furthermore, we proposed a memory
friendly approach which reduces the number of required regression models when compared to a leading method, reducing
computational cost. We compared the proposed algorithm against three MTR methods (Single-target - ST; Multi-Target
Regressor Stacking - MTRS; and Ensemble of Regressor Chains - ERC) on 18 benchmark datasets with two base regression
algorithms (Random Forest and Support Vector Regression). The obtained results show that our method is superior to the
ST approach regarding predictive performance, whereas, having no significant difference from ERC and MTRS. Moreover,
the interpretative tree-based structures built by MOTC pose as great insight on the relationships among targets. Lastly, the
proposed solution used significantly less memory than ERC being very similar in predictive performance.

Keywords Multi-target regression · Multi-output · Memory-friendly algorithm · Interpretative tree structure · Machine learning

� Saulo Martiello Mastelini
mastelini@uel.br

Victor Guilherme Turrisi da Costa
victorturrisi@uel.br

Everton Jose Santana
santana.everton@ieee.org

Felipe Kenji Nakano
felipe.nakano@dc.ufscar.br

Rodrigo Capobianco Guido
guido@ieee.org

Ricardo Cerri
cerri@dc.ufscar.br

Sylvio Barbon Jr.
barbon@uel.br

1 Computer Science Department, State University of Londrina.
Rodovia Celso Garcia Cid, Km 380, s/n - Campus Universitário,
Londrina, PR, 86057-970, Brazil

1 Introduction

The concept of machine learning (ML) denotes a wide set
of techniques that have been explored in multiple fields
with a diverse set of objectives. One of those research fields
is the signal processing, which consists of several tasks,
such as discovering important features from noisy signals,

2 Electrical Engineering Department, State University of
Londrina. Rodovia Celso Garcia Cid, Km 380, s/n - Campus
Universitário, Londrina, PR, 86057-970, Brazil

3 Department of Computer Science, Federal University of São
Carlos, Rodovia Washington Luı́s, km 235, São Carlos, SP
13565-905, Brazil

4 Instituto de Biociências, Letras e Ciências Exatas, Unesp
- Univ Estadual Paulista (São Paulo State University), Rua
Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José
do Rio Preto, SP, Brazil

1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1376-5&domain=pdf
http://orcid.org/0000-0002-0092-3572
mailto: mastelini@uel.br
mailto: victorturrisi@uel.br
mailto: santana.everton@ieee.org
mailto: felipe.nakano@dc.ufscar.br
mailto: guido@ieee.org
mailto: cerri@dc.ufscar.br
mailto: barbon@uel.br

enhancing signal quality and predicting signals properties
[4, 5, 8, 10, 14, 18, 24]. One frequently performed task
consists of predicting a target, response, or output, y based
on a set Xm of m input variables. These target values
can be categorical or numerical, resulting in classification
or regression problems, respectively. Categorical targets
assume a finite set of L possible output values. When |L| =
2, the resulting task is denominated a binary predictive
problem. Whenever |L| > 2, the obtained problem is called
a multiclass classification task. In contrast, when regression
tasks are considered, the output variable assumes ordered
and infinite numerical values.

When a learning task focus on predicting a unique target,
we have a single-target (ST) problem. On the other hand,
many machine learning problems consist of multiple targets,
which are denominated as multi-target (MT) problems [2,
17]. MT includes many types of prediction tasks depending
on the type of the responses, i.e., multi-label, multi-
dimensional, hierarchical classification, and multi-target
regression [2, 17, 21].

Consider a description space X that consists of i tuples
with primitive data types (discrete or continuous values) in
the form Xi = {xi1, xi2 , ..., xim}, where m represents the
number of descriptive features. Also, consider a target space
Y in the form Yi = {yi1 , yi2, ..., yid }, being d the number
of problem’s outputs. In addition, take a set of examples E

comprising elements from X and Y , i.e., E = {(Xi, Yi)},
1 ≤ i ≤ N , where N is the number of examples in E.
Lastly, take into consideration a quality criterion q which
rewards prediction models with high predictive performance
and low complexity [17]. A MT problem consists in finding
a function f : X → Y such that f maximises q. The
mentioned prediction problem is solved upon the set of
know examples, E. In a MT problem, f can either refer to
a single prediction model or a set thereof.

Depending on Y , different denominations are given to the
modelling. When the elements in Y assume binary values,
the resulting task is called Multi-label classification [17], in
contrast to multi-dimensional or multi-target classification,
which is related to the prediction of multiple discrete or
categorical values that assume more than two single values
[17, 21]. In hierarchical classification tasks, the multiple
outputs are arranged into a directed acyclic graph or in a tree
hierarchy [17]. When the elements of Y are continuous, with
the possibility of being statistically correlated, the related
predictive problem is called multi-target regression (MTR)
[1, 2, 21, 25, 26].

In some cases, one could simply consider that the
targets have no underlying relational properties and treat
the prediction of each target as a separated predictive
task, applying a ST technique. This comprehends to the
extensive set of solutions based on machine learning, e.g.,
Artificial Neural Networks (ANN), Decision Trees (DT),

Bayesian Models and Support Vector Machines (SVM).
However, this assumption causes a negative impact on
prediction performance since the inter-correlation between
targets are ignored. In fact, many real-life problems such
as the prediction of multiple vegetation, soil, water and
river flow properties, the estimation of monthly online
product sales, the price forecasting of multiple products in
a supply management chain and of air-tickets for different
companies, and even solar flares [2, 15, 25], are reported
as MTR tasks. Whenever targets have dependencies among
themselves, the easier to predict can be used as additional
features for the more challenging ones. Nevertheless, the ST
strategy has been employed across multiple MTR papers as
a base level method for comparisons [2, 21, 25].

In the context of ML for signal processing, many works
have been published in the past years [4, 5, 8, 24, 27, 28]. In
these works, regression models have been broadly applied in
time series, text, speech and image processing, for instance
in the determination of sound sources direction-of-arrival,
estimation of the head pose, improvement of low-resolution
images and prediction of stock prices. In these kind of
tasks, the computational costs of a solution can limit its
application even if it has high predictive capabilities.

According to Borchani et al. [2], MTR tasks are solved
with two general approaches: algorithm adaptation and
problem transformation. Kocev et al. [17] denote the
methodologies as global and local methods, respectively.
The former refers to the adaptation of well known ST
regression algorithms to deal with multiple outputs while
additionally investigating the possible relationships among
targets. In the latter, the training data is manipulated, and
common regression techniques to predict ST problems are
then employed. Several MTR methods belonging to both
approaches were proposed in past years [1, 2, 17, 21, 22,
25]. Some of the local approaches had achieved the highest
performance in multiple MT scenarios, outperforming global
methods [21, 22, 25, 26]. However, the actual state-of-art
methods present some limitations in the interpretation of targets
dependencies and have high computational cost solutions.

In this paper, we propose a novel local method, called
Multi-output Tree Chaining (MOTC), which uses a tree-
based representation to model the statistical dependencies
between targets. Our goal is to address the aforementioned
disadvantages by creating a highly interpretable with high
predictive performance method, whereas being memory and
time conservative when constructing the chaining trees.
MOTC differs from other local-based methods in the sense
that it uses only the existing dependency relationships
between outputs as additional information for regression,
with a sophisticated and yet lightweight approach. Also,
we propose to use the Random Forest variable importance
metric to model nonlinear statistical dependencies between
targets. Using the Hoeffding Bound concept [13], we select

2

groups of outputs which are the most correlated with a
specific response, without memory-time trade-offs.

Through an extensible experimental evaluation of MOTC
against three other local-based MTR methods (Single-
target, Multi-target Regressor Stacking and Ensemble of
Regressor Chains) in 18 benchmark datasets along with two
regression techniques (Random Forest and Support Vector
Machine), we demonstrate that our method can achieve
high prediction performance, whereas generating a compact
number of regression models when compared with ERC,
reducing the memory cost. Besides, we present a combined
representation of the generated MOTC’s chaining trees to
give some insights about how they could be employed as
an interpretation tool. In this way, it is possible to discover
linear and nonlinear target relations and contribute toward
further advances in signal processing technologies.

The rest of this paper is structured as follows. Section 2
reviews related works in MTR. In Section 3, our method
(MOTC) is presented. Section 4 presents the materials
and the experimental setup employed in our experiments.
In Section 5 we discuss the obtained results, comparing
MOTC with other MTR approaches. We present the final
considerations in Section 6. Lastly, two Appendices with
the description of the datasets used in the work and the
condensed representations of the chaining trees obtained
during the experiments are included.

2 RelatedWorks

A first directly derived approach of problem transformation
is to predict each target variable separately, as multiple
independent ST problems. Although pretty straightforward,
this method outperforms MTR methods (both those based
on algorithm adaptation and problem transformation) in
many cases [2, 25]. Nonetheless, ST approaches do not
explore the assumed target correlations, so using an MTR
strategy ought to achieve better results when there are target
co-dependencies. Although more than one predictor is used
to represent an MTR problem, which leads to negatively
impacting the generated model interpretation and increasing
computation training costs, this kind of approach offers
multiple advantages. Firstly, the possibility of using any
base regressor, or even a hybrid set of regressors, could
lead to better prediction performance and exploration of
a particular problem characteristics. Besides that, problem
adaptation methods improve the resulting model modularity
and conceptual simplicity, presenting better accuracy than
state-of-the-art methods [21, 22, 25].

