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ABSTRACT We review and apply a computational theory based on the hypothesis that the feedforward
path of the ventral stream in visual cortex’s main function is the encoding of invariant representations of
images. A key justification of the theory is provided by a result linking invariant representations to small
sample complexity for image recognition - that is, invariant representations allow learning from very few
labeled examples. The theory characterizes how an algorithm that can be implemented by a set of “‘simple”
and “complex” cells - a “Hubel Wiesel module” — provides invariant and selective representations. The
invariance can be learned in an unsupervised way from observed transformations. Our results show that
an invariant representation implies several properties of the ventral stream organization, including the
emergence of Gabor receptive filelds and specialized areas. The theory requires two stages of processing:
the first, consisting of retinotopic visual areas such as V1, V2 and V4 with generic neuronal tuning, leads to
representations that are invariant to translation and scaling; the second, consisting of modules in IT (Inferior
Temporal cortex), with class- and object-specific tuning, provides a representation for recognition with
approximate invariance to class specific transformations, such as pose (of a body, of a face) and expression.
In summary, our theory is that the ventral stream’s main function is to implement the unsupervised learning
of “good” representations that reduce the sample complexity of the final supervised learning stage.

INDEX TERMS Visual cortex, Hubel Wiesel model, simple and complex cells, artificial neural networks,
invariance, sample complexity.

I. INTRO AND BACKGROUND

The ventral visual stream is believed to underlie object recog-
nition abilities in primates. Fifty years of modeling efforts,
beginning with the original Hubel and Wiesel proposal (HW
in the rest of the paper) of a hierarchical architecture iterating
in different layers the motif of simple and complex cells
in V1, have led to a series of quantitative models from
Fukushima [36] and Riesenhuber and Poggio [106] HMAX
(Hierarchical architecture with MAX pooling) to more recent
architectures based on contrastive [20], [139] or slow fea-
tures [109] learning. These models are increasingly faithful
to biological architecture constraints and are able to mimic
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properties of cells in different visual areas while achieving
human-like recognition performance under restricted condi-
tions. Starting from the architectures in [45], [112], and [138],
deep learning convolutional networks, which are hierarchical
but otherwise do not respect the ventral stream architecture
and physiology, have been trained with very large labeled
datasets. The resulting model’s neuron population accurately
mimic the object recognition performance of the macaque
visual cortex (e.g., [17], [59], [132], [133], and [139]). How-
ever, the nature of the computations carried out in the ventral
stream is not fully explained by such models that, despite
being simulated on a computer, remain rather opaque.

In other papers (in particular [6], [7], [10], and [102])
we have developed a mathematics of invariance that can be
applied to the ventral stream. Invariance and equivariance
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are key features of modern neural networks architectures
(e.g., [4], [9], [16], [20], [23], [44], [79], and [80]). In this
work we outline a comprehensive theory of the feedforward
computation of invariant representations in the ventral stream
- a theory of the first 100 milliseconds of visual perception,
from the onset of an image to activation of IT (Inferior
Temporal) neurons. In particular, such representations are
likely to underlie rapid categorization — immediate object
recognition from flashed images [104], [126]. We emphasize
that this theory is not a full theory of vision that will explain
top down effects and the role of backprojections, but only a
precursor to it.

Our theory is based on the hypothesis that the main
computational goal of the ventral stream is to compute
neural representations of images that are invariant to trans-
formations commonly encountered in the visual environ-
ment, and learned from unsupervised experience. The main
novelty of our theory consists in explaining various aspects
of the ventral stream architecture and its neurons in the
light of this hypothesis and linking it with low sample
complexity learning. Since invariant representations turn
out to be “good” representation for supervised learning,
characterized by small sample complexity, the architecture
of the ventral stream may ultimately be dictated by the
need to learn from very few labeled examples, similar to
human learning but quite different from typical supervised
machine learning algorithms trained on large sets of labeled
examples.

We use our theory to compactly summarize and explain
several key aspects of the neuroscience of visual recognition,
while predict others. Our main contributions are:

o We introduce a novel general theoretical framework for

a computational theory of invariance (section II), and a
theory of the basic biophysical mechanisms and circuits
in (section III). In particular, we compactly describe
relevant recent mathematical results on invariant rep-
resentations in vision whose details and proofs can be
found in [6], [7], [8], and [10]. The starting point is
a result proving that image representations (a feature
vector that we call a signature) which are invariant to
translation and scaling and approximately invariant to
some other transformations (e.g., face expressions) can
considerably reduce the sample complexity of learning
(section IIA). We then describe how an invariant and
unique (selective) image representation can be com-
puted for each image or image patch; this invariance can
be exact in the case of group transformations (we focus
on groups such as the affine group in 2D and one of its
subgroups, the similitude group consisting of translation
and uniform scaling) and approximate under non-group
transformations (sections IIB, IID). A module perform-
ing filtering and pooling, like the simple and complex
cells described by Hubel and Wiesel (HW module), can
compute such estimates. Each HW module provides a
signature, for the part of the visual field that is inside its
receptive field.
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« We prove that Gabor functions are the optimal templates
for maximizing simultaneous invariance to translation
and scale (IIC). Hierarchies of HW modules retain their
properties, while alleviating the problem of clutter in the
recognition of wholes and parts, (sections IIE,IIF).

o We show that the same HW modules at high levels in
the hierarchy are able to compute representations which
are approximately invariant to a much broader range of
transformations (e.g., 3D expression of a face, pose of
a body, and viewpoint). They do so by using templates,
reflected in neuron’s tuning, that are highly specific for
each object class (sections IID, IIE).

o We describe (section III) how neuronal circuits may
implement the operation required by the HW algorithm.
We specifically discuss new models of simple and com-
plex cells in V1 (sections IIIA, IIIB). We also introduce
plausible biophysical mechanisms for tuning, pooling,
and learning the wiring based on Hebbian-like unsuper-
vised learning (sections IIIC, IIID, IIIE).

o We explain (section IV) how the final IT stage computes
class-specific representations that are quasi-invariant to
non-generic transformations. We also discuss the modu-
lar organization of anterior IT in terms of the theory; in
particular, proposing an explanation of the architecture
and of some puzzling properties of the face patches
system.

We conclude the paper with a discussion of predictions to be
tested and open problems (section V).

Il. COMPUTATIONAL LEVEL: MATHEMATICS OF
INVARIANCE

For this paper, we will use the following conceptual frame-
work for primate vision:

o The first 100ms of vision in the ventral stream are
mostly feed forward. The main computational goal is to
generate a number of image representations, each one
invariant or approximately invariant to some transfor-
mations experienced during development and at matu-
rity, such as scaling, translation, and pose changes. The
representations are used to answer basic questions about
image type and what may be in it.

o The answers will often have low confidence, requiring
an additional ““verification/prediction step”’, which may
require a sequence of shifts of gaze and attentional
changes. This step may rely on generative models and
probabilistic inference and/or on top-down visual rou-
tines following memory access. Routines that can be
synthesized on demand as a function of the visual task
are needed to go beyond object classification.

