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ABSTRACT We review and apply a computational theory based on the hypothesis that the feedforward
path of the ventral stream in visual cortex’s main function is the encoding of invariant representations of
images. A key justification of the theory is provided by a result linking invariant representations to small
sample complexity for image recognition - that is, invariant representations allow learning from very few
labeled examples. The theory characterizes how an algorithm that can be implemented by a set of ‘‘simple’’
and ‘‘complex’’ cells - a ‘‘Hubel Wiesel module’’ – provides invariant and selective representations. The
invariance can be learned in an unsupervised way from observed transformations. Our results show that
an invariant representation implies several properties of the ventral stream organization, including the
emergence of Gabor receptive filelds and specialized areas. The theory requires two stages of processing:
the first, consisting of retinotopic visual areas such as V1, V2 and V4 with generic neuronal tuning, leads to
representations that are invariant to translation and scaling; the second, consisting of modules in IT (Inferior
Temporal cortex), with class- and object-specific tuning, provides a representation for recognition with
approximate invariance to class specific transformations, such as pose (of a body, of a face) and expression.
In summary, our theory is that the ventral stream’s main function is to implement the unsupervised learning
of ‘‘good’’ representations that reduce the sample complexity of the final supervised learning stage.

16

17

INDEX TERMS Visual cortex, Hubel Wiesel model, simple and complex cells, artificial neural networks,
invariance, sample complexity.

I. INTRO AND BACKGROUND18

The ventral visual stream is believed to underlie object recog-19

nition abilities in primates. Fifty years of modeling efforts,20

beginning with the original Hubel and Wiesel proposal (HW21

in the rest of the paper) of a hierarchical architecture iterating22

in different layers the motif of simple and complex cells23

in V1, have led to a series of quantitative models from24

Fukushima [36] and Riesenhuber and Poggio [106] HMAX25

(Hierarchical architecture with MAX pooling) to more recent26

architectures based on contrastive [20], [139] or slow fea-27

tures [109] learning. These models are increasingly faithful28

to biological architecture constraints and are able to mimic29

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Xiang .

properties of cells in different visual areas while achieving 30

human-like recognition performance under restricted condi- 31

tions. Starting from the architectures in [45], [112], and [138], 32

deep learning convolutional networks, which are hierarchical 33

but otherwise do not respect the ventral stream architecture 34

and physiology, have been trained with very large labeled 35

datasets. The resulting model’s neuron population accurately 36

mimic the object recognition performance of the macaque 37

visual cortex (e.g., [17], [59], [132], [133], and [139]). How- 38

ever, the nature of the computations carried out in the ventral 39

stream is not fully explained by such models that, despite 40

being simulated on a computer, remain rather opaque. 41

In other papers (in particular [6], [7], [10], and [102]) 42

we have developed a mathematics of invariance that can be 43

applied to the ventral stream. Invariance and equivariance 44
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are key features of modern neural networks architectures45

(e.g., [4], [9], [16], [20], [23], [44], [79], and [80]). In this46

work we outline a comprehensive theory of the feedforward47

computation of invariant representations in the ventral stream48

- a theory of the first 100 milliseconds of visual perception,49

from the onset of an image to activation of IT (Inferior50

Temporal) neurons. In particular, such representations are51

likely to underlie rapid categorization – immediate object52

recognition from flashed images [104], [126]. We emphasize53

that this theory is not a full theory of vision that will explain54

top down effects and the role of backprojections, but only a55

precursor to it.56

Our theory is based on the hypothesis that the main57

computational goal of the ventral stream is to compute58

neural representations of images that are invariant to trans-59

formations commonly encountered in the visual environ-60

ment, and learned from unsupervised experience. The main61

novelty of our theory consists in explaining various aspects62

of the ventral stream architecture and its neurons in the63

light of this hypothesis and linking it with low sample64

complexity learning. Since invariant representations turn65

out to be ‘‘good’’ representation for supervised learning,66

characterized by small sample complexity, the architecture67

of the ventral stream may ultimately be dictated by the68

need to learn from very few labeled examples, similar to69

human learning but quite different from typical supervised70

machine learning algorithms trained on large sets of labeled71

examples.72

We use our theory to compactly summarize and explain73

several key aspects of the neuroscience of visual recognition,74

while predict others. Our main contributions are:75

• We introduce a novel general theoretical framework for76

a computational theory of invariance (section II), and a77

theory of the basic biophysical mechanisms and circuits78

in (section III). In particular, we compactly describe79

relevant recent mathematical results on invariant rep-80

resentations in vision whose details and proofs can be81

found in [6], [7], [8], and [10]. The starting point is82

a result proving that image representations (a feature83

vector that we call a signature) which are invariant to84

translation and scaling and approximately invariant to85

some other transformations (e.g., face expressions) can86

considerably reduce the sample complexity of learning87

(section IIA). We then describe how an invariant and88

unique (selective) image representation can be com-89

puted for each image or image patch; this invariance can90

be exact in the case of group transformations (we focus91

on groups such as the affine group in 2D and one of its92

subgroups, the similitude group consisting of translation93

and uniform scaling) and approximate under non-group94

transformations (sections IIB, IID). A module perform-95

ing filtering and pooling, like the simple and complex96

cells described by Hubel and Wiesel (HW module), can97

compute such estimates. Each HW module provides a98

signature, for the part of the visual field that is inside its99

receptive field.100

• We prove that Gabor functions are the optimal templates 101

for maximizing simultaneous invariance to translation 102

and scale (IIC). Hierarchies of HW modules retain their 103

properties, while alleviating the problem of clutter in the 104

recognition of wholes and parts, (sections IIE,IIF). 105

• We show that the same HW modules at high levels in 106

the hierarchy are able to compute representations which 107

are approximately invariant to a much broader range of 108

transformations (e.g., 3D expression of a face, pose of 109

a body, and viewpoint). They do so by using templates, 110

reflected in neuron’s tuning, that are highly specific for 111

each object class (sections IID, IIE). 112

• We describe (section III) how neuronal circuits may 113

implement the operation required by the HW algorithm. 114

We specifically discuss new models of simple and com- 115

plex cells in V1 (sections IIIA, IIIB). We also introduce 116

plausible biophysical mechanisms for tuning, pooling, 117

and learning the wiring based on Hebbian-like unsuper- 118

vised learning (sections IIIC, IIID, IIIE). 119

• We explain (section IV) how the final IT stage computes 120

class-specific representations that are quasi-invariant to 121

non-generic transformations. We also discuss the modu- 122

lar organization of anterior IT in terms of the theory; in 123

particular, proposing an explanation of the architecture 124

and of some puzzling properties of the face patches 125

system. 126

We conclude the paper with a discussion of predictions to be 127

tested and open problems (section V). 128

II. COMPUTATIONAL LEVEL: MATHEMATICS OF 129

INVARIANCE 130

For this paper, we will use the following conceptual frame- 131

work for primate vision: 132

• The first 100ms of vision in the ventral stream are 133

mostly feed forward. The main computational goal is to 134

generate a number of image representations, each one 135

invariant or approximately invariant to some transfor- 136

mations experienced during development and at matu- 137

rity, such as scaling, translation, and pose changes. The 138

representations are used to answer basic questions about 139

image type and what may be in it. 140

• The answers will often have low confidence, requiring 141

an additional ‘‘verification/prediction step’’, which may 142

require a sequence of shifts of gaze and attentional 143

changes. This step may rely on generative models and 144

probabilistic inference and/or on top-down visual rou- 145

tines following memory access. Routines that can be 146

synthesized on demand as a function of the visual task 147

are needed to go beyond object classification. 148

We consider only the feedforward architecture of the ven- 149

tral stream and its computational function. To help the reader 150

to more easily understand the mathematics of this section, 151

we give here an overview of the network of visual areas 152

that we propose for computing invariant representations in 153

feedforward visual recognition. There are two main stages: 154

the first one computes a representation that is invariant 155
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to affine transformations, followed by a second stage that156