In past years, some problem transformation methods
were proposed to exploit inter-target properties as well.
Zhang et al. [29] proposed the modification of the input
space of a task through a visualisation technique so that a MTR

task could be modelled as a wider ST problem. The authors
used a Support Vector Regression (SVR) machine and
achieved results comparable to the ST strategy. Tsoumakas
et al. [26] created random linear combinations of the
targets to explore the relation between output values. This
approach increases the original feature space dimension
and solves multiple ST problems in the transformed space.
After that, the values predicted are used to solve a linear
system to obtain the original target predictions. Their
results compared favourably both for the ST approach and
the global-based solution Multi-objective Random Forest
(MORF), firstly described in Kocev et al. [16].

Some MTR methods were also adapted from multi-
label classification (MLC) [2, 25]. Spyromitros-Xioufis et
al. [25] proposed two main methods inspired by MLC:
Multi-Target Regressor Stacking (MTRS) and Ensemble of
Regressor Chains (ERC). Both have the core concept of
applying targets approximations as additional, or expanded,
features, as proposed in the Cascade Generalisation [11].
These methods are better described in Sections 2.1 and 2.2.

A few recent works were inspired by the idea of the
MTRS, with the premise that deeper layers of stacked ST
predictors could offer better predictive performance than
using just one layer (ST) or two layers (MTRS). Santana et
al. [23] proposed the Deep Regressor Stack (DRS), which
uses the targets estimations as additional predicting features
in a naive deep learning method. In DRS, the predictions of
the targets that obtained less error on a validation dataset are
sequentially added as new features, with a fixed number of
layers. Their approach presented some gains over the other
compared MTR solutions, though this method brought an
overhead both in time and memory.

Another promising novel approach, called Deep Struc-
ture for Tracking Asynchronous Regressor Stacking
(DSTARS) was proposed by Mastelini et al. [20]. By defin-
ing the best number of regression layers in an adaptive
manner, DSTARS is able to model different levels of inter-
action between targets and could bring some clues about
their relationships. DSTARS has the drawback of increas-
ing computation memory and time cost due to the use of
deeper layers of stacked ST predictors, as well as, a process-
ing stage to find the adequate adequate number of layers
built for each output.

Aiming at improving the ERC algorithm, two local-
based MTR methods were proposed recently. Moyano et
al. [22] proposed the use of Genetic Algorithm (GA) to
find an improved set of target chains and to explore the
linear correlation among target variables. Their method
performs better than ERC in some scenarios, but solving the
combinatory problem brings a new processing overhead to
the already very costly ERC algorithm.

Melki et al. [21] proposed the Maximum Correlated
Chain method with a single group of chained ST regressors

3

instead of an ensemble of chain predictors. They computed
the linear correlation between each pair of target variables
to determine the order in which models would be induced.
Each model, in the same way as other local-based
approaches, uses the preceding regressors predictions as
additional features. The authors report good prediction
results when comparing their approach with ERC, while
also converting the set of chains to a single group, reducing
computational time and memory complexities.

Both ERC-based approaches use the linear correlation
to explain the underlying relationships among target
variables. Despite the assumption of linear dependency
is enough in many problems, some tasks are subject to
present non-linear statistical relationships between targets.
In those tasks, non-linear behaviour mapping should reflect
in better problem comprehension and greater predictive
performance. Besides that, the aforementioned works
assume that the maximisation of the summed correlation
within chains is a complete descriptor of the inter-responses
dependency behaviour. They do not consider different
degrees of correlation between them, as each target is
preceded only by a unique assumed less correlated response,
in a queue-like fashion.

Our approach overcomes the mentioned gaps in ERC-
based approaches. By employing the Random Forest (RF)
importance metric, MOTC is able to quantify non-linear
relations among target variables. Also, by representing the
dependencies among outputs in a tree based representation,
multiple levels of dependency are explored. Our tree
chaining idea combines both ERC’s chains with MTRS’s
stacked predictors. A path from root node to a leaf could
be interpreted as a regression chain, where each level in the
chaining tree is equivalent to a MTRS model. MOTC is still
able to reduce computational complexities by employing
the statistical measure called Hoeffding bound over the
measured inter-target dependencies. With this procedure,
only the most significant outputs are selected to recursively
compose the chaining tree. Lastly, our approach results in
highly interpretative models, which enables the study of
how targets influence each other in problem-specific domains.

Before presenting the MOTC algorithm, the MTRS and
ERC are explained in detail in the following sections,
since they provided the conceptual basis to many problem
transformation methods, ours included. Besides that, both
algorithms are also used in our experimental comparisons
against MOTC.

2.1 Multi-target Regressor Stacking

MTRS approach concerns additional input features from
ST models predictions. In this sense, considering a dataset
composed by X = {x1, x2, ..., xm} input features and
Y = {y1, y2, ..., yd} target variables, MTRS adds

the Y ′ = {y′
1, y

′
2, ..., y′

m} ST predictions as new
inputs, creating an augmented training dataset X′ =
{x1, x2, ..., xm, y′

1, y
′
2, ..., y′

d}. The new dataset is used by
each target to train another ST predictors layer, whose
outputs are the final predictions of MTRS.

New instances are initially subjected to the first layer
of predictors to obtain the output approximations. These
outcomes are then merged with the original features
which are applied towards the second level of predictors.
Therefore, MTRS introduces inter-target relationships by
stacking ST models to enhance tasks description and
increase prediction performance. However, MTRS does
not foresee the modelling of different levels of statistical
relationships between outputs, neither does it considers
the possible absence of dependencies between them.
Also, models generated by the MTRS do not provide
insightful information about inter-target properties. The
MTRS training procedure is presented in Algorithm 1,
where X and Y represent the input and output variables and
d the number of targets.

2.2 Ensemble of Regressor Chains

The idea behind ERC is to build a set of randomly
generated chained ST regressors for each target. Initially,
for each chain, a ST model is induced using the first
output of the sequence. New models are then induced by

4

following the chain order. Each new regressor is trained over
the augmented input dataset composed by original input
features and the predictions from the preceding regressors
in the chain. After training all models, the predicted value
of a new instance is the average value obtained from the
chain regressors. In other words, the prediction of ERC, for
a target yi , i = [1, d], is the average of the yi predicted
values over all chains.

Since the output predictions are composed of values from
different sorted chains, multiple levels of combinations and
inter-dependence between targets are explored. ERC creates
all possible target permutations if their number is less than
ten (d ≤ 3), otherwise, the authors suggest using the fixed
value of ten random combinations. The random nature of
chain creation does not take into consideration possible
relations between targets if they exist. In addition, there is
no clear way of interpreting the interactions of responses
expressed by a ERC trained model.

The training step of ERC is presented in Algorithm 2.
The permute procedure is a function that receives a set of
elements and returns all possible permutations among them.
It is possible to perform all possible permutations without
a limiting parameter, or to specify the maximum number of
combinations as an argument (in the original formulation
of ERC, the maximum is ten). In the algorithm, X and Y

represent the input and output variables and d is the number
of targets.

3Multi-output Tree Chaining

As discussed previously, ERC explores different combina-
tions, and thus, various hypotheses of inter-dependencies
between targets. This is achieved by randomly ordering the
outputs and building a set of chained models. This strategy,
besides being time and memory costly, does not sufficiently
explore the target combinations and is even subjected to
assume non-existent relationships among the outcomes. The
method proposed here (MOTC) was projected aiming at
both reducing memory consumption and improving the
target dependency representation.

In order to truly model different levels of statistical
dependencies between target variables, we propose the use
of structures in the form of trees to guide the regression
models induction. The resulting structures, called Chaining
Trees (CTs), are constructed by sequentially evaluating
which targets are more correlated with the response being
evaluated using the RFimp. MOTC is divided into two steps:
a top-down CT construction and a bottom-up regression
model induction. In the top-down step, for each target, a CT
is built by considering how the outputs are related to each
other. Each node in a CT corresponds to a regression model,
which is trained during the bottom-up step.

Assume an MTR problem with X input variables and
four targets, namely A, B, C and D. Figure 1 shows a
CT for this example when considering A as the desired
output. It is possible to see A, at Level 0, as the root node
and also the targeted variable. Targets B and C, in this
example, represent the outputs which are most correlated
to A. Additionally, B can be better explained using A and
D. This process continues until a maximum CT’s depth
state is reached, in this case, a maximum level equal to
two. It is important to highlight that A appears both as leaf
and root node, stopping the iteration to avoid unnecessary
modelling, once A had already been treated. Chaining trees
are constructed in a top-down approach, i.e., from root to
leaves, as indicated in Fig. 1.

Figure 1 An hypothetical simple example of CT.

5

After creating the CT, MOTC performs its final
modelling. It consists of inducing ST models in a bottom-
up fashion, i.e., from leaves to the root node, as presented in
Fig. 1. The leaf nodes in the CT correspond to standard ST
models, which use only X to describe the desired output. In
this sense, ST models are induced for all leaf nodes (A, at
Level 2, D and C). After that, MOTC induces a model for B
using an augmented training set which is created by merging
X with the predictions of A and D done by the previously
trained models. Then, at Level 0, A is induced by using as
input X and the approximations of B and C (both at Level
1).

