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Abstract
We present an approach for the calculation of the Z2 topological invariant in non-crystalline
two-dimensional quantum spin Hall insulators. While topological invariants were originally
mathematically introduced for crystalline periodic systems, and crucially hinge on tracking the
evolution of occupied states through the Brillouin zone, the introduction of disorder or dynamical
effects can break the translational symmetry and imply the use of larger simulation cells, where
the k-point sampling is typically reduced to the single Γ-point. Here, we introduce a single-point
formula for the spin Chern number that enables to adopt the supercell framework, where a
single Hamiltonian diagonalisation is performed. Inspired by the work of Prodan
(2009 Phys. Rev. B 80 125327), our single-point approach allows to calculate the spin Chern
number even when the spin operator ŝz does not commute with the Hamiltonian, as in the
presence of Rashba spin–orbit coupling. We validate our method on the Kane–Mele model, both
pristine and in the presence of Anderson disorder. Finally, we investigate the disorder-driven
transition from the trivial phase to the topological state known as topological Anderson insulator.
Beyond disordered systems, our approach is particularly useful to investigate the role of defects, to
study topological alloys and in the context of ab-initiomolecular dynamics simulations at finite
temperature.

1. Introduction

Two-dimensional (2D) topological insulators (TI) are materials with an insulating bulk and robust edge
states protected by the non-trivial topology of the bulk electronic structure [1, 2]. These systems are
discussed through topological invariants, integer quantities which characterise the ground-state electronic
wavefunction in the bulk. As long as the topological invariant is non-trivial and, possibly, the symmetries
needed to define that topology are preserved, the material is said to be in a topological phase. These
invariants are geometrical properties of the electronic structure, as they are defined in terms of quantities
such as the Berry phase or the Berry curvature, which involve derivatives of the occupied states in reciprocal
space with respect to the quasi-momentum k [2]. Standard geometrical formulas are usually discretised on a
regular mesh of k-points for numerical implementation. However, most electronic structure calculations for
non-crystalline systems are normally performed by diagonalising the Hamiltonian at a single k-point in a
large supercell. Usually the Γ point at the centre of the Brillouin zone (BZ) is considered, although
potentially more efficient choices based on the Baldereschi point [3] can be employed. The derivation of
single-point formulas for geometrical and topological properties is not at all a trivial task, although
successful single-point formalisms have been developed for the Berry phase [4], the orbital magnetisation
and the Chern number [5].

In this work, we target the calculation of the topological invariant for non-crystalline 2D insulators with
time-reversal (TR) symmetry. As we deal with electronic systems, the TR operator enjoys that T 2 =−1 and
in two dimensions the invariant ν is a Z2 number: if ν= 0 the topology is trivial, otherwise if ν= 1 we have a
quantum spin Hall insulator, where topologically-protected gapless helical edge states cross the bulk gap [2].
Notably, the systems classified by the Z2 invariant encompass the large set of non-magnetic 2D materials [6].
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Over the years, several methods have been developed to calculate the Z2 invariant in crystalline systems
with periodic boundary conditions. In the following, we briefly outline some of the most popular and
practical methods in the context of electronic structure simulations. If inversion symmetry is present, there is
a particularly simple method introduced by Fu and Kane [7], which requires the knowledge of the parity of
the occupied states at the four TR-invariant points in the BZ. In the more general case, the Z2 invariant can
be obtained by tracking the evolution of hermaphrodite [8] (a.k.a. hybrid) Wannier charge centres [9–11], or
equivalently the eigenvalues of the Wilson loop [12–14], over half BZ. More recently, generalisations of the
Fu–Kane approach based on elementary band representation [15, 16] have been proposed to infer
topological phases from the symmetry labels of the occupied bands at high-symmetry points in the
BZ [17, 18]. This approach has been systematically formalised through the theories of symmetry-based
indicators [19–22] and topological quantum chemistry [23–25], and these have been applied to
non-magnetic materials databases to identify non-trivial materials of various classes [26–28]. The Z2

invariant can be also computed as an individual Chern number [2] on half of the Hilbert space [10, 11],
where the split is performed by two projectors which are smooth and related by TR symmetry. Although
several formulas to compute the Z2 invariant have been introduced, all the ones we mentioned, and most
other existing approaches, require the knowledge of the occupied states at multiple k-points and become
ill-defined for non-crystalline systems; hence in the supercell framework they are of no avail.