computes approximate invariance to object specific, non-157

group transformations. The second stage consists of parallel158

pathways, each one for a different object class (see Fig-159

ure 4 stage 2). The results of this section do not strictly160

require these two stages: the second one may not be present,161

in which case the output of the first stage directly accesses162

memory for classification. If both are present, as seems to163

be the case for the primate ventral stream, the mathematics164

of the theory requires that the object specific stage follows165

the one dealing with affine transformations. According to166

our theory, the HW module mentioned earlier is the basic167

module for both stages. The first and second stage pathways168

may consist of a single layer of HW modules. However,169

mitigation of interference by clutter requires a hierarchy of170

layers (possibly corresponding to visual areas such as V1, V2,171

V4, PIT (Visual 1,2,3 and Posterior Infero-Temporal area))172

within the first stage. This may not be required in visual173

systems with lower resolution such as the mouse. The final174

architecture we use is shown in Figure 4: in the first stage175

computes representations that are increasingly invariant to176

translation and scale, while in the second stage a large num-177

ber of class-specific parallel pathways induce approximate178

invariance to transformations that are specific for objects and179

classes. Notice that for any representation which is invariant180

to feature X and selective for feature Y, there may be a dual181

representation which is invariant to Y but selective for X.182

In general, they may both needed for different tasks, and183

both can be computed by a HW module and the machinery184

computing them possibly shares a good deal of overlap. As an185

example, wewould expect that different face patches in cortex186

are used to represent different combinations of invariance and187

selectivity.188

A. INVARIANCE REDUCES SAMPLE COMPLEXITY189

OF LEARNING190

Images of the same object usually differ from each other191

because of generic transformations such as translation or192

scale (distance), or more complex transformations such as193

viewpoint (rotation in depth) or change in pose (of a body)194

or expression (of a face) (see also [5], par 3.1.2 for a back195

of envelope estimation of the number of possible transforma-196

tions of an image). In a machine learning context, invariance197

to image translations can be built up trivially by memorizing198

examples of the specific object in different positions. On the199

other hand, human vision is clearly invariant to novel objects200

seen only once: people do not have any problem recognizing201

a human face seen only once at different distances, e.g., in a202

distance-invariant way. It is rather intuitive that representa-203

tions of images that are invariant to transformations such204

as scaling, illumination, and pose should allow supervised205

learning from far fewer examples.206

This conjecture is supported by previous theoretical work207

showing that a significant portion of the complexity in recog-208

nition tasks is often due to the viewpoint and illumination209

nuisances that swamp the intrinsic characteristics of the210

FIGURE 1. If an ‘‘oracle’’ factors out all transformations in images of many
different cars and airplanes (C), providing ‘‘rectified’’ images (B) with
respect to viewpoint, illumination, position and scale, the problem of
categorizing cars vs airplanes becomes easy (A): it can be done accurately
with very few labeled examples. In the figure (C), good performance
(black line) was obtained from a single training image from each rectified
class, using a linear classifier operating on pixels, whereas training from
the unrectified training set yields chance performance. In other words,
the sample complexity of the problem becomes much lower with a
rectified (and therefore invariant) representation ([7]).

object [4], [74], [110]. This implies that in many cases, 211

recognition (both identification, e.g., of a specific car relative 212

to other cars,as well as categorization, e.g., distinguishing 213

between cars and airplanes) would be much easier (only 214

a small number of training examples would be needed to 215

achieve a given level of performance) if the object images 216

were rectified with respect to all transformations, or equiva- 217

lently, if the image representations were invariant. The case 218

of identification is obvious since the difficulty in recognizing 219

exactly the same object, e.g., an individual face, is due solely 220

to transformations. Figure 1 provides suggestive evidence 221

from a classification task, showing that if an oracle factors 222

out all transformations in images of many different cars 223

and airplanes, providing ‘‘rectified’’ images with respect to 224

viewpoint, illumination, position and scale, the problem of 225

categorizing cars vs airplanes becomes easy: it can be done 226

accurately with very few labeled examples. In this case, good 227

performance was obtained from a single training image of 228

each class, using a simple classifier. In other words, the 229

sample complexity of the problem seems to be very low. 230

A proof of the conjecture for the special case of translation 231
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is provided in [7] for images defined on a grid of pixels and,232

with the main results restated below.233

1) SAMPLE COMPLEXITY FOR TRANSLATION INVARIANCE234

Consider a space of images of dimensions p × p which may235

appear in any position within a window of size rp × rp. The236

natural image representation yields a sample complexity (for237

a linear classifier) of order mimage = O(r2p2); the invariant238

representation yields a sample complexity of order:239

minv = O(p2).240

The result says that an invariant representation can consider-241

ably decrease the sample complexity – that is, the number of242

supervised examples necessary for a certain level of accuracy243

in classification. A heuristic rule corresponding to the result is244

that the sample complexity gain is on the order of the number245

of virtual examples generated by the action of the group on a246

single image (see also [2], [33], [94], and [119]). The result247

does not provide an algorithm but it supports the hypothesis248

that the ventral stream in visual cortex tries to approximate249

such an oracle. The next section describes a biologically250

plausible algorithm that the ventral streammay use to achieve251

this goal.252

B. UNSUPERVISED LEARNING AND COMPUTATION OF AN253

INVARIANT SIGNATURE (ONE LAYER ARCHITECTURE)254

The following HW algorithm is biologically plausible, as we255

will discuss in further detail in section II and III, where we256

argue that it may be implemented in cortex by a HWmodule.257

The module consists of a set of KH complex cells with the258

same receptive field, each pooling the output of a set of simple259

cells whose sets of synaptic weights correspond to one of260

the K ‘‘templates’’ of the algorithm and its transformations261

(which are also called templates) and whose output is filtered262

by a sigmoid function with a 1h threshold, h = 1, · · · ,H .263

HW algorithm for group transformations (see Figure 2)264

• ‘‘Developmental’’ stage:265

1) Given one of the K isolated (on an empty back-266

ground) objects (the ‘‘training set’’), e.g., ‘‘tem-267

plates’’, memorize a sequence 0 of G frames268

corresponding to its transformations (gi, i = 1,269

· · · , |G|) observed over a time interval (thus270

0 = g0t, g1t, · · · , g|G|t for template t; for tem-271

plate tk the corresponding sequence of transforma-272

tions is denoted 0k ).273

2) Repeat for each of the K templates.274

• ‘‘Run-time’’ computation of invariant signature for a275

single image (of any new object):276

1) For each 0k compute the dot product of the image277

with each of the |G| transformations in 0k .278

2) For each k compute cumulative histogram of the279

resulting values.280

FIGURE 2. A graphical summary of the HW algorithm. The set of
µk

h (I) = 1/|G|
∑|G|

i=1 σ (
〈
I,gi tk

〉
+ h1) values (eq. 1) in the main text)

correspond to the the histogram where k=1 denotes the template’’ green
blackboard’’, h the bins of the histogram, and the transformations are
from the rotation group. Crucially, mechanisms capable of computing
invariant representations under affine transformations can be learned
(and maintained) in an unsupervised, automatic way just by storing sets
of transformed templates which are unrelated to the object to be
represented. In particular the templates could be random patterns.

3) The signature is the set ofK cumulative histograms 281

that is the set of: 282

µkh(I ) =
1
|G|

|G|∑
i=1

σ (
〈
I , gitk

〉
+ h1) (1) 283

where I is an image, σ is a threshold function, 284

1 > 0 is the width of bin in the histogram, and 285

h = 1, · · · ,H is the index of the bins of the 286

histogram. 287

The algorithm consists of two parts: the first is unsu- 288

pervised learning of transformations by storing transformed 289

templates, which are ‘‘images’’. This can be thought of as a 290

‘‘only once’’ stage, possibly done during development of the 291

visual system. The second part is the actual computation of 292

invariant signatures during visual perception. 293

This is the algorithm used throughout the paper. The guar- 294

antees we can provide depend on the type of transformations. 295

The main questions are a) whether the signature is invariant 296

under the same types of transformations that were observed 297

in the first stage and b) whether it is selective, e.g., can it 298

distinguish between N different objects. A summary of the 299

main results of [5], [6], [7], [8], and [10] is that the HW 300

algorithm is invariant and selective (for K in the order of 301

logN ) if the transformations form a group. In this case, any 302

set of randomly chosen templates will work for the first 303

stage. Given that we are interested in transformations from 304

a 2D image to a 2D image, the natural choice is the affine 305

group consisting of translations, rotations in the image plane, 306

scaling (possibly non-isotropic), and their compositions. The 307

HW algorithm can learn with exact invariance and a desired 308

selectivity level in the case of the affine group or its sub- 309

groups. In the case of 3D ‘‘images’’ consisting of voxels 310

with x, y, z coordinates, rotations in 3D are also a group that 311
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in principle can be dealt with, achieving exact invariance312