It is clear that a metric should be employed when
describing dependencies between target variables and
constructing the CTs. Some recent works used the linear
correlation coefficient to explain target dependencies [21,
22]. Other measures could be employed for the same
purpose, leading to different representations and predictive
performances. In our experiments, we chose to use the
Random Forest variable importance (RFimp). This choice
was based on the fact that this metric was reported as
a reliable feature selector, which explores the impact of
each variable on the whole Random Forest ensemble
performance [12]. Furthermore, RFimp does not suppose a
linear behaviour between inputs and outputs of a predictive
task, making it nonlinear. It also reports variables with no
contribution or that disrupted a target estimation within a
regression model. These variables are not considered then
building CTs. For more details about the RFimp calculation,
please refer to Section 4.2.1.

In many cases, all outcomes can offer some degree of
contribution to explaining other targets. Considering that
MOTC aims at reducing the number of trained regression
models, it must only select the most relevant outputs during
the construction of the CT. For this task, we propose the use
of the Hoeffding Bound (HB) to define an interval where
the evaluated target dependencies are more relevant.

The Hoeffding Bound theorem [13] states that a variable
v whose range is R, which was independently observed n

times having a mean v, has a true mean of at least v−ε with
statistical probability 1 − δ (the error probability stated),
where:

ε =
√

R2 ln(1
δ
)

2 n
. (1)

To limit the ramification factor of each split, only targets
whose importance fluctuate around the true importance of
the best feature are selected. In this sense, assuming that the

observed importance of the best feature is impbt, we only
select targets with importance greater than impbt − ε.

Algorithm 3 presents the general MOTC approach. We
defined the default maximum depth for CTs (Maxdepth) as
2 × log2(d) if d < 6, and log2(d) otherwise, being d

the number of target variables. Empirically, we found these
values as a compromise between predictive performance
and complexity reduction. In the algorithm, X and Y

represent the input and output variables respectively; hb

is the calculated Hoeffding Bound, and Maxdepth is the
parameter for controlling the maximum depth of the CT
generated. Lastly, the procedure importance calculates the
statistical dependencies between targets, in our case, it uses
the RFimp measure.

The top-down building procedure of a CT, presented in
Algorithm 4, can also be set to ignore the HB when defining
the tree structure. This fact is treated in line 5 of Algorithm
4. If one configures MOTC to perform this, branch factor
will be greater since there is no target filtering. The resulting
CTs will be larger, negatively impacting in the training time
and memory costs. This was not done in our experiments,
since computational complexity reduction was one of our
goals. Although this evaluation is out of the scope of this
work, it is possible to evaluate the use of a larger model
to increase the predictive performance of a given MTR
problem. The presented procedure starts with a tree with a
single node, the root one, which corresponds to the desired
target variable. The top-down step builds a tree structure
hierarchy by adding the most relevant outputs for a target
as its descendents, according to a relevance interval limited
by the HB. The recursive callings of this procedure end
when the maximum defined depth is reached. Algorithm 4

6

receives the desired target for the CT building, hb which
corresponds to the Hoeffding Bound, Imp which is related
to the outputs importance values, and the maximum depth
for the CT, Maxdepth.

Lastly, we present the pseudo-code for the bottom-
up procedure done by MOTC in Algorithm 5. This step
recursively travels a CT until it reaches the deepest nodes.
After that, regression models for the leaves are constructed
with only the original attributes. Then, the same operation
is done while moving up in the tree. The inner nodes,
including the tree root, depend on the predictions of the
lower models, i.e, each model stacks the predictions of
its descendents as new input features. In this sense, the
bottom-up procedure assigns a regressor for each node

in the CT. The MOTC’s bottom-up procedure receives as
parameters X and Y , which correspond to the input and output
variables, respectively, and the previous built CT, chaintree.

It is worth highlighting that since all leaves in a target CT
correspond to ST models without augmented training sets,
these regressors are shared between all CTs. In this sense,
we avoid redundant training of models, which speeds up
computation while also preventing memory waste.

4Materials andMethod

This section describes the experimental setup of this work.
Initially, it presents the datasets explored. It also exposes
the regression techniques and the motivation of their choice.
Lastly, the metrics to evaluate the results are presented.

7

4.1 Datasets

To evaluate the proposed algorithm, 18 MTR benchmark
datasets were selected.1 Table 4, in Appendix A, charac-
terises the datasets regarding the number of samples, input
and output variables and also provides a brief description of
their content as explored in [19, 25].

4.2 Regression Techniques

In this subsection, we present the two regression techniques
employed to build the models: Support Vector Machines
(SVM) and Random Forest (RF). We decided to use
these algorithms due to their different strategies and wide
applications. RF is an ensemble technique where multiple
decision trees are combined under the idea of bagging,
whereas SVMs relies on statistics foundations to fit a
hyperplane able to perform classification and regression.
In this research, we used the implementations of the
R packages ranger and e1071 for RF and SVM,
respectively, along with their default parameter settings.

4.2.1 Random Forest

Originally proposed by Breiman [3], RF is an ensemble
algorithm used for both classification and regression tasks.
In ensembles algorithms, different models with multiple
approaches are employed and, in the case of RFs in specific,
decision trees are combined in the form of a forest.

Initially, the algorithm bootstraps by sampling instances
with replacement and selecting a subset of features.
Following, the subset is used to build a decision tree,
repeating this same procedure until a predetermined number
of trees are created. After that, in order to perform either
classification or regression, all trees are used in conjunction.
According to Breiman [3], RF is robust to noise and the
decision trees’ feature selection capacities are naturally
inherited. Moreover, its ensemble properties guarantees no
overfitting.

Another main advantage of RFs consists of being able to
measure attributes’ importance (RFimp). In order to do so,
for each sampling performed, about a third of the training
set is left aside (out-of-bag examples). Next, out-of-bag
examples’ attributes are randomly permuted, and tested by
the forest. Permutations that increase the RF error can point
out which attribute is more relevant. Hence, measuring its
importance to the task.

For instance, if the error is increased by inserting noise
(permutation) on a specific attribute, such attribute is likely

1http://mulan.sourceforge.net/datasets-mtr.html

to be critical. The same applies for the opposite situation.
In this sense, the RFimp of each variable is calculated by
comparing the variation in the ensemble’s prediction error
obtained before and after the random permutation. If there is
no alteration, it implies that the attribute does not contribute
to the prediction task. In the same manner, if the error is
reduced, the attribute is hindering RF predictions.

For regression, RFs take each trained tree to predict
continuous values. In the majority of implementations, the
final prediction is given by the mean value predicted by all
trees in the forest.

4.2.2 Support Vector Machine

Support Vector Machine is a well established method for
signal processing tasks. It was first introduced in Cortes and
Vapnik [6] as a classification model for binary problems.
SVM objective consists of creating an optimal separation
hyperplane that splits the data into two classes. Such
hyperplane’s boundaries are defined by points referred as
support vectors, hence naming the algorithm.

In situations whose data are not linearly separable, kernel
tricks are employed. Such operation maps the original data
into a higher dimensional space where the problem is more
likely to be solvable.

Since we are interested in SVM for regression, we
employed Support Vector Regression (SVR) [9]. In SVR, a
hyperplane, defined by the Eq. 2, is built by minimising the
Eq. 3 subject to Eq. 4.

〈w, x〉 − b = 0 (2)

1

2
‖w‖2 (3)

{
yi − 〈w, x〉 − b ≤ ε

〈w, x〉 + b − yi ≤ ε
(4)

In these Equations, w corresponds to the normal vector
to the hyperplane, xi is a training sample with label yi and
ε is a threshold value for the margin. Hence, all predictions,
given by 〈w, x〉 + b, must be within the range implied by
ε. Furthermore, finding the optimal hyperplane is mapped
to a convex problem with a feasible solution. Nonetheless,
in situations with no feasible solutions, an extra variable ξ

may be added to cope with such constraints.

4.3 Performance Evaluation

Aiming at evaluating the models created during the
experiments, we used two different metrics: the average

8

http://mulan.sourceforge.net/datasets-mtr.html

Relative Root Mean Squared Error (aRRMSE) and the
Counting of Trained Regression Models (CTRM). Also,
the MTR methods were performed using a 10-fold cross-
validation strategy to minimise bias.

The aRRMSE is obtained by averaging the RRMSE
(Relative Root Mean Squared Error) calculated for each
target variable. RRMSE measures a model error decrease
over a naive predictor which always outputs the target
mean value. The latter servers a baseline in the metric
and allows the measurement of the improvement over a
shallow predictor, being used in various MTR works [2, 20–
23, 25] to compare non-homogeneous targets distributions.
The aRRMSE calculation is presented in Eq. 5, where d

represents the number of targets variables, N the number of
testing instances, y, ŷ and y denote, respectively, the real
value of the output, its predicted and mean values.

aRRMSE = 1

d

d∑
t=1

√√√√∑N
k=1(y

k
t − ŷk

t)2∑N
k=1(y

k
t − yt)

2
(5)

As the time and memory costs of the MTR local methods
directly depends on the employed regressor, we defined the
Counting of Trained Regression Models (CTRM) metric
to compare how much computational resources they used.
CTRM is defined as the total number of ST models induced
by an MTR method in a dataset. This metric can be
employed as a measure of how much memory each MTR
approach uses. In other words, the smaller the CTRM value
of an approach, the more memory efficient the evaluated
MTR method is. Additionally, training fewer models results
in less time complexity of the solution.

