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We study the hydrodynamic and hydrostatic limits of the one-dimensional open symmetric inclusion process with
slow boundary. Depending on the value of the parameter tuning the interaction rate of the bulk of the system with
the boundary, we obtain a linear heat equation with either Dirichlet, Robin or Neumann boundary conditions as
hydrodynamic equation. In our approach, we combine duality and first-second class particle techniques to reduce
the scaling limit of the inclusion process to the limiting behavior of a single, non-interacting, particle.
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1. Introduction

Among the interacting particle systems employed to study non-equilibrium phenomena in mathemati-
cal statistical physics, the inclusion process is gaining increasing attention (see, e.g., [7,12,23,33,48]).
In particular, the symmetric inclusion process (SIP), introduced in [27] as discrete dual of a Gaussian
energy process – known as Brownian momentum process (BMP) – and further studied in, e.g., [12,28],
can be considered as the “attractive” counterpart of the symmetric exclusion process (SEP). Indeed,
inclusion particles evolve as independent random walks subject to an attractive – rather than repulsive
– interaction with nearest neighbors and, consequently, with no restriction on the maximal number of
particles per site. Moreover, the SIP is related via some limiting “thermalization” procedures to the
so-called KMP model [36], introduced as a microscopic model of heat transport in non-equilibrium.

The research around these stochastic systems mainly focuses on the microscopic structure of the
non-equilibrium steady states as well as on their scaling limits, such as the derivation of Fick’s law
for the non-equilibrium steady state and the proof of local convergence to a Gibbs state, see, e.g.,
[14,36]. In this realm, as for the study of relaxation to the stationary non-equilibrium states, the first
rigorous result on the derivation of the macroscopic equation governing the evolution of the density
profile dates back to [20,21]. There the authors study the hydrodynamic and hydrostatic limits for
gradient stochastic lattice gas models in a one-dimensional lattice. Further developments regarding
scaling limits of such systems concern the study of – both dynamic and static – large deviations and
non-equilibrium fluctuations around the hydrodynamic limit for the open SEP, see, e.g., [22,37]. All
these models yield parabolic equations with suitable Dirichlet boundary conditions as hydrodynamic
equations.

More recently, stochastic models with more general interactions between the bulk of the system and
the reservoirs have been introduced, see, e.g., [4,6,16–18,25,26,29,30]. Depending on the interaction
chosen, more general boundary conditions – e.g., Robin, Neumann or nonlinear boundary conditions
– and more general nonlinear and fractional diffusions have been derived. For all these models, the
so-called entropy and relative entropy methods (see, e.g., [35]) play a prominent role, but they both
require replacement lemmas in order to close the equations at the microscopic level. Furthermore, in
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the context of exclusion processes in which a matrix formulation for the stationary non-equilibrium
state is available and for zero-range processes in which the stationary non-equilibrium measures are
of product form, explicit formulas for the stationary correlations simplify the study of hydrostatic and
stationary non-equilibrium fluctuations.

For the open SIP, explicit expressions for the stationary correlations are not, in general, known.
Furthermore, the entropy methods do not directly apply to this context because the partition function
of the local Gibbs measures for SIP – products of Negative Binomial distributions – does not satisfy
hypothesis [FEM] in [35] regarding their radius of convergence. Such an assumption, which is usually
met for a wide class of zero-range and exclusion processes, is crucial in both one- and two-block
estimates when applying entropy inequalities.

In view of the inapplicability of these general and robust methods, we base our study on the dual-
ity property of the open SIP. Duality in the context of interacting particle systems has been given a
probabilistic “graphical” interpretation (see, e.g., [40]) and has been thoroughly explored from a Lie
algebraic and generating function point of view (see, e.g., [11,28,45]), enriching both the class of mod-
els with the duality property and the space of duality functions for such models. In words, duality for a
particle system may be viewed as the property of having suitably weighted factorial moments evolving
according to a closed system of linear difference equations. Provided that n ∈ N is the degree of such
moments, it turns out that the corresponding difference operators which govern their evolution is given
by the infinitesimal generator of n interacting particles which follow the same interaction rules as those
of the original system. In the context of open systems in which particles enter and exit the bulk, the
duality property still holds with the dual system having purely absorbing boundary. We remark that this
picture is in line with its continuum counterpart, namely with the fact that stochastic representations
of solutions of parabolic PDEs with Dirichlet boundary conditions are expressed in terms of diffusion
processes which run backward in time and stop when hitting the boundary.

In this paper, we consider the open SIP on a one-dimensional lattice with nearest-neighbor inter-
actions, whose boundary rates scale with the size of the system. As done in, e.g., [4], we introduce a
parameter β ≥ 0 which tunes the speed of these interactions: the higher the value of β , the slower the
interaction. For this particle system, we derive the hydrodynamic and hydrostatic limits for all values of
β ≥ 0, obtaining, in particular, linear heat equations with either Dirichlet, Robin or Neumann boundary
conditions depending on whether β ∈ [0,1), β = 1 or β ∈ (1,∞).

Our strategy to derive the hydrodynamic limit may be summarized as follows. First we center our
empirical density fields around their stationary part, which, in our case, is explicitly known. This cen-
tering procedure does not appear in previous literature on scaling limits of open systems and, by ap-
plying it also to the limiting fields, symmetry properties of continuum and discrete Laplacians be-
come available and boundary terms in the limiting equation cancel out. Then, we exploit the linear-
ity of the evolution equations for the first and second moments of the occupation variables to close
the equations for the associated centered empirical density fields. To this purpose, a “corrected em-
pirical density field” argument (see, e.g., [32]) and the centering with respect to the stationary part
are crucial in order to close the equations for the fields and avoid technical replacement lemmas –
based, ultimately, on relative entropy estimates – as done in the context of the open SEP in, e.g., [4,
29].

For what concerns the hydrostatic limit, in order to verify that the stationary non-equilibrium
measures satisfy the assumptions of the hydrodynamic limit, in general, one needs to control the
stationary two-point correlations. This has been done for the slow-boundary SEP in [4] (see also
[37]) by using the explicit form of such correlations, and in [47] (see also [38]) by proving re-
placement lemmas near the boundary. As already mentioned, for SIP, matrix formulations of the
non-equilibrium steady state, explicit formulas for the correlations and replacement lemmas are not
available. In order to overcome this, we develop a self-contained method – which is one of the
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main contributions of this work – to derive hydrostatic limits based solely on duality and a hi-
erarchical representation of the dual particle system. More specifically, we express correlations in
terms of a dual system of two inclusion particles as in [23], and combine this with the introduc-
tion of a hierarchical “first-second class particle” construction for SIP. This allows us to reduce
the problem of checking the L1-decay of these two-point stationary correlations to the study of a
single one-dimensional random walk with absorbing boundary, considerably simplifying the analy-
sis.

Duality techniques are not new in the context of scaling limits for non-equilibrium systems and have
been used thoroughly – even without explicit mention (see, e.g., [4,16,37]). In this paper, we show
that first and second order dualities combined with a purely probabilistic “lookdown” construction of
the dual system provide a simple strategy to obtain both hydrodynamic and hydrostatic limit, avoiding
both non-homogeneous evolution equations for the two point correlations and replacement lemmas as,
e.g., in [4].

We emphasize that the duality property has to be considered an “exact” feature. Indeed, although
some notions of approximate duality proved to be useful in some perturbative contexts (see, e.g., [13],
Chapter 6), in general, duality does not transfer to perturbations of the particle systems, which, for
instance, introduce asymmetries. Nevertheless, the duality property is robust with respect to the gen-
eralizations of the underlying geometries, as, e.g., with respect to the introduction of disorder or the
dimension of the lattice, as well as, of the reservoir interaction (see, e.g., [23]). Moreover, as for the
stationary two-point correlations, the aforementioned reduction from two to one dual particles is gen-
eral and holds for all geometries and reservoir interactions, even when the stationary particle density
profile is not explicitly known. In this sense, we believe our techniques to apply to a larger family of
discrete and continuum open systems for which analogous duality relations (see [12]) as well as hierar-
chical constructions for the dual processes hold. Among these models, we mention the open symmetric
exclusion process SEP(α), where up to α ∈ N particles are allowed to each site (see, e.g., [12], whose
jump rates differ from those of the non-gradient generalized exclusion process studied, e.g., in [35])
and the continuum BEP and KMP models.

We further observe that, by following our approach, the regime of fast boundary – corresponding to
β < 0, still remains open because a control uniform in time on the total mass of particles in the bulk
is not at hand for the open SIP as in the case, e.g., of SEP and zero-range processes. Indeed, the total
mass of the system can be uniformly dominated due to hard core constraints for the open SEP and due
to the monotonicity – or, attractiveness – of the zero-range process (see, e.g., [26]), property which
is not satisfied by SIP. A second challenge consists in the study of non-equilibrium and stationary
fluctuations as well as of dynamic and static large deviations around the hydrodynamic and hydrostatic
limits, respectively, for the open SIP. This is left for a future work.

We conclude this introduction with a short outline on the organization of the paper. In Section 2
we introduce the particle system, the associated equilibrium and non-equilibrium measures, the dual
process and the duality relations. Moreover, we define the functional setting we use to describe our
main results, the hydrodynamic and hydrostatic limits stated in Section 3. Section 4 is devoted to the
proofs of the two main results. We conclude the paper with two appendices. In Appendix A we present
a complete and unified construction of the function spaces used for which existence and uniqueness of
the solution to the hydrodynamic equations we consider follows at once. In Appendix B, we prove a
result for a one-dimensional random walk required in the proof of the hydrostatic limit.
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2. Setting

In this section, we introduce the particle system in contact with reservoirs, the duality properties and
its stationary measures. Then, we present the function spaces and the weak formulation of the limiting
hydrodynamic equations.

2.1. Open symmetric inclusion process

Let N ∈ N play the role of scaling parameter and �N := {1, . . . ,N − 1} be the one-dimensional
chain on which the particles hop. We define by XN the configuration space given by XN := N

�N

0 =
{0,1, . . .}�N , where, for any given η ∈XN and x ∈ �N , η(x) stands for the number of particles of the
configuration η at site x, referred to as occupation variable at x. The stochastic dynamics is described
by the infinitesimal generator LN whose action on local functions f : XN →R is given by

LNf := LN
bulkf +LN

L f +LN
R f , (1)

where

LN
bulkf (η) := N2

∑
x∈�N\{N−1}

{
η(x) (α + η(x + 1))

(
f (ηx,x+1) − f (η)

)
+η(x + 1) (α + η(x))

(
f (ηx+1,x) − f (η)

)} ,

LN
L f (η) := N2−β

{
αLϑL (α + η(1))

(
f (η1,+) − f (η)

)
+η(1) (αL + αLϑL)

(
f (η1,−) − f (η)

)}

and

LN
R f (η) := N2−β

{
αRϑR (α + η(N − 1))

(
f (ηN−1,+) − f (η)

)
+η(N − 1) (αR + αRϑR)

(
f (ηN−1,−) − f (η)

)} .

In the above expressions, ηx,y stands for the configuration obtained from η by removing a particle from
site x ∈ �N (if any) and placing it at site y ∈ �N , i.e., ηx,y := η − δx + δy ∈ XN with δx denoting the
configuration consisting of a single particle at site x ∈ �N . Furthermore,

η1,+ := η + δ1

η1,− := η − δ1

ηN−1,+ := η + δN−1

ηN−1,− := η − δN−1 .

The parameters α,αL,αR,ϑL and ϑR are all positive and, while α stands for the bulk site attraction
parameter, the others describe the interaction of the system with left and right reservoirs through the
ending sites of the chain �N . We remark that interpreting αL and αR , resp.

ρL := αLϑL and ρR := αRϑR , (2)

as the reservoirs’ attraction, resp. reservoirs’ particle density, parameters, the jump rates due to the
reservoir interaction have exactly the same form as the jump rates in the bulk. Lastly, the parameter
β ≥ 0 tunes the intensity of the reservoir interaction (see also Figure 1 below). We warn the reader that
above and in what follows, for notational convenience, the dependence on β ≥ 0 is never explicitly
mentioned.
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Figure 1. Schematic description of the dynamics of the one-dimensional open SIP on �N with parameters
α,αL,αR,ϑL,ϑR > 0 and β ≥ 0.

In what follows, for all μ probability measures on XN , we let PN
μ and EN

μ denote the probability law
and corresponding expectation of the process with generator LN in (1) with initial distribution given
by μ. If the initial distribution is a Dirac measure, we will adopt the following shortcut: for all η ∈ XN ,
PN

η := PN
δη

and EN
η := EN

δη
.

There is an immediate comparison of the open inclusion dynamics with the corresponding open
exclusion dynamics: with the additional requirement of setting α ∈ N, the exclusion dynamics in
the bulk is recovered by replacing the plus sign in the jump rates with the negative sign, e.g.,
η(x) (α − η(x + 1)) in place of η(x) (α + η(x + 1)); similarly for what concerns the reservoir interac-
tion with the further restriction ϑL,ϑR ∈ (0,1).

Remark 2.1 (Notation). An alternative parametrization (see, e.g., [12,29] for the SEP) of the open
SIP employs positive parameters aL, aR, bL and bR as follows:

LN
L f (η) := N2−β

{
bL (α + η(1))

(
f (η1,+) − f (η)

)
+aL η(1)

(
f (η1,−) − f (η)

)}

and

LN
R f (η) := N2−β

{
bR (α + η(N − 1))

(
f (ηN−1,+) − f (η)

)
+aR η(N − 1)

(
f (ηN−1,+) − f (η)

)} ,

which corresponds to setting

aL = αL (1 + ϑL)

aR = αR (1 + ϑR)

bL = αLϑL

bR = αRϑL .