from generic templates by the HW algorithm (in practice313

this is rarely possible because of correspondence problems314

and self-occlusions). Later in section II.E we will show that315

the same HW algorithm provides approximate invariance316

(under some conditions) for non-group transformations such317

as the transformations from R3 to R2 induced by views of 3D318

rotations of an object.319

In the case of compact groups the guarantees of invariance320

and selectivity are provided by the following two results321

(given informally here; detailed formulation in [5], [6], [7],322

[8], and [10]).323

Result 1: Invariance324

The distributions represented by equation 1 are invariant,325

that is each bin is invariant, e.g.,326

µkh(I ) = µ
k
h(gI ) (2)327

for any g in G, where G is the (locally compact1) group of328

transformations labeled gi in equation 1.329

Result 2: Selectivity330

For groups of transformations (such as the affine group),331

the distributions represented by equations 1) can achieve332

any desired selectivity for an image among N images in the333

sense that they can ε-approximate the true distance between334

each pair of the images (and any transform of them) with335

probability 1− δ provided that336

K >
c
ε2

ln
N
δ

(3)337

where c is a universal constant.338

The signature provided by the K cumulative histograms339

is a feature vector corresponding to the activity of the (HK )340

complex cells associated with the HW module. It is selective341

in the sense that it corresponds uniquely to an image of a spe-342

cific object independently from its transformation. It should343

be noted that the robustness or stability of the signature under344

noisy measurements remains an interesting open problem in345

the theory. Because of the restricted dynamic range of cortical346

cells the number of binsH is likely to be small. It is important347

to remark that other, related representations are possible (see348

also [7], [62], and [65]). A cumulative distribution function349

(CDF) is fully represented by all its moments; often a few350

moments351

µkav(I ) =
1
|G|

|G|∑
i=1

〈
I , gitk

〉
352

µkenergy(I ) =
1
|G|

|G|∑
i=1

〈
I , gitk

〉2
353

µkmax(I ) = maxgi∈G
〈
I , gitk

〉
(4)354

1A group is called compact if is supported on a compact set. For example
the rotation group is a compact group on the set of angles in [0, 2π ]. Its
is a locally compact group if it is supported on a locally compact set. For
example the locally compact group of translations supported on the set of
translations [0,+∞].

such as the average or the variance (energy model of complex 355

cells, see [3]) or the max, can effectively replace the cumula- 356

tive distribution function. Notice that any linear combination 357

of the moments is also invariant and a small number of linear 358

combinations is likely to be sufficiently selective. We will 359

discuss implications of this remark for models of complex 360

cells in the last section. 361

C. OPTIMAL TEMPLATES FOR SCALE AND POSITION 362

INVARIANCE ARE GABOR FUNCTIONS 363

The previous results apply to all groups, in particular to those 364

which are not compact but only locally compact such as trans- 365

lation and scaling. In this case it can be proved that invari- 366

ance holds within an observable window of transformations 367

[6], [7]. For the HW module the observable window corre- 368

sponds to the receptive field of the complex cell (in space and 369

scale). In order to maximize the range of invariance within the 370

observable window, [6], [7] proves that the templates must 371

be maximally sparse relative to generic input images (see 372

below for definition of sparseness). In the case of translation 373

and scale invariance, this sparsity requirement is equivalent 374

to localization in space and spatial frequency, respectively: 375

templates must be maximally localized for maximum range 376

of invariance in order to minimize boundary effects due to 377

the finite window. Assuming therefore that the templates are 378

required to have simultaneously a minimum size in space 379

and spatial frequency, it follows from the results of Gabor 380

([40], see also [29]) that they must be Gabor functions. The 381

following surprising property holds: 382

Optimal invariance result 383

Gabor functions of the form (here in 1D) t(x) = e−
x2

2σ2 eiωx 384

are the templates that are simultaneously maximally invariant 385

for translation and scale (at each x and ω.) 386

In general, templates chosen at random from the space 387

of images can provide scale and position invariance. How- 388

ever, for optimal invariance under scaling and translation, 389

templates of the Gabor form are optimal. This is the only 390

computational justification we know of the Gabor shape of 391

simple cells in V1 which seems to be remarkably universal: 392

it holds in primates (Optimal invariance result [107]), cats 393

(Optimal invariance result [61]) andmice (Optimal invariance 394

result [93]) (see also Figure 3 for results of simulations 395

and [92]). 396

D. QUASI-INVARIANCE TO NON-GROUP 397

TRANSFORMATIONS REQUIRES 398

CLASS-SPECIFIC TEMPLATES 399

All the results so far require a group structure and provide 400

exact invariance for a single new image. In 2D this induces 401

all combinations of translation, scaling, and rotation in the 402

image plane but does not include the transformations induced 403

on the image plane by 3D transformations such as view- 404

point changes and rotation in depth of an object. The latter 405

forms a group in 3D, as if images and templates were 3D 406

views; in principle motion or stereopsis can provide the third 407
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FIGURE 3. a) Simulation results for V1 simple cells learning via PCA
(Principal Component Analysis). Each ‘‘cell’’ sees a set of images through
a Gaussian window (its dendritic tree), shown in the top row. Each cell
then ‘‘learns’’ the same weight vector, extracting the principal
components of its input. b) This figure shows ny = σy /λ vs nx = σx /λ for
the modulated (x) and unmodulated (y ) direction of the Gabor wavelet.
Notice that the value of the slope σy /σx is a robust finding in the theory
and apparently also in the physiology data. Neurophysiology data from
monkeys, cats and mice are reported together with our simulations.
Figure from [92].

dimension, though available psychophysical evidence [32],408

[124] suggests that human vision does not use it for recog-409

nition. Notice that transformations in the image plane are410

affected not only by orthographic projection of the 3D geome-411

try but also by the process of image formation which depends412

on the 3D geometry of the object, its reflectance properties,413

and the relative location of the light source and viewer.414

It turns out that the HW algorithm can still be applied to415

non-group transformations - such as transformations of the416

expression of a face, or of the pose of a body - to provide,417

under certain conditions, approximate invariance. In this case418

bounds on the invariance depend on specific details of the419

object and the transformation: we do not have general results420

and suspect theymay not exist. The key technical requirement421

is that a new type of sparsity condition holds: sparsity for422

the class of images IC with respect to the dictionary tk under423

the transformations Tr (we consider here a one parameter (r)424

transformation)425 〈
IC ,Tr tk

〉
≈ 0 |r| > a a & 0. (5)426

This property, which is an extension of the compressive427

sensing notion of ‘‘incoherence’’, requires that images in the428

class and the templates have a representation with sharply429

peaked correlation and autocorrelation (the constant a above430

is related to the support of the peak of the correlation). This431

condition can be satisfied by templates that are similar to432

images in the set and are sufficiently ‘‘rich’’ to be inco-433

herent for ‘‘small’’ transformations. This relative sparsity434

condition is usually satisfied by the neural representation of435

images and templates at some high level of the hierarchy436

of HW modules that we describe next. Like standard spar-437

sity [29] our new sparsity condition is generic: most neural438

patterns - templates and images from the same class - chosen439

at random will satisfy it. The result [7] takes the following 440

form: 441

Class-specific property 442

µkh(I ) is approximatively invariant around a view if 443

• I is sparse in the dictionary of templates relative to the 444

transformations 445

• I transforms ‘‘in the same way’’ as the templates 446

• the transformation is smooth 447

The main implication is that approximate invariance can be 448

obtained for non-group transformation by using templates 449

specific to the class of objects. This means that class specific 450

modules are needed, one for each class; each module requires 451

highly specific templates, that is cell tunings. The obvious 452

example is face-tuned cells in the face patches. Unlike exact 453

invariance for affine transformations where tuning of the 454

‘‘simple cells’’ is non-specific in the sense that does not 455

depend on the type of image, non-group transformations 456

require highly tuned neurons and yield at best only approxi- 457

mate invariance (see, e.g. [46] and [137]). 458

E. TWO STAGES IN THE COMPUTATION OF AN INVARIANT 459

SIGNATURE 460

Hierarchical architectures are advantageous for several rea- 461

sons which are formalized mathematically in [6], [7], [31], 462

[87], and [105]. It is illuminating to consider two extreme 463

‘‘cartoon’’ architectures for the first of the two stages 464

described at the beginning of section II: 465

• one layer comprising one HW module and its KH 466

complex cells, each one with a receptive field covering 467

the whole visual field 468

• a hierarchy comprising several layers of HW modules 469

with receptive fields of increasing size, followed by par- 470

allel modules, each devoted to invariances for a specific 471

object class. 472

In the first architecture invariance to affine transformations 473

is obtained by pooling over KH templates, with each one 474

transformed in all possible ways: each of the associated 475

simple cells corresponds to the transformation of a template. 476

Invariance over affine transformation is obtained by pooling 477

over the whole visual field. In this case, it is not obvious 478

how to incorporate invariance to non-group transformations 479

directly in this one-hidden layer architecture. 480

Notice however that a HWmodule dealing with non-group 481

transformations can be added on top of the affine module. 482

The results in [5] and [7] allow for this factorization. Inter- 483

estingly, they do not allow in general for factorization of 484

translation and scaling (e.g., one layer computing transla- 485

tion invariance and the next computing scale invariance). 486

Instead, what the mathematics allows is factorization of the 487

range of invariance for the same group of transformations 488

(see also [5] par 3.6-7-8-9). This justifies the first layers of 489

the second architecture, corresponding to Figure 4 stage 1, 490

where the size of the receptive field of each HW module 491

and the range of its invariance increases from lower to higher 492

layers. 493
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FIGURE 4. A hierarchical architecture of HW modules. The signature
provided by each of the nodes at each layer may be used by a supervised
classifier. Stage 1: a hierarchy of HW modules (green inset) with growing
receptive fields provide a final signature (top of the hierarchy) which is
globally invariant to affine transformations by pooling over a cascade of
locally invariant signatures at each layer. Stage 2: transformation specific
modules provide invariance for non group transformations (e.g., rotation
in depth).