Both aRRMSE and CTRM support the comparison of
possible method superiority through the application of the
Friedman statistical test and the Nemenyi post hoc test with
a Critical Difference (CD) diagram, as previously proposed
in [7]. They are used to evaluate if the null hypothesis is
rejected. The null hypothesis states that the performances
of the MTR methods are equivalent regarding the evaluated
metric. In this sense, when the null hypothesis is false,
we can apply the Nemenyi post hoc test, which states that
the performance of two distinct models are significantly
different if the corresponding average ranks differ by at least
a CD value.

We also defined the Relative Performance (RP) and
Relative Size (RS) measures, derived from aRRMSE and
CTRM, respectively. RP and RS are used for evaluating how
MOTC compares against ERC in predictive performance
and memory efficiency since both methods define chained
regression models. RP measures the reduction in error of
an MTR approach over another, whereas RS measures how
time and memory conservative an MTR method A is when

compared with another method B. The RP of a method A
against another method B is given according to Eq. 6.

RPB|A = aRRMSEA

aRRMSEB

(6)

If the obtained RP is equal to one, there is no performance
difference between the compared algorithms. An RP greater
than one means that B is better than A in the evaluated
problem. The same applies to the opposite.

RS calculation is given in Eq. 7. An RS greater than
one shows that B spends more regressor models than A.
Moreover, an obtained RS = 0.5 implies that B spent half
the number of models used by A.

RSB|A = CTRMA

CTRMB

(7)

Lastly, aiming to evaluate the inter-target dependency, we
comprised all generated CTs into a single representation.
For each dataset, the obtained CTs considering all targets
and cross-validation folds were merged into an oriented
graph. Every time there was a relation of the type “B
explains A”, being A and B target variables, the edge weight
connecting the two targets was incremented. So, in the
obtained graphs the edges represent how many times an
output was used to explain another. The resulting structures
were called Condensed CT Graphs (CCTG).

5 Results and Discussion

In this section, the comparative results between MOTC,
simple ST, and the other MTR approaches (MTRS and
ERC) are presented. First, we discuss the results regarding
aRRMSE. Then, we discuss how many regression models
were trained for each method, while also presenting statis-
tical comparisons concerning both predictive performance
and number of induced models. Lastly, our method is com-
pared against ERC, which also uses chained regressors. We
show that MOTC had a similar predictive performance com-
pared to ERC, employing fewer regression models in the
process. We also present the time complexity analysis for
all compared MTR methods. Likewise, some insights on
how MOTC could be employed to better comprehend the
relationships between targets in an MTR problem are also
presented.

5.1 Predictive Performance

Table 1 reports the obtained aRRMSE regarding all MTR
methods and base regression techniques2, per benchmark

2The source codes for MOTC and the other evaluated MTR
methods are disponible in http://www.uel.br/grupo-pesquisa/remid/?
page id=145.

9

http://www.uel.br/grupo-pesquisa/remid/?page_id=145
http://www.uel.br/grupo-pesquisa/remid/?page_id=145

Table 1 Average Relative Root Mean Squared Error (aRRMSE) results
considering all datasets.

Dataset Algorithm ST MTRS ERC MOTC

ATP1D RF 0.3919 0.3904 0.3902 0.3910

SVM 0.4396 0.4402 0.4398 0.4398

ATP7D RF 0.5164 0.5169 0.5178 0.5187

SVM 0.6404 0.6414 0.6410 0.6408

OES97 RF 0.5164 0.5135 0.5133 0.5153

SVM 0.6118 0.6123 0.6109 0.6116

OES10 RF 0.4070 0.4081 0.4070 0.4073

SVM 0.5464 0.5456 0.5451 0.5464

RF1 RF 0.0782 0.0582 0.0731 0.0723

SVM 0.1215 0.1070 0.1151 0.1191

RF2 RF 0.0847 0.0784 0.0852 0.0872

SVM 0.1095 0.1064 0.1084 0.1091

SCM1D RF 0.2871 0.2757 0.2823 0.2823

SVM 0.3309 0.3232 0.3258 0.3260

SCM20D RF 0.3647 0.3313 0.3347 0.3277

SVM 0.3972 0.3522 0.3474 0.3472

SDM RF 0.6721 0.6631 0.6661 0.6620

SVM 0.7699 0.7714 0.7667 0.7654

SF1 RF 1.0051 1.1280 1.0161 1.0578

SVM 0.9390 0.9477 0.9250 0.9337

SF2 RF 0.8487 0.9410 0.8617 0.8729

SVM 0.7825 0.7787 0.7827 0.7843

Jura RF 0.6061 0.5974 0.5969 0.5971

SVM 0.6409 0.6413 0.6391 0.6418

WQ RF 0.9066 0.9392 0.9059 0.9139

SVM 0.9630 0.9535 0.9581 0.9617

ENB RF 0.1504 0.1173 0.1304 0.1206

SVM 0.2499 0.2173 0.2404 0.2322

Slump RF 0.8365 0.8325 0.8222 0.8497

SVM 0.6924 0.6862 0.6818 0.7056

Andro RF 0.7941 0.7349 0.7614 0.7734

SVM 1.1348 0.9243 1.0089 1.0208

OSALES RF 0.7577 0.7275 0.7332 0.7455

SVM 1.1726 1.1685 1.1702 1.1716

SCPF RF 0.9263 0.9387 0.8778 0.8711

SVM 0.8242 0.8256 0.8151 0.8159

dataset. The columns ST, MTRS, ERC and MOTC represent
the MTR approaches, while the base regressors are pre-
sented in column Algorithm, resulting in a base regressor-
MTR approach combination by line. The highlighted value
of aRRMSE corresponds to the better performing algo-
rithm/MTR approach pair for that dataset.

MTRS performed better in 13 algorithm-MTR approach
combinations (six cases using RF and the remaining with

SVM as base regressor). ERC achieved the best prediction
errors in 11 cases (six times when using RF and five with
SVM). ST got the best aRRMSE in seven cases (four
with the RF and three with SVM). MOTC, obtained the
best results in five cases (three times combined with RF
and two cases with SVM). Although our approach was
out-performed by the others, the performance difference
is minimal, being very close to ERC in the majority of
the cases. Nonetheless, MOTC outperforms ERC, which is
also based on chained regressors, by a large margin when
considering memory and time, as discussed further in this
work. Also, our method offers a highly representative model
of how targets are correlated to each other. None of the
compared approaches (ST, MTRS and ERC) can be used
to explain the existing dependencies between the output
variables.

5.2 Number of InducedModels

We report the mean CTRM value for each MTR method
in Table 2. This analysis is particularly relevant, since the
number of generated models directly impacts the obtained
solution’s time and memory costs. Since one of our goals
was to obtain a memory and time conservative method,
without compromising prediction performance, this analysis
is a core part of this paper.

Table 2 Mean Counting of Trained Regression Models (CTRM)
obtained by each method in all evaluated datasets.

Dataset ST MTRS ERC MOTC (RF) MOTC (SVM)

ATP1D 6 12 60 30 30

ATP7D 6 12 60 39.9 37.9

OES97 16 32 160 84.8 87.1

OES10 16 32 160 84.1 81.8

RF1 8 16 80 24.3 24.3

RF2 8 16 80 24.3 24.3

SCM1D 16 32 160 64 64.5

SCM20D 16 32 160 65.2 65.2

EDM 2 4 4 4 4

SF1 3 6 18 8.6 8.4

SF2 3 6 18 7.3 7.3

Jura 3 6 18 9.1 9.1

WQ 14 28 140 64 63.5

ENB 2 4 4 4 4

Slump 3 6 18 9.4 9.4

Andro 6 12 60 30.6 30

OSALES 12 24 120 51.5 52.6

SCFP 3 6 18 9 9

10

ST, as the simplest approach, induces as many regressor
models as the number of problem targets. MTRS always
generates twice the number of ST models. In its turn, ERC
creates the maximum number of combinations of targets
if the number of outputs is lesser than three. Otherwise,
ten random combinations are chosen, so CTRM is equal to
ten times the number of target variables. MOTC adaptively
chooses the number of trained predictors, which is equal
to the summed number of nodes in all generated CTs. The
choice of MOTC’s Maxdepth parameter and the application
of HB directly impact the obtained CTRM.

As expected, ST is the most time and memory conservative
approach, followed by MTRS in all cases except when the
number of targets is equal to two. In these cases, both ERC and
MOTC are tied with MTRS. MOTC is the third most con-
servative approach, independently of the chosen regressor,
and at the least position comes ERC. Despite employing
more models than the ST and MTRS approaches, MOTC
dynamically adapts its CT structures for each problem offer-
ing insights on how the targets influence each other. This
fact offers a useful tool for experts and non-experts when
dealing with MTR tasks.