The bulk dynamics for the open SIP is conservative and the total number of particles changes only
due to particle injection and absorption of the reservoirs. Unlike the exclusion process for which each
site may be occupied by at most a finite number of particles, for the inclusion process the occupation
variables admit no prescribed upper bound. Nevertheless, in view of the form of the boundary interac-
tion rates and classical results on birth-death processes, the particle system does not explode, ensuring
its existence for any finite initial configuration and any time.
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Proposition 2.1 (Non-explosiveness). For all N ∈ N, β ≥ 0 and initial configurations η ∈ XN , the
open SIP {ηN

t : t ≥ 0} with generator LN is non-explosive; namely, almost surely, in any bounded
interval of time the system undergoes finitely many transitions and∥∥∥ηN

t

∥∥∥
	1
N

:=
∑

x∈�N

ηN
t (x) < ∞ , t ≥ 0 .

Proof. The stochastic process {∥∥∥ηN
t

∥∥∥
	1
N

: t ≥ 0

}
(3)

on N0 is stochastically dominated by the pure birth process on N0 started from
∥∥ηN

0

∥∥
	1
N

= ‖η‖	1
N

and

with birth rates {rn : n ∈N0} given by

rn := N2−β(αLϑL + αRϑR) (α + n) , n ∈N0 .

Since
∑

n∈N0
1
rn

= ∞, such birth process is non-explosive and, thus, by stochastic domination, also the
process in (3). �

2.1.1. Stationary equilibrium and non-equilibrium measures

In absence of reservoirs, the SIP admits a one-parameter family of reversible product measures with
marginals given by Negative Binomials with shape parameter α > 0 (see, e.g., [12,28]):{

μN
ϑ := ⊗x∈�N

νϑ : ϑ > 0
}

with νϑ ∼ NegBin(α, ϑ
1+ϑ

) , (4)

where our parametrization of νϑ is such that, for all x ∈ �N ,

EμN
ϑ

[
η(x)

]= ϑα and EμN
ϑ

[
(η(x) − αϑ)2

]
= ϑ (1 + ϑ)α .

Here and in the sequel, for all μ probability measures, Eμ denotes expectation with respect to μ. In
presence of reservoirs, there exists a unique stationary measure μN

ϑL,ϑR
and, depending on the values of

ϑL and ϑR , two different scenarios occur (see, e.g., [12,23] for more details and proofs): if ϑL = ϑR =
ϑ > 0, the system is in equilibrium and the unique stationary – actually reversible – measure μN

ϑL,ϑR
is

given by μN
ϑ in (4), thus, is product and independent of the parameters β,αL and αR . If ϑL 	= ϑR , the

system is out of equilibrium and the unique stationary measure is not in product form, does depend on
β,αL,αR and it is only partially characterized (see [23]). Indeed, no matrix formulation as for the open
exclusion (see, e.g., [14]) is available for the inclusion process and, hence, two-point (and higher order)
correlations are not, in general, explicit. However, to the purpose of deriving the hydrostatic limit for
the open inclusion process, the partial characterization provided in [23] plays a crucial role.

2.2. Duality

The duality property will be a key ingredient for all our results. In words, duality for a pair of Markov
processes consists in finding an observable – the so-called duality function – of the joint system whose
expectation with respect to the evolution of one marginal equals the expectation with respect to the
evolution of the second marginal. In the context of interacting particle systems, duality typically re-
lates the expectation of suitable n-joint moments of the occupation variables of one system with the
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evolution of n dual interacting particles. Moreover, in presence of reservoirs, duality relates open sys-
tems to dual particle systems with purely absorbing boundary. Such a correspondence is related to the
well-known Feynman-Kac formulas for parabolic solutions to PDEs with boundary conditions (see,
e.g., [43], Chapter 9), where, in the context of interacting particle systems, this Feynman-Kac formula
holds not only for the expected density of particles, but also for suitable higher order moments.

2.2.1. Absorbing process and duality relation

Before introducing the duality function, let us describe the absorbing symmetric inclusion process,
dual to the process with generator LN defined in (1). For such a dual process, particles evolve on the

extended lattice �̂N := {0,1, . . . ,N} and we let X̂N := N
�̂N

0 denote the dual configuration space. The
infinitesimal generator of the dual process, L̂N , is given, for all local functions f : X̂N → R, by

L̂Nf := L̂N
bulkf + L̂N

L f + L̂N
R f , (5)

where the bulk dynamics coincides with that of the open SIP, namely, for all ξ ∈ X̂ ,

L̂N
bulkf (ξ) := N2

∑
x∈�N\{N−1}

{
ξ(x) (α + ξ(x + 1))

(
f (ξx,x+1) − f (ξ)

)
+ ξ(x + 1) (α + ξ(x))

(
f (ξx+1,x) − f (ξ)

)} ,

while the dynamics at left and right ends of �̂N is purely absorbing: for all ξ ∈ X̂N ,

L̂N
L f (ξ) := N2−βαL ξ(1)

(
f (ξ1,0) − f (ξ)

)
L̂N

R f (ξ) := N2−βαR ξ(N − 1)
(
f (ξN−1,N ) − f (ξ)

)
.

We observe that this stochastic dynamics conserves the total number of particles in the system. More-
over, for all μ̂ probability measures on X̂N , we let P̂N

μ̂ and ÊN
μ̂ denote the probability law and corre-

sponding expectation of the process with generator L̂N in (5) with initial distribution given by μ̂. For
notational convenience, for all ξ ∈ X̂N , P̂N

ξ := P̂N
δξ

and ÊN
ξ := ÊN

δξ
.

Let us define the following function DN : X̂ ×X →R given by

DN(ξ, η) := (ϑL)ξ(0)

⎛⎝ ∏
x∈�N

d(ξ(x), η(x))

⎞⎠ (ϑR)ξ(N) , (6)

where

d(k,n) := n!
(n−k)!

�(α)
�(α+k)

1{k≤n} , k, n ∈ N0 .

We remark that, for all n ∈N0,

d(0, n) =1 , d(1, n) = n
α

and d(2, n) = n(n−1)
α(α+1)

,

and, more generally, d(k,n) is a weighted k-th falling factorial for the n-variable. Moreover, we will
need the following property concerning factorial moments of Negative Binomial distributions: for all
k ∈ N0 and ϑ > 0,

Eνϑ [d(k, ·)] =
∑
n∈N0

d(k,n) νϑ(n) = ϑk . (7)
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It was shown in [12] that the open and absorbing SIP are dual with the function DN in (6) as duality
function, i.e., the following identity – referred to as duality relation,

LNDN(ξ, ·)(η) = L̂NDN(·, η)(ξ) (8)

holds for all N ∈ N, β ≥ 0, η ∈ XN and ξ ∈ X̂N . We note that the dual system stochastic dynamics
does not depend on the parameters ϑL and ϑR , while the duality function DN does. By Kolmogorov
equations, the infinitesimal relation (8) establishes that, for all η ∈XN , the function

(t, ξ) �→ EN
η

[
DN(ξ, ηt )

]
is the solution of the following deterministic linear Cauchy problem:{

d
dt

f (t, ξ) = L̂Nf (t, ξ) , ξ ∈ X̂N , t ≥ 0

f (0, ξ) = DN(ξ, η) , ξ ∈ X̂N .

2.2.2. One and two dual particles

For the sequel, it will be important to express the duality relation in (8) and its consequences in terms
of labeled dual particles. The two cases of interest are those in which the dual system consists of either
one or two particles only.

For what concerns the case of just one particle, (8) rewrites as

LNDN(x, ·)(η) = ANDN(·, η)(x) , (9)

where, for all η ∈XN ,

DN(x,η) := DN(δx, η) =

⎧⎪⎨⎪⎩
η(x)
α

if x ∈ �N

ϑL if x = 0

ϑR if x = N ,

and AN is the generator of a single – thus, non-interacting – particle on �̂N with the two endpoints
{0,N} being absorbing: for all f : �̂N →R,

ANf (x) := 1{x∈�N }N2
∑

y∈�N

1{|y−x|=1}α (f (y) − f (x))

+ 1{x=1}N2−βαL (f (0) − f (1))

+ 1{x=N−1}N2−βαR (f (N) − f (N − 1)) . (10)

Let us observe that, restricted to the subspace of functions f : �̂N →R which equal zero at the bound-
ary {0,N}, AN is symmetric, i.e., for all f,g : �̂N → R such that f (0) = f (N) = g(0) = g(N) = 0,
we have

〈〈f,ANg〉〉N = 〈〈ANf,g〉〉N , (11)

where

〈〈f,g〉〉N := 1

N

∑
x∈�N

f (x)g(x)α . (12)
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Regarding the case of a dual system consisting of two particles, analogous considerations hold and
(8) boils down to

LNDN(x, y, ·)(η) = BNDN(· , ·, η)(x, y) , (13)

where, for all η ∈ XN ,

DN(x, y, η) := DN(δx + δy, η) =
{

η(x)(η(x)−1)
α(α+1)

if x = y ∈ �N

DN(x,η)DN(y,η) otherwise ,

and BN is the generator of two inclusion particles on �̂N with absorbing sites {0,N}:
BNf (x, y) := ANf (·, y)(x) + ANf (x, ·)(y)

+N21{x,y 	=0,N}1{|x−y|=1} ((f (x, x) − f (x, y)) + (f (y, y) − f (x, y))) , (14)

for all functions f : �̂N × �̂N →R. For such functions, let us introduce the following inner product

〈〈f,g〉〉N×N := 1

N2

∑
x∈�N

∑
y∈�N

f (x, y)g(x, y)α
(
α + 1{x=y}

)
. (15)

On the space of functions which are zero on the boundary of �̂N × �̂N , the generator BN is symmetric
with respect to 〈〈·, ·〉〉N×N , i.e.,

〈〈f,BNg〉〉N×N = 〈〈BNf,g〉〉N×N (16)

for all f,g : �̂N × �̂N →R such that f (0, ·) = f (N, ·) = f (·,0) = f (·,N) ≡ 0 and, analogously, for
g.

2.3. Test function spaces

In this section, we present, depending on the values of the parameter β ≥ 0, the test function spaces
needed to uniquely characterize the weak solution of the limiting hydrodynamic equations. The test
function spaces we consider are nuclear Fréchet spaces S and the solutions will take values in their
dual space of tempered distributions S′. The construction is standard and follows the ideas in, e.g.,
[35], Chapter 11, and [34], Chapter 1, of constructing a nested family of Hilbert spaces Hk , k ∈ Z, with
H0 = L2([0,1]) and for which the canonical embeddings Hk+k∗ ↪→ Hk are Hilbert-Schmidt for some
k∗ ∈N and for all k ∈ Z. The main difference in our context compared to the setting in [35], Chapter 11,
is that, for different values of β ≥ 0, different self-adjoint extensions of the Laplacian – corresponding
to different boundary conditions – must be employed. We present some essential properties of such
spaces in Proposition 2.2 below and leave the details of their construction to Appendix A below.

We acknowledge that several choices of test function spaces (and, thus, of weak solutions to the cor-
responding PDEs, see Section 3 below) have been employed in the hydrodynamic limit literature. For
instance, in [29], more standard Sobolev spaces satisfying an energy estimate and boundary conditions
are considered. By taking the aforementioned nuclear space S as space of test functions, we make a
different choice. This is mainly motivated by the fact that we aim at a unified setting for both hydrody-
namics and fluctuation results (to be considered in a future work). In fact, on the one hand, this setting
is certainly considered to be the natural one for the study of fluctuations (see e.g. [35], Chapter 11);
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on the other hand, hydrodynamic results are available in this same framework in a number of works,
see, e.g., [13] and references therein. Moreover, our construction of such spaces is different from the
one used in related publications (see e.g. [6,24,25,30]): there, the authors first define a candidate space
of test functions and then verify, knowing some explicit information on suitable orthonormal bases
of eigenfunctions, their nuclear structure. In our approach, we first build such spaces from abstract
self-adjoint Laplacians and then extract properties of the test functions, without the need of fully char-
acterizing this space. We believe this latter approach to be best suited for proving scaling limits on
more general geometries.

In what follows, we distinguish between three different regimes depending on the values of the pa-
rameter β ≥ 0 (β < 1, β = 1 and β > 1) corresponding, respectively, to Dirichlet, Robin and Neumann
boundary conditions.

Proposition 2.2. For each of the three regimes, β < 1, β = 1 and β > 1, there exists a nuclear Fréchet
space S = Sβ which continuously embeds into L2([0,1]) and which consists of C∞([0,1]) functions,
i.e., smooth functions in (0,1) whose derivatives of all orders admit a continuous extension to [0,1].
Moreover, depending on the values of β ≥ 0, the test functions in S satisfy the following boundary
conditions:

Dirichlet (β < 1). If G ∈ S, then(
d+

du

)2	 ∣∣∣∣
u=0

G =
(

d−

du

)2	 ∣∣∣∣
u=1

G = 0 (17)

holds for all 	 ∈ N0.

Robin (β = 1). If G ∈ S, then (
d+

du

)2	+1 ∣∣∣∣
u=0

G = αL

α

(
d+

du

)2	 ∣∣∣∣
u=0

G

(
d−

du

)2	+1 ∣∣∣∣
u=1

G = αR

α

(
d−

du

)2	 ∣∣∣∣
u=1

G (18)

holds for all 	 ∈ N0.

Neumann (β > 1). If G ∈ S, then(
d+

du

)2	+1 ∣∣∣∣
u=0

G =
(

d−

du

)2	+1 ∣∣∣∣
u=1

G = 0 (19)

holds for all 	 ∈ N0.

We defer the proof of the above proposition to Appendix A.