We consider only the feedforward architecture of the ven-
tral stream and its computational function. To help the reader
to more easily understand the mathematics of this section,
we give here an overview of the network of visual areas
that we propose for computing invariant representations in
feedforward visual recognition. There are two main stages:
the first one computes a representation that is invariant
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to affine transformations, followed by a second stage that
computes approximate invariance to object specific, non-
group transformations. The second stage consists of parallel
pathways, each one for a different object class (see Fig-
ure 4 stage 2). The results of this section do not strictly
require these two stages: the second one may not be present,
in which case the output of the first stage directly accesses
memory for classification. If both are present, as seems to
be the case for the primate ventral stream, the mathematics
of the theory requires that the object specific stage follows
the one dealing with affine transformations. According to
our theory, the HW module mentioned earlier is the basic
module for both stages. The first and second stage pathways
may consist of a single layer of HW modules. However,
mitigation of interference by clutter requires a hierarchy of
layers (possibly corresponding to visual areas suchas V1, V2,
V4, PIT (Visual 1,2,3 and Posterior Infero-Temporal area))
within the first stage. This may not be required in visual
systems with lower resolution such as the mouse. The final
architecture we use is shown in Figure 4: in the first stage
computes representations that are increasingly invariant to
translation and scale, while in the second stage a large num-
ber of class-specific parallel pathways induce approximate
invariance to transformations that are specific for objects and
classes. Notice that for any representation which is invariant
to feature X and selective for feature Y, there may be a dual
representation which is invariant to Y but selective for X.
In general, they may both needed for different tasks, and
both can be computed by a HW module and the machinery
computing them possibly shares a good deal of overlap. As an
example, we would expect that different face patches in cortex
are used to represent different combinations of invariance and
selectivity.

A. INVARIANCE REDUCES SAMPLE COMPLEXITY

OF LEARNING

Images of the same object usually differ from each other
because of generic transformations such as translation or
scale (distance), or more complex transformations such as
viewpoint (rotation in depth) or change in pose (of a body)
or expression (of a face) (see also [5], par 3.1.2 for a back
of envelope estimation of the number of possible transforma-
tions of an image). In a machine learning context, invariance
to image translations can be built up trivially by memorizing
examples of the specific object in different positions. On the
other hand, human vision is clearly invariant to novel objects
seen only once: people do not have any problem recognizing
a human face seen only once at different distances, e.g., in a
distance-invariant way. It is rather intuitive that representa-
tions of images that are invariant to transformations such
as scaling, illumination, and pose should allow supervised
learning from far fewer examples.

This conjecture is supported by previous theoretical work
showing that a significant portion of the complexity in recog-
nition tasks is often due to the viewpoint and illumination
nuisances that swamp the intrinsic characteristics of the
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FIGURE 1. If an “oracle” factors out all transformations in images of many
different cars and airplanes (C), providing “rectified” images (B) with
respect to viewpoint, illumination, position and scale, the problem of
categorizing cars vs airplanes becomes easy (A): it can be done accurately
with very few labeled examples. In the figure (C), good performance
(black line) was obtained from a single training image from each rectified
class, using a linear classifier operating on pixels, whereas training from
the unrectified training set yields chance performance. In other words,
the sample complexity of the problem becomes much lower with a
rectified (and therefore invariant) representation ([7]).

object [4], [74], [110]. This implies that in many cases,
recognition (both identification, e.g., of a specific car relative
to other cars,as well as categorization, e.g., distinguishing
between cars and airplanes) would be much easier (only
a small number of training examples would be needed to
achieve a given level of performance) if the object images
were rectified with respect to all transformations, or equiva-
lently, if the image representations were invariant. The case
of identification is obvious since the difficulty in recognizing
exactly the same object, e.g., an individual face, is due solely
to transformations. Figure 1 provides suggestive evidence
from a classification task, showing that if an oracle factors
out all transformations in images of many different cars
and airplanes, providing “rectified” images with respect to
viewpoint, illumination, position and scale, the problem of
categorizing cars vs airplanes becomes easy: it can be done
accurately with very few labeled examples. In this case, good
performance was obtained from a single training image of
each class, using a simple classifier. In other words, the
sample complexity of the problem seems to be very low.
A proof of the conjecture for the special case of translation
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is provided in [7] for images defined on a grid of pixels and,
with the main results restated below.

1) SAMPLE COMPLEXITY FOR TRANSLATION INVARIANCE
Consider a space of images of dimensions p x p which may
appear in any position within a window of size rp x rp. The
natural image representation yields a sample complexity (for
a linear classifier) of order m;pqee = O(rzpz); the invariant
representation yields a sample complexity of order:

Mipy = 0(p2)

The result says that an invariant representation can consider-
ably decrease the sample complexity — that is, the number of
supervised examples necessary for a certain level of accuracy
in classification. A heuristic rule corresponding to the result is
that the sample complexity gain is on the order of the number
of virtual examples generated by the action of the group on a
single image (see also [2], [33], [94], and [119]). The result
does not provide an algorithm but it supports the hypothesis
that the ventral stream in visual cortex tries to approximate
such an oracle. The next section describes a biologically
plausible algorithm that the ventral stream may use to achieve
this goal.

B. UNSUPERVISED LEARNING AND COMPUTATION OF AN
INVARIANT SIGNATURE (ONE LAYER ARCHITECTURE)
The following HW algorithm is biologically plausible, as we
will discuss in further detail in section II and III, where we
argue that it may be implemented in cortex by a HW module.
The module consists of a set of KH complex cells with the
same receptive field, each pooling the output of a set of simple
cells whose sets of synaptic weights correspond to one of
the K “templates” of the algorithm and its transformations
(which are also called templates) and whose output is filtered
by a sigmoid function with a Ah threshold, h =1, --- , H.
HW algorithm for group transformations (see Figure 2)

o “Developmental” stage:

1) Given one of the K isolated (on an empty back-
ground) objects (the “training set”), e.g., “tem-
plates”, memorize a sequence I' of G frames

corresponding to its transformations (g;,i = 1,
--+-,|G]) observed over a time interval (thus
' = got, g1, -+, gt for template ¢; for tem-

plate ¥ the corresponding sequence of transforma-
tions is denoted I';).
2) Repeat for each of the K templates.
“Run-time” computation of invariant signature for a
single image (of any new object):
1) For each I'y compute the dot product of the image
with each of the |G| transformations in I'y.
2) For each k compute cumulative histogram of the
resulting values.
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FIGURE 2. A graphical summary of the HW algorithm. The set of

Mﬁ ) =1/IG| Z}i‘l a({1, g,-t") + hA) values (eq. 1) in the main text)
correspond to the the histogram where k=1 denotes the template” green
blackboard”, h the bins of the histogram, and the transformations are
from the rotation group. Crucially, mechanisms capable of computing
invariant representations under affine transformations can be learned
(and maintained) in an unsupervised, automatic way just by storing sets
of transformed templates which are unrelated to the object to be
represented. In particular the templates could be random patterns.

3) The signature is the set of K cumulative histograms
that is the set of:

|G

1
K= ;o(<1, git')+h8) ()

where [ is an image, o is a threshold function,
A > 0 is the width of bin in the histogram, and
h = 1,---,H is the index of the bins of the
histogram.

The algorithm consists of two parts: the first is unsu-
pervised learning of transformations by storing transformed
templates, which are “images”. This can be thought of as a
“only once” stage, possibly done during development of the
visual system. The second part is the actual computation of
invariant signatures during visual perception.

This is the algorithm used throughout the paper. The guar-
antees we can provide depend on the type of transformations.
The main questions are a) whether the signature is invariant
under the same types of transformations that were observed
in the first stage and b) whether it is selective, e.g., can it
distinguish between N different objects. A summary of the
main results of [5], [6], [7], [8], and [10] is that the HW
algorithm is invariant and selective (for K in the order of
log N) if the transformations form a group. In this case, any
set of randomly chosen templates will work for the first
stage. Given that we are interested in transformations from
a 2D image to a 2D image, the natural choice is the affine
group consisting of translations, rotations in the image plane,
scaling (possibly non-isotropic), and their compositions. The
HW algorithm can learn with exact invariance and a desired
selectivity level in the case of the affine group or its sub-
groups. In the case of 3D ‘““images” consisting of voxels
with x, y, z coordinates, rotations in 3D are also a group that
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in principle can be dealt with, achieving exact invariance
from generic templates by the HW algorithm (in practice
this is rarely possible because of correspondence problems
and self-occlusions). Later in section II.LE we will show that
the same HW algorithm provides approximate invariance
(under some conditions) for non-group transformations such
as the transformations from R* to R? induced by views of 3D
rotations of an object.