The slight different CTRM obtained by MOTC when
using RF or SVM as base regressors is a result of the target
importance metric choice. We calculated RFimp upon a
set of RF models trained using only the target variables.
RF’s variable importance value takes into consideration the
increase in ensemble’s predictive error brought by random
permuting the values of an explaining feature. Also, each
tree in a RF is constructed by sampling training instances
and subsetting features at random. In fact, there are many
aspects of randomness which result in slightly different
CTs, depending on the number of elements and targets of
the problem, as well as the number of trees used to calculate
RFimp.

The authors encourage the evaluation of the impact
brought by using different importance metrics and values
for CT’s Maxdepth on the obtained CTRM and aRRMSE.
This analysis, however, is out of the scope of this work.

5.3 Statistical Comparison

We performed the Friedman test on the predictive perfor-
mance of the compared MTR methods. Figure 2 reports
the Nemenyi post test ranked comparison considering the
predictive performance obtained over all datasets. Lower
rankings mean better predictive performance (with CD =
0.7837 and α = 0.05). The obtained Friedman test’s p-value
(< 2.2e − 16) confirm there were statistical differences
between compared MTR methods and employed regressors,
regarding the obtained aRRMSE.

As shown in Fig. 2, the first connected group compre-
hends to ERC, MTRS and MOTC using RF as the base
regressor model. The second group comprehends MOTC
and ST, again along with RF. In this sense, there is no
statistical difference between ERC, MTRS and MOTC. In
the third connected group, corresponding to using SVM
as regressor base model, MTRS appears at the first posi-
tion, followed by ERC, MOTC and ST. Again, no statis-
tical difference was observed between ERC, MTRS and
MOTC. Using both RF and SVM, MOTC is connected
with ST. It seems that the chosen base regression algorithm
can impact in the ranking of the selected MTR methods.
Besides, the distance observed between MTR approaches
was lesser when using RF, which was related to the greater
generalisation capacity commonly achieved by ensemble
methods.

As discussed in Section 5.4, MOTC performed very
comparably to ERC in almost all cases. This fact is related
to their similar resulting models’ structure. In most of the

Figure 2 Nemenyi post test
resulting, considering the
predictive performance over all
datasets.

3 4 5 6 7

ERC-RF

MTRS-RF

MOTC-RF

ST-RF ST-SVM

p-value < 2.2e-16

MTRS-SVM

MOTC-SVM

ERC-SVM

CD = 0.7837

11

cases, MOTC was equivalent or obtained slightly greater
error than ERC. For this reason, when MTRS outperformed
ERC, it also was superior to MOTC. On another hand, when
ERC achieved the least aRRMSE, MOTC results were very
close to it, but still somewhat worse. Thus, MOTC appears
at third position as a reflex the few cases it outperformed
both ERC and MTRS.

We present the statistical comparison regarding the
number of generated models per MTR method (at CD =
0.4555 and α = 0.05) in Fig. 3. As expected, ST
provides the most conservative approach, being at the
first position in all cases. MTRS comes in second place,
spending twice the ST number of models. MOTC is
the third more conservative approach, independently of
the chosen regressor. As expected, ERC is the worst
method, expending a lot more regression models than
the other MTR approaches. This scenario could be even
worse if one chooses to remove the number of generated
chains limitation, proposed in original ERC formulation
(maximum number of random permutations equal to ten).
It is worth mentioning that all methods were statistically
different among themselves in this test.

We also would like to emphasise that MOTC adaptively
generates a different number of models by analysing how
the problem targets relate to each other. All compared
models (ST, MTRS and ERC) produce a fixed number of
regression models, which are not easy to interpret in the
inter-target relationship context. In contrast, MOTC offers
clear information about how an output helps to explain the
distribution of the other targets. Further, by using the CTs
from MOTC, it is possible to compare their results with
prior knowledge about a research field and even discover
new interesting properties and inferences from the targets.

Table 3 Relative Performance (RP) and Relative Size (RS) when
comparing MOTC with ERC in all datasets.

Dataset RPMOTC|ERC RSMOTC|ERC

RF SVM RF SVM

ATP1D 1.00 1.00 0.50 0.50

ATP7D 1.00 1.00 0.67 0.63

OES97 1.00 1.00 0.53 0.54

OES10 1.00 1.00 0.53 0.51

RF1 1.01 0.96 0.30 0.30

RF2 0.95 0.99 0.30 0.30

SCM1D 1.00 1.00 0.40 0.40

SCM20D 1.02 1.00 0.41 0.41

EDM 1.01 1.00 1.00 1.00

SF1 0.97 0.99 0.48 0.47

SF2 0.99 1.00 0.41 0.41

Jura 1.00 1.00 0.51 0.51

WQ 0.99 1.00 0.46 0.45

ENB 1.09 1.03 1.00 1.00

Slump 0.97 0.97 0.52 0.52

Andro 1.02 1.00 0.51 0.50

OSALES 0.98 1.00 0.43 0.44

SCFP 1.01 1.00 0.50 0.50

5.4 MOTC and ERC Comparison

The idea of chaining regressor models is shared by MOTC
and ERC, but the second does this action in a naive strategy.
Table 3 presents the obtained RP and RS when comparing
MOTC with ERC.

Figure 3 Nemenyi post test
resulting, considering the
generated number of models in
all datasets.

1 2 3 4 5

ST

MTRS

ERC

CD = 0.4555
p-value < 2.2e-16

MOTC-SVM

MOTC-RF

12

MOTC got RP values very close to ERC in the majority
of datasets. In the worst case, MOTC achieved 95% of
ERC’s performance; in some cases our approach stood out.

On the other hand, when it comes to RM, MOTC was
prominently superior to ERC. There were only two cases
where MOTC generated as many models as ERC. They
correspond to datasets EDM and ENB, which have only two
target variables. Excluding these simpler problems, in the
worst case, MOTC built 65% fewer models than ERC. In
fact, in most of the time, MOTC used about half regressors
than ERC did.

Therefore, our proposed approach obtained a compet-
itive predictive performance when compared with ERC.
Furthermore, it combines modest time and memory costs
for modelling through an informative and easy to interpret
structure.

5.5 Complexity Analysis

Consider d as the number of problem targets and b,
the complexity of the chosen base regressor. ST induces
as many models as the number of outputs, so its time
complexity is O(d × b). MTRS, in its turn, produces twice
the number of ST’s models. For that reason, MTRS’s time
complexity is O(2 × d × b), which does not asymptotically
differ from ST. ERC, without limiting settings, produces
as many regressors as the maximum number of targets
permutations. In this sense, ERC’s complexity would be
O(d2 × (d − 1)! × b). However, by following the ERC’s
authors recommendation of generating only ten random
permutations if the number of targets is greater than three,
the obtained complexity is O(10 × d × b).

MOTC generates regression models with a tree fashion.
The growing of new nodes in the produced CTs depends on
two main factors: the max tree depth constraint (parameter
maxdepth) and the branching factor. The latter is determined
by using or not the HBs. Suppose ζ to be the summed
number of nodes contained in all targets CTs, excluding the
redundant leaf nodes, as previously discussed in Section 3.
MOTC time complexity is O(ζ × b). Although there is no
asymptotic difference between MOTC and constrained ERC
version, our experiments proved that the former method is
the most time and memory efficient.

Also, when the number of targets is sufficiently small,
MOTC generates as many models as MTRS or ERC. In
fact, if the maxdepth is setted to one, MOTC will mimic
MTRS. Moreover, if MOTC branching factor get too close
to d and/or the maximum depth of CTs is sufficiently
large, our method should generate more regression models
than ERC. Nevertheless, as our experiments demonstrated,

MOTC with its default parameters is capable of achieving
comparable performance results while being more time and
memory conservative than ERC.

5.6 Analysis of the Relationship Between Targets
with CTs

The generated CCTGs allow us to get some interesting
information. For example, one could analyse that an output
almost always helps to explain another, but the opposite is
not true. Also, the presence of connections among targets
with small edge values is an indication of little influence of
a target on another. Additionally, cycles inside the graphs
could be detected, meaning there are indirect relationships
among targets. Lastly, different groups of dependency could
be detected, resulting in decomposing a MTR target into
smaller multi-output tasks.

All obtained CCTGs are presented in Appendix B
“Obtained condensed chaining tree graphs and target
labels”. For the matter of readability, in all graphs, the
target names were substituted by T followed by an output
identifier. One could check their original names by referring
to Tables 5 to 11.

We present some real examples about the mentioned
CCTG behaviour. Some cases were pretty straightforward,
presenting mutual dependencies in all cases, like in datasets
EDM and ENB (Fig. 4). They represent the two datasets
with the smallest number of target variables, so it is to be
expected a simple inter-target relationship.

Other interesting cases were discovered when analysing
the datasets SCPF and Slump (Fig. 5). In SCPF, it is possible
to observe that there are no dependencies between targets
T2 (num views) and T1 (num comments). Meanwhile, both
of them influence and are influenced by T3 (num votes). As
highlighted in Section 4.1, SCPF evaluates the number of
votes, views and comments obtained by certain online issues
within a period. Our analysis shows that the number of
votes that an issue receives depends on its number of views
and comments, which seems reasonable in the context of
online content resources. However, an issue could achieve
high rates of views and comments, whereas not being
voted.