3. Hydrodynamic and hydrostatic limits

In this section, we make precise the notion of weak solution to the hydrodynamic equations which we
use all throughout (Definition 3.1 below); then, we present the statements of both hydrodynamic and
hydrostatic limits for the open SIP (Theorems 3.3 and 3.4, resp., below).
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Let us recall that, for all β ≥ 0, S′ = S′
β denotes the strong topological dual of S = Sβ , the space

of test functions introduced in Section 2.3 above. Since we state our hydrodynamic and hydrostatic
limits in terms of convergence in the space of distributions, we characterize these limits as the unique
solutions in S′ of the following formal partial differential equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tϑ(t, u) = α ∂2
uϑ(t, u) t ∈ [0,∞) , u ∈ (0,1)

γL ∂+
u ϑ(t,0) = λL ϑ(t,0) + σL t ∈ (0,∞)

γR ∂−
u ϑ(t,1) = λR ϑ(t,1) + σR t ∈ (0,∞)

ϑ(0, u) = ϑ0(u) u ∈ [0,1] ,

(20)

where γL, γR,λL,λR,σL,σR ∈ R are determined according to the value of β ≥ 0 and the system
parameters. In particular, if β < 1, then we will recover Dirichlet boundary conditions with

γL = γR = 0 , λL = λR = 1 , σL = −ϑL , σR = −ϑR ; (21)

if β = 1, we will recover Robin boundary conditions with

γL = γR = α , λL = αL , λR = αR , σL = −αL ϑL , σR = −αR ϑR ; (22)

if β > 1, we will recover Neumann boundary conditions with

γL = γR = 1 , λL = λR = σL = σR = 0 . (23)

If we let h denote a stationary solution – not necessarily unique – of the boundary Cauchy problem
(20), then ϑ in (20) above decomposes as ϑ = h + g, where g formally satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tg(t, u) = α ∂2
ug(t, u) t ∈ [0,∞) , u ∈ (0,1)

γL ∂+
u g(t,0) = λL g(t,0) t ∈ (0,∞)

γR ∂−
u g(t,1) = λR g(t,1) t ∈ (0,∞)

g(0, u) = ϑ0(u) − h(u) u ∈ [0,1] .

(24)

Before presenting the precise definition of solutions in S′, we need to introduce some notation.
For all G ∈ S and g ∈ S′, we define 〈G,g〉 := g(G). We note that L2([0,1]) � S′ and, if, e.g.,
g ∈ L2([0,1]), then 〈G,g〉 is the usual inner product in L2([0,1]). Moreover, we let C([0,∞),S′)
and D([0,∞),S′) denote the spaces of S′-valued continuous and càdlàg, respectively, functions on
[0,∞) (see, e.g., [34], §2.4, as well as, Appendix A below). Finally, for all β ≥ 0, A : S → S de-
notes the bounded linear operator introduced in Appendix A below, which acts on smooth functions
G ∈ C∞([0,1]) simply as the rescaled Laplacian AG = α ∂2

uG.

Definition 3.1 (Solutions in S′). Let β ≥ 0. Given ϑ0 ∈ S′, we say that {ϑ(t) : t ∈ [0,∞)} ⊂ S′ is a
solution of the Dirichlet, Robin or Neumann problem – depending on whether β < 1, β = 1 or β > 1,
respectively – with initial condition ϑ0 if there exists {g(t) : t ∈ [0,∞)} ⊂ S′ for which, for all G ∈ S
and for all times t ≥ 0, the following two identities hold:

〈G,ϑ(t)〉 = 〈G,hϑL,ϑR
du〉 + 〈G,g(t)〉 . (25)
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and

〈G,g(t)〉 = 〈G,(ϑ0 − hϑL,ϑR
du)〉 +

∫ t

0
〈AG,g(s)〉ds . (26)

In the above expressions, hϑL,ϑR
du ∈ S′ is the distribution that is absolutely continuous with respect

to Lebesgue and whose density hϑL,ϑR
∈ C∞([0,1]) is a stationary solution to (20), i.e., given by

hϑL,ϑR
(u) = ϑL + (ϑR − ϑL)u , u ∈ [0,1] , (27)

if β < 1, by

hϑL,ϑR
(u) = ϑL + (ϑR − ϑL)

(
α
αL

+ u

α
αL

+ 1 + α
αR

)
, u ∈ [0,1] , (28)

if β = 1, and by

hϑL,ϑR
(u) = ϑL + (ϑR − ϑL)

αR

αL + αR

= ρL + ρR

αL + αR

, u ∈ [0,1] , (29)

if β > 1.

As a consequence of the construction of the test function spaces in Section 2.3 (see also Appendix A)
and the theory of generalized Ornstein-Uhlenbeck processes (see, e.g., [31]) applied to this determin-
istic setting, the following existence and uniqueness result holds.

Proposition 3.1 (Well-posedness of hydrodynamic equations in S′). For all β ≥ 0, the solution in
S′ with initial condition ϑ0 ∈ S′ as defined in Definition 3.1 exists and is unique in C([0,∞),S′).

Proof. By the construction of the nuclear Fréchet space S and the consequent properties (I)–(IV) in
Appendix A, Theorem 1.23 in [31] without noise, i.e., taking B ≡ 0, applies. �

All throughout, since we state our results in terms of solutions in S′ and the investigation of their
regularity is not the prominent goal of our work, we refer the interested reader to, e.g., [19] for further
details, for instance, on the assumptions on the initial condition which guarantee such solutions to be
actually strong ones for (20). Further notice that the functional framework that we employ allows us to
prove our limit theorems (see Theorems 3.3 and 3.4 below) for initial profiles which are generalized
functions in S′.

3.1. Main results

In this section, we present, for all β ≥ 0, the two results concerning the weak law of large numbers – the
hydrodynamic and hydrostatic limits – for the empirical density fields

{
XN· : N ∈ N

}⊂ D([0,∞),S′),
given by

XN
t := 1

N

∑
x∈�N

δ x
N

ηN
t (x) = 1

N

∑
x∈�N

δ x
N

DN(x,ηN
t )α , t ≥ 0 , (30)

where, for all N ∈ N,
{
ηN

t : t ≥ 0
}

is the open SIP with some prescribed initial distribution μN (we
refer to the statements of the two main theorems below for further details).

Before the statement of the hydrodynamics result, we need a further definition.
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Definition 3.2 (Particle distributions associated with a profile). For all β ≥ 0, let {μN : N ∈ N} be
a sequence of Borel probability measures on {XN : N ∈N} and let ϑ0 α ∈ S′. We say that the family
{μN : N ∈ N} is associated with the profile ϑ0 α ∈ S′ if, for all G ∈ S and for all δ > 0,

μN

⎛⎝⎧⎨⎩η ∈XN :
∣∣∣∣∣∣ 1

N

∑
x∈�N

G( x
N

)DN(x,η)α − 〈G,ϑ0 α〉
∣∣∣∣∣∣ > δ

⎫⎬⎭
⎞⎠ −→

N→∞ 0 .

Theorem 3.3 (Hydrodynamic limit). For all β ≥ 0, let
{
μN : N ∈ N

}
be a family of Borel probability

measures on {XN : N ∈N} and let ϑ0 α ∈ S′. We assume that:

(a) The family {μN : N ∈ N} is associated with the profile ϑ0 α ∈ S′ (see Definition 3.2).
(b) There exists a constant κ > 0 such that, for all N ∈ N and x, y ∈ �̂N , the following upper

bounds hold:

EμN

[
DN(x,η)

]≤ κ and EμN

[
DN(x, y, η)

]≤ κ2 . (31)

Let us consider the empirical density fields
{
XN· : N ∈ N

}⊂ D([0,∞),S′) defined as in (30) in terms
of the open symmetric inclusion processes initialized according to

{
μN : N ∈N

}
, i.e.,

ηN
0 ∼ μN , N ∈ N .

Then, the following weak convergence in D([0,∞),S′) (see also (34) below){
XN

t : t ≥ 0
}

=⇒
N→∞ {ϑ(t)α : t ≥ 0} (32)

holds, where {ϑ(t)α : t ≥ 0} ∈ C([0,∞),S′) is the unique solution in S′ of

• the Dirichlet problem if β < 1,
• the Robin problem if β = 1,
• the Neumann problem if β > 1,

starting from ϑ0 α ∈ S′.

We observe that, if ϑ0 α ∈ S′ is absolutely continuous with respect to Lebesgue with non-negative
continuous density θ0 α ∈ C([0,1]), then the local Gibbs measures

{
μN : N ∈N

}
(see Section 2.1.1)

given by

μN = ⊗x∈�N
νθ0(

x
N

) , N ∈N ,

satisfy both assumptions (a) with the profile ϑ0 α and (b) with κ := max
{
ϑL,ϑR, supu∈[0,1] θ0(u)

}
.

Furthermore, because the transitions of the underlying open particle system consist in only one-
particle moves, for all β ≥ 0, G ∈ S and δ > 0, we have

PN
μN

(
sup
t≥0

∣∣∣〈G,XN
t 〉 − 〈G,XN

t−〉
∣∣∣> δ

)
−→

N→∞ 0 , (33)

from which it follows ([8], Theorem 13.4) that any limiting point X· of the sequence
{
XN· : N ∈ N

}
belongs to C([0,∞),S′). The result in Proposition 3.1 and assumption (a) will, then, univocally char-
acterize the deterministic limiting process.
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The weak convergence in (32), which boils down to show tightness and convergence of the finite di-
mensional distributions of the sequence

{
XN· : N ∈ N

}
(see, e.g., [41], Proposition 5.2), because of the

considerations in Section A.1 below and because the limiting process is deterministic and continuous,
may be equivalently restated as follows (cf. (A.12) below, as well as, e.g., [34] for further details): for
all T ≥ 0, G ∈ S and δ > 0,

PN
μN

(
sup

t∈[0,T ]

∣∣∣〈G,XN
t 〉 − 〈G,ϑ(t)α〉

∣∣∣> δ

)
−→

N→∞ 0 . (34)

The general strategy we follow to prove Theorem 3.3 is to, first, provide a decomposition for the
empirical density fields analogous to that in (25) in which we center the fields with respect to the
stationary part, i.e., write, for all N ∈N and t ≥ 0,

XN
t = HN

ϑL,ϑR
α + ZN

t (35)

for HN
ϑLϑR

∈ S′ deterministic and
{
ZN

t : t ≥ 0
} ∈ D([0,∞),S′) random; then, show that

〈G,HN
ϑL,ϑR

α〉 −→
N→∞ 〈G,hϑL,ϑR

α du〉 (36)

and

PN
μN

(
sup

t∈[0,T ]

∣∣∣〈G,ZN
t 〉 − 〈G,

(
ϑ(t) − hϑL,ϑR

du
)
α〉
∣∣∣> δ

)
−→

N→∞ 0 (37)

hold for all T ≥ 0, G ∈ S and δ > 0.

In the following theorem, we present our second main result and recall that, for all β ≥ 0 and N ∈N,
μN

ϑL,ϑR
denotes the unique stationary probability measure for the open SIP

{
ηN

t : t ≥ 0
}

(see Sec-
tion 2.1.1).

Theorem 3.4 (Hydrostatic limit). For all β ≥ 0, the empirical density fields – given in (30) and

defined in terms of the open SIP initialized according to
{
μN

ϑL,ϑR
: N ∈N

}
– weakly converge

in D([0,∞),S′) to {ϑ(t)α : t ≥ 0} ∈ C([0,∞),S′), where ϑ(t) ≡ hϑL,ϑR
du ∈ S′ and hϑL,ϑR

∈
C∞([0,1]) is the unique stationary solution of

• the Dirichlet problem as given in (27) if β < 1,
• the Robin problem as given in (28) if β = 1,
• the Neumann problem as given in (29) if β > 1.

4. Proofs

Let us now prove Theorems 3.3 and 3.4. Before digging into the proofs, though, we start with some
general considerations.

Because of duality (8) and because the dual process defined in Section 2.2.1 conserves the total
number of particles, in view of assumption (b) in Theorem 3.3, we have

sup
N∈N

sup
t≥0

sup
x∈�̂N

EN
μN

[
DN(x,ηN

t )
]

≤ κ and sup
N∈N

sup
t≥0

sup
x,y∈�̂N

EN
μN

[
DN(x, y, ηN

t )
]

≤ κ2 . (38)
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We recall the definition of the empirical density fields in (30). In view of Dynkin’s formula, for all
β ≥ 0, N ∈N, t ≥ 0 and G ∈ S, we have

〈G,XN
t 〉 = 〈G,XN

0 〉 +
∫ t

0
LN 〈G,XN

s 〉ds + 〈G,MN
t 〉 , (39)

where
{
MN

t : t ≥ 0
} ⊂ D([0,∞),S′) is a martingale (with respect to its natural filtration) with pre-

dictable quadratic variation given, for all t ≥ 0, by∫ t

0

(
LN

(
〈G,XN

s 〉
)2 − 2〈G,XN

s 〉LN 〈G,XN
s 〉

)
ds .

We recall the definition of the inner product 〈〈·, ·〉〉N from (12) and of the generator AN in (10). In
view of the duality relations (8) and, in particular, (9) and (13), we have

LN 〈G,XN
s 〉 = 1

N

∑
x∈�N

G( x
N

)ANDN(·, ηN
s )(x)α = 〈〈G( ·

N
),ANDN(·, ηN

s )〉〉N (40)

and ∫ t

0

(
LN

(
〈G,XN

s 〉
)2 − 2〈G,XN

s 〉LN 〈G,XN
s 〉

)
ds

= 1

N2

∫ t

0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
x∈�N \{N−1} N2α

(
G(x+1

N
) − G( x

N
)
)2

VN
{x,x+1}(ηN

s )α

+N2−βαL

(
G( 1

N
)
)2

VN
{0,1}(ηN

s )α

+N2−βαR

(
G(N−1

N
)
)2

VN
{N−1,N}(ηN

s )α

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ds , (41)

where, for all η ∈ XN and x, y ∈ �̂N with x 	= y,

VN{x,y}(η) := DN(x,η) + DN(y,η) + 2DN(x, y, η) .