In the case of compact groups the guarantees of invariance
and selectivity are provided by the following two results
(given informally here; detailed formulation in [5], [6], [7],
[8], and [10]).

Result 1: Invariance

The distributions represented by equation 1 are invariant,
that is each bin is invariant, e.g.,

() = pk(el) ©)

for any g in G, where G is the (locally compact!) group of
transformations labeled g; in equation 1.

Result 2: Selectivity

For groups of transformations (such as the affine group),
the distributions represented by equations 1) can achieve
any desired selectivity for an image among N images in the
sense that they can e-approximate the true distance between
each pair of the images (and any transform of them) with
probability 1 — & provided that

c. N
K > a In 5 3)
where c is a universal constant.

The signature provided by the K cumulative histograms
is a feature vector corresponding to the activity of the (HK)
complex cells associated with the HW module. It is selective
in the sense that it corresponds uniquely to an image of a spe-
cific object independently from its transformation. It should
be noted that the robustness or stability of the signature under
noisy measurements remains an interesting open problem in
the theory. Because of the restricted dynamic range of cortical
cells the number of bins H is likely to be small. It is important
to remark that other, related representations are possible (see
also [7], [62], and [65]). A cumulative distribution function
(CDF) is fully represented by all its moments; often a few
moments

|G|

1
D = — (1, git*)
613
1 |G| )
Mlznergy(]) = ﬁ Z <I, gitk>
=1
k _ Lk
Mmax (D) = maxg,ec <I, git > 4)

A group is called compact if is supported on a compact set. For example
the rotation group is a compact group on the set of angles in [0, 27]. Its
is a locally compact group if it is supported on a locally compact set. For
example the locally compact group of translations supported on the set of
translations [0, +00].
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such as the average or the variance (energy model of complex
cells, see [3]) or the max, can effectively replace the cumula-
tive distribution function. Notice that any linear combination
of the moments is also invariant and a small number of linear
combinations is likely to be sufficiently selective. We will
discuss implications of this remark for models of complex
cells in the last section.

C. OPTIMAL TEMPLATES FOR SCALE AND POSITION
INVARIANCE ARE GABOR FUNCTIONS

The previous results apply to all groups, in particular to those
which are not compact but only locally compact such as trans-
lation and scaling. In this case it can be proved that invari-
ance holds within an observable window of transformations
[6], [7]. For the HW module the observable window corre-
sponds to the receptive field of the complex cell (in space and
scale). In order to maximize the range of invariance within the
observable window, [6], [7] proves that the templates must
be maximally sparse relative to generic input images (see
below for definition of sparseness). In the case of translation
and scale invariance, this sparsity requirement is equivalent
to localization in space and spatial frequency, respectively:
templates must be maximally localized for maximum range
of invariance in order to minimize boundary effects due to
the finite window. Assuming therefore that the templates are
required to have simultaneously a minimum size in space
and spatial frequency, it follows from the results of Gabor
([40], see also [29]) that they must be Gabor functions. The
following surprising property holds:

Optimal invariance result
2

Gabor functions of the form (here in 1D) #(x) = e_ZX?ei“’x
are the templates that are simultaneously maximally invariant
for translation and scale (at each x and w.)

In general, templates chosen at random from the space
of images can provide scale and position invariance. How-
ever, for optimal invariance under scaling and translation,
templates of the Gabor form are optimal. This is the only
computational justification we know of the Gabor shape of
simple cells in V1 which seems to be remarkably universal:
it holds in primates (Optimal invariance result [107]), cats
(Optimal invariance result [61]) and mice (Optimal invariance
result [93]) (see also Figure 3 for results of simulations
and [92]).

D. QUASI-INVARIANCE TO NON-GROUP
TRANSFORMATIONS REQUIRES

CLASS-SPECIFIC TEMPLATES

All the results so far require a group structure and provide
exact invariance for a single new image. In 2D this induces
all combinations of translation, scaling, and rotation in the
image plane but does not include the transformations induced
on the image plane by 3D transformations such as view-
point changes and rotation in depth of an object. The latter
forms a group in 3D, as if images and templates were 3D
views; in principle motion or stereopsis can provide the third
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a) b)
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FIGURE 3. a) Simulation results for V1 simple cells learning via PCA
(Principal Component Analysis). Each “cell” sees a set of images through
a Gaussian window (its dendritic tree), shown in the top row. Each cell
then “learns” the same weight vector, extracting the principal
components of its input. b) This figure shows ny, = oy /) vs nxy = ox /1 for
the modulated (x) and unmodulated (y) direction of the Gabor wavelet.
Notice that the value of the slope oy /ox is a robust finding in the theory
and apparently also in the physiology data. Neurophysiology data from
monkeys, cats and mice are reported together with our simulations.
Figure from [92].

dimension, though available psychophysical evidence [32],
[124] suggests that human vision does not use it for recog-
nition. Notice that transformations in the image plane are
affected not only by orthographic projection of the 3D geome-
try but also by the process of image formation which depends
on the 3D geometry of the object, its reflectance properties,
and the relative location of the light source and viewer.

It turns out that the HW algorithm can still be applied to
non-group transformations - such as transformations of the
expression of a face, or of the pose of a body - to provide,
under certain conditions, approximate invariance. In this case
bounds on the invariance depend on specific details of the
object and the transformation: we do not have general results
and suspect they may not exist. The key technical requirement
is that a new type of sparsity condition holds: sparsity for
the class of images I with respect to the dictionary 7% under
the transformations 7, (we consider here a one parameter (r)
transformation)

<1C,T,z’<>aeo IFl>a a>0. (5)

This property, which is an extension of the compressive
sensing notion of “incoherence”, requires that images in the
class and the templates have a representation with sharply
peaked correlation and autocorrelation (the constant a above
is related to the support of the peak of the correlation). This
condition can be satisfied by templates that are similar to
images in the set and are sufficiently “rich” to be inco-
herent for ‘““small” transformations. This relative sparsity
condition is usually satisfied by the neural representation of
images and templates at some high level of the hierarchy
of HW modules that we describe next. Like standard spar-
sity [29] our new sparsity condition is generic: most neural
patterns - templates and images from the same class - chosen
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at random will satisfy it. The result [7] takes the following
form:

Class-specific property

/Lﬁ (1) is approximatively invariant around a view if

« [ is sparse in the dictionary of templates relative to the

transformations

o [ transforms “in the same way”’ as the templates

o the transformation is smooth
The main implication is that approximate invariance can be
obtained for non-group transformation by using templates
specific to the class of objects. This means that class specific
modules are needed, one for each class; each module requires
highly specific templates, that is cell tunings. The obvious
example is face-tuned cells in the face patches. Unlike exact
invariance for affine transformations where tuning of the
“simple cells” is non-specific in the sense that does not
depend on the type of image, non-group transformations
require highly tuned neurons and yield at best only approxi-
mate invariance (see, e.g. [46] and [137]).

E. TWO STAGES IN THE COMPUTATION OF AN INVARIANT
SIGNATURE

Hierarchical architectures are advantageous for several rea-
sons which are formalized mathematically in [6], [7], [31],
[87], and [105]. It is illuminating to consider two extreme
“cartoon” architectures for the first of the two stages
described at the beginning of section II:

o one layer comprising one HW module and its KH
complex cells, each one with a receptive field covering
the whole visual field

« a hierarchy comprising several layers of HW modules
with receptive fields of increasing size, followed by par-
allel modules, each devoted to invariances for a specific
object class.

In the first architecture invariance to affine transformations
is obtained by pooling over KH templates, with each one
transformed in all possible ways: each of the associated
simple cells corresponds to the transformation of a template.
Invariance over affine transformation is obtained by pooling
over the whole visual field. In this case, it is not obvious
how to incorporate invariance to non-group transformations
directly in this one-hidden layer architecture.