The Slump dataset concerns the prediction of three
properties of concrete (slump, flow and compressive
strength). As shown in Fig. 5, there are mutual relationships
between targets T2 (Flow) and T3 (Slump), and both of
them influence the Compressive Strength (T1) of concrete.
However, they are not influenced by T1. MOTCs takes
advantage of not inserting T1 as additional prediction
feature when modelling T2 and T3.

13

In addition, another behaviour was observed when
combining the generated CTs. There were cases where the
targets were grouped regarding their inter-dependencies. In
these situations, targets within a group did not influence
outputs outside it. In this sense, this behaviour indicated
that an original MTR task could be decomposed into
smaller problems. The creation of separate target groups
was observed in datasets andro, ATP1D (Fig. 6), SCM1D
and SCM20D (Fig. 11).

Take as an example the dataset ATP1D. It concerns
the prediction of the minimum air ticket price in the next
day, given an observed date. ATP1D targets correspond to
the expected minimum price for: (1) any airline with any
number of stops, (2) any airline non-stop only, (3) Delta
Airlines, (4) Continental Airlines, (5) Airtrain Airlines, and
(6) United Airlines. Figure 6 give us pieces of evidence
that the next day minimum price for non-stop airlines have
influenced and was influenced by the price of Continental
Airlines. The same comparison applies when comparing
Delta and Airtrain Airlines, and United Airlines with
flights with any number of stops. On the other hand, no
influence was observed among different groups, considering
all generated CTs and cross-validation data partitions.

Furthermore, complex patterns of relationships were
observed in most of the datasets whose number of outputs
are greater than eight. As the number of targets has
increased, also has risen the diversity of the dependencies
between the output variables. In datasets OES10 (Fig. 7),
OES97 (Fig. 8), RF1, RF2 (Fig. 10), OSALES (Fig. 9),
and WQ (Fig. 12), diverse inter-target dependence patterns
were observed. In these datasets, most of the previously
discussed cases of influence can be seen. In contrast, there
were clear and simple patterns of relationship among targets
in datasets SCM1D and SCM20D (Fig. 11), as previously
presented. Thus, there is no direct association between
the number of outputs in a predictive problem and the
complexity level of the statistical dependencies between
targets.

Lastly, by using a CCTG representation, one could apply
a threshold value to consider the most prominent cases of
target influence. In this way, by removing edges with small
weights, the complex relationship between outputs could be
decomposed into simpler MTR tasks or even separate ST
problems. In fact, in many cases the weights in edges were
unbalanced. For instance, a proper thresholding scheme
would separate targets T1 and T4 into a separate MTR
problem, when considering datasets RF1 and RF2 (Fig. 10).
The RF datasets deal with the prediction of the Mississipi
river flow in eight different sites. The strong dependency
between sites CHSI2 48H 0 (T1) and EADM7 48H 0 (T4)

should reflect some physical, geological and positional
aspects which relate these two measured locals.

6 Conclusion

This paper proposed a new method, called Multi-output
Tree Chaining (MOTC), for solving multi-target regression
problems. Our solution describes the relationships between
target variables as a tree structure toward a CT. In this
structure, each node represents an output, and its children
denote the targets which most explain it. CTs take into
consideration a target relevance measure to assess the
dependencies between outputs. We employed the Random
Forest variable importance metric as a nonlinear descriptor
of inter-target relations. Also, when constructing the CTs,
aiming at limiting their ramification factor, we employed
the Hoeffding Bound only to select the targets which most
explain the targeted output. After building a CT for each
target, regression models were inducted for each node,
starting from the leaves. In MOTC, intermediate nodes
use the original features of the problem augmented by the
predictions that come from their descendants models.

An extensive experimental setup consisting in 18
standard multi-target benchmark datasets, combined with
two regression techniques (Random Forest and Support
Vector Machine), where we compared MOTC with three
state-of-art MTR methods (ST, MTRS and ERC) was
performed. The results showed that MOTC obtained
competitive predictive performance. In fact, the performed
statistical tests demonstrated that MOTC has no significant
difference from MTRS and ERC methods concerning
predictive performance, being superior to ST. It is worth
mentioning that the choice of the used regression technique
proved to impact in the final performance of the multi-
target regression methods. This fact should be analysed
in future works. Nevertheless, our method presented
significant reduction over ERC regarding memory and time
complexity.

Besides that, MOTC offers a comprehensive representa-
tion to analyse multi-target tasks, which none of the existing
solutions present, enabling the verification of prior knowl-
edge about a problem, and even the discovering of new
properties.

Acknowledgements The authors would like to thank CAPES
(Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior),
CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico) and FAPESP (Fundação de Amparo à Pesquisa do Estado de
São Paulo) for financial support.

14

Appendix A: Datasets Used
in the Experiments

Table 4 Dataset’s
characteristics: dataset name,
number of examples, number
of input variables, number of
targets, and description.

Dataset #Examples #Input #Outputs Description

ATP1D 337 411 6 Minimum air ticket price in the next day for
different options of companies and number of
stops.

ATP7D 296 411 6 Minimum air ticket price over the next seven days
for different options of companies and number of
stops.

OES97 334 263 16 Occupational employment surveys performed in
1997, containing the estimated number of employ-
ees in different jobs.

OES10 403 298 16 Occupational employment surveys performed in
2010, containing the estimated number of employ-
ees in different jobs.

RF1 9125 64 8 River flows in the next 48 hours in eight different
rivers in the Mississippi River network.

RF2 9125 576 8 River flows in the next 48 hours in eight different
rivers in the Mississippi River network with
precipitation forecast information added to the
input variables.

SCM1D 9803 280 16 Prices of different products in the next day in a
supply chain management.

SCM20D 8966 61 16 Mean price of different products over the next 20
days in a supply chain management.

EDM 154 16 2 Parameter settings controlled by a human operator
during electrical discharge machining.

SF1 323 10 3 Number of times common, moderate and severe
solar flares were observed in a 24h interval.

SF2 1066 10 3 Number of times common, moderate and severe
solar flares were observed in a 24h interval.

Jura 359 15 3 Concentration of heavy metals in the top soil of a
region in Swiss called Jura.

WQ 1060 16 14 Relative representation of plant and animal species
in Slovenian rivers based on physical and chemical
water quality parameters.

ENB 768 8 2 Heating and cooling load required for energy
efficient buildings based on their dimensions and
material choice.

Slump 103 7 3 Slump, flow and compressive strength concrete
properties based on the amount of different
concrete ingredients.

Andro 49 30 6 Water quality attributes in Thermaikos Gulf of
Thessaloniki, Greece.

OSALES 639 413 12 Online monthly sales in the first twelve months
after a product launch.

SCFP 1137 23 3 Number of views, clicks and comments on online
issues.

15

Appendix B: Obtained Condensed Chaining
Tree Graphs and Target Labels

Table 5 Targets’ labels for datasets EDM, ENB and Jura.

Label EDM ENB Jura

T1 DFlow Y1 Cd

T2 DGap Y2 Co

T3 – – Cu

T2

T1

1 0 1 0

T1

T2

1 0 1 0

T2

T3

2 T1

2 9 2 2

9

Figure 4 CCTG for datasets EDM, ENB and Jura.

Table 6 Targets labels for
datasets SCPF, SF1, SF2 and
Slump.

Label SCPF SF1 SF2 Slump

T1 num comments c-class c-class Compressive Strength Mpa

T2 num views m-class m-class FLOW cm

T3 num votes x-class x-class SLUMP cm

T3

T2

1 8

T1

1 22 4 6

T2

T1

1 9

T3

7

1 6

2

1 1

1

T2

T1

7

T3

4

2

1 7

5

T3

T1

9 T2

2 5 2 9

5

Figure 5 CCTG for datasets SCPF, SF1, SF2 and Slump.

16

Table 7 Targets’ labels for
datasets Andro, ATP1D and
ATP7D.

Label Andro ATP1D ATP7D

T1 Target LBL+aCOminpA+fut 001 LBL+aCOminpA+bt7d 000

T2 Target 2 LBL+aDLminpA+fut 001 LBL+aDLminpA+bt7d 000

T3 Target 3 LBL+aFLminpA+fut 001 LBL+aFLminpA+bt7d 000

T4 Target 4 LBL+ALLminp0+fut 001 LBL+ALLminp0+bt7d 000

T5 Target 5 LBL+ALLminpA+fut 001 LBL+ALLminpA+bt7d 000

T6 Target 6 LBL+aUAminpA+fut 001 LBL+aUAminpA+bt7d 000

Figure 6 CCTG for datasets
Andro, ATP1D and ATP7D.