Going back to (40), we note that, for all f : �̂N → R, two applications of integration by parts yield

〈〈G( ·
N

),ANf 〉〉N = 1

N

∑
x∈�N

α �NG( x
N

)f (x)α (42)

+ α ∇+
NG(0) f (1)α + α ∇−

NG(1) f (N − 1)α

+ N1−βαL G( 1
N

) (f (0) − f (1))α + N1−βαR G(N−1
N

) (f (N) − f (N − 1))α ,

where �N denotes the discrete Laplacian with mesh size 1
N

, namely

�NG( x
N

) := N2
(
G(x+1

N
) + G(x−1

N
) − 2G( x

N
)
)

, x ∈ �N ,
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and ∇±
N the corresponding discrete gradients:

∇+
NG( x

N
) := N

(
G(x+1

N
) − G( x

N
)
)

, x ∈ �̂N \ {N}

∇−
NG( x

N
) := N

(
G(x−1

N
) − G( x

N
)
)

, x ∈ �̂N \ {0} .

We recall from (11) that if, additionally, G(0) = G(1) = 0 and f (0) = f (N) = 0, then

〈〈G( ·
N

),ANf 〉〉N = 〈〈ANG( ·
N

),f 〉〉N , (43)

where

ANG( x
N

) := ANG( ·
N

)(x) , x ∈ �̂N . (44)

Having in mind the decomposition in (35) of the empirical density fields, we introduce, for all β ≥ 0
and N ∈ N, the following function

hN
ϑL,ϑR

(x) := EμN
ϑL,ϑR

[
DN(x,η)

]= lim
t→∞EμN

[
DN(x,ηN

t )
]

, x ∈ �̂N , (45)

for any probability measure μN on XN , which, by stationarity of μN
ϑL,ϑR

and duality (9), solves the
following boundary value problem: ⎧⎪⎪⎨⎪⎪⎩

ANf (x) = 0 , x ∈ �̂N

f (0) = ϑL

f (N) = ϑR .

(46)

Notice that, as we will show in Lemma 4.1 below, the functions hN
ϑL,ϑR

are to be considered as discrete
approximations of the stationary solutions of the hydrodynamic equations. Moreover, by defining

HN
ϑL,ϑR

α := 1

N

∑
x∈�N

δ x
N

hN
ϑL,ϑR

(x)α , (47)

(35) writes, for all β ≥ 0, N ∈ N, t ≥ 0 and G ∈ S, as

〈G,XN
t 〉 = 〈G,HN

ϑL,ϑR
α〉 + 〈G,ZN

t 〉

= 〈〈G( ·
N

),hN
ϑL,ϑR

〉〉N + 1

N

∑
x∈�N

G( x
N

)
(

ηN
t (x)

α
− hN

ϑL,ϑR
(x)

)
α

= 〈〈G( ·
N

),hN
ϑL,ϑR

〉〉N + 1

N

∑
x∈�N

G( x
N

)

(
DN(x,ηN

t ) − EμN
ϑL,ϑR

[
DN(x,η)

])
α . (48)

In our one-dimensional context, the explicit form of the function hN
ϑL,ϑR

is well-known and given by

hN
ϑL,ϑR

(x) = ϑL + pN(x) (ϑR − ϑL) , x ∈ �̂N , (49)

with

pN(x) := 1{x>0}
ZN

1

N

(
1

N−βαLα
+ x − 1

α2
+ 1{x=N}

1

N−βαRα

)
,
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where

ZN := 1

N

(
1

N−βαLα
+ N − 1

α2
+ 1

N−βαRα

)
.

In particular, hN
ϑL,ϑR

(0) = ϑL and hN
ϑL,ϑR

(N) = ϑR . Hence, in order to prove both Theorems 3.3 and
3.4, as a first step, we prove the convergence in (36) in the following lemma.

Lemma 4.1 (Convergence of the stationary part). Let us recall, for all β ≥ 0, the definitions of
stationary solutions hϑL,ϑR

in (27), (28) and (29) as well as the definition of HN
ϑL,ϑR

in (47). Then, for
all β ≥ 0 and G ∈ S, we have

〈G,HN
ϑL,ϑR

α〉 −→
N→∞ 〈G,hϑL,ϑR

α du〉 =
∫

[0,1]
G(u)hϑL,ϑR

(u)α du .

Proof. We note that, for all β ≥ 0 and by definition of hN
ϑL,ϑR

in (49), we have

sup
x∈�N

∣∣∣hϑL,ϑR
( x
N

) − hN
ϑL,ϑR

(x)

∣∣∣ −→
N→∞ 0 .

Combined with the integrability of G ∈ S, this concludes the proof. �

In what follows, for each of the three regimes β < 1, β = 1 and β > 1, we conclude the proof of
Theorem 3.3 by proving (37) for the processes

{
ZN· : N ∈ N

} ⊂ D([0,∞),S′) given in (48), for all
N ∈ N and t ≥ 0, as

ZN
t = 1

N

∑
x∈�N

δ x
N

(
ηN
t (x)

α
− hN

ϑL,ϑR
(x)

)
α . (50)

Moreover, because hN
ϑL,ϑR

is harmonic for AN , we have

LNhN
ϑL,ϑR

(x) = ANhN
ϑL,ϑR

(x) = 0 , x ∈ �̂N ,

and, hence,

LN 〈G,ZN
t 〉 = 1

N

∑
x∈�N

G( x
N

)AN
(
DN(·, ηN

t ) − hN
ϑL,ϑR

(·)
)

(x)α . (51)

We further remark that, because
{
XN

t : t ≥ 0
}

and
{
ZN

t : t ≥ 0
}

differ only by a deterministic term, the
corresponding martingales arising from Dynkin’s decomposition coincide.

In conclusion, from the following identity(
DN(x,η) − hN

ϑL,ϑR
(x)

)(
DN(y,η) − hN

ϑL,ϑR
(y)

)
α2

= DN(x, y, η)α
(
α + 1{x=y}

)− DN(x,η)hN
ϑL,ϑR

(y)α2 − DN(y,η)hN
ϑL,ϑR

(x)α2

+ hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)α2 + 1{x=y} DN(x,η)α , x, y ∈ �N , (52)
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we obtain, for all β ≥ 0, N ∈N, G ∈ S and t ≥ 0,(
〈G,ZN

t 〉
)2

= 1

N2

∑
x∈�N

∑
y∈�N

G( x
N

)G(
y
N

)
(
DN(x,ηN

t ) − hN
ϑL,ϑR

(x)
)(

DN(y,ηN
t ) − hN

ϑL,ϑR
(y)

)
α2

= 〈〈(G ⊗ G)( ·
N

, ·
N

),DN(·, ·, ηN
t )〉〉N×N − 2 〈〈G( ·

N
),DN(·, ηN

t )〉〉N 〈〈G( ·
N

),hN
ϑL,ϑR

〉〉N

+
(
〈〈G( ·

N
),hN

ϑL,ϑR
〉〉N

)2 + 1
N

〈〈G2( ·
N

),DN(·, ηN
t )〉〉N . (53)

4.1. Proof of Theorem 3.3

4.1.1. Case β ≥ 1

Let us recall the definition in (50). In order to prove Theorem 3.3, we show that the limiting distribution
of the fields {ZN· : N ∈ N} is fully supported on solutions of some integral equations; the uniqueness
result in Proposition 3.1 concludes then the proof. More specifically, we prove that, for all β ≥ 1, δ > 0,
T > 0 and G ∈ S, we have

PN
μN

(
sup

t∈[0,T ]

∣∣∣∣〈G,ZN
t 〉 −

∫ t

0
〈AG,ZN

s 〉ds − 〈G,
(
ϑ0 − hϑL,ϑR

du
)
α〉
∣∣∣∣> δ

)
−→

N→∞ 0 . (54)

By Dynkin’s formula in (39), the above is equivalent to

PN
μN

⎛⎜⎜⎝ sup
t∈[0,T ]

∣∣∣∣∣∣∣∣
[〈G,ZN

0 〉 − 〈G,
(
ϑ0 − hϑL,ϑR

du
)
α〉]

+
[∫ t

0

(
LN 〈G,ZN

s 〉 − 〈AG,ZN
s 〉)ds

]
+ [〈G,MN

t 〉]
∣∣∣∣∣∣∣∣> δ

⎞⎟⎟⎠ −→
N→∞ 0 .

Let us prove that each of the three terms in square brackets vanishes uniformly in [0, T ] in probability;
to this purpose, we follow some of the arguments in [4], Proposition 4.1. Regarding the first term
containing information only about the initial conditions of the fields and the limiting solution, by
assumption (a) in Theorem 3.3 and Lemma 4.1, for all β ≥ 1, we have

μN

⎛⎝⎧⎨⎩η ∈ XN :
∣∣∣∣∣∣

1
N

∑
x∈�N

G( x
N

)
(

η(x)
α

− hN
ϑL,ϑR

(x)
)

α

− ∫
[0,1] G(u)

(
ϑ0(u) − hϑL,ϑR

(u)
)
α du

∣∣∣∣∣∣> δ

⎫⎬⎭
⎞⎠ −→

N→∞ 0 . (55)

Turning to the second term consisting of a time integral, it suffices to show, by Chebyshev’s and
Cauchy-Schwarz inequalities, that

sup
t∈[0,T ]

EN
μN

[(
LN 〈G,ZN

t 〉 − 〈AG,ZN
t 〉

)2
]

−→
N→∞ 0 . (56)

By (51) and (42), we have

EN
μN

[(
LN 〈G,ZN

t 〉 − 〈AG,ZN
t 〉

)2
]

(57)
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≤ 2EN
μN

[(
〈α�NG −AG,ZN

t 〉
)2
]

+ 4EN
μN

[((
α ∇+

NG(0) − N1−βαL G( 1
N

)
)(

DN(1, ηN
t ) − hN

ϑL,ϑR
(1)

)
α
)2
]

+ 4EN
μN

[((
α ∇−

NG(1) − N1−βαR G(N−1
N

)
)(

DN(N − 1, ηN
t ) − hN

ϑL,ϑR
(N − 1)

)
α
)2
]

.

The first term on the r.h.s. above, by the smoothness of G ∈ S, the identity (53) and the upper bound
(38), vanishes as N → ∞. Both the second and third terms on the r.h.s. in (57) can be treated analo-
gously; we therefore only give details for the second term. By (38) and the identity (52) there exists a
constant C = C(κ,ϑL,ϑR) > 0 for which we have

EN
μN

[((
α ∇+

NG(0) − N1−βαL G( 1
N

)
)(

DN(1, ηN
t ) − hN

ϑL,ϑR
(1)

)
α
)2
]

≤ C α2
(
α ∇+

NG(0) − N1−βαL G( 1
N

)
)2

.

For the case β = 1, because G ∈ S is smooth and satisfies the boundary conditions in (18), we have(
α ∇+

NG(0) − αL G( 1
N

)
)2 ≤ 2

(
α ∂+

u G(0) − αL G(0)
)2 + 2

N2

(
α

∥∥∥∂2
uG

∥∥∥∞ + αL

∥∥∥∂2
uG

∥∥∥∞

)2

= 2

N2

(
α

∥∥∥∂2
uG

∥∥∥∞ + αL

∥∥∥∂2
uG

∥∥∥∞

)2 −→
N→∞ 0 ,

with ‖·‖∞ denoting the supremum norm on [0,1]. For the case β > 1, G ∈ S satisfies the boundary
conditions in (19), yielding(

α ∇+
NG(0) − N1−βαL G( 1

N
)
)2 ≤ 2

(
α ∂+

u G(0) + N1−βαL ‖G‖∞
)2 + 2

N2 (α ‖∂uG‖∞)2

= 2

N2(β−1)
(αL ‖G‖∞)2 + 2

N2 (α ‖∂uG‖∞)2 −→
N→∞ 0 .

This proves (56) for all β ≥ 1. We conclude the proof of (54) by showing that

EN
μN

⎡⎢⎢⎢⎢⎢⎣
1

N2

∫ T

0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
x∈�N\{N−1} N2α

(
G(x+1

N
) − G( x

N
)
)2

VN
{x,x+1}(ηN

s )α

+N2−βαL

(
G( 1

N
)
)2

VN
{0,1}(ηN

s )α

+N2−βαR

(
G(N−1

N
)
)2

VN
{N−1,N}(ηN

s )α

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ds

⎤⎥⎥⎥⎥⎥⎦ −→
N→∞ 0 , (58)

where the expression inside the expectation is the predictable quadratic variation of the martingale
arising from Dynkin’s decomposition of the fields {ZN· : N ∈ N}, see (41) for the definition. Indeed,
(58) follows because, by (38), we have

sup
N∈N

sup
x∈�̂N\{N}

sup
t∈[0,T ]

∣∣∣EN
μNVN

{x,x+1}(η
N
s )

∣∣∣≤ C
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for some constant C = C(κ,ϑL,ϑR) > 0 and, by Fubini,

EN
μN

⎡⎢⎢⎢⎢⎢⎣
1

N2

∫ T

0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
x∈�N

x 	=N−1
N2α

(
G(x+1

N
) − G( x

N
)
)2

VN
{x,x+1}(ηN

s )α

+N2−βαL

(
G( 1

N
)
)2

VN
{0,1}(ηN

s )α

+N2−βαR

(
G(N−1

N
)
)2

VN
{N−1,N}(ηN

s )α

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ds

⎤⎥⎥⎥⎥⎥⎦

≤ C T

N

⎧⎪⎪⎨⎪⎪⎩
1

N

∑
x∈�N

x 	=N−1

(∇+
NG( x

N
)
)2

α2 + N1−βαL

(
G( 1

N
)
)2

α + N1−βαR

(
G(N−1

N
)
)2

α

⎫⎪⎪⎬⎪⎪⎭ ,

which vanishes as N → ∞ because β ≥ 1 and G ∈ S is smooth.