F. INVARIANCE TO TRANSLATION AND SCALE (STAGE 1)494

WITH CLUTTER TOLERANCE REQUIRES A HIERARCHICAL495

ARCHITECTURE496

Themain problemwith the one-layer architecture is that it can497

recognize isolated objects in the visual field in an invariant498

way but cannot recognize objects in clutter: the key result499

about invariance assumes that image and templates portray500

isolated objects. Otherwise the signaturemay change because501

of different clutter at different times.2 The problem of clutter502

- of recognizing an object independently of the presence of503

another one nearby - is closely related to the problem of504

recognizing ‘‘wholes’’ and ‘‘parts’’. Recognizing an eye in505

a face has the problem that the rest of the face is clutter. This506

is the old conundrum of recognizing a tree in a forest while507

still recognizing the forest.508

A partial solution to this problem is to use a hierarchical509

architecture for stage 1 in which lower layers provide signa-510

tures with a small range of invariance for ‘‘small’’ parts of511

the image and higher layers provide signatures with greater512

invariance for larger parts of the image. This signature could513

then be used by class specific modules. Two points are of514

interest here.515

Factorization of a range of invariances is possible if a516

certain property of the hierarchical architecture, called equiv-517

ariance, holds. Assume a group transformation of the image,518

e.g., a translation or scaling of it. The first layer in a hierar-519

chical architecture is called equivariant if the pattern of neural520

activity at the output of the complex cells transforms accord-521

ingly to the same group of transformations. The equivariance522

property is also very important in modern neural networks523

2Notice that because images are filtered by the retina with spatial bandpass
filters (ganglion cells), the input to visual cortex is a rather sparse pattern of
activities, somewhat similar to a sparse edge map.

(see, e.g., [23] and [24]). It turns out that the architectures we 524

describe have this property (see [5] and [7] par 3.5.3 for the 525

translations case): isotropic architectures, like the ones con- 526

sidered in this paper, with point-wise nonlinearities are equiv- 527

ariant. The key difference from the architecture described 528

above is that equivariance can be achieved when the complex 529

cells pool over single cells responses coming from templates 530

transforming w.r.t. a subset of all group transformations. 531

In this way the complex first layer representation will be 532

invariant to ‘‘small’’ transformations (e.g., small translations) 533

but still carry information about ‘‘large’’ transformations 534

(equivariance). Since eachmodule in the architecture gives an 535

invariant output if the transformed object is contained in the 536

pooling range, and since the pooling range increase from one 537

layer to the next, there is an invariance over larger and larger 538

transformations. The second point is that in order to make 539

recognition possible for both parts and wholes of an image, 540

the supervised classifier should receive signatures not only 541

from the top layer (as in most modern neural architectures) 542

but also from the other levels as well (directly or indirectly). 543

III. BIOPHYSICAL MECHANISMS OF INVARIANCE: 544

UNSUPERVISED LEARNING, TUNING AND POOLING 545

A. A SINGLE CELL MODEL OF SIMPLE AND 546

COMPLEX CELLS 547

There are at least two possible biophysical models for the HW 548

module implied by our theory. The first is the original Hubel 549

and Wiesel model of simple cells feeding into a complex 550

cell. Our theory proposes the ‘‘ideal’’ computation of a CDF, 551

in which case the nonlinearity at the output of the simple cells 552

is a threshold function. A complex cell, summing the outputs 553

of a set of simple cells, would then represent a bin of the his- 554

togram; a different complex cell in the same position pooling 555

a set of similar simple cells with a different threshold would 556

represent another bin of the histogram. Another possibility 557

is that the nonlinearity at the output of the simple cells is a 558

square or any power or combination of powers. In this case the 559

complex cell pooling simple cells with the same nonlinearity 560

would represent a moment of the distribution, including the 561

linear average. The nonlinear transformation at the output of 562

the simple cells would correspond to the spiking mechanism 563

in populations of cells (see, e.g., references in [65]). 564

The second biophysical model for the HW module that 565

implements the computation required by our theory consists 566

of a single cell where dendritic branches play the role of 567

simple cells (each branch containing a set of synapses with 568

weights providing, for instance, Gabor-like tuning of the den- 569

dritic branch) with inputs from the LGN (lateral geniculate 570

nucleus); active properties of the dendritic membrane distal 571

to the soma provide separate threshold-like nonlinearities 572

for each branch separately, while the soma sums the con- 573

tributions for all the branches. This model would solve the 574

puzzle that there seems to be no morphological difference 575

between pyramidal cells classified as simple vs complex by 576

physiologists. 577
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It is interesting that our theory is robust with respect to the578