T5

T6

4 2

T1

44 4

T2

4 0 4 0

T3

T4

4 0 4 0
T5

T3

4 5

T4

95 0

T6

T1

8 4

1 6

T2

1 4

8 5

1 6

1 2

3 63 7

T4

T2

4 0 4 0

T3

T5

4 0 4 0

T6

T1

4 0 4 0

17

Table 8 Targets’ labels for
dataset OES10. Label OES10

T1 119032 Education Administrators Elementary and Secondary School

T2 151131 Computer Programmers

T3 151141 Database Administrators

T4 172141 Mechanical Engineers

T5 291051 Pharmacists

T6 291069 Physicians and Surgeons All Other

T7 291127 Speech-Language Pathologists

T8 292037 Radiologic Technologists and Technicians*

T9 292071 Medical Records and Health Information Technicians

T10 392021 Nonfarm Animal Caretakers

T11 412021 Counter and Rental Clerks

T12 419022 Real Estate Sales Agents

T13 431011 First-Line Supervisors of Office and Administrative Support Workers

T14 432011 Switchboard Operators Including Answering Service

T15 513021 Butchers and Meat Cutters

T16 519061 Inspectors Testers Sorters Samplers and Weighers

T14

T9

1 2

T13

2 8 9

T15

3

T16

1 2

T11

2

T12

5

2 3 2

T5

5 5 5

T7

7

T1

4 1

T10

2 4 2 1

1 9

1 187

6 3 5

T8

4 7 9

T6

2

3

T3

1 0

1 0

12 1 3

6 6 5

1 6

1 4 2

1 51 7

T4

1

2 0 7

6

T2

1 2 6

2

1

1 1 7

2 5

1 3

2

1 2

1

3 3

1

2 9

Figure 7 CCTG for dataset OES10.

18

Table 9 Targets’ labels for
dataset OES97. Label OES97

T1 13008 Purchasing Managers

T2 15014 Industrial Production Managers

T3 15017 Construction Managers

T4 21114 Accountants and Auditors

T5 27108 Psychologists

T6 27311 Recreation Workers

T7 32314 Speech-Language Pathologists and Audiologists

T8 32511 Physician Assistants

T9 53905 Teacher Aides and Educational Assistants Clerical

T10 58028 Shipping Receiving and Traffic Clerks

T11 65032 Cooks Fast Food

T12 85110 Machinery Maintenance Mechanics

T13 92965 Crushing Grinding Mixing and Blending Machine Operators and Tenders

T14 92998 All Other Machine Operators and Tenders

T15 98502 Machine Feeders and Offbearers

T16 98902 Hand Packers and Packagers

T10

T9

3 4

T1

9 8 8

T4

1 1 0

T7

1 8

T8

1

T3

3

T16

2 4

T6

9

T11

4

4 0

T5

3 8

5

8 8 6

2 4 6

2 9

T2

1 2 8

1

2 9

1

1 04 0

3 8 6

2 4

9

1 9

4

1

4 8

5 7

3 4

3 8

T12

7 2

T15

4 T14

7 52

5 5

2 6

7 6

8

1 6

4 2

4

T13

1 0

1

Figure 8 CCTG for dataset OES97.

19

Table 10 Targets labels for datasets OSALES, RF1 and RF2.

Label OSALES RF1 RF2

T1 Outcome M1 CHSI2 48H 0 CHSI2 48H 0

T2 Outcome M2 CLKM7 48H 0 CLKM7 48H 0

T3 Outcome M3 DLDI4 48H 0 DLDI4 48H 0

T4 Outcome M4 EADM7 48H 0 EADM7 48H 0

T5 Outcome M5 NAPM7 48H 0 NAPM7 48H 0

T6 Outcome M6 NASI2 48H 0 NASI2 48H 0

T7 Outcome M7 SCLM7 48H 0 SCLM7 48H 0

T8 Outcome M8 VALI2 48H 0 VALI2 48H 0

T9 Outcome M9 – –

T10 Outcome M10 – –

T11 Outcome M11 – –

T12 Outcome M12 – –

T8

T7

5 5

T9

2 0 7

T6

1 8

T10

3 2

T1

5 4

2 5 1

1 8

T11

1

T3

T4

6 66 6 9

T12

1

T5

1 0

T2

5 85 6

1

2

5 9

1 7

6 5

1 6

6

3 6

2

3 4

Figure 9 CCTG for dataset OSALES.

Table 11 Targets labels for dataset SCM1D, SCM20D and WQ.

Label SCM1D SCM20D WQ

T1 LBL LBL 17300

T2 MTLp2 MTLp2A 19400

T3 MTLp3 MTLp3A 25400

T4 MTLp4 MTLp4A 29600

T5 MTLp5 MTLp5A 30400

T6 MTLp6 MTLp6A 33400

T7 MTLp7 MTLp7A 34500

T8 MTLp8 MTLp8A 37880

T9 MTLp9 MTLp9A 38100

T10 MTLp10 MTLp10A 49700

T11 MTLp11 MTLp11A 50390

T12 MTLp12 MTLp12A 55800

T13 MTLp13 MTLp13A 57500

T14 MTLp14 MTLp14A 59300

T15 MTLp15 MTLp15A –

T16 MTLp16 MTLp16A –

20

Figure 10 CCTG for datasets
RF1 and RF2. T8

T2

4 7

T7

1 9

T6

8

3 3

T3

4 02 7

T5

5 8

1

9

4 6

6

2 0

1 4

3

T4

4

T1

4 2 4 0

T2

T3

4 0

T8

3 3

2 0

T7

1 4

T6

3

4 7

1 9

8

2 7

1

T5

5 8

T4

4

T1

4 2

9

4 6

6

4 0

21

Figure 11 CCTG for datasets
SCM1D and SCM20D. T15

T14

1 1 3

T13

2 41 2 4

T12

3 54 0

T9

T1

7 0 7 0

T7

T8

7 0 7 0

T10

T11

7 0 7 0

T5

T6

7 0 7 0

T3

T16

2

T4

6 9

2

T2

9 3 6 98 7

1 4

T9

T1

7 6 7 2

T10

7

T8

T7

7 0 7 0

T2

T16

9 1

T4

7

9 1

T3

7 7

7 9 8 2

T15

T13

9

T14

9 0

T12

5 7

9 3

2

T11

7 6

2

7 5

T5

T6

7 0 7 0

5 7

22

T2

T3

6

T6

1 7 6

T5

9

T4

7T10

1 0 5

T11

1

T7

1

T14

1 7

7

1 8 8

2

3

T8

4

T13

3 8 0

T9

3

T12

3

1 8

T1

8

1

3 7

2 2 3 7 6

6

1 4

2 1

1

2

7

8 7

1 3

6

3

1

1

2

1 1

2

2

1

2

3

2

4

2 2

9

4

1 0

Figure 12 CCTG for dataset WQ.

References

1. Aho, T., Zenko, B., Dzeroski, S., Elomaa, T. (2012). Multi-target
regression with rule ensembles. Journal of Machine Learning
Research, 13, 2367–2407.

2. Borchani, H., Varando, G., Bielza, C., Larrañaga, P. (2015).
A survey on multi-output regression. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 5(5), 216–233.

3. Breiman, L. (2001). Random forests. Machine learning, 45.1,
5–32. https://doi.org/10.1017/CBO9781107415324.004.

4. Brugger, D., Rosenstiel, W., Bogdan, M. (2011). Online SVR
training by solving the primal optimization problem. Journal of
Signal Processing Systems, 65(3), 391–402.

5. Chen, H., & Ser, W. (2011). Sound source DOA estimation and
localization in noisy reverberant environments using least-squares
support vector machines. Journal of Signal Processing Systems,
63(3), 287–300.

6. Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3), 273–297. https://doi.org/10.1023/A:10
22627411411.

7. Demšar, J. (2006). Statistical comparisons of classifiers over multiple
data sets. The Journal of Machine Learning Research, 7, 1–30.

8. Di Persio, L., & Honchar, O. (2016). Artificial neural networks
architectures for stock price prediction: comparisons and appli-
cations. International Journal of Circuits, Systems and Signal
Processing, 10, 403–413.

9. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.
(1997). Support vector regression machines. In Mozer, M.C., Jor-
dan, M.I., Petsche, T. (Eds.) Advances in neural information pro-
cessing systems (Vol. 9, pp. 155–161). MIT Press. http://papers.
nips.cc/paper/1238-support-vector-regression-machines.pdf.

10. Evgeniou, T., Figueiras-Vidal, A.R., Theodoridis, S. (2008).
Emerging machine learning techniques in signal processing.

11. Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine
Learning, 41(3), 315–343. https://doi.org/10.1023/A:100765211
114878.

12. Genuer, R., Poggi, J.M., Tuleau-Malot, C. (2010). Variable selec-
tion using random forests. Pattern Recognition Letters, 31(14),
2225–2236. https://doi.org/10.1016/j.patrec.2010.03.014. http://
www.sciencedirect.com/science/article/pii/S0167865510000954.

13. Hoeffding, W. (1963). Probability inequalities for sums of
bounded random variables. Journal of the American Statistical
Association, 58(301), 13–30. https://doi.org/10.1080/01621459.
1963.10500830. http://amstat.tandfonline.com/doi/abs/10.1080/
01621459.1963.10500830.

14. Katagiri, S., Nakamura, A., Adali, T., Tao, J., Larsen, J.,
Tan, T. (2014). Guest editorial: Machine learning for signal
processing. Journal of Signal Processing Systems, 74(3), 281–283.
https://doi.org/10.1007/s11265-014-0871-6.

15. Kocev, D., Džeroski, S., White, M.D., Newell, G.R., Griffioen,
P. (2009). Using single- and multi-target regression trees and
ensembles to model a compound index of vegetation condition.
Ecological Modelling, 220(8), 1159–1168.