4.1.2. Case β ∈ [0,1)

Here, compared to the case β ≥ 1, we adopt a different strategy since, due to the higher intensity of the
reservoir interaction, we cannot directly prove the claim in (54) with the supremum over time. Instead,
we prove first convergence of finite dimensional distributions and then tightness for the empirical
density fields

{
ZN· : N ∈ N

}⊂ D([0,∞),S′).

Let
{
ϑ(t) − hϑL,ϑR

du : t ≥ 0
}

be the unique Dirichlet solution with initial condition given by ϑ0 −
hϑL,ϑR

du. To the purpose of showing convergence of finite dimensional distributions to those of the
deterministic process

{(
ϑ(t) − hϑL,ϑR

du
)
α : t ≥ 0

} ∈ C([0,∞),S′), it suffices to prove that, for all
β ≥ 0, t ≥ 0, G ∈ S and δ > 0,

PN
μN

(∣∣∣〈G,ZN
t 〉 − 〈G,

(
ϑ(t) − hϑL,ϑR

du
)
α〉
∣∣∣> δ

)
−→

N→∞ 0 (59)

holds true. Notice again that, compared to (54), the supremum over time does not appear in the dis-
placement above. Instead of proving (59) directly, we introduce an auxiliary process – reminiscent of
the so-called corrected empirical density field (see, e.g., [32]) – whose finite dimensional distributions
approximate those of the empirical fields

{
ZN : N ∈N

}
and for which this convergence follows right

away. First, we need to prove the following lemma.

Lemma 4.2. For all β ∈ [0,1) and G ∈ S, there exists a sequence of functions

{GN : N ∈ N} , GN : �̂N/N → R , GN(0) = GN(1) = 0 , ∀N ∈ N ,

such that

sup
x∈�̂N

∣∣GN( x
N

) − G( x
N

)
∣∣ −→

N→∞ 0 and sup
x∈�̂N

∣∣∣ANGN( x
N

) −AG( x
N

)

∣∣∣ −→
N→∞ 0 (60)

hold.
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Proof. The function GN is given as follows:

GN( x
N

) := 1{x>0}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α

N−βαL

(
G( 1

N
) − CN(G)

N

)
+1{1<x<N}

(
G( x

N
) − G( 1

N
) − x−1

N
CN(G)

)
+1{x=N}

(
G(N−1

N
) − G( 1

N
) − N−2

N
CN(G) + α

N−βαR

(
−G(N−1

N
) − CN(G)

N

))
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

where

CN(G) :=
(

α
N−βαL

− 1
)

G( 1
N

) + G(N−1
N

)
(

1 − α
N−βαR

)
1
N

(
α

N−βαL
+ (N − 2) + α

N−βαR

) (61)

is chosen such that GN(1) = 0. By applying the generator AN to such function, we obtain

ANGN( x
N

) = N2α
(
G(x+1

N
) + G(x−1

N
) − 2G( x

N
)
)

= α�NG( x
N

)

if x ∈ �N and ANGN(0) = ANGN(1) = 0. As a consequence, we get the second convergence in (60).
On the other side,

sup
x∈�̂N

∣∣GN( x
N

) − G( x
N

)
∣∣≤ ∣∣∣G( 1

N
)

∣∣∣ (1 + α
N−βαL

)
+
∣∣∣G(N−1

N
)

∣∣∣ (1 + α
N−βαR

)
.

Let us observe that |G( 1
N

)| ≤ 1
N

|∂+
u G(0)| + C0

N2 and |G(N−1
N

)| ≤ 1
N

|∂−
u G(1)| + C1

N2 for all N ∈ N large
enough and some constants C0,C1 > 0 independent of N ∈ N. As a consequence, because β ∈ [0,1),
we obtain the first convergence in (60). This concludes the proof. �

Let us now prove convergence in probability of one-dimensional distributions, and notice that, by
a union bound, the latter immediately yields convergence of finite-dimensional distributions. More
precisely, we prove that, for all β ∈ [0,1), G ∈ S, t ≥ 0 and δ > 0, we have

PN
μN

(∣∣∣∣〈G,ZN
t 〉 −

∫ t

0
〈AG,ZN

s 〉ds − 〈G,ϑ0 − hϑL,ϑR
du〉

∣∣∣∣> δ

)
−→

N→∞ 0 . (62)

By the triangle inequality, the above follows if we can show that, for all δ > 0,

PN
μN

(∣∣∣〈G,ZN
t 〉 − 〈GN,ZN

t 〉
∣∣∣> δ

)
−→

N→∞ 0 (63)

and

PN
μN

(∣∣∣∣〈GN,ZN
t 〉 −

∫ t

0
〈AG,ZN

s 〉ds − 〈G,ϑ0 − hϑL,ϑR
du〉

∣∣∣∣> δ

)
−→

N→∞ 0 (64)

hold, where the functions {GN : N ∈ N} are those given in Lemma 4.2. The claim in (63) follows at
once from Hölder’s inequality, the uniform bounds in (38) and Lemma 4.2.

Let us now deal with the claim in (64) by means of Dynkin’s formula for {〈GN,ZN· 〉 : N ∈N}. As a
first step, we have

PN
μN

(∣∣∣〈GN,ZN
0 〉 − 〈G,

(
ϑ0 − hϑL,ϑR

du
)
α

∣∣∣> δ
)
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≤ PN
μN

(∣∣∣〈GN,ZN
0 〉 − 〈G,ZN

0 〉
∣∣∣> δ

2

)
+ PN

μN

(∣∣∣〈G,ZN
0 〉 − 〈G,

(
ϑ0 − hϑL,ϑR

du
)
α

∣∣∣> δ
2

)
and both terms on the r.h.s. vanish as N → ∞; more specifically, the first term vanishes because of
Markov’s inequality, assumption (b) and the first convergence in (60), while the second term because
of assumption (a) and Lemma 4.1. Moreover, for all δ > 0 and t ≥ 0, we have

PN
μN

(∣∣∣∣∫ t

0

(
LN 〈GN,ZN

s 〉 − 〈AG,ZN
s 〉

)
ds

∣∣∣∣> δ

)
−→

N→∞ 0 ,

which follows by Markov’s inequality, duality (40), the symmetry of AN as in (43), Tonelli’s theorem,
(38) and the second convergence in (60):

PN
μN

(∣∣∣∣∫ t

0

(
LN 〈GN,ZN

s 〉 − 〈AG,ZN
s 〉

)
ds

∣∣∣∣> δ

)

≤ 1
δ
EN

μN

⎡⎣∫ t

0

1

N

∑
x∈�N

∣∣∣ANGN( x
N

) −AG( x
N

)

∣∣∣ (DN(x,ηN
s ) + hN

ϑL,ϑR
(x)

)
α ds

⎤⎦
≤ t

δ
sup

x∈�̂N

∣∣∣ANGN( x
N

) −AG( x
N

)

∣∣∣{ sup
s∈[0,t]

EN
μN

[
DN(x,ηN

s )
]
+ max {ϑL,ϑR}

}
.

In conclusion, the martingales arising from Dynkin’s decomposition of
{〈GN,ZN· 〉 : N ∈N

}
vanish in

probability as N → ∞. Indeed, for all t ≥ 0,

EN
μN

[(
〈GN,MN

t 〉
)2
]

≤ C t

N

⎧⎨⎩ 1

N

∑
x∈�N

(
−ANGN( x

N
)
)

GN( x
N

)

⎫⎬⎭ −→
N→∞ 0 , (65)

because the expression between curly brackets is uniformly bounded in N → ∞ by (60) and where,
by (38), C = C(κ,ϑL,ϑR) > 0 is a constant independent of N ∈N and t ≥ 0.

The proof of Theorem 3.3 for the case β ∈ [0,1) ends as soon as we show, by Mitoma’s tightness
criterion [41], that, for all G ∈ S, the sequence

{〈G,ZN· 〉 : N ∈N
}

is tight in D([0,∞),R). Most of
the steps of this proof may be adapted from those in Section 4.1.1, with the only exceptions that, for
all G ∈ S and t ≥ 0, the following boundary terms

EN
μN

[(
α ∇+

NG(0) − αL N1−β G( 1
N

)
)2 (

DN(1, ηN
t ) − hN

ϑL,ϑR
(1)

)2
α2
]

(66)

EN
μN

[(
α ∇−

NG(1) − αR N1−β G(N−1
N

)
)2 (

DN(N − 1, ηN
t ) − hN

ϑL,ϑR
(N − 1)

)2
α2
]

and

1

N2

{
N2−βαL

(
G( 1

N
)
)2

EN
μN

[
VN{0,1}(ηN

t )
]
α + N2−βαR

(
G(N−1

N
)
)2

EN
μN

[
VN{N−1,N}(ηN

t )
]
α

}
(67)

are uniformly bounded in N ∈ N because of the boundary conditions (17) that G ∈ S satisfies and the
uniform bounds in (38).



1362 C. Franceschini, P. Gonçalves and F. Sau

4.1.3. Some considerations for the case β < 0

The particle system dynamics described by the generator LN in (1) as well as the duality relations
and the results in Lemmas 4.1 and 4.2 clearly extend to the setting of “fast” boundary, i.e., β < 0 if
constructing S for β < 0 as done for the case β ∈ [0,1). Moreover, from the first part of the proof in
Section 4.1.2, it follows that, for all β < 0 and G ∈ S, the sequence{

〈GN,ZN· 〉 : N ∈ N
}

is tight in D([0,∞),R), where the sequence {GN : N ∈N} is the one given in Lemma 4.2, and, for all
T > 0 and δ > 0, the following convergence

PN
μN

(
sup

t∈[0,T ]

∣∣∣〈GN,ZN
t 〉 − 〈G,

(
ϑ(t) − hϑL,ϑR

du
)
α〉
∣∣∣> δ

)
−→

N→∞ 0 (68)

holds, where
{
ϑ(t) − hϑL,ϑR

du : t ≥ 0
} ∈ C([0,∞),S′) is the unique Dirichlet solution in S′ with ini-

tial condition given by ϑ0 − hϑL,ϑR
du. Moreover, by Lemma 4.2 and the uniform bounds in (38), it

follows that, for all β < 0, G ∈ S, t ≥ 0 and δ > 0,

PN
μN

(∣∣∣〈G,ZN
t 〉 − 〈GN,ZN

t 〉
∣∣∣> δ

)
−→

N→∞ 0 , (69)

yielding, in particular, convergence of the finite dimensional distribution for the fields
{
ZN· : N ∈N

}
:

for all β < 0, G ∈ S, t ≥ 0 and δ > 0,

PN
μN

(∣∣∣〈G,ZN
t 〉 − 〈G,

(
ϑ(t) − hϑL,ϑR

du
)
α〉
∣∣∣> δ

)
−→

N→∞ 0 . (70)

However, tightness of the empirical density fields
{
ZN· : N ∈N

}
in D([0,∞),S′) for the case β < 0

does not follow from the arguments used in the second part of Section 4.1.2 above because the boundary
terms in (66) and (67) are not, in general, uniformly bounded in N ∈N.

An alternative approach to derive the hydrodynamic limit for the case β < 0 would be, in view of
(68), to strengthen the convergence in (69) by requiring, for all T > 0 and δ > 0,

PN
μN

(
sup

t∈[0,T ]

∣∣∣〈G,ZN
t 〉 − 〈GN,ZN

t 〉
∣∣∣> δ

)
−→

N→∞ 0 . (71)

Because of Lemma 4.2, (71) would follow, by Markov’s inequality, from

sup
N∈N

EN
μN

⎡⎣ sup
t∈[0,T ]

⎛⎝ 1

N

∑
x∈�N

ηN
t (x)

⎞⎠p⎤⎦< ∞ (72)

for some p > 0. However, while (72) is trivially satisfied by the SEP for which each site can accom-
modate at most one particle at the time, this is no more the case for the open SIP and the validity of
(72) is not guaranteed.

4.2. Proof of Theorem 3.4

We split the proof of Theorem 3.4 in two parts: we first show that assumption (b) and then that assump-

tion (a) of Theorem 3.3 hold for the sequence
{
μN

ϑL,ϑR
: N ∈ N

}
. Once these assumptions are verified,
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Theorem 3.3 applies, yielding the hydrostatic limit. We remark that the arguments employed in this
section hold true also for negative values of the parameter β .

Let us introduce, for all β ≥ 0 and N ∈N, the following function

kN
ϑL,ϑR

(x, y) := EμN
ϑL,ϑR

[
DN(x, y, η)

]= lim
t→∞EN

μN

[
DN(x, y, ηN

t )
]

, x, y ∈ �̂N , (73)

for any probability measure μN on XN , which, by stationarity of μN
ϑL,ϑR

and duality (13), solves the
following linear boundary value problem:{

BNf (x, y) = 0 (x, y) ∈ �N × �N

f (x, y) = hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y) (x, y) ∈ (�̂N × �̂N) \ (�N × �N) ,
(74)

where we recall that BN is the infinitesimal generator corresponding to two inclusion particles in �N

with absorbing sites {0,N} as defined in (14) and hN
ϑL,ϑR

is the solution of (46) and given in (49).
We note that, while for the open symmetric exclusion process the stationary two-point correlations are
known (see, e.g., [14,30], Eq. (2.23)), for the open symmetric inclusion process the function kN

ϑL,ϑR
is

not, in general, explicit.