Notice however that a HW module dealing with non-group
transformations can be added on top of the affine module.
The results in [5] and [7] allow for this factorization. Inter-
estingly, they do not allow in general for factorization of
translation and scaling (e.g., one layer computing transla-
tion invariance and the next computing scale invariance).
Instead, what the mathematics allows is factorization of the
range of invariance for the same group of transformations
(see also [5] par 3.6-7-8-9). This justifies the first layers of
the second architecture, corresponding to Figure 4 stage 1,
where the size of the receptive field of each HW module
and the range of its invariance increases from lower to higher
layers.
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Stage2: object specific
transformations

ive field size

Stage 1: affine transformations

FIGURE 4. A hierarchical architecture of HW modules. The signature
provided by each of the nodes at each layer may be used by a supervised
classifier. Stage 1: a hierarchy of HW modules (green inset) with growing
receptive fields provide a final signature (top of the hierarchy) which is
globally invariant to affine transformations by pooling over a cascade of
locally invariant signatures at each layer. Stage 2: transformation specific
modules provide invariance for non group transformations (e.g., rotation
in depth).

F. INVARIANCE TO TRANSLATION AND SCALE (STAGE 1)
WITH CLUTTER TOLERANCE REQUIRES A HIERARCHICAL
ARCHITECTURE

The main problem with the one-layer architecture is that it can
recognize isolated objects in the visual field in an invariant
way but cannot recognize objects in clutter: the key result
about invariance assumes that image and templates portray
isolated objects. Otherwise the signature may change because
of different clutter at different times.” The problem of clutter
- of recognizing an object independently of the presence of
another one nearby - is closely related to the problem of
recognizing “wholes” and “parts”. Recognizing an eye in
a face has the problem that the rest of the face is clutter. This
is the old conundrum of recognizing a tree in a forest while
still recognizing the forest.

A partial solution to this problem is to use a hierarchical
architecture for stage 1 in which lower layers provide signa-
tures with a small range of invariance for “small” parts of
the image and higher layers provide signatures with greater
invariance for larger parts of the image. This signature could
then be used by class specific modules. Two points are of
interest here.

Factorization of a range of invariances is possible if a
certain property of the hierarchical architecture, called equiv-
ariance, holds. Assume a group transformation of the image,
e.g., a translation or scaling of it. The first layer in a hierar-
chical architecture is called equivariant if the pattern of neural
activity at the output of the complex cells transforms accord-
ingly to the same group of transformations. The equivariance
property is also very important in modern neural networks

2Notice that because images are filtered by the retina with spatial bandpass
filters (ganglion cells), the input to visual cortex is a rather sparse pattern of
activities, somewhat similar to a sparse edge map.
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(see, e.g., [23] and [24]). It turns out that the architectures we
describe have this property (see [5] and [7] par 3.5.3 for the
translations case): isotropic architectures, like the ones con-
sidered in this paper, with point-wise nonlinearities are equiv-
ariant. The key difference from the architecture described
above is that equivariance can be achieved when the complex
cells pool over single cells responses coming from templates
transforming w.r.t. a subset of all group transformations.
In this way the complex first layer representation will be
invariant to “‘small” transformations (e.g., small translations)
but still carry information about ‘“large” transformations
(equivariance). Since each module in the architecture gives an
invariant output if the transformed object is contained in the
pooling range, and since the pooling range increase from one
layer to the next, there is an invariance over larger and larger
transformations. The second point is that in order to make
recognition possible for both parts and wholes of an image,
the supervised classifier should receive signatures not only
from the top layer (as in most modern neural architectures)
but also from the other levels as well (directly or indirectly).

Ill. BIOPHYSICAL MECHANISMS OF INVARIANCE:
UNSUPERVISED LEARNING, TUNING AND POOLING

A. A SINGLE CELL MODEL OF SIMPLE AND

COMPLEX CELLS

There are at least two possible biophysical models for the HW
module implied by our theory. The first is the original Hubel
and Wiesel model of simple cells feeding into a complex
cell. Our theory proposes the ““ideal” computation of a CDF,
in which case the nonlinearity at the output of the simple cells
is a threshold function. A complex cell, summing the outputs
of a set of simple cells, would then represent a bin of the his-
togram; a different complex cell in the same position pooling
a set of similar simple cells with a different threshold would
represent another bin of the histogram. Another possibility
is that the nonlinearity at the output of the simple cells is a
square or any power or combination of powers. In this case the
complex cell pooling simple cells with the same nonlinearity
would represent a moment of the distribution, including the
linear average. The nonlinear transformation at the output of
the simple cells would correspond to the spiking mechanism
in populations of cells (see, e.g., references in [65]).

The second biophysical model for the HW module that
implements the computation required by our theory consists
of a single cell where dendritic branches play the role of
simple cells (each branch containing a set of synapses with
weights providing, for instance, Gabor-like tuning of the den-
dritic branch) with inputs from the LGN (lateral geniculate
nucleus); active properties of the dendritic membrane distal
to the soma provide separate threshold-like nonlinearities
for each branch separately, while the soma sums the con-
tributions for all the branches. This model would solve the
puzzle that there seems to be no morphological difference
between pyramidal cells classified as simple vs complex by
physiologists.
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It is interesting that our theory is robust with respect to the
nonlinearity from simple to the complex “cells”’. We conjec-
ture that almost any set of non trivial nonlinearities will work.
This argument rests on the fact that a set of different complex
cells pooling from the same simple cells should compute
the cumulative distribution or equivalently its moments or
combinations of moments (each combination is a specific
nonlinearity). Any nonlinearity will provide invariance, if the
nonlinearity does not change with time and is the same for all
the simple cells pooled by the same complex cells. A suffi-
cient number of different nonlinearities, each corresponding
to a complex cell, can provide appropriate selectivity.

B. LEARNING THE WIRING

A simple possibility for how the wiring between a group of
simple cells with the same tuning (for instance representing
the same eigenvector, with the same orientation etc.) and
a complex cell may develop is to invoke a Hebbian trace
rule ([35], see also [10] and [89]). In a first phase complex
cells may have subunits with different selectivities (e.g. ori-
entations), for instance because natural images are rotation
invariant and thus eigenvectors with different orientations are
degenerate. In a second plastic phase, subunits which are
inactive when the majority of the subunits are active will be
pruned out according to a Foldiak-like rule.

C. HEBB SYNAPSES AND PCAs

Our theory provides the following algorithm for learning the
relevant invariances during unsupervised visual experience:
store a sequences of images for each of a few objects (called
“templates’) with transformations - for instance translat-
ing, rotating, and looming. Section II shows that in this
way invariant hierarchical architectures can be learned from
unsupervised visual experience. Such architectures repre-
sent a significant extension beyond simple translation invari-
ance, and beyond hardwired connectivity, of models of the
ventral stream such as Fukushima’s Neocognitron [36] and
HMAX [106], [118] — as well as deep neural network of con-
volutional type ([70] and related models, e.g., [1], [73], [88],
[97], [98], [115], [122]) or models where the symmetry is not
learned but hardwired, see, e.g., [25], [108]. Note that other
algorithms to learn symmetries has been recently proposed
for artificial neural networks, e.g., [13], [26], [134]. However
their biological plausibility is not clear (see also [47]).

In biological terms, the sequence of transformations of one
template would correspond to a set of simple cells, each one
storing in its tuning a frame of the sequence. In the second
learning step a complex cell would be wired to those ‘‘sim-
ple” cells. However, the idea of a direct storage of sequences
of images or image patches in the tuning of a set of V1 cells
by exposure to a single object transformation is biologically
rather implausible. Since Hebbian-like synapses are known
to exist in visual cortex a more natural hypothesis is that
synapses would incrementally change over time as an effect
of the visual inputs - that is over many sequences of images
resulting from transformations of objects, e.g., templates.
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The question is whether or not such a mechanism is compat-
ible with our theory and how to implement it if so.