nonlinearity from simple to the complex ‘‘cells’’. We conjec-579

ture that almost any set of non trivial nonlinearities will work.580

This argument rests on the fact that a set of different complex581

cells pooling from the same simple cells should compute582

the cumulative distribution or equivalently its moments or583

combinations of moments (each combination is a specific584

nonlinearity). Any nonlinearity will provide invariance, if the585

nonlinearity does not change with time and is the same for all586

the simple cells pooled by the same complex cells. A suffi-587

cient number of different nonlinearities, each corresponding588

to a complex cell, can provide appropriate selectivity.589

B. LEARNING THE WIRING590

A simple possibility for how the wiring between a group of591

simple cells with the same tuning (for instance representing592

the same eigenvector, with the same orientation etc.) and593

a complex cell may develop is to invoke a Hebbian trace594

rule ([35], see also [10] and [89]). In a first phase complex595

cells may have subunits with different selectivities (e.g. ori-596

entations), for instance because natural images are rotation597

invariant and thus eigenvectors with different orientations are598

degenerate. In a second plastic phase, subunits which are599

inactive when the majority of the subunits are active will be600

pruned out according to a Foldiak-like rule.601

C. HEBB SYNAPSES AND PCAs602

Our theory provides the following algorithm for learning the603

relevant invariances during unsupervised visual experience:604

store a sequences of images for each of a few objects (called605

‘‘templates’’) with transformations - for instance translat-606

ing, rotating, and looming. Section II shows that in this607

way invariant hierarchical architectures can be learned from608

unsupervised visual experience. Such architectures repre-609

sent a significant extension beyond simple translation invari-610

ance, and beyond hardwired connectivity, of models of the611

ventral stream such as Fukushima’s Neocognitron [36] and612

HMAX [106], [118] – as well as deep neural network of con-613

volutional type ([70] and related models, e.g., [1], [73], [88],614

[97], [98], [115], [122]) or models where the symmetry is not615

learned but hardwired, see, e.g., [25], [108]. Note that other616

algorithms to learn symmetries has been recently proposed617

for artificial neural networks, e.g., [13], [26], [134]. However618

their biological plausibility is not clear (see also [47]).619

In biological terms, the sequence of transformations of one620

template would correspond to a set of simple cells, each one621

storing in its tuning a frame of the sequence. In the second622

learning step a complex cell would be wired to those ‘‘sim-623

ple’’ cells. However, the idea of a direct storage of sequences624

of images or image patches in the tuning of a set of V1 cells625

by exposure to a single object transformation is biologically626

rather implausible. Since Hebbian-like synapses are known627

to exist in visual cortex a more natural hypothesis is that628

synapses would incrementally change over time as an effect629

of the visual inputs - that is over many sequences of images630

resulting from transformations of objects, e.g., templates.631

The question is whether or not such a mechanism is compat- 632

ible with our theory and how to implement it if so. 633

We explore this question for V1 in a simplified setup that 634

can be extended to other areas. We assume: 635

• a) that the synapses between LGN inputs and (immature) 636

simple cells are Hebbian and in particular that their 637

dynamics follows Oja’s flow [64], [95]. In this case, 638

the synaptic weights will converge to the eigenvector 639

with the largest eigenvalue of the covariance of the input 640

images. 641

• b) that the position and size of the untuned simple cells is 642

set during development according to an inverted pyrami- 643

dal lattice (see Figure 3 in [102]). The key point here is 644

that the size of the Gaussian spread of the synaptic inputs 645

and the positions of the ensemble of simple cells are 646

assumed to be set independently of visual experience. 647

In summary we assume that the neural equivalent of the 648

memorization of frames (of transforming objects) is per- 649

formed online via Hebbian synapses that change as an effect 650

of visual experience. Specifically, we assume that the dis- 651

tribution of signals ‘‘seen’’ by a maturing simple cell is 652

Gaussian in x, y reflecting the distribution on the dendritic 653

tree of synapses from the lateral geniculate nucleus. We also 654

assume that there is a range of Gaussian distributions with 655

different σ variances which increase with retinal eccentricity. 656

As an effect of visual experience the weights of the synapses 657

are modified by a Hebb rule [50]. Hebb’s original rule can be 658

written as 659

wn = αy(xn)xn (6) 660

where α is the ’’learning rate’’, xn is the input vector, w 661

is the presynaptic weights vector, and y is the postsynaptic 662

response. In order for this dynamical system to actually 663

converge, the weights have to be normalized. In fact, there is 664

considerable experimental evidence that the cortex employs 665

normalization [130] and references therein). Hebb’s rule, 666

appropriately modified with a normalization factor, turns out 667

to be an online algorithm to compute PCA from a set of 668

input vectors. In this case it is called Oja’s flow. Oja’s rule 669

[64], [95] defines the change in presynaptic weights w given 670

the output response y of a neuron given its inputs x to be 671

wn = wn+1 − wn = αyn(xn − ynwn) (7) 672

where yn = wTn xn. The equation follows from expanding to 673

the first order Hebb’s rule, normalized to avoid divergence of 674

the weights. 675

Since the Oja flow converges to the eigenvector of the 676

covariance matrix of the xn which has the largest eigenvalue, 677

we analyze the spectral properties of the inputs to ‘‘simple’’ 678

cells and study whether a PCA computation can be used by 679

the HW algorithm and in particular whether it satisfies the 680

selectivity and invariance results. 681

Alternatives to the Oja’s rule that still converge to PCAs 682

can also be considered (see [113] and [96]). Also notice 683

that a relatively small change in the Oja equation gives an 684
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online algorithm for computing ICAs (Independent Com-685

ponent Analysis) instead of PCAs (see [56]). Which kind686

of plasticity is more biologically plausible remains an open687

question.688

D. SPECTRAL THEORY AND POOLING689

Consider stage 1, which is retinotopic, and particularly the690

case of simple cells in V1. From our assumptions in section V,691

the lattice in x, y, s of immature simple cell is set during the692

development of the organism (s is the size of the Gaussian693

envelope of the immature cell). Assume that all of the simple694

cells are exposed, while in a plastic state, to a possibly695

large set of images T = (t1, . . . , tK ). A specific cell at a696

certain position in x, y, s is exposed to the set of transformed697

templates g∗T (where g∗ corresponds to the translation and698

scale that transforms the ‘‘zero’’ cells to the chosen neu-699

ron in the lattice) and therefore the associated covariance700

matrix g∗TT T gT∗ . Thus it is possible to choose PCA as new701

templates, and pooling over corresponding PCAs across dif-702

ferent cells is equivalent to pooling over a template and its703

transformations. Both the invariance and selectivity result are704

valid. Empirically, we find ([77]) that PCA of natural images705

provides eigenvectors that are Gabor-like wavelets with a706

random orientation for each sized receptive field. The random707

orientation is because of the argument above, together with708

the fact that the covariance of natural images is approximately709

rotation invariant. The Gabor-like shape can be qualitatively710

explained in terms of translation invariance of the correlation711

matrix associated with a set of natural images (and their712

approximate scale invariance which corresponds to a ≈ 1/f713

spectrum, see also [111], [114], and [127]).3 Thus theOja rule714

acting on natural images provides ‘‘equivalent templates’’715

that are Gabor-like: the optimal templates, according to the716

theory of section IIC.717

Consider now non-retinotopic stage 2 in which transforma-718

tions are not in scale or position, such as the transformation719

induced by a rotation of a face. Assume that a ‘‘simple’’ cell720

is exposed to ‘‘all’’ transformations gi (gi is a group element721

of the finite group G) of each of a set T = (t1, . . . , tK )722

of K templates. The cell is thus exposed to a set of images723

(columns of X ) X = (g1 T , . . . , g|G|T ). For the sake of this724

example, assume that G is the discrete equivalent of a group.725

Then the covariance matrix determining the Oja’s flow is726

C = XXT =
|G|∑
i=1

giTT T gTi . (8)727

It is immediately clear that if φ is an eigenvector of C then728

giφ is also an eigenvector with the same eigenvalue (for more729

details on how receptive fields look like in V1 and higher730

3Suppose that the simple cells are exposed to patterns and their scaled and
translated versions. Suppose further that images are defined on a lattice and
translations and scaling (a discrete similitude group) are carefully defined on
the same lattice. Then a set of discrete orthogonal wavelets - defined in terms
of discrete dilation and shifts - exist and is invariant under the group. The
Oja rule (extended beyond the top eigenvector) could converge to specific
wavelets.

layers see also [5], [101] par 4.3.1 and 4.7.3, [10], [41], 731

[42], [51]). Consider an example G to be the discrete rotation 732

group in the plane: then all the (discrete) rotations of an 733

eigenvector are also eigenvectors. The Oja rule will converge 734

to the eigenvectors with the top eigenvalue and thus to the 735

subspace spanned by them. It can be shown that L2 pooling 736

over the PCA with the same eigenvalues represented by 737

different simple cells is then equivalent to L2 pooling over 738

transformations, as the theory of section II.B dictates, in order 739

to achieve selectivity and invariance ([5] par 4.6.1 and [10]). 740

This argument can be formalized in the following variation 741

of the pooling step in the HW algorithm: 742

Spectral pooling. Suppose that M is the matrix corre- 743

sponding to the group transformations of template t (each 744

column is a transformation of the template). Consider the set 745

of eigenvectors {φ∗k }
K
k=1 of covariance matrix C = MMT

746

with eigenvalue λ∗. Because of the above argument 747

〈gmI , φk 〉 =
〈
I , φ∗p

〉
where g−1m φ∗k = φ∗p . Therefore to 748

achieve invariance a complex cell can pool with a quadratic 749

nonlinearity over the eigenvectors of C instead of over the 750

transformations of the template. Thus, components of an 751

invariant signature can be computed as 752

µ∗(I ) =
∑
i

||
〈
I , φ∗i

〉
||
2. (9) 753

E. TUNING OF ‘‘simple’’ CELLS 754

The results of section II on the HW module imply that the 755

templates, and therefore the tuning of the simple cells, can 756

be the image of any object. At higher levels in the hierarchy, 757

the templates are neuroimages - patterns of neural activity – 758

induced by actual images in the visual field. The previous 759

section, however, offers a more biologically plausible way 760

to learn the templates from unsupervised visual experience 761

via Hebbian plasticity. In the next sections we will discuss 762

predictions following from this assumptions for the tuning of 763

neurons in the various areas of the ventral stream. 764

IV. STAGE 2 IN IT: CLASS-SPECIFIC 765

APPROXIMATE INVARIANCE 766

A. FROM GENERIC TEMPLATES TO 767

CLASS-SPECIFIC TUNING 768

As discussed in section IIE, approximate invariance for trans- 769

formations beyond the affine group requires highly tuned 770

templates, and therefore highly tuned simple cells, probably 771

at a level in the hierarchy corresponding to AIT (anterior 772

inferotemporal cortex). According to the considerations of 773

section IIF this is expected to take place in higher visual 774

areas of the hierarchy. In fact, the same localization condi- 775

tion of Equation 4 suggests Gabor-like templates for generic 776

images in the first layers of a hierarchical architecture and 777

specific tuned templates for the last stages of the hierarchy, 778

since class specific modules are needed with each containing 779

highly specific templates, and thus highly tuned cells. This 780

is consistent with the architecture of the ventral stream and 781

the the existence of class-specific modules in primate cortex 782
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such as a face module and a body module [28], [30], [52],783