4.2.1. Assumption (b) of Theorem 3.3 for the stationary measure

By the maximum principle applied to the boundary value problems (46) and (74), we obtain

0 ≤ hN
ϑL,ϑR

(x) ≤ max {ϑL,ϑR} and 0 ≤ kN
ϑL,ϑR

(x, y) ≤ max
{
ϑ2

L,ϑ2
R

}
for all x, y ∈ �̂N , yielding, by (45) and (73), the bounds in assumption (b) of Theorem 3.3 with κ =
max {ϑL,ϑR}.

4.2.2. Assumption (a) of Theorem 3.3 for the stationary measure

In this section we prove that, for all β ≥ 0, G ∈ S and δ > 0, we have

μN
ϑL,ϑR

⎛⎝⎧⎨⎩η ∈XN :
∣∣∣∣∣∣ 1

N

∑
x∈�N

G( x
N

)η(x) − 〈G,hϑL,ϑR
duα〉

∣∣∣∣∣∣> δ

⎫⎬⎭
⎞⎠ −→

N→∞ 0 , (75)

or, equivalently by Lemma 4.1,

μN
ϑL,ϑR

⎛⎝⎧⎨⎩η ∈XN :
∣∣∣∣∣∣ 1

N

∑
x∈�N

G( x
N

)
(
DN(x,η) − hN

ϑL,ϑR
(x)

)
α

∣∣∣∣∣∣> δ

⎫⎬⎭
⎞⎠ −→

N→∞ 0 , (76)

where hϑL,ϑR
du ∈ C∞([0,1]) is given in either (27) if β < 1, (28) if β = 1 or (29) if β > 1. In view of

Chebyshev’s inequality, we prove

EμN
ϑL,ϑR

⎡⎢⎣
⎛⎝ 1

N

∑
x∈�N

G( x
N

)
(
DN(x,η) − hN

ϑL,ϑR
(x)

)
α

⎞⎠2
⎤⎥⎦ −→

N→∞ 0 , (77)
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from which (76) follows for all δ > 0. To this purpose, by (53) and stationarity of μN
ϑL,ϑR

, we have

EμN
ϑL,ϑR

⎡⎢⎣
⎛⎝ 1

N

∑
x∈�N

G( x
N

)
(
DN(x,η) − hN

ϑL,ϑR
(x)

)
α

⎞⎠2
⎤⎥⎦

= 〈〈G ⊗ G,kN
ϑL,ϑR

〉〉N×N −
(
〈〈G,hN

ϑL,ϑR
〉〉N

)2 + 1
N

〈〈G2, hN
ϑL,ϑR

〉〉N

= 1

N2

∑
x,y∈�N

G( x
N

)G(
y
N

) kN
ϑL,ϑR

(x, y)α
(
α + 1{x=y}

)
− 1

N2

∑
x,y∈�N

G( x
N

)G(
y
N

)hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)α2 + 1

N2

∑
x∈�N

G( x
N

)2 hN
ϑL,ϑR

(x)α

= 1

N2

∑
x,y∈�N

G( x
N

)G(
y
N

)
(
kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)
)

α
(
α + 1{x=y}

)

+ 1

N

⎧⎨⎩ 1

N

∑
x∈�N

G( x
N

)2
(

1 + hN
ϑL,ϑR

(x)
)

hN
ϑL,ϑR

(x)α

⎫⎬⎭ .

By the uniform boundedness of G ∈ S and
{
hN

ϑL,ϑR
: N ∈N

}
, the second term on the r.h.s. above

vanishes as N → ∞. Hence, we are left only with the proof that

〈〈G ⊗ G,kN
ϑL,ϑR

− hN
ϑL,ϑR

⊗ hN
ϑL,ϑR

〉〉N×N

= 1

N2

∑
x,y∈�N

G( x
N

)G(
y
N

)
(
kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)
)

α
(
α + 1{x=y}

) −→
N→∞ 0 . (78)

More specifically, we obtain (78) from the following upper bound: for all β ≥ 0 and G ∈ S, we have

sup
N∈N

max
{
N,Nβ−1

} ∣∣∣〈〈G ⊗ G,kN
ϑL,ϑR

− hN
ϑL,ϑR

⊗ hN
ϑL,ϑR

〉〉N×N

∣∣∣
≤ sup

N∈N
max

{
N,Nβ−1

}
‖G ⊗ G‖∞ 〈〈1 ⊗ 1,

∣∣∣kN
ϑL,ϑR

− hN
ϑL,ϑR

⊗ hN
ϑL,ϑR

∣∣∣〉〉N×N < ∞ . (79)

We remark that the upper bound in (79) differs from those in, e.g., [37], Eq. (3.2), and [30], Proposi-
tion 2.1, derived for the open symmetric exclusion process from the explicit expression of the two-point
stationary correlation function and corresponding, in our setting, to

sup
N∈N

max
{
N,Nβ−1

} ∣∣∣〈〈G ⊗ G,kN
ϑL,ϑR

− hN
ϑL,ϑR

⊗ hN
ϑL,ϑR

〉〉N×N

∣∣∣
≤ sup

N∈N
max

{
N,Nβ−1

}
〈〈|G ⊗ G| ,1 ⊗ 1〉〉N×N sup

(x,y)∈�N×�N

∣∣∣kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)

∣∣∣
< ∞ .

In our case, although we do not know, as already mentioned above, the explicit form of

kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y) , x, y ∈ �N ,
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by [23], Theorem 3.4, and [23], Lemma 3.5, (see also [23], Remark 3.6(b)), we know the sign of these
stationary two-point correlation functions as well as the following representation in terms of absorption
probabilities of two inclusion particles. Recalling the notation in Section 2.2.1, we have

kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y) > 0 (80)

and

kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)

=
∫ ∞

0

∑
z∈�N

z 	=N−1

⎧⎨⎩ N2
(
hN

ϑL,ϑR
(z + 1) − hN

ϑL,ϑR
(z)

)2

× P̂N
ξ=δx+δy

(
ξN
s (z) = 1 and ξN

s (z + 1) = 1
)
⎫⎬⎭ds (81)

for all x, y ∈ �N .

Remark 4.3. The above expression for the stationary two-point correlations is related to the stationary
solution to the non-homogeneous parabolic difference system in Eqs. (2.13)–(2.15) in [30] (see also
[37]). However, we remark that, while the solution in [30] is obtained by means of Duhamel’s principle
in terms of the Markov semigroup of two independent random walks, the identity (81) is obtained
by solving a linear system of evolution equations involving second order duality functions and the
Markov semigroup of two interacting dual inclusion particles. The representation of the solution in
terms of such Markov semigroup – symmetric with respect to 〈〈·, ·〉〉N×N for functions vanishing at the
boundary – will turn out useful later on.

As a consequence of (80), we get∣∣∣∣∣∣ 1

N2

∑
x,y∈�N

G( x
N

)G(
y
N

)
(
kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)
)

α
(
α + 1{x=y}

)∣∣∣∣∣∣
≤ ‖G‖2∞

1

N2

∑
x,y∈�N

(
kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)
)

α
(
α + 1{x=y}

)
.

while, by (49) and

N2
(
hN

ϑL,ϑR
(z + 1) − hN

ϑL,ϑR
(z)

)2 ≤ C (ϑL − ϑR)2

max
{
1,N2β−2

} , z ∈ �N \ {N − 1} ,

for some constant C = C(α,αL,αR) > 0, we further obtain

1

N2

∑
x,y∈�N

(
kN
ϑL,ϑR

(x, y) − hN
ϑL,ϑR

(x)hN
ϑL,ϑR

(y)
)

α
(
α + 1{x=y}

)
≤ C (ϑL − ϑR)2

max
{
1,N2β−2

} 1

N2

∑
x,y∈�N

∫ ∞

0

∑
z∈�N

z 	=N−1

P̂N
ξ=δx+δy

(
ξN
s (z) = 1 and ξN

s (z + 1) = 1
)

α
(
α + 1{x=y}

)
ds

= C (ϑL − ϑR)2

max
{
1,N2β−2

} 1

N2

∑
x,y∈�N

∫ ∞

0
PN

⎛⎝ (X
N,x
s , Y

N,y
s ) ∈ �N × �N

and
∣∣∣XN,x

s − Y
N,y
s

∣∣∣= 1

⎞⎠α
(
α + 1{x=y}

)
ds ,
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where in the last step we went from an unlabeled to a labeled representation of the dual system consist-
ing of two inclusion particles evolving according to the infinitesimal generator BN given in (14) and
with PN , resp. EN , denoting the corresponding law, resp. expectation: for all (x, y) ∈ �̂N × �̂N ,{(

X
N,x
t , Y

N,y
t

)
: t ≥ 0

}
⊂ �̂N × �̂N , (82)

denotes the Markov process with generator BN and initial conditions given by(
X

N,x
0 , Y

N,y

0

)
= (x, y) a.s. . (83)

If we let
{
SN

t : t ≥ 0
}

denote the Markov semigroup associated with the generator BN , then

C (ϑL − ϑR)2

max
{
1,N2β−2

} 1

N2

∑
x,y∈�N

∫ ∞

0
PN

⎛⎝ (X
N,x
s , Y

N,y
s ) ∈ �N × �N

and
∣∣∣XN,x

s − Y
N,y
s

∣∣∣= 1

⎞⎠α
(
α + 1{x=y}

)
ds

= C (ϑL − ϑR)2

max
{
1,N2β−2

} 1

N2

∑
x,y∈�N

∫ ∞

0
SN

s fN(x, y)α
(
α + 1{x=y}

)
ds

where the function fN : �̂N × �̂N →R is defined as follows:

fN(x, y) :=
{

1 if x, y ∈ �N and |x − y| = 1

0 otherwise .

Moreover, by Tonelli’s theorem and by the symmetry of BN – and, consequently, of the corresponding
semigroup – with respect to the inner product 〈〈·, ·〉〉N×N for functions vanishing on (�̂N × �̂N) \
(�N × �N) (cf. (16)), we obtain

C (ϑL − ϑR)2

max
{
1,N2β−2

} 1

N2

∑
x,y∈�N

∫ ∞

0
SN

s fN(x, y)α
(
α + 1{x=y}

)
ds

= C (ϑL − ϑR)2

max
{
1,N2β−2

} 1

N2

∑
x,y∈�N

∫ ∞

0
fN(x, y)

(
SN

s gN(x, y)
)

α
(
α + 1{x=y}

)
ds

= C (ϑL − ϑR)2

max
{
1,N2β−2

} ∫ ∞

0
〈〈fN,SN

s gN 〉〉N×N ds ,

where the function gN : �̂N × �̂N → R is the indicator function on �N × �N ⊂ �̂N × �̂N :

gN(x, y) := 1{(x,y)∈�N×�N } . (84)

By Hölder’s inequality, we have

〈〈fN,SN
s gN 〉〉N×N ≤ 〈〈fN,1〉〉N×N sup

x,y∈�N

SN
s gN(x, y)

(all functions are non-negative) and

〈〈fN,1〉〉N×N = 1

N2

∑
x,y∈�N

1{|x−y|=1} α
(
α + 1{x=y}

)≤ 2α2

N
.
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As a consequence, we further get∣∣∣∣∣ C (ϑL − ϑR)2

max
{
1,N2β−2

} ∫ ∞

0
〈〈fN,SN

s gN 〉〉N×N ds

∣∣∣∣∣≤ 2α2 C (ϑL − ϑR)2

max
{
N,N2β−1

} sup
x,y∈�N

∫ ∞

0
SN

s gN(x, y)ds .(85)

The proof to show that assumption (a) of Theorem 3.3 holds for the stationary measures ends if we
can show that the r.h.s. above vanishes as N → ∞. This last result is the content of the following
lemma, whose proof is based on two main ingredients: first, by switching to the system of two inclusion
particles to a suitable system of two “hierarchical” first and second class inclusion particles, we provide
an upper bound for

sup
x,y∈�N

∫ ∞

0
SN

s gN(x, y)ds

in terms of an expression involving only the absorption probabilities for a single non-interacting par-
ticle; then, we conclude by employing the asymptotic result in Lemma B.1 below on the absorption
probability of the random walk with generator AN defined in (10).

Lemma 4.4. For all β ≥ 0,

sup
N∈N

1

max
{
1,Nβ−1

} sup
x,y∈�N

∫ ∞

0
SN

s gN(x, y)ds < ∞ . (86)

As a consequence, for all β ≥ 0 and G ∈ S,

lim sup
N→∞

max
{
N,Nβ

} ∣∣∣〈〈G ⊗ G,kN
ϑL,ϑR

− hN
ϑL,ϑR

⊗ hN
ϑL,ϑR

〉〉N×N

∣∣∣< ∞ .

We present the proof of Lemma 4.4 in the Section 4.2.3, in which we also introduce the notion of
first and second class inclusion particles.

4.2.3. First & second class inclusion particles and Proof of Lemma 4.4

As for the SEP there is a well-known notion of first class and second class particles (see, e.g., [39], Part
III, p. 218), we show that an analogue notion exists for the SIP Roughly speaking, first class particles in
the exclusion process evolve regardless of the positions of second class particles and, if their decision
is to jump on a site occupied by a second class particle, the latter is “forced” to leave its place and
occupy the place left vacant by the first class particle. In particular, the first class particle evolves as a
non-interacting random walk, while the second class particle evolves as an interacting random walk.

Inspired by lookdown constructions available for population genetics models (see, e.g., [15]), a
similar picture holds for the SIP. Indeed, while the first class inclusion particle evolves as a non-
interacting random walk, the dynamics of the second class inclusion particle is determined by the
superposition of two distinct effects: on the first place, it performs non-interacting random walk jumps
and, on the second place, it “looks down” to the first class particle and “joins” it at rate two if the
latter sits at a nearest-neighboring site. In Proposition 4.1 we show that, up to average over the role of
first and second class particles at time t = 0, the distribution at any later time t > 0 of an unlabeled
hierarchical “lookdown” process coincides with that of an unlabeled non-hierarchical one.