We explore this question for V1 in a simplified setup that

can be extended to other areas. We assume:

« a) that the synapses between LGN inputs and (immature)
simple cells are Hebbian and in particular that their
dynamics follows Oja’s flow [64], [95]. In this case,
the synaptic weights will converge to the eigenvector
with the largest eigenvalue of the covariance of the input
images.

« b) that the position and size of the untuned simple cells is
set during development according to an inverted pyrami-
dal lattice (see Figure 3 in [102]). The key point here is
that the size of the Gaussian spread of the synaptic inputs
and the positions of the ensemble of simple cells are
assumed to be set independently of visual experience.

In summary we assume that the neural equivalent of the

memorization of frames (of transforming objects) is per-
formed online via Hebbian synapses that change as an effect
of visual experience. Specifically, we assume that the dis-
tribution of signals ““seen” by a maturing simple cell is
Gaussian in x, y reflecting the distribution on the dendritic
tree of synapses from the lateral geniculate nucleus. We also
assume that there is a range of Gaussian distributions with
different o variances which increase with retinal eccentricity.
As an effect of visual experience the weights of the synapses
are modified by a Hebb rule [50]. Hebb’s original rule can be
written as

Wp = Oty(xn)xn (6)

where « is the learning rate”, x;, is the input vector, w
is the presynaptic weights vector, and y is the postsynaptic
response. In order for this dynamical system to actually
converge, the weights have to be normalized. In fact, there is
considerable experimental evidence that the cortex employs
normalization [130] and references therein). Hebb’s rule,
appropriately modified with a normalization factor, turns out
to be an online algorithm to compute PCA from a set of
input vectors. In this case it is called Oja’s flow. Oja’s rule
[64], [95] defines the change in presynaptic weights w given
the output response y of a neuron given its inputs x to be

Wn = Wyl — Wp = aYn(Xn — YuaWn) @)

where y, = w,{ x,,. The equation follows from expanding to
the first order Hebb’s rule, normalized to avoid divergence of
the weights.

Since the Oja flow converges to the eigenvector of the
covariance matrix of the x;,, which has the largest eigenvalue,
we analyze the spectral properties of the inputs to “simple”
cells and study whether a PCA computation can be used by
the HW algorithm and in particular whether it satisfies the
selectivity and invariance results.

Alternatives to the Oja’s rule that still converge to PCAs
can also be considered (see [113] and [96]). Also notice
that a relatively small change in the Oja equation gives an
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online algorithm for computing ICAs (Independent Com-
ponent Analysis) instead of PCAs (see [56]). Which kind
of plasticity is more biologically plausible remains an open
question.

D. SPECTRAL THEORY AND POOLING

Consider stage 1, which is retinotopic, and particularly the
case of simple cells in V1. From our assumptions in section V,
the lattice in x, y, s of immature simple cell is set during the
development of the organism (s is the size of the Gaussian
envelope of the immature cell). Assume that all of the simple
cells are exposed, while in a plastic state, to a possibly
large set of images T = (1, ..., tx). A specific cell at a
certain position in x, y, s is exposed to the set of transformed
templates g, T (where g, corresponds to the translation and
scale that transforms the “zero” cells to the chosen neu-
ron in the lattice) and therefore the associated covariance
matrix g, TT T gI". Thus it is possible to choose PCA as new
templates, and pooling over corresponding PCAs across dif-
ferent cells is equivalent to pooling over a template and its
transformations. Both the invariance and selectivity result are
valid. Empirically, we find ([77]) that PCA of natural images
provides eigenvectors that are Gabor-like wavelets with a
random orientation for each sized receptive field. The random
orientation is because of the argument above, together with
the fact that the covariance of natural images is approximately
rotation invariant. The Gabor-like shape can be qualitatively
explained in terms of translation invariance of the correlation
matrix associated with a set of natural images (and their
approximate scale invariance which corresponds to a & 1/f
spectrum, see also [111], [114], and [127]).3 Thus the Ojarule
acting on natural images provides ‘“‘equivalent templates”
that are Gabor-like: the optimal templates, according to the
theory of section IIC.

Consider now non-retinotopic stage 2 in which transforma-
tions are not in scale or position, such as the transformation
induced by a rotation of a face. Assume that a “simple” cell
is exposed to “all” transformations g; (g; is a group element
of the finite group G) of each of a set T = (f1,...,1x)
of K templates. The cell is thus exposed to a set of images
(columns of X) X = (g1 T, ..., g T). For the sake of this
example, assume that G is the discrete equivalent of a group.
Then the covariance matrix determining the Oja’s flow is

G|
C=xx"=) gTT"g]. ®)
=1

It is immediately clear that if ¢ is an eigenvector of C then
gi® is also an eigenvector with the same eigenvalue (for more
details on how receptive fields look like in V1 and higher

3 Suppose that the simple cells are exposed to patterns and their scaled and
translated versions. Suppose further that images are defined on a lattice and
translations and scaling (a discrete similitude group) are carefully defined on
the same lattice. Then a set of discrete orthogonal wavelets - defined in terms
of discrete dilation and shifts - exist and is invariant under the group. The
Oja rule (extended beyond the top eigenvector) could converge to specific
wavelets.
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layers see also [5], [101] par 4.3.1 and 4.7.3, [10], [41],
[42], [51]). Consider an example G to be the discrete rotation
group in the plane: then all the (discrete) rotations of an
eigenvector are also eigenvectors. The Oja rule will converge
to the eigenvectors with the top eigenvalue and thus to the
subspace spanned by them. It can be shown that L? pooling
over the PCA with the same eigenvalues represented by
different simple cells is then equivalent to L? pooling over
transformations, as the theory of section II.B dictates, in order
to achieve selectivity and invariance ([5] par 4.6.1 and [10]).
This argument can be formalized in the following variation
of the pooling step in the HW algorithm:

Spectral pooling. Suppose that M is the matrix corre-
sponding to the group transformations of template ¢ (each
column is a transformation of the template). Consider the set
of eigenvectors {¢;}&_, of covariance matrix C = MM
with eigenvalue A*. Because of the above argument
(gml, Pr) = (I, ¢;§> where g,;lqb;{" = ¢;. Therefore to
achieve invariance a complex cell can pool with a quadratic
nonlinearity over the eigenvectors of C instead of over the
transformations of the template. Thus, components of an
invariant signature can be computed as

) =D |1 67) |1 ©)

E. TUNING OF “simple” CELLS

The results of section II on the HW module imply that the
templates, and therefore the tuning of the simple cells, can
be the image of any object. At higher levels in the hierarchy,
the templates are neuroimages - patterns of neural activity —
induced by actual images in the visual field. The previous
section, however, offers a more biologically plausible way
to learn the templates from unsupervised visual experience
via Hebbian plasticity. In the next sections we will discuss
predictions following from this assumptions for the tuning of
neurons in the various areas of the ventral stream.

IV. STAGE 2 IN IT: CLASS-SPECIFIC

APPROXIMATE INVARIANCE

A. FROM GENERIC TEMPLATES TO

CLASS-SPECIFIC TUNING

As discussed in section IIE, approximate invariance for trans-
formations beyond the affine group requires highly tuned
templates, and therefore highly tuned simple cells, probably
at a level in the hierarchy corresponding to AIT (anterior
inferotemporal cortex). According to the considerations of
section IIF this is expected to take place in higher visual
areas of the hierarchy. In fact, the same localization condi-
tion of Equation 4 suggests Gabor-like templates for generic
images in the first layers of a hierarchical architecture and
specific tuned templates for the last stages of the hierarchy,
since class specific modules are needed with each containing
highly specific templates, and thus highly tuned cells. This
is consistent with the architecture of the ventral stream and
the the existence of class-specific modules in primate cortex
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such as a face module and a body module [28], [30], [52],
[58], [63], [76], [128]. We saw in section IIF that areas in the
hierarchy up to V4 and/or PIT provide signatures for larger
parts or full objects. Thus we expect
« that the inputs to the class-specific modules are scale and
shift invariant
o that the class-specific templates are ‘“large”. For
instance in the case of faces, templates should cover
significant regions of the face. Notice that only large
templates support pose invariance (the image of an iso-
lated eye does not change much under rotations in depth
of the face).