Nonetheless, a number of methods have been proposed to deal with non-periodic systems. Some of
these [29–31] calculate the Z2 invariant by means of a Pfaffian with twisted boundary conditions, as firstly
advocated by Kane and Mele in their original discussion of the Z2 invariant in presence of disorder and
electron–electron interactions [32]. A different method is based on constructing the Z2 invariant from the
scattering matrix of the system at the Fermi level [33, 34]. Further, there exists a formulation relying on the
non-commutative index theorem [35, 36], where the Z2 index for disordered topological insulators is
computed from the discrete spectrum of a certain compact operator, which is defined as the difference of a
proper pair of projection operators [37–39]. An alternative non-commmutative approach was proposed by
Loring and Hastings [40, 41] and relates the Z2 index to the topological obstruction to approximating almost
commuting matrices by exactly commuting matrices; its robustness with respect to the introduction of
disorder has been investigated in [42]. Very recently, a novel method based on the concept of spillage [43] has
been proposed [44], where the identification of topological phases in a non-crystalline system is obtained by
calculating the spillage with respect to a crystalline reference structure, whose topological characterization
can be performed with standard methods. The most practical approach from the point of electronic
structure simulations has been arguably put forward by Huang and Liu [45, 46], who addressed the problem
of calculating the Z2 invariant for non-periodic system in the context of quantum spin Hall quasicrystals,
and introduced the spin Bott index, which measures the commutativity of the projected position
operators. The connection between the Bott indices and Chern or Z2 invariants has been investigated
theoretically [40–42, 47], while numerical simulations [46, 48, 49] provided evidence that Bott indices can be
used to study non-periodic topological systems. Still, it is conceptually rather unsatisfactory that the
calculation of topological invariants in a supercell framework requires introducing radically different
formalisms, which call for rather non-trivial equivalence proofs and extensive testing. As a matter of fact, the
use of the primitive cell and k-points is an arbitrary—although indeed very convenient—choice; there is no
conceptual reason preventing bona fide Z2 invariants to be calculated directly in the supercell by deriving a
suitable single-point limit. In addition, it is important to assess the convergence with respect to the system
size, as different approaches might deliver the same correct answer at very different computational costs. For
instance, recent works [46, 47] claimed that the difference between the Chern number and Bott index is
within a correction of the order O(1/L), where L is the linear size of the system. Such slow convergence can
hinder the study of the system close to a topological phase transition; in fact Huang and Liu empirically
added a singular value decomposition to their algorithm to improve an otherwise slow convergence [46].

Here, we take a different approach, that essentially combines the work of Ceresoli and Resta on the
single-point Chern number [5] and the insights from Prodan on a generalised spin Chern number [50].
Notably, our single-point invariant is directly derived by its parent formula for crystalline systems, it shows
exponential convergence with the supercell size, both in the pristine and disordered case, it is easy to
implement in electronic structure codes, and it works well also in presence of strong Rashba spin–orbit
coupling (SOC).

2. Methods

In absence of spin-mixing spin–orbit interactions, the spin operator ŝz commutes with the Hamiltonian and
it is possible to discuss the Z2 invariant in terms of the spin Chern number. In this case, the occupied states
diagonalise ŝz and can be divided in two subsets, either purely spin-up or spin-down, and the regular Chern
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number can be calculated for each spin. As soon as the Hamiltonian does not commute any more with ŝz, for
instance because Rashba SOC is present, such simple-minded spin Chern number cannot be defined any
more. Notably, Prodan has shown [50] that it is possible to generalise this definition by projecting the spin
operator on the occupied states:

Pz = P(k)̂szP(k), (1)

where P is the ground-state projector

P(k) =
∑
n

|unk⟩⟨unk|, (2)

unk are the periodic part of the Bloch eigenstates and n labels the occupied state at each k-point in the BZ.
Then, we diagonalise Pz:

Pz|uλ⟩= sλ|uλ⟩. (3)

If only diagonal SOC terms are present, the eigenvalue spectrum of Pz consists of two values only sλ =± 1
2

and one can select a single spin component by choosing the eigenstates which correspond to one of the two
eigenvalues sλ. The crucial observation made by Prodan [50] is that, even if Rashba