On one hand, we recall from (82) that, for all x, y ∈ �̂N ,
(
XN,x· , Y

N,y·
)

denotes the Markov process

on �̂N × �̂N started from (x, y) and with generator BN defined in (14). We refer to such process as
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the non-hierarchical or symmetric process and recall that PN and EN denote their probability law and

corresponding expectation, respectively. On the other hand, we define by
(
X̃N,x· , Ỹ

N,y·
)

the so-called

hierarchical or lookdown Markov process on �̂N × �̂N started from (x, y) and with generator CN

given, for all functions f : �̂N × �̂N → R, by

CNf (x, y) := ANf (·, y)(x) + ANf (x, ·)(y)

+ 1{x,y∈�N }1{|x−y|=1}2 (f (x, x) − f (x, y)) . (87)

We let P̃N and ẼN denote the probability law and corresponding expectation, respectively. We empha-
size that the hierarchical dynamics described by the generator CN in (87) dictates that the interaction
part of the dynamics (the second line in the r.h.s. in (87)) affects only the second class particle and
compensates this asymmetry by doubling the rate of the interaction.

Proposition 4.1. For all β ∈ [0,∞), N ∈N, (x, y) ∈ �̂N × �̂N and t ≥ 0, we have, for all symmetric
functions f : �̂N × �̂N →R,

EN
[
f
(
X

N,x
t , Y

N,y
t

)]
= ẼN

[
f
(
X̃

N,U
t , Ỹ

N,V
t

)]
,

where the random variables (U,V ) take the values (x, y) ∈ �̂N × �̂N or (y, x) ∈ �̂N × �̂N with equal
probability.

Proof. As mentioned above, this result is a particular case of the more general lookdown construction
for the multi-type Moran model with mutation (see, e.g., [15]). However, for the convenience of the
reader, we report the short proof below. Indeed, it suffices to show that, for all symmetric functions
f : �̂N × �̂N → R and for all (x, y) ∈ �̂N × �̂N , we have

BNf (x, y) = 1
2

(
CNf (x, y) + CNf (y, x)

)
,

where we recall that the operator CN was defined in (87). This is indeed the case:

BNf (x, y) = ANf (·, y)(x) + ANf (x, ·)(y) + 1{x,y∈�N } 1{|x−y|=1} (f (x, x) + f (y, y) − 2f (x, y))

= 1
2

(
ANf (·, y)(x) + ANf (y, ·)(x) + ANf (x, ·)(y) + ANf (·, x)(y)

)
+ 1{x,y∈�N } 1{|x−y|=1} ((f (x, x) − f (x, y)) + (f (y, y) − f (y, x)))

= 1
2

(
CNf (x, y) + CNf (y, x)

)
.

Because BN maps symmetric functions into symmetric functions, by induction, a similar identity holds
for all 	 ∈ N0 and x, y ∈ �̂N ,

(BN)	f (x, y) = 1
2

(
(CN)	f (x, y) + (CN)	f (y, x)

)
,

yielding, for all t ≥ 0,

etBN

f (x, y) = 1
2

(
etCN

f (x, y) + etCN

f (y, x)
)

, (x, y) ∈ �̂N × �̂N .

�



SIP with slow boundary: Hydrodynamics and hydrostatics 1369

Remark 4.5 (n-class lookdown inclusion particle systems). One may introduce an analogous hier-
archical “lookdown” construction with more than two, say n > 2, inclusion particles, in which the k-th
class particle (k ≤ n) evolves not being affected by the particles of class 	 > k and joins at rate 2 any
neighboring particle in the bulk of class 	 < k. Along the same lines, if the class labels are uniformly
randomized at the initial time, then, at any later time, the probability law of the unlabeled hierarchi-
cal coincide with that of the unlabeled non-hierarchical inclusion process started from the same initial
configuration. However, for our purposes, we only need this equivalence for systems with two particles.

Proof of Lemma 4.4. In view of Proposition 4.1 and because the function gN : �̂N × �̂N → R

defined in (84) is symmetric, i.e., gN(x, y) = gN(y, x) for all (x, y) ∈ �̂N × �̂N , we have

sup
x,y∈�N

∫ ∞

0
SN

s gN(x, y)ds

= sup
x,y∈�N

∫ ∞

0
EN

[
gN

(
XN,x

s , Y
N,y
s

)]
ds

= sup
x,y∈�N

∫ ∞

0

1
2

(
ẼN

[
gN

(
X̃N,x

s , Ỹ
N,y
s

)]
+ ẼN

[
gN

(
X̃

N,y
s , Ỹ N,x

s

)])
ds .

Moreover, by conditioning on the non-absorption of the first class inclusion particle, we further obtain,
for all x, y ∈ �̂N ,

ẼN
[
gN

(
X̃N,x

s , Ỹ
N,y
s

)]
= P̃N

((
X̃N,x

s , Ỹ
N,y
s

)
∈ �N × �N

)
= P̃N

(
Ỹ

N,y
s ∈ �N

∣∣X̃N,x
s ∈ �N

)
P̃N

(
X̃N,x

s ∈ �N

)
≤ P̃N

(
X̃N,x

s ∈ �N

)
,

which yields

sup
x,y∈�N

∫ ∞

0
SN

s gN(x, y)ds ≤ sup
x∈�N

∫ ∞

0
P̃N

(
X̃N,x

s ∈ �N

)
ds

= sup
x∈�N

∫ ∞

0
PN

(
XN,x

s ∈ �N

)
ds , (88)

where we recall that the law of the first class particle X̃N,x· coincides, by definition, with that of the
random walk XN,x· on �̂N with generator AN . By Lemma B.1 below, the r.h.s. in (88) is bounded
above by

C max
{

1,Nβ−1
}

,

for some constant C > 0 independent of N ∈N, yielding, in conclusion, (86). �

Appendix A: Construction of test function spaces

In this section, we construct the function spaces S whose elements serve as test functions for the
S′-valued empirical density fields. The setting resembles that in, e.g., [5,25], although we consider a
different family of Hilbertian seminorms which turn S into a nuclear Fréchet space.
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We start by recalling some definitions and facts ([35], Chapter 11, and [34], Chapter 1). Let
L2([0,1]) be endowed with the standard scalar product 〈·, ·〉, C∞([0,1]) be the linear subspace of
elements of L2([0,1]) with a smooth representative function on (0,1), whose derivatives are uni-
formly continuous and, thus, may be continuously extended on [0,1] and C∞

c ([0,1]) the subspace of
C∞([0,1]) of compactly supported functions on (0,1). Then

C∞
c ([0,1]) ⊂ C∞([0,1]) ⊂ L2([0,1]) ,

with C∞
c ([0,1]) and, thus, C∞([0,1]) being dense subspaces of L2([0,1]). The general framework will

be the following: for all β ≥ 0, we consider a densely defined, closed and self-adjoint operator L with
domain D(L) and such that 〈F,LF 〉 ≥ 0 for all F ∈ D(L). Such a self-adjoint operator will arise as
associated with a suitable bilinear form (E,D(E)). Moreover, {Tt : t ≥ 0} will denote the semigroup on
L2([0,1]) associated with A := −L. Then we verify the following property (see [34], Eq. (1.3.17)):

∃ k∗ ∈N such that (I +L)−
k∗
2 is Hilbert-Schmidt . (A.1)

By following the construction in [34], Example 1.3.2, we get that there exist {λn : n ∈ N0} ⊂ [0,∞)

with 0 ≤ λ0 ≤ λ1 ≤ . . . and an orthonormal basis {ψn : n ∈ N0} in L2([0,1]) such that

Lψn = λnψn , ∀n ∈ N0 . (A.2)

Moreover, we define the space

S :=
⋂
k∈Z

{
F ∈ L2([0,1]) :

∥∥∥(I +L)
k
2 F

∥∥∥2

L2([0,1]) < ∞
}

=
⋂
k∈Z

⎧⎨⎩F ∈ L2([0,1]) :
∑
n∈N0

(1 + λn)
k (〈F,ψn〉)2 < ∞

⎫⎬⎭ (A.3)

the inner products on S given, for all k ∈ Z, by

〈F,G〉k :=
∑
n∈N0

(1 + λn)
k 〈F,ψn〉 〈G,ψn〉 ,

and, for all k ∈ Z, Hk as the completion of S with respect to 〈·, ·〉k . Note that, by the assumed density
of D(L), H0 = L2([0,1]). Moreover, for all k ∈ Z, by Friedrichs extension, we have

Hk = D((I +L)
k
2 ) .

As a consequence of these definitions,

〈F,F 〉k ≥ 〈F,F 〉	 , for all k ≥ 	 ,

and, by (A.1), all the canonical embeddings Hk ↪→ H	 with k ≥ 	 + k∗ are Hilbert-Schmidt. This will
ensure that S endowed with the locally convex topology induced by the family of increasing Hilbertian
norms {

‖ · ‖k :=√〈·, ·〉k : k ∈ Z
}

(A.4)
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is a nuclear Fréchet space with topological dual space S′ given by

S′ =
⋃
k∈Z

Hk .

Moreover, the semigroup {Tt : t ≥ 0} on L2([0,1]) determined by A is a strongly continuous contrac-
tion semigroup described by

TtF =
∑
n∈N0

e−λnt 〈F,ψn〉ψn , F ∈ L2([0,1]) ,

and is “compatible with (S,L2([0,1]),S′)” [34], Definition 1.3.5, in the following sense:

(I) For all t ≥ 0, TtS ⊆ S.
(II) The restriction Tt

∣∣
S

: S → S is continuous for all t ≥ 0.
(III) For all F ∈ S, t �→ TtF is continuous.
(IV) A

∣∣
S : S → S is continuous.

Given the above common framework, we list below the specific choices of self-adjoint operators L
and associated forms (E,D(E)) for each of the three regimes of the parameter β ≥ 0. In what follows,
we let Wk,p with k ∈N, p ≥ 1 denote the standard Sobolev spaces on (0,1) (see, e.g., [1]).

Dirichlet (β < 1). For Dirichlet boundary conditions, we consider L as the unique self-adjoint operator
associated with

D(E) = W1,2
0 := Cc([0,1])W1,2

and

E(F,G) := α

∫
[0,1]

d
du

F (u) d
du

G(u)du .

Moreover,

D(L) =
{
F ∈W1,2

0 : d2

du2 F ∈ L2([0,1])
}

(see, e.g., [3], Example 3.1, and references therein).

Robin (β = 1). For Robin boundary conditions, we consider L as the unique self-adjoint operator
associated with

D(E) = W1,2 :=
{
F ∈ L2([0,1]) : d

du
F ∈ L2([0,1])

}
and

E(F,G) := α

∫
[0,1]

d
du

F (u) d
du

G(u)du + αL F(0)G(0) − αR F(1)G(1) .

Moreover,

D(L) =
{
F ∈ L2([0,1]) : d2

du2 F ∈ L2([0,1]) , d+
du

F (0) = αL

α
F (0) , d−

du
F (1) = αR

α
F (1)

}
(see, e.g., [3]).
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Neumann (β > 1). For Neumann boundary conditions, we consider L as the unique self-adjoint oper-
ator associated with

D(E) = W1,2

and

E(F,G) := α

∫
[0,1]

d
du

F (u) d
du

G(u)du .

Moreover,

D(L) =
{
F ∈W1,2 : d2

du2 F ∈ L2([0,1]) and (A.5) below holds
}

,

where ∫
[0,1]

d2

du2 F(u)G(u)du = −
∫

[0,1]
d

du
F (u) d

du
G(u)du , for all G ∈W1,2 . (A.5)

(See, e.g., [3], Example 3.2).

From classical results on the eigenvalues of the Dirichlet, Robin and Neumann Laplacian operators
on the interval [0,1] (see, e.g., [42]), we know that, for all β ≥ 0, the self-adjoint operator L has a dis-
crete non-negative spectrum. Moreover, by the ordering of Neumann, Robin and Dirichlet eigenvalues
(see, e.g., [2]) and by Weyl’s law (see, e.g., [42]), if we let, for all β ≥ 0,

{λn : n ∈ N0} ⊂ [0,∞)

denote the eigenvalues associated to the self-adjoint operator L, there exists a constant Λ = Λβ ∈
(0,∞) for which we have:

√
λn

n
−→
n→∞ Λ . (A.6)

As a consequence of A.6, we get property (A.1) with k∗ = 1. This property enables the construction
of the nuclear Fréchet spaces S and their topological duals S′ as above.

Let us further characterize such spaces by proving Proposition 2.2.

Proof of Proposition 2.2. Let us first prove that S consists of smooth functions with uniformly con-
tinuous derivatives of any order. By (A.3), we have

S =
⋂
k∈Z

D((I +L)
k
2 ) ⊆ C∞([0,1]) .

Indeed, the last inclusion is a consequence of

D((I +L)
k
2 ) ⊆ Wk,2 , k ∈ N0 ,

and the Sobolev embedding theorems (see, e.g., [1], Theorem 6.3.III): for all k ∈N0 and λ ∈ (0, 1
2 ],

Wk+1,2 ⊆ Ck,λ([0,1]) , (A.7)
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where Ck,λ([0,1]) denotes the subspace of Ck([0,1]) whose derivatives up to order k are Hölder con-
tinuous with Hölder exponent λ (see, e.g., [1], §1.29). Moreover, the embedding (A.7) into the Banach
space (Ck,λ([0,1]),‖ · ‖k,λ) is continuous.

Next, let us show which boundary conditions the test functions satisfy. We observe that, for all β ≥ 0,
if G ∈ S, then

G =
∑
n∈N0

〈G,ψn〉ψn , (A.8)

where {ψn : n ∈N0} denotes the orthonormal basis in L2([0,1]) of eigenfunctions of L. Moreover, by
(A.2),

{ψn : n ∈ N0} ⊆
⋂

k∈N0

D(Lk) ⊆ S .