B. DEVELOPMENT OF CLASS-SPECIFIC AND
OBJECT-SPECIFIC MODULES

A conjecture emerging from our theory offers an interesting
perspective [77] on AIT. For transformations that are not
affine transformations in 2D (we assume that 3D information
is not available to the visual system or used by it, which
may not always be true), an invariant representation cannot
be computed from a single view of a novel object because
the information available is not sufficient. What is lacking is
the 3D structure and material properties of the object: thus
exact invariance to rotations in depth or to changes in the
direction or spectrum of the illumination cannot be obtained.
However, as our theory shows, approximate invariance to
smooth non-group transformations can still be achieved in
several cases (but not always) using the same HW module.
The reason this will often approximately work is because it
effectively exploits prior knowledge of how similar objects
transform. The image-to-image transformations caused by
a rotation in depth are not the same for two objects with
different 3D structures. However, objects that belong to an
object class where all the objects have a similar 3D structure
transform their 2D appearance in (approximately) the same
way. This commonality is exploited by a HW module to
transfer the invariance learned from (unsupervised) experi-
ence with template objects to novel objects seen from only
a single example view. This is effectively our definition of
an object class: a class of objects such that the transfor-
mation for a specific object can be approximately inferred
from how other objects in the class transform. The necessary
condition for this to hold is that the 3D shape is similar
between any two objects in the class. The simulation in
Figure 5 shows that HW-modules tuned to templates from
the same class of the (always novel) test objects provide a
signature that tolerates substantial viewpoint changes (plots
on the diagonal); it also shows the deleterious effect of using
templates from the wrong class (plots off the diagonal). There
are of course several other class-specific transformations
besides depth-rotation, such as face expression and body pose
transformations.

In [77] we argue that the visual system is continuously and
automatically clustering objects and their transformations -
observed in an unsupervised way - in class-specific modules.
New images are added to an existing module only if their
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FIGURE 5. Class-specific transfer of depth-rotation invariance for images
from three classes (faces, A, cylinders, B and composed, C). The left
column of the matrix shows the results of the test for invariance for a
random image of a face (A) in different poses w.r.t. 3D rotation using 3D
rotated templates from A,B,C; similarly the middle and the right column
shows the invariance results for class B and C tested on rotated templates
of A,B,C respectively. The colors in the matrix show the maximum
invariance range (degrees of rotation away from the frontal view). Only
the diagonal values of the matrix (train A - test A, train B - test B, train C-
test C) show an improvement of the view-based model over the pixel
representation. That is, only when the test images transform similarly to
the templates is there any benefit from pooling [77].

transformation are well predicted by it. If no module can be
found with this property the new image and all its transfor-
mations will be the seed of a new object cluster/module.

For the special case of rotation in depth, [77], ran a simu-
lation using 3D modelling / rendering software to obtain the
transformations of objects for which there exist 3D models.
Faces had the highest degree of clustering of any naturalistic
category - unsurprising since recognizability likely influ-
enced face evolution. A set of chair objects had broad clus-
tering, implying that little invariance would be obtained from
a chair-specific region. A set of synthetic “wire” objects,
very similar to the ““paperclip” objects used in several classic
experiments on view-based recognition, e.g., ([12], [82], and
[83]) were found to have the smallest index of clusterability:
experience with familiar wire objects does not transfer to new
wire objects (because the 3D structure is different for each
individual paperclip object).

It is instructive to consider the limit case of object classes
that consist of single objects - such as individual paperclips.
If the object is observed under rotation several frames are
memorized as transformations of a single template (identity
is implicitly assumed to be conserved by a Foldiak-like rule,
as long as there is continuity in time of the transforma-
tion). The usual HW module pooling over them will allow
view-independent recognition of the specific object. A few
comments:

1) remarkably, the HW module described above for

class-specific transformations — when restricted to
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multiple-views, single-object — is equivalent* to the
Edelman-Poggio model for view invariance [100];

2) the class-specific module is also effectively a “gate”:
in addition to providing a degree of invariance it also
performs a template matching operation with templates
that can effectively “block” images of other object
classes. This gating effect may be important for the
system of face patches discovered by Tsao and Frei-
wald [37] and it is especially obvious in the case of a
single object module;

3) from the point of view of evolution, the use of the
HW module for class-specific invariances can be seen
as a natural extension from its role in single-objects
view invariance. The latter case is computationally less
interesting, since it implements effectively a look-up
table, albeit with interpolation power. The earlier case
is more interesting since it allows generalization from
a single view of a novel object. It also represent a clear
case of transfer learning.

C. DOMAIN-SPECIFIC REGIONS IN THE VENTRAL STREAM
As discussed by [77], there are other domain-specific
regions in the ventral stream besides faces and bodies. It is
possible that additional regions for less-common or less
transformation-compatible object classes will appear with
higher resolution imaging techniques. One example may
be the fruit area, discovered in macaques with high-field
fMRI [69]. Others include the body area and the Lat-
eral Occipital Complex (LOC) which according to recent
data [85] is not really a dedicated region for general object
processing but a heterogeneous area of cortex containing
many domain-specific regions too small to be detected with
the resolution of fMRI (but see also [99] and [135]). The
Visual Word Form Area (VWFA) [19], [22] seems to repre-
sent printed words. In addition to the generic transformations
that apply to all objects, printed words undergo several non-
generic transformations that never occur with other objects.
For instance, our reading is rather invariant to font transfor-
mations and can deal with hand-written text. Thus, VWFA
is well-accounted for by the invariance hypothesis, as words
are a frequently-viewed stimuli which undergo class-specific
transformations.

The justification - really a prediction - by our theory for
domain-specific regions in cortex is different from other
proposals. However, it is complementary w.r.t. some of them,
rather than exclusive. For instance, it would make sense that
the clustering depends not only on the index of compatibil-
ity but also on the relative frequency of each object class.
We conjecture that a) that transformation compatibility is the
critical factor driving the development of domain-specific
regions, and b) that there are separate modules for object
classes that transform differently from one another.

4In [100] the similarity operation was the Gaussian of a distance - instead
of the dot product required by our theory. Notice that for normalized vectors,
> norms and dot products are equivalent.
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D. TUNING OF ‘simple” CELLS IN IT

In the case of “simple” neurons in the AL face patch [37],
[39], [77], exposure to several different faces — each one gen-
erating several images corresponding to different rotations in
depth —yields a set of views with a covariance function which
has eigenvectors (PCs) that are either even or odd functions
(because faces are bilaterally symmetric).

The Class-specific result together with the Spectral pooling
proposition suggests that square pooling (over these face PCs)
provides approximate invariance to rotations in depth. The
full argument goes as follows. Rotations in depth of a face
around a certain viewpoint - say & = 6° — can be well
approximated by linear transformations (by transformations
in the general linear group, g € GL(2)). The HW algo-
rithm can then provide invariance around 6 = 6°. Finally,
if different sets of “simple” cells are plastic at somewhat
different times, exposure to a partly different set of faces
yields different eigenvectors summarizing different sets of
faces. The different sets of faces play the role of different
object templates in the standard theory.

The limit case of object classes that consist of single
objects is important to understand the functional architecture
of most of IT. If an object is observed under transforma-
tions, several images of it can be memorized and linked
together by continuity at time of the transformation. As we
mentioned, the usual HW module pooling over them will
allow view-independent recognition of the specific object.
Since this is equivalent to the Edelman-Poggio model for
view invariance [100] there is physiological support for this
proposal (see [83], [84] and [123]).