23

https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
https://doi.org/10.1023/A:1007652114878
https://doi.org/10.1023/A:1007652114878
https://doi.org/10.1016/j.patrec.2010.03.014
http://www.sciencedirect.com/science/article/pii/S0167865510000954
http://www.sciencedirect.com/science/article/pii/S0167865510000954
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://doi.org/10.1007/s11265-014-0871-6

16. Kocev, D., Vens, C., Struyf, J., Džeroski, S. (2007). Ensembles
of multi-objective decision trees. In European conference on
machine learning (pp. 624–631). Springer.

17. Kocev, D., Vens, C., Struyf, J., Džeroski, S. (2013). Tree
ensembles for predicting structured outputs. Pattern Recognition,
46(3), 817–833.

18. Li, X., & Zheng, J. (2016). Active learning for regression with
correlation matching and labeling error suppression. IEEE Signal
Processing Letters, 23(8), 1081–1085.

19. Lichman, M. (2013). UCI machine learning repository. http://
archive.ics.uci.edu/ml.

20. Mastelini, S.M., Santana, E.J., Cerri, R., Barbon, S. Jr. (2017).
DSTARS: a multi-target deep structure for tracking asynchronous
regressor stack. In Brazilian conference on intelligent systems.
BRACIS 2017.

21. Melki, G., Cano, A., Kecman, V., Ventura, S. (2017). Multi-
target support vector regression via correlation regressor chains.
Information Sciences, 415, 53–69.

22. Moyano, J.M., Gibaja, E.L., Ventura, S. (2017). An evolutionary
algorithm for optimizing the target ordering in ensemble of
regressor chains. In 2017 IEEE congress on evolutionary
computation (CEC) (pp. 2015–2021). IEEE.

23. Santana, E.J., Mastelini, S.M., Barbon, S. Jr. (2017). Deep
regressor stacking for air ticket prices prediction. In Brazilian
symposium of information systems (pp. 216–233). SBSI 2017.

24. Sidike, P., Krieger, E., Alom, M.Z., Asari, V.K., Taha, T. (2017).
A fast single-image super-resolution via directional edge-guided
regularized extreme learning regression. In Signal, image and
video processing (pp. 1–8).

25. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.
(2016). Multi-target regression via input space expansion: treating
targets as inputs. Machine Learning, 104(1), 55–98.

26. Tsoumakas, G., Spyromitros-Xioufis, E., Vrekou, A., Vlahavas,
I. (2014). Multi-target regression via random linear target
combinations. In Joint european conference on machine learning
and knowledge discovery in databases (pp. 225–240). Springer.

27. Wang, Q., Wu, Y., Shen, Y., Liu, Y., Lei, Y. (2015). Supervised
sparse manifold regression for head pose estimation in 3d space.
Signal Processing, 112, 34–42.

28. Watanabe, S., Nakamura, A., Juang, B.H.F. (2014). Structural
bayesian linear regression for hidden Markov models. Journal of
Signal Processing Systems, 74(3), 341–358.

29. Zhang, W., Liu, X., Ding, Y., Shi, D. (2012). Multi-output LS-SVR
machine in extended feature space. In CIMSA 2012 - 2012 IEEE
Int. Conf. Comput. Int.ll. Meas. Syst. Appl. Proc. (pp. 130–144).
https://doi.org/10.1109/CIMSA.2012.6269600.

Saulo Martiello Mastelini
received his BSc and MSc
degrees in Computer Science
in 2016 and 2018, respec-
tively, at the State University
of Londrina, Brazil. During
his bachelor he researched
in Computer Graphics, Com-
puter Vision and Numerical
methods for solving Partial
Differential Equations. Dur-
ing his Master’s he focused in
Machine Learning techniques,
with special attention for
Multi-target regression tasks.

Victor Guilherme Turrisi da
Costa BSc, is an MSc stu-
dent in the Computer Sci-
ence Department at State Uni-
versity of Londrina (UEL),
Brazil. He received his BSc
degree in Computer Science in
2017 at the State University
of Londrina (UEL), Brazil.
His research interests include
Pattern Recognition, Machine
Learning and botnet detection.

Everton Jose Santana is a
Bsc student of Electrical Engi-
neering at State University of
Londrina, Brazil. From 2015
to 2016, he was an exchange
student at Hanze University
of Applied Sciences, the
Netherlands, where he fol-
lowed minors in Biomedical
and Sensor System Engineer-
ing. His main research topics
are Applied Mathematics,
Instrumentation/Biomedical
Engineering and Machine
Learning.

Felipe Kenji Nakano received
his BSc degree in Com-
puter Science in 2016 at the
State University of Londrina,
Brazil. During his bachelor
he worked with software
development and researched
Process Mining. Currently,
he is finishing his MSc in
Computer Science at Federal
University of Sao Carlos. His
topics of interest are Hierar-
chical Classification, Deep
Learning and Active Learning.

24

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/CIMSA.2012.6269600

Dr. Rodrigo Capobianco
Guido received his BSc
degrees in Computer Science
and in Computer Engineering,
his MSc degree in Electrical
Engineering and his PhD
degree in Computational
Applied Physics, respectively
from São Paulo State Univer-
sity (UNESP) at São José do
Rio Preto - Brazil in 1998,
from Educational Foundation
at Votuporanga (FEV) - Brazil
in 2003, from Campinas State
University (UNICAMP) -
Brazil in 2000 and from Uni-

versity of São Paulo (USP) at São Carlos - Brazil in 2003. From both
BScs to PhD, all his titles focused on signal processing. In comple-
ment, he has already participated in two post-doctoral programs in
signal processing at USP, from 2003 to 2007, and obtained the title
of Associate Professor (Livre-Docência) in signal processing from
the School of Engineering at São Carlos - Brazil (USP) in 2008. Dr.
Guido has taught signal processing and electronics since 1999 and has
published hundreds of scientific articles in IEEE and Elsevier journals,
magazines, and conference proceedings. He is serving, or recently
served, as an area-editor, as an associate-editor, and as a guest-editor
for respected scientific journals, such as IEEE Signal Processing Mag-
azine, IEEE Transactions on Audio, Speech and Language Processing,
Elsevier Pattern Recognition Letters, Elsevier Neurocomputing,
Elsevier Computers in Biology and Medicine, just to mention a few.
Complementarily, he has served as an organiser and chairman for
many IEEE conferences along the years. Dr. Guido has received sev-
eral grants and awards from Brazilian agencies, especially from The
State of São Paulo Research Foundation (FAPESP) and from National
Council of Research and Development (CNpQ). He has also super-
vised many theses in his field and is a senior member of the IEEE.
Currently, he is an associate professor at UNESP in São José do Rio
Preto - Brazil. Dr. Guido has focused his research activities on digital
signal processing (DSP) with particular focus on speech processing,
i.e., speech transmission and reception, speech enhancement, speech
recognition, speaker identification and verification, speech analysis
for biomedical purposes, voice morphing, speech emotion classifica-
tion, voice activity detection, speech synthesis, and so on, specially
based on wavelets associated with algorithms for machine learning.

Ricardo Cerri obtained his
Bachelor in Computer Sci-
ence from São Paulo State
University (UNESP/Brazil),
and his MSc and PhD in
Computer Science and Com-
putational Mathematics from
University of São Paulo
(ICMC/USP/Brazil). He has
experience working mainly
with Bioinformatics and
Machine Learning, focusing
on advanced methods for
data classification, such as
multi-output and structured
learning. Currently he holds

the position of Assistant Professor at the Department of Computer
Science from Federal University of São Carlos (UFSCar/Brazil).

Sylvio Barbon Jr. PhD, is
Associate Professor and leader
of the research group that
studies machine learning in
the Computer Science Depart-
ment at State University of
Londrina (UEL), Brazil. He
received his BSc degree in
Computer Science in 2005,
MSc degree in Computational
Physics from University of
São Paulo (2007), degree in
Computational Engineering
during 2008 and PhD degree
(2011) from IFSC/USP such
as the MSc degree. During

2017, he was visiting researcher at University of Modena and Reggio
Emilia (Italy) working on multispectral analysis and machine learn-
ing. Still in 2017, as visiting researcher at Universita Degli Studi Di
Milano (Italy) focused on Stream and Process Mining. He is currently
a professor in postgraduate and graduate programs. His research
interests include Digital Signal Processing, Pattern Recognition and
Machine Learning.

25

	Multi-Output Tree Chaining: An Interpretative Modelling and Lightweight Multi-Target Approach
	Abstract
	Abstract
	Introduction
	Related Works
	Multi-target Regressor Stacking
	Ensemble of Regressor Chains

	Multi-output Tree Chaining
	Materials and Method
	Datasets
	Regression Techniques
	Random Forest
	Support Vector Machine

	Performance Evaluation

	Results and Discussion
	Predictive Performance
	Number of Induced Models
	Statistical Comparison
	MOTC and ERC Comparison
	Complexity Analysis
	Analysis of the Relationship Between Targets with CTs

	Conclusion
	Acknowledgements
	Appendix A Datasets Used in the Experiments
	 Obtained Condensed Chaining Tree Graphs and Target Labels
	Appendix B Obtained Condensed Chaining Tree Graphs and Target Labels
	References