In particular, because of the definitions of L and their domains D(L), the eigenfunctions {ψn : n ∈N0}
satisfy the corresponding boundary conditions (17)–(19). Therefore, if we show that, for all β ≥ 0,
G ∈ S and 	 ∈ N0,

∑
n∈N0

|〈G,ψn〉| sup
u∈[0,1]

∣∣∣∣∣
(

d

du

)	

ψn(u)

∣∣∣∣∣< ∞ ,

then, by (A.8), we get (
d

du

)	

G =
∑
n∈N0

〈G,ψn〉
(

d

du

)	

ψn , (A.9)

and the conclusion follows. To this purpose, let us prove that

sup
u∈[0,1]

((
d

du

)	

ψn(u)

)2

≤
	∑

h=0

(αL + αR)2h λ	+1−h
n (A.10)

holds true for all β ≥ 0, n ∈ N0 and 	 ∈ N0. Indeed, Cauchy-Schwarz inequality and the boundary
conditions satisfied by the eigenfunction ψn yield

sup
u∈[0,1]

((
d

du

)	

ψn(u)

)2

≤
∫

[0,1]

((
d

du

)	+1

ψn(u)

)2

du

= λ	+1
n + 1{β=1}

⎧⎨⎩−αL

((
d

du

)	 ∣∣∣∣
u=0

ψn

)2

+ αR

((
d

du

)	 ∣∣∣∣
u=1

ψn

)2
⎫⎬⎭

≤ λ	+1
n + 1{β=1}(αL + αR)2

⎧⎨⎩ sup
u∈[0,1]

((
d

du

)	−1

ψn(u)

)2
⎫⎬⎭ ,
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and, by iterating, we get (A.10). As a consequence of (A.10) and Cauchy-Schwarz inequality, we get,
for all {an : n ∈ N} ⊂ (0,∞),

∑
n∈N0

|〈G,ψn〉| sup
u∈[0,1]

∣∣∣∣∣
(

d

du

)	

ψn(u)

∣∣∣∣∣
≤

√√√√√∑
n∈N0

(〈G,ψn〉)2 a2
n sup

u∈[0,1]

((
d

du

)	

ψn(u)

)2√∑
n∈N0

a−2
n

≤
√√√√ 	∑

h=0

(αL + αR)2h
∑
n∈N0

(〈G,ψn〉)2 a2
nλ

	+1−h
n

√∑
n∈N0

a−2
n .

By choosing {an : n ∈N0} = {λn : n ∈N0}, by definition of G ∈ S (cf. (A.3)) and A.6, we obtain the
uniform convergence of the series on the r.h.s. of (A.9). This concludes the proof. �

A.1. A remark on the topologies of C([0,∞),S ′) and D([0,∞),S ′)

We remark that we have defined, for all β ≥ 0, S′ as the dual of S endowed with the strong topol-
ogy. However, when considering the spaces C([0,∞),S′) and D([0,∞),S′), by [44], Lemma 3.2, the
strong topology may be replaced by the weak∗ topology (see below) when considering Borel prob-
ability measures on such spaces because the Borel σ -fields induced by weak∗ and strong topologies
coincide. More precisely, let us recall from [34] that:

(1) For all G ∈ S, ‖ · ‖G : S′ → [0,∞) given, for all f ∈ S′, by

‖f ‖G := |〈G,f 〉| ,

is a seminorm. The family {‖ · ‖G : G ∈ S} determines the weak∗ topology on S′ (see [34],
Definition 1.1.3) and, in particular, U ⊂ S′ is a weak∗ neighborhood of f ∈ S′ if there exist
n ∈ N, {G1, . . . ,Gn} ⊂ S and {ε1, . . . , εn} ⊂ (0,∞) such that

U = {
g ∈ S′ : ‖f − g‖Gk

< εk for all k = 1, . . . , n
}

.

(2) For all G ∈ S and T > 0,

‖f ‖G,T := sup
t∈[0,T ]

‖f (t)‖G

with f = {f (t) : t ≥ 0} ∈ C([0,∞),S′) defines a seminorm on C([0,∞),S′). The family
{‖ · ‖G,T : G ∈ S, T > 0} defines the weak∗ topology of C([0,∞),S′) (see [34], p. 73), with
neighborhoods U ⊂ S′ of f = {f (t) : t ≥ 0} ∈ C([0,∞),S′) given by finite intersections of sets
of the following type: {

g ∈ C([0,∞),S′) : ‖f − g‖G,T < ε
}

.
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(3) The weak∗ topology of D([0,∞),S′) is defined in terms of the following pseudometrics [34],
p. 71: for all G ∈ S, T > 0 and f,g ∈D([0,∞),S′),

dG,T (f, g) := inf
λ∈�T

{
sup

t∈[0,T ]
‖f (t) − g(λ(t))‖G + γ (λ)

}
,

where �T is the set of strictly increasing continuous maps from [0, T ] onto itself and such that

γ (λ) := sup
s,t∈[0,T ]

∣∣∣∣log

(
λ(t) − λ(s)

t − s

)∣∣∣∣< ∞ .

Neighborhoods of f ∈D([0,∞),S′) consist of finite intersections of sets of the following type:{
g ∈D([0,∞),S′) : dG,T (f, g) < ε

}
.

As a consequence of the above definitions and [44], Lemma 3.2, a sequence {P N : N ∈N} of Borel
probability measures in D([0,∞),S′) converges in probability to f ∈ D([0,∞),S′) if, for all T > 0,
G ∈ S and δ > 0,

P N
({

g ∈D([0,∞),S′) : dG,T (f, g) > δ
}) −→

N→∞ 0 . (A.11)

If, in particular, f ∈ C([0,∞),S′) and if

P N
({

g ∈D([0,∞),S′) : ‖f − g‖G,T > δ
}) −→

N→∞ 0

holds for all T > 0, G ∈ S and δ > 0, (A.11) follows. This notion of convergence in probability to a
Dirac measure turns out to be equivalent to weak convergence in D([0,∞),S′). Indeed, this follows
from a version of Portmanteau’s theorem in the context of completely regular Hausdorff topological
spaces and limiting τ -additive measures (see, e.g., [9], Corollary II.8.2.4). Combined with the above
considerations, a sequence {P N : N ∈ N} of Borel probability measures on D([0,∞),S′) converges
(either weakly or in probability) to the Dirac measure supported on f ∈ C([0,∞),S′) if and only if

P N

({
g ∈ D([0,∞),S′) : sup

t∈[0,T ]
|〈G,g(t)〉 − 〈G,f (t)〉| > δ

})
−→

N→∞ 0 (A.12)

holds for all T > 0, G ∈ S and δ > 0.

Appendix B: Absorbing random walk’s estimate

In order to study absorption probabilities before a given time for the dual random walk{
X

N,x
t : t ≥ 0

}
on �̂N with generator AN given in (10), we employ Stone’s pathwise construction of birth-and-death
processes from a time-change of Brownian motion paths (see [46]). To this purpose, P and E denote the
probability law and corresponding expectation of the underlying one-dimensional standard Brownian
motion {Bt : t ≥ 0} with B0 = 0 a.s. and E

[
(Bt )

2
] = t . Let us briefly describe such construction and

introduce some notation.
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We first define a (singular with respect to Lebesgue) measure νN on R which yields the correct
time-change of Brownian motion paths. More precisely, νN has the following form

νN :=
∑
x∈Z

wN
x δzN

x
,

where {wN
x : x ∈ Z} are called the “weights” and are given by

wN
x = α

2N
, x ∈ Z ,

while {zN
x : x ∈ Z} ⊂ R, satisfying the order relation zN

x < zN
x+1 for all x ∈ Z and given, for x ∈ �̂N ,

by

zN
0 = 0

zN
1 = 1

αLαN1−β

...

zN
x = 1

αLαN1−β
+ (x − 1)

1

α2N

...

zN
N = 1

αLαN1−β
+ (N − 2)

1

α2N
+ 1

αRαN1−β
, (B.1)

stands for the “support” of νN . The specific choice of the support points {zN
x : x ∈ Z \ �̂N } is irrelevant

for our purposes. Let us note that, by (B.1), there exists a constant C > 0 such that, for all β ∈ R,

0 < inf
N∈N

zN
N − zN

0

max
{
1,Nβ−1

} ≤ sup
N∈N

zN
N − zN

0

max
{
1,Nβ−1

} ≤ C

2α
. (B.2)

Let {	N,x
t (z) : (t, z) ∈ [0,∞)×R} denote the local time of {Bt +zN

x : t ≥ 0} (see, e.g., [46], Theorem
(Trotter)). Hence,

ψ
N,x
t =

∫
R

	
N,x
t (z) νN(dz)

is the random νN -weighted time that the Brownian motion has spent on the support of νN up to time t ≥
0. We note that ψN,x· : [0,∞) → [0,∞) is a non-negative non-decreasing function. As a consequence
of [46], §3, the process {ZN,x

t : t ≥ 0} defined (a.s.) as

Z
N,x
t := B

φ
N,x
t

+ zN
x ,

with {φN,x
t : t ≥ 0} being the generalized inverse of {ψN,x

t : t ≥ 0}, namely

φ
N,x
t = sup{s ≥ 0 : ψN,x

s ≤ t} ,
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is a jump process on {zN
y , y ∈ Z} with nearest-neighbor jumps, starting from zN

x ∈ R, exit rates at zN
y

given by

1

2wN
y

zN
y+1 − zN

y−1

(zN
y+1 − zN

y )(zN
y − zN

y−1)

and jump probability from zN
y to zN

y−1 given by

zN
y+1 − zN

y

zN
y+1 − zN

y−1

.

In particular, the law of the process {ZN,x
t : t ≥ 0} coincides with that of the process{

zN

X
N,x
t

: t ≥ 0

}
if we observe both processes until the first hitting of {zN

0 , zN
N }. Ultimately, this construction stands at

the core of the proof of Lemma B.1 because it allows us to write random walks’ probabilities in terms
of Brownian motion probabilities

PN
(
X

N,x
t ∈ �N

)
= P

(
ψ

N,x

τN,x > t
)

, (B.3)

where τN,x denotes the first exit time from (zN
0 , zN

N) ⊂ R of
{
Bt + zN

x : t ≥ 0
}
.

Lemma B.1. There exists a constant C > 0 such that, for all β ∈R and N ∈ N, we have

sup
x∈�N

∫ ∞

0
PN

(
X

N,x
t ∈ �N

)
dt ≤ C max

{
1,Nβ−1

}
.

Proof. In view of the identity in (B.3) and because ψ
N,x

τN,x is a non-negative random variable, we have,
for all β ∈R, N ∈ N and x ∈ �N ,∫ ∞

0
PN

(
X

N,x
t ∈ �N

)
dt =

∫ ∞

0
P
(
ψ

N,x

τN,x > t
)

dt = E
[
ψ

N,x

τN,x

]
. (B.4)

By the definitions of νN , ψN,x and φN,x above, we have

ψ
N,x

τN,x = α

2N

N−1∑
y=1

	
N,x

τN,x (z
N
y ) ,

and, thus,

E
[
ψ

N,x

τN,x

]
= α

2N

∑
y∈�N

E
[
	
N,x

τN,x (z
N
y )

]
. (B.5)

Because the local times are non-negative random variables, we get, for all N ∈ N and y ∈ �N ,

E
[
	
N,x

τN,x (z
N
y )

]
=

∫ ∞

0
P
(
	
N,x

τN,x (z
N
y ) > t

)
dt
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=
∫ ∞

0
P
(
	
N,x

τN,x (z
N
y ) > t and BτN,x + zN

x = zN
0

)
dt

+
∫ ∞

0
P
(
	
N,x

τN,x (z
N
y ) > t and BτN,x + zN

x = zN
N

)
dt . (B.6)

Let us provide, for all N ∈ N, an upper bound uniform in x and y ∈ �N for the first term on the r.h.s.
above. To this purpose, we employ [10], Formula 3.3.6(a), p. 214: for all x, y ∈ �N ,

P
(
	
N,x

τN,x (z
N
y ) > t and BτN,x + zN

x = zN
0

)
= CN,x

y exp
(
−DN

y t
)

, (B.7)

where

CN,x
y :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zN
N − zN

x

zN
N − zN

0

if y < x(
zN
x − zN

0

)(
zN
N − zN

y

)
(
zN
y − zN

0

)(
zN
N − zN

0

) if y ≥ x ,

and

DN
y := zN

N − zN
0

2
(
zN
N − zN

y

)(
zN
y − zN

0

) .

By integrating over time the expression in (B.7), we get∫ ∞

0
P
(
	
N,x

τN,x (z
N
y ) > t and BτN,x + zN

x = zN
0

)
dt

= 2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zN
N − zN

x(
zN
N − zN

0

)2

(
zN
N − zN

y

)(
zN
y − zN

0

)
if y < x

zN
x − zN

0(
zN
N − zN

0

)2

(
zN
N − zN

y

)
if y ≥ x ,

from which we obtain the following upper bound, uniform in x and y ∈ �N :∫ ∞

0
P
(
	
N,x

τN,x (z
N
y ) > t and BτN,x + zN

x = zN
0

)
dt ≤ 2

(
zN
N − zN

0

)
. (B.8)

An analogous argument yields∫ ∞

0
P
(
	
N,x

τN,x (z
N
y ) > t and BτN,x + zN

x = zN
N

)
dt ≤ 2

(
zN
N − zN

0

)
, (B.9)

for all x and y ∈ �N . By (B.4), (B.5), (B.6), (B.8) and (B.9), we get:∫ ∞

0
PN

(
X

N,x
t ∈ �N

)
dt ≤ 2α

(
zN
N − zN

0

)
.

The upper bound in (B.2) concludes the proof. �
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