E. MIRROR SYMMETRIC TUNING IN THE FACE PATCHES
AND POOLING OVER PCs

The theory then offers a direct interpretation of the
Tsao-Freiwald data (see [37] [38], and [39]) on the face patch
system. The most posterior patches (ML/MF) provide a view
and identity specific input to the anterior patch AL, where
most neurons show tuning that is an even function of the
rotation angle around the vertical axis. AM, which receives
inputs from AL, is identity-specific and view-invariant. The
puzzling aspect of this data is the mirror symmetric tuning
in AL: why does this appear in the course of a computation
that leads to view-invariance? According to our theory this
result should be expected if AL contains “‘simple’ cells that
are tuned by a synaptic Hebb-like Oja rule and the output
of the cells is roughly a squaring nonlinearity as required
by the Spectral pooling proposition. In this interpretation,
cells in AM pool over several of the squared eigenvector
filters to obtain invariant second moments (see Figure 6).
Detailed models from V1 to AM show properties that are
consistent with the data and also perform well in invariant
face recognition [75], [77], [81], [91].

V. DISCUSSION
Several different levels of understanding. Our theory
addresses several different levels, including the computational
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FIGURE 6. Face identity is represented in the macaque face patches
(Freiwald and Tsao, 2010). Neurons in the middle areas of the ventral
stream face patch (middle lateral and fundus (ML, MF)) are view specific,
while those in the most anterior (anterior medial patch (AM)) are view
invariant. Neurons in an intermediate area (anterior lateral patch (AL))
respond similarly to mirror-symmetric views. In our theory view
invariance is obtained by pooling over “simple” neurons whose tuning
corresponds to the PCAs of a set of faces previously experienced each
under a range of poses. Due to the bilateral symmetry of faces, the
eigenvectors of the associated covariance matrix are even or odd. This is
shown in a) where the first 3 PCAs of set of grey-level faces under
different poses are plotted: the same symmetry arguments apply to
“neural” images of faces. Figure b shows the response of 3 model AL
units to a face stimulus as a function of pose under different poses
(From [77]).

goal of the ventral stream, the algorithms used, the archi-
tecture of visual cortex, its hierarchical architecture, and the
neural circuits underlying tuning of cells. This is unlike most
other models or theories.

Predictions. From the point of view of neuroscience, the
theory makes a number of predictions, some obvious, some
less so. One of the main predictions is that simple and com-
plex cells should be found in all visual and auditory areas, not
only in V1. Our definition of simple cells and complex cells
is different from the traditional ones used by physiologists;
for example, we propose a broader interpretation of complex
cells, which in the theory represent invariant measurements
associated with histograms (or moments of their values) of
the outputs of simple cells. The theory implies that, under
some conditions, exact or approximate invariance to all geo-
metric image transformations can be learned, either during
development or in adult life. It is, however, also consistent
with the possibility that basic invariances may be genetically
encoded by evolution and possibly refined and maintained
by unsupervised visual experience. A single cell model for
simple complex cells follows from the theory as an interest-
ing possibility. Our theory also makes predictions about the
architecture of the ventral stream:

« the output of V2, V4, and PIT should access memory
either via connections that bypass higher areas or indi-
rectly via equivalent neurons in higher areas (because of
the argument in a previous section about clutter).

o areas V1, V2, V4 and possibly PIT are mainly dedicated
to computing signatures that are invariant to translation,
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scale and their combinations - as experienced in past
visual experience.

o IT is a complex of parallel class-specifc modules for a
large number of large and small object classes. These
modules receive position and scale invariant inputs
(invariance in the inputs greatly facilitates unsupervised
learning of class specific transformations). We recall
that, from the perspective of the theory, the data of [83]
concern single object modules and strongly support the
prediction that exposure to a transformation lead to
neuronal tuning to several “frames” of it.

Object-based vs 3D vs view-based recognition. We should
mention here an old controversy about whether visual recog-
nition is based on views or on 3D primitive shapes called
geons. In the light of our theory image views retain the main
role but ideas related to 3D shape may also be valid. The psy-
chophysical experiments of Edelman and Buelthoff [32] con-
cluded that generalization for rotations in depth was limited to
a few degrees (%30 degrees) around a view (independently
of whether 2D or 3D information was provided to the human
observer (psychophysics in monkey [82], [83] yielded similar
results). The experiments were carried out using ‘“paperclip”
objects with random 3D structure (or similar but smoother
objects). For this type of objects, class-specific learning is
impossible (they do not satisfy the second condition in the
class-specific result) and thus our theory predicts the result
obtained by Edelman and Buelthoff. For other objects, how-
ever, such as faces, the generalization that can be achieved
from a single view by our theory can span a much larger range
than £30 degrees, effectively exploiting 3D-like information
from templates of the same class.

Genes or learning. Our theory shows how the tuning of
the “simple” cells in V1 and other areas could be learned in
an unsupervised way. It is possible however that the tuning -
or the ability to quickly develop it in interaction with the
environment - may have been partly compiled during evolu-
tion into the genes.? Notice that this hypothesis implies that
most of the times the specific function is not fully encoded
in the genes: genes facilitate learning but do not replace it
completely. It is then be expected in the ‘“‘nature vs nurture
debate’ that usually nature needs nurture and nurture is made
easier by nature. An interesting result in this respect comes
from a recent paper [66] where the authors propose a genetic

S1f a function learned by an individual represents a significant evolutionary
advantage we could expect that aspects of learning the specific function
may be encoded in the genes, since an individual who learns more quickly
has a significant advantage. In other words, the hypothesis implies a mix
of nature and nurture in most competencies that depend on learning from
the environment (like perception). This is an interesting implication of
the “Baldwin effect” - a scenario in which a character or trait change
occurring in an organism as a result of its interaction with its environment
becomes gradually assimilated into its developmental genetic or epigenetic
repertoire [27]. In the words of Daniel Dennett, “Thanks to the Baldwin
effect, species can be said to pretest the efficacy of particular different designs
by phenotypic (individual) exploration of the space of nearby possibilities.
If a particularly winning setting is thereby discovered, this discovery will
create a new selection pressure: organisms that are closer in the adaptive
landscape to that discovery will have a clear advantage over those more
distant.”” (p. 69, quoting [27]).
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bottleneck as an effective regularizer that enables evolution to
select simple circuits that can be readily adapted to important
real-world tasks (see also [48]).

Computational structure of the HW module. The HW mod-
ule computes the CDF of (I, git*) over all g; € G. The
computation consists of

1 @
Hh = > ({1 gitt)+ ) (10)
i=1
with h = 0,-,H and k = 1, -, K; the main forms of the
nonlinearity o are either a threshold function or a power
n = 1,-, 00 of its argument. Several known networks are
special cases of this module. One interesting case is when G
is the translation group and o () = || - ||%: then the equation
is equivalent (for H = 0) to a unit in a convolutional network
with max pooling. In another noteworthy case (we always
assume that I and ¥ are normalized) the equation is very
similar to the Radial Basis Functions network proposed by
Edelman and Poggio [100] for view classification. In this
spirit, note that the equation for a unit in a convolutional
network is
1 |G|
@Zc,-oul,gir) + hA) (11)
i=1
where [ is the input vector, c¢;, f, A are parameters to be
learned, in supervised mode, from labeled data and g;¢(x) =
t(x — i8,). Thus units in convolutional network could learn to
become units of the our theory (by learning ¢; = 1) but only
when G is the translation group (in our theory G is the full
affine group for the first layers and can be a non group such
as the transformation induced by rotations in depth). We also
note that the same computational model can be extended
to other sensory modalities (I can be, e.g., a soundwave).
Moreover, the learned representation can be used not only
for image recognition but for a variety of different tasks that
integrate multisensory information.