[58], [63], [76], [128]. We saw in section IIF that areas in the784

hierarchy up to V4 and/or PIT provide signatures for larger785

parts or full objects. Thus we expect786

• that the inputs to the class-specificmodules are scale and787

shift invariant788

• that the class-specific templates are ‘‘large’’. For789

instance in the case of faces, templates should cover790

significant regions of the face. Notice that only large791

templates support pose invariance (the image of an iso-792

lated eye does not change much under rotations in depth793

of the face).794

B. DEVELOPMENT OF CLASS-SPECIFIC AND795

OBJECT-SPECIFIC MODULES796

A conjecture emerging from our theory offers an interesting797

perspective [77] on AIT. For transformations that are not798

affine transformations in 2D (we assume that 3D information799

is not available to the visual system or used by it, which800

may not always be true), an invariant representation cannot801

be computed from a single view of a novel object because802

the information available is not sufficient. What is lacking is803

the 3D structure and material properties of the object: thus804

exact invariance to rotations in depth or to changes in the805

direction or spectrum of the illumination cannot be obtained.806

However, as our theory shows, approximate invariance to807

smooth non-group transformations can still be achieved in808

several cases (but not always) using the same HW module.809

The reason this will often approximately work is because it810

effectively exploits prior knowledge of how similar objects811

transform. The image-to-image transformations caused by812

a rotation in depth are not the same for two objects with813

different 3D structures. However, objects that belong to an814

object class where all the objects have a similar 3D structure815

transform their 2D appearance in (approximately) the same816

way. This commonality is exploited by a HW module to817

transfer the invariance learned from (unsupervised) experi-818

ence with template objects to novel objects seen from only819

a single example view. This is effectively our definition of820

an object class: a class of objects such that the transfor-821

mation for a specific object can be approximately inferred822

from how other objects in the class transform. The necessary823

condition for this to hold is that the 3D shape is similar824

between any two objects in the class. The simulation in825

Figure 5 shows that HW-modules tuned to templates from826

the same class of the (always novel) test objects provide a827

signature that tolerates substantial viewpoint changes (plots828

on the diagonal); it also shows the deleterious effect of using829

templates from the wrong class (plots off the diagonal). There830

are of course several other class-specific transformations831

besides depth-rotation, such as face expression and body pose832

transformations.833

In [77] we argue that the visual system is continuously and834

automatically clustering objects and their transformations -835

observed in an unsupervised way - in class-specific modules.836

New images are added to an existing module only if their837

FIGURE 5. Class-specific transfer of depth-rotation invariance for images
from three classes (faces, A, cylinders, B and composed, C). The left
column of the matrix shows the results of the test for invariance for a
random image of a face (A) in different poses w.r.t. 3D rotation using 3D
rotated templates from A,B,C; similarly the middle and the right column
shows the invariance results for class B and C tested on rotated templates
of A,B,C respectively. The colors in the matrix show the maximum
invariance range (degrees of rotation away from the frontal view). Only
the diagonal values of the matrix (train A - test A, train B - test B, train C-
test C) show an improvement of the view-based model over the pixel
representation. That is, only when the test images transform similarly to
the templates is there any benefit from pooling [77].

transformation are well predicted by it. If no module can be 838

found with this property the new image and all its transfor- 839

mations will be the seed of a new object cluster/module. 840

For the special case of rotation in depth, [77], ran a simu- 841

lation using 3D modelling / rendering software to obtain the 842

transformations of objects for which there exist 3D models. 843

Faces had the highest degree of clustering of any naturalistic 844

category - unsurprising since recognizability likely influ- 845

enced face evolution. A set of chair objects had broad clus- 846

tering, implying that little invariance would be obtained from 847

a chair-specific region. A set of synthetic ‘‘wire’’ objects, 848

very similar to the ‘‘paperclip’’ objects used in several classic 849

experiments on view-based recognition, e.g., ([12], [82], and 850

[83]) were found to have the smallest index of clusterability: 851

experience with familiar wire objects does not transfer to new 852

wire objects (because the 3D structure is different for each 853

individual paperclip object). 854

It is instructive to consider the limit case of object classes 855

that consist of single objects - such as individual paperclips. 856

If the object is observed under rotation several frames are 857

memorized as transformations of a single template (identity 858

is implicitly assumed to be conserved by a Foldiak-like rule, 859

as long as there is continuity in time of the transforma- 860

tion). The usual HW module pooling over them will allow 861

view-independent recognition of the specific object. A few 862

comments: 863

1) remarkably, the HW module described above for 864

class-specific transformations – when restricted to 865
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multiple-views, single-object – is equivalent4 to the866

Edelman-Poggio model for view invariance [100];867

2) the class-specific module is also effectively a ‘‘gate’’:868

in addition to providing a degree of invariance it also869

performs a template matching operation with templates870

that can effectively ‘‘block’’ images of other object871

classes. This gating effect may be important for the872

system of face patches discovered by Tsao and Frei-873

wald [37] and it is especially obvious in the case of a874

single object module;875

3) from the point of view of evolution, the use of the876

HW module for class-specific invariances can be seen877

as a natural extension from its role in single-objects878

view invariance. The latter case is computationally less879

interesting, since it implements effectively a look-up880

table, albeit with interpolation power. The earlier case881

is more interesting since it allows generalization from882

a single view of a novel object. It also represent a clear883

case of transfer learning.884

C. DOMAIN-SPECIFIC REGIONS IN THE VENTRAL STREAM885

As discussed by [77], there are other domain-specific886

regions in the ventral stream besides faces and bodies. It is887

possible that additional regions for less-common or less888

transformation-compatible object classes will appear with889

higher resolution imaging techniques. One example may890

be the fruit area, discovered in macaques with high-field891

fMRI [69]. Others include the body area and the Lat-892

eral Occipital Complex (LOC) which according to recent893

data [85] is not really a dedicated region for general object894

processing but a heterogeneous area of cortex containing895

many domain-specific regions too small to be detected with896

the resolution of fMRI (but see also [99] and [135]). The897

Visual Word Form Area (VWFA) [19], [22] seems to repre-898

sent printed words. In addition to the generic transformations899

that apply to all objects, printed words undergo several non-900

generic transformations that never occur with other objects.901

For instance, our reading is rather invariant to font transfor-902

mations and can deal with hand-written text. Thus, VWFA903

is well-accounted for by the invariance hypothesis, as words904

are a frequently-viewed stimuli which undergo class-specific905

transformations.906

The justification - really a prediction - by our theory for907

domain-specific regions in cortex is different from other908

proposals. However, it is complementary w.r.t. some of them,909

rather than exclusive. For instance, it would make sense that910

the clustering depends not only on the index of compatibil-911

ity but also on the relative frequency of each object class.912

We conjecture that a) that transformation compatibility is the913

critical factor driving the development of domain-specific914

regions, and b) that there are separate modules for object915

classes that transform differently from one another.916

4In [100] the similarity operation was the Gaussian of a distance - instead
of the dot product required by our theory. Notice that for normalized vectors,
l2 norms and dot products are equivalent.

D. TUNING OF ‘simple’’ CELLS IN IT 917

In the case of ‘‘simple’’ neurons in the AL face patch [37], 918

[39], [77], exposure to several different faces – each one gen- 919

erating several images corresponding to different rotations in 920

depth – yields a set of views with a covariance function which 921

has eigenvectors (PCs) that are either even or odd functions 922

(because faces are bilaterally symmetric). 923

TheClass-specific result together with the Spectral pooling 924

proposition suggests that square pooling (over these face PCs) 925

provides approximate invariance to rotations in depth. The 926

full argument goes as follows. Rotations in depth of a face 927

around a certain viewpoint - say θ = θ0 – can be well 928

approximated by linear transformations (by transformations 929

in the general linear group, g ∈ GL(2)). The HW algo- 930

rithm can then provide invariance around θ = θ0. Finally, 931

if different sets of ‘‘simple’’ cells are plastic at somewhat 932

different times, exposure to a partly different set of faces 933

yields different eigenvectors summarizing different sets of 934

faces. The different sets of faces play the role of different 935

object templates in the standard theory. 936

The limit case of object classes that consist of single 937

objects is important to understand the functional architecture 938

of most of IT. If an object is observed under transforma- 939

tions, several images of it can be memorized and linked 940

together by continuity at time of the transformation. As we 941

mentioned, the usual HW module pooling over them will 942

allow view-independent recognition of the specific object. 943

Since this is equivalent to the Edelman-Poggio model for 944

view invariance [100] there is physiological support for this 945

proposal (see [83], [84] and [123]). 946

E. MIRROR SYMMETRIC TUNING IN THE FACE PATCHES 947

AND POOLING OVER PCs 948

The theory then offers a direct interpretation of the 949

Tsao-Freiwald data (see [37] [38], and [39]) on the face patch 950

system. The most posterior patches (ML/MF) provide a view 951

and identity specific input to the anterior patch AL, where 952

most neurons show tuning that is an even function of the 953

rotation angle around the vertical axis. AM, which receives 954

inputs from AL, is identity-specific and view-invariant. The 955

puzzling aspect of this data is the mirror symmetric tuning 956

in AL: why does this appear in the course of a computation 957

that leads to view-invariance? According to our theory this 958

result should be expected if AL contains ‘‘simple’’ cells that 959

are tuned by a synaptic Hebb-like Oja rule and the output 960

of the cells is roughly a squaring nonlinearity as required 961

by the Spectral pooling proposition. In this interpretation, 962

cells in AM pool over several of the squared eigenvector 963

filters to obtain invariant second moments (see Figure 6). 964

Detailed models from V1 to AM show properties that are 965

consistent with the data and also perform well in invariant 966

face recognition [75], [77], [81], [91]. 967

V. DISCUSSION 968

Several different levels of understanding. Our theory 969

addresses several different levels, including the computational 970
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FIGURE 6. Face identity is represented in the macaque face patches
(Freiwald and Tsao, 2010). Neurons in the middle areas of the ventral
stream face patch (middle lateral and fundus (ML, MF)) are view specific,
while those in the most anterior (anterior medial patch (AM)) are view
invariant. Neurons in an intermediate area (anterior lateral patch (AL))
respond similarly to mirror-symmetric views. In our theory view
invariance is obtained by pooling over ‘‘simple’’ neurons whose tuning
corresponds to the PCAs of a set of faces previously experienced each
under a range of poses. Due to the bilateral symmetry of faces, the
eigenvectors of the associated covariance matrix are even or odd. This is
shown in a) where the first 3 PCAs of set of grey-level faces under
different poses are plotted: the same symmetry arguments apply to
‘‘neural’’ images of faces. Figure b shows the response of 3 model AL
units to a face stimulus as a function of pose under different poses
(From [77]).

goal of the ventral stream, the algorithms used, the archi-971

tecture of visual cortex, its hierarchical architecture, and the972

neural circuits underlying tuning of cells. This is unlike most973

other models or theories.974

Predictions. From the point of view of neuroscience, the975

theory makes a number of predictions, some obvious, some976

less so. One of the main predictions is that simple and com-977

plex cells should be found in all visual and auditory areas, not978

only in V1. Our definition of simple cells and complex cells979

is different from the traditional ones used by physiologists;980

for example, we propose a broader interpretation of complex981

cells, which in the theory represent invariant measurements982

associated with histograms (or moments of their values) of983

the outputs of simple cells. The theory implies that, under984

some conditions, exact or approximate invariance to all geo-985

metric image transformations can be learned, either during986

development or in adult life. It is, however, also consistent987

with the possibility that basic invariances may be genetically988

encoded by evolution and possibly refined and maintained989

by unsupervised visual experience. A single cell model for990

simple complex cells follows from the theory as an interest-991

ing possibility. Our theory also makes predictions about the992

architecture of the ventral stream:993

• the output of V2, V4, and PIT should access memory994

either via connections that bypass higher areas or indi-995

rectly via equivalent neurons in higher areas (because of996

the argument in a previous section about clutter).997

• areas V1, V2, V4 and possibly PIT are mainly dedicated998

to computing signatures that are invariant to translation,999

scale and their combinations - as experienced in past 1000

visual experience. 1001

• IT is a complex of parallel class-specifc modules for a 1002

large number of large and small object classes. These 1003

modules receive position and scale invariant inputs 1004

(invariance in the inputs greatly facilitates unsupervised 1005

learning of class specific transformations). We recall 1006

that, from the perspective of the theory, the data of [83] 1007

concern single object modules and strongly support the 1008

prediction that exposure to a transformation lead to 1009

neuronal tuning to several ‘‘frames’’ of it. 1010

Object-based vs 3D vs view-based recognition. We should 1011

mention here an old controversy about whether visual recog- 1012

nition is based on views or on 3D primitive shapes called 1013

geons. In the light of our theory image views retain the main 1014

role but ideas related to 3D shape may also be valid. The psy- 1015

chophysical experiments of Edelman and Buelthoff [32] con- 1016

cluded that generalization for rotations in depthwas limited to 1017

a few degrees (≈±30 degrees) around a view (independently 1018

of whether 2D or 3D information was provided to the human 1019

observer (psychophysics in monkey [82], [83] yielded similar 1020

results). The experiments were carried out using ‘‘paperclip’’ 1021

objects with random 3D structure (or similar but smoother 1022

objects). For this type of objects, class-specific learning is 1023

impossible (they do not satisfy the second condition in the 1024

class-specific result) and thus our theory predicts the result 1025

obtained by Edelman and Buelthoff. For other objects, how- 1026

ever, such as faces, the generalization that can be achieved 1027

from a single view by our theory can span amuch larger range 1028

than±30 degrees, effectively exploiting 3D-like information 1029

from templates of the same class. 1030

Genes or learning. Our theory shows how the tuning of 1031

the ‘‘simple’’ cells in V1 and other areas could be learned in 1032

an unsupervised way. It is possible however that the tuning - 1033

or the ability to quickly develop it in interaction with the 1034

environment - may have been partly compiled during evolu- 1035

tion into the genes.5 Notice that this hypothesis implies that 1036

most of the times the specific function is not fully encoded 1037

in the genes: genes facilitate learning but do not replace it 1038

completely. It is then be expected in the ‘‘nature vs nurture 1039

debate’’ that usually nature needs nurture and nurture is made 1040

easier by nature. An interesting result in this respect comes 1041

from a recent paper [66] where the authors propose a genetic 1042

5If a function learned by an individual represents a significant evolutionary
advantage we could expect that aspects of learning the specific function
may be encoded in the genes, since an individual who learns more quickly
has a significant advantage. In other words, the hypothesis implies a mix
of nature and nurture in most competencies that depend on learning from
the environment (like perception). This is an interesting implication of
the ‘‘Baldwin effect’’ - a scenario in which a character or trait change
occurring in an organism as a result of its interaction with its environment
becomes gradually assimilated into its developmental genetic or epigenetic
repertoire [27]. In the words of Daniel Dennett, ‘‘Thanks to the Baldwin
effect, species can be said to pretest the efficacy of particular different designs
by phenotypic (individual) exploration of the space of nearby possibilities.
If a particularly winning setting is thereby discovered, this discovery will
create a new selection pressure: organisms that are closer in the adaptive
landscape to that discovery will have a clear advantage over those more
distant.’’ (p. 69, quoting [27]).
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bottleneck as an effective regularizer that enables evolution to1043

select simple circuits that can be readily adapted to important1044

real-world tasks (see also [48]).1045

Computational structure of the HWmodule. The HWmod-1046

ule computes the CDF of
〈
I , gitk

〉
over all gi ∈ G. The1047

computation consists of1048

µkh(I ) =
1
|G|

|G|∑
i=1

σ (
〈
I , gitk

〉
+ h1) (10)1049

with h = 0, ·,H and k = 1, ·,K ; the main forms of the1050

nonlinearity σ are either a threshold function or a power1051

n = 1, ·,∞ of its argument. Several known networks are1052

special cases of this module. One interesting case is when G1053

is the translation group and σ (·) = || · ||2: then the equation1054

is equivalent (for H = 0) to a unit in a convolutional network1055

with max pooling. In another noteworthy case (we always1056

assume that I and tk are normalized) the equation is very1057

similar to the Radial Basis Functions network proposed by1058

Edelman and Poggio [100] for view classification. In this1059

spirit, note that the equation for a unit in a convolutional1060

network is1061

1
|G|

|G|∑
i=1

ciσ (〈I , git〉 + h1) (11)1062

where I is the input vector, ci, t,1 are parameters to be1063

learned, in supervised mode, from labeled data and git(x) =1064

t(x− iδx). Thus units in convolutional network could learn to1065

become units of the our theory (by learning ci = 1) but only1066

when G is the translation group (in our theory G is the full1067

affine group for the first layers and can be a non group such1068

as the transformation induced by rotations in depth). We also1069

note that the same computational model can be extended1070

to other sensory modalities (I can be, e.g., a soundwave).1071

Moreover, the learned representation can be used not only1072

for image recognition but for a variety of different tasks that1073

integrate multisensory information.1074

Relations to Deep Learning networks and unsupervised1075

learning. Most of the best performing deep learning networks1076

have convolutional layers as well as densely connected lay-1077

ers in their architecture. Our theory applies to the convo-1078

lutional but not the densely connected, classification stage.1079

Historically, hardwired invariance to translation was first1080

introduced in the Neocognitron by Fukushima and later in1081

LeNet [70] and in HMAX ([106]; HMAX had also invari-1082

ance to scale). These architectures are early examples of1083

convolutional networks. Our theory provides a general the-1084

ory for them6 that also offers two significant algorithmic1085

and architectural extensions: a) it ensures, within the same1086

algorithm, invariances to other groups beyond translation and1087

provides approximate invariances to certain non-group trans-1088

formations; b) it provides a way to learn arbitrary invariances1089

from unsupervised learning. Learning the correct symmetries1090

6In the case of the translation group the HW module (see Equation 1)
consists of (non-linear) pooling of the convolution of the image with a
template.