Relations to Deep Learning networks and unsupervised
learning. Most of the best performing deep learning networks
have convolutional layers as well as densely connected lay-
ers in their architecture. Our theory applies to the convo-
lutional but not the densely connected, classification stage.
Historically, hardwired invariance to translation was first
introduced in the Neocognitron by Fukushima and later in
LeNet [70] and in HMAX ([106]; HMAX had also invari-
ance to scale). These architectures are early examples of
convolutional networks. Our theory provides a general the-
ory for them® that also offers two significant algorithmic
and architectural extensions: a) it ensures, within the same
algorithm, invariances to other groups beyond translation and
provides approximate invariances to certain non-group trans-
formations; b) it provides a way to learn arbitrary invariances
from unsupervised learning. Learning the correct symmetries

SIn the case of the translation group the HW module (see Equation 1)
consists of (non-linear) pooling of the convolution of the image with a
template.
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can potentially give an advantage in terms of sample com-
plexity w.r.t. hardwired translation invariant convolutional
networks. Note however that, differently from state of art
CNNs (Convolutional Neural Networks), our proposed learn-
ing algorithm is unsupervised and a direct comparison could
be potentially misleading. In general, supervised methods
are nowadays superior to unsupervised ones although unsu-
pervised models based on contrastive embeddings [139] or
biologically plausible backpropagation [57] and contrastive
predictive coding [11] might offer an alternative. A more
appropriate comparison can be done with architecture where
the signal representation is learned in an unsupervised way
and supervision is only used to adapt the representation to the
specific task(s) [68]. Finally note that our unsupervised model
differs from those cited above in that we make the hypothesis
that the input is a collection of group transformed sensory
signals. We take advantage of this data structure deriving the
equivariant and invariant properties of the representation.

Invariance in 2D and 3D vision. We have assumed here
that “‘images” as well as templates are in 2D. This is the
case if possible sources of 3D information such as stereopsis
and/or motion are eliminated. Interestingly, it seems that
stereopsis does not facilitate recognition, suggesting that 3D
information, even when available, is not used by the human
visual system (see [15).”

Explicit or implicit gating of object classes. The second
stage of the recognition architecture consists of a large set
of object-class specific modules of which probably the most
important is the face system. It is natural to think that signals
from lower areas should be gated, in order to route access
only to the appropriate module. In fact, Tsao [129], but see
also [18] postulated a gate mechanism for the network of
face patches. The structure of the modules however suggests
that the module themselves automatically provides a gat-
ing function even if their primary computational function is
invariance. This is especially clear in the case of the module
associated with a single object (the object class consists of
a single object as in the case of a paperclip). The input to
the module is subject to dot products with each of the stored
views of the object: if none match well enough the output of
the module will be close to zero, effectively gating off the
signal and switching off subsequent stages of processing.

Invariance to X and estimation of X. The description of our
theory focuses on the problem of recognition as estimating
identity or category invariantly to a transformation X - such
as translation or scale or pose. Often however the comple-
mentary problem, of estimating X, for instance pose, is also
important. The same neural population may be able to support
both computations and multiplex the representations of their

TThis hypothesis should however be checked further since our theory
implies that if 3D information is available, rotation in depth is a group and
therefore generalization from a single view could be available simply by
having stored 3D templates of a few arbitrary objects and their 3D trans-
formations. This is not what psychophysics (for instance on the paperclips)
shows; however, the mathematical claim of perfect invariance is only true
in the absence of self-occlusions, a clearly unrealistic assumption for most
objects.

102487



IEEE Access

F. Anselmi, T. Poggio: Representation Learning in Sensory Cortex: A Theory

outcome as shown in IT recordings and model simulations
([55], [118] but see also [117]). As human observers, we are
certainly able to estimate position, rotation, and illumination
of an object without eye movements. HW modules pooling
over the same units in different way - pooling over iden-
tities for each pose or pooling over pose for each identity
- can provide the different types of information using the
same “‘simple’’ cells and different “complex” cells. Anselmi
([51, fig 45) show simulations of recognizing a specific
body invariantly to pose and estimating pose-out of a set of
32 possibilities-of a body invariantly to the identity.

PCAs vs ICAs. Independent Component Analysis [56] and
similar unsupervised mechanisms describe plasticity rules
similar to the basic Oja flow analyzed in this paper. They can
generate Gabor-like receptive fields and they may not need
the assumption of different sizes of Gaussian distributions of
LGN synapses. We used PCA simply because its properties
are easier to analyze and should be indicative of the properties
of similar Hebbian-like mechanisms.

Parsing a scene. Full parsing of a scene cannot be done
in a single feedforward processing step in the ventral stream.
It requires task-dependent top-down control, in general mul-
tiple fixations and therefore observation times longer than
~ 100 msec. This also follows from the limited high res-
olution region of the inverted pyramid model of the visual
system, which theory predicts as a consequence of simul-
taneous invariance to shift and scale (see [102] for details).
In any case, full parsing of a scene is beyond what a purely
feedforward model can provide.

Feedforward and feedback. We have reviewed a forward
theory of recognition and some of the related evidence. Our
theory does not address top-down, recurrent, or horizontal
connectivity and their computational role. It however makes it
easier to consider plausible hypothesis. The inverted pyramid
architecture that follows from scale and position invariance
requires a tight loop between different fixations in which an
efficient control module drives eye movements by combining
task requirements with memory access. However, within a
single fixation the space-scale inverted pyramid cannot be
shifted in space. What could be controlled in a feedback
mode are parameters of pooling, including the choice of
which scales to use depending on the results of classification
or memory access. The most obvious limitation of feed-
forward architectures is recognition in clutter and the most
obvious way around the problem is the attentional masking
of large parts of the image under top-down control. More
generally, a realistic implementation of the present theory
requires top-down control signals and circuits, supervising
learning and possibly fetching signatures from different areas
and at different locations in a task-dependent way. An even
more interesting hypothesis is that backprojections update
local signatures at lower levels depending on the scene class
currently detected at the top (an operation similar to the
top-down pass of Ullman [14]. In summary, the output of
the feedforward pass is used to retrieve labels and routines
associated with the image; backprojections may implement
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an attentional focus of processing to reduce clutter effects
and also to run visual routines [118] at various levels of
the hierarchy. An interesting, but not biologically plausible,
alternative might be offered by the recently introduced trans-
formers architecture, [136].

Motion helps learning isolated templates. 1deally tem-
plates and their transformations should be learned without
clutter. It can be argued that if the background changes
between transformed images of the same template then the
averaging effect intrinsic to pooling will mostly ‘‘average
out” the effect of clutter during the unsupervised learning
stage. Though this is correct and we have computer simu-
lations that provide empirical support to the argument, it is
interesting to speculate that motion could provide a simple
way to eliminate most of the background. Sensitivity to
motion is one of the earliest visual computations to appear
in the course of evolution and one of the most primitive.
Stationary images on the retina tend to fade away. Detection
of relative movement is a strong perceptual cue in primate
vision as well as in insect vision, probably with similar
normalization-like mechanisms [49], [103]. Motion induced
by the transformation of a template may then serve two
important roles:

o To bind together images of the same template while
transforming: continuity of motion is implicitly used to
ensure that identity is preserved;

« To eliminate background and clutter by effectively using
relative motion.

The required mechanisms are probably available in the retina
and early visual cortex.

Despite significant advances in sensory neuroscience over
the last five decades, a true understanding of the basic func-
tions of the ventral stream in visual cortex has proven to be
elusive. Thus it is interesting that the theory used in this paper
follows from a novel hypothesis about the main computa-
tional function of the ventral stream: the representation of
new objects/images in terms of a signature which is invariant
to transformations learned during visual experience, thereby
allowing recognition from very few labeled examples—in the
limit, just one. This view of the cortex may also represent
a novel theoretical framework for the next major challenge
in learning theory beyond the relatively-mature supervised
learning: the problem of representation learning, formulated
here as the unsupervised learning of invariant representations
that significantly reduce the sample complexity of the super-
vised learning stage.
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