can potentially give an advantage in terms of sample com- 1091

plexity w.r.t. hardwired translation invariant convolutional 1092

networks. Note however that, differently from state of art 1093

CNNs (Convolutional Neural Networks), our proposed learn- 1094

ing algorithm is unsupervised and a direct comparison could 1095

be potentially misleading. In general, supervised methods 1096

are nowadays superior to unsupervised ones although unsu- 1097

pervised models based on contrastive embeddings [139] or 1098

biologically plausible backpropagation [57] and contrastive 1099

predictive coding [11] might offer an alternative. A more 1100

appropriate comparison can be done with architecture where 1101

the signal representation is learned in an unsupervised way 1102

and supervision is only used to adapt the representation to the 1103

specific task(s) [68]. Finally note that our unsupervisedmodel 1104

differs from those cited above in that we make the hypothesis 1105

that the input is a collection of group transformed sensory 1106

signals. We take advantage of this data structure deriving the 1107

equivariant and invariant properties of the representation. 1108

Invariance in 2D and 3D vision. We have assumed here 1109

that ‘‘images’’ as well as templates are in 2D. This is the 1110

case if possible sources of 3D information such as stereopsis 1111

and/or motion are eliminated. Interestingly, it seems that 1112

stereopsis does not facilitate recognition, suggesting that 3D 1113

information, even when available, is not used by the human 1114

visual system (see [15]).7 1115

Explicit or implicit gating of object classes. The second 1116

stage of the recognition architecture consists of a large set 1117

of object-class specific modules of which probably the most 1118

important is the face system. It is natural to think that signals 1119

from lower areas should be gated, in order to route access 1120

only to the appropriate module. In fact, Tsao [129], but see 1121

also [18] postulated a gate mechanism for the network of 1122

face patches. The structure of the modules however suggests 1123

that the module themselves automatically provides a gat- 1124

ing function even if their primary computational function is 1125

invariance. This is especially clear in the case of the module 1126

associated with a single object (the object class consists of 1127

a single object as in the case of a paperclip). The input to 1128

the module is subject to dot products with each of the stored 1129

views of the object: if none match well enough the output of 1130

the module will be close to zero, effectively gating off the 1131

signal and switching off subsequent stages of processing. 1132

Invariance to X and estimation of X. The description of our 1133

theory focuses on the problem of recognition as estimating 1134

identity or category invariantly to a transformation X - such 1135

as translation or scale or pose. Often however the comple- 1136

mentary problem, of estimating X, for instance pose, is also 1137

important. The same neural populationmay be able to support 1138

both computations and multiplex the representations of their 1139

7This hypothesis should however be checked further since our theory
implies that if 3D information is available, rotation in depth is a group and
therefore generalization from a single view could be available simply by
having stored 3D templates of a few arbitrary objects and their 3D trans-
formations. This is not what psychophysics (for instance on the paperclips)
shows; however, the mathematical claim of perfect invariance is only true
in the absence of self-occlusions, a clearly unrealistic assumption for most
objects.
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outcome as shown in IT recordings and model simulations1140

([55], [118] but see also [117]). As human observers, we are1141

certainly able to estimate position, rotation, and illumination1142

of an object without eye movements. HW modules pooling1143

over the same units in different way - pooling over iden-1144

tities for each pose or pooling over pose for each identity1145

- can provide the different types of information using the1146

same ‘‘simple’’ cells and different ‘‘complex’’ cells. Anselmi1147

([5], fig 45) show simulations of recognizing a specific1148

body invariantly to pose and estimating pose-out of a set of1149

32 possibilities-of a body invariantly to the identity.1150

PCAs vs ICAs. Independent Component Analysis [56] and1151

similar unsupervised mechanisms describe plasticity rules1152

similar to the basic Oja flow analyzed in this paper. They can1153

generate Gabor-like receptive fields and they may not need1154

the assumption of different sizes of Gaussian distributions of1155

LGN synapses. We used PCA simply because its properties1156

are easier to analyze and should be indicative of the properties1157

of similar Hebbian-like mechanisms.1158

Parsing a scene. Full parsing of a scene cannot be done1159

in a single feedforward processing step in the ventral stream.1160

It requires task-dependent top-down control, in general mul-1161

tiple fixations and therefore observation times longer than1162

≈ 100 msec. This also follows from the limited high res-1163

olution region of the inverted pyramid model of the visual1164

system, which theory predicts as a consequence of simul-1165

taneous invariance to shift and scale (see [102] for details).1166

In any case, full parsing of a scene is beyond what a purely1167

feedforward model can provide.1168

Feedforward and feedback. We have reviewed a forward1169

theory of recognition and some of the related evidence. Our1170

theory does not address top-down, recurrent, or horizontal1171

connectivity and their computational role. It howevermakes it1172

easier to consider plausible hypothesis. The inverted pyramid1173

architecture that follows from scale and position invariance1174

requires a tight loop between different fixations in which an1175

efficient control module drives eye movements by combining1176

task requirements with memory access. However, within a1177

single fixation the space-scale inverted pyramid cannot be1178

shifted in space. What could be controlled in a feedback1179

mode are parameters of pooling, including the choice of1180

which scales to use depending on the results of classification1181

or memory access. The most obvious limitation of feed-1182

forward architectures is recognition in clutter and the most1183

obvious way around the problem is the attentional masking1184

of large parts of the image under top-down control. More1185

generally, a realistic implementation of the present theory1186

requires top-down control signals and circuits, supervising1187

learning and possibly fetching signatures from different areas1188

and at different locations in a task-dependent way. An even1189

more interesting hypothesis is that backprojections update1190

local signatures at lower levels depending on the scene class1191

currently detected at the top (an operation similar to the1192

top-down pass of Ullman [14]. In summary, the output of1193

the feedforward pass is used to retrieve labels and routines1194

associated with the image; backprojections may implement1195

an attentional focus of processing to reduce clutter effects 1196

and also to run visual routines [118] at various levels of 1197

the hierarchy. An interesting, but not biologically plausible, 1198

alternative might be offered by the recently introduced trans- 1199

formers architecture, [136]. 1200

Motion helps learning isolated templates. Ideally tem- 1201

plates and their transformations should be learned without 1202

clutter. It can be argued that if the background changes 1203

between transformed images of the same template then the 1204

averaging effect intrinsic to pooling will mostly ‘‘average 1205

out’’ the effect of clutter during the unsupervised learning 1206

stage. Though this is correct and we have computer simu- 1207

lations that provide empirical support to the argument, it is 1208

interesting to speculate that motion could provide a simple 1209

way to eliminate most of the background. Sensitivity to 1210

motion is one of the earliest visual computations to appear 1211

in the course of evolution and one of the most primitive. 1212

Stationary images on the retina tend to fade away. Detection 1213

of relative movement is a strong perceptual cue in primate 1214

vision as well as in insect vision, probably with similar 1215

normalization-like mechanisms [49], [103]. Motion induced 1216

by the transformation of a template may then serve two 1217

important roles: 1218

• To bind together images of the same template while 1219

transforming: continuity of motion is implicitly used to 1220

ensure that identity is preserved; 1221

• To eliminate background and clutter by effectively using 1222

relative motion. 1223

The required mechanisms are probably available in the retina 1224

and early visual cortex. 1225

Despite significant advances in sensory neuroscience over 1226

the last five decades, a true understanding of the basic func- 1227

tions of the ventral stream in visual cortex has proven to be 1228

elusive. Thus it is interesting that the theory used in this paper 1229

follows from a novel hypothesis about the main computa- 1230

tional function of the ventral stream: the representation of 1231

new objects/images in terms of a signature which is invariant 1232

to transformations learned during visual experience, thereby 1233

allowing recognition from very few labeled examples—in the 1234

limit, just one. This view of the cortex may also represent 1235

a novel theoretical framework for the next major challenge 1236

in learning theory beyond the relatively-mature supervised 1237

learning: the problem of representation learning, formulated 1238

here as the unsupervised learning of invariant representations 1239

that significantly reduce the sample complexity of the super- 1240

vised learning stage. 1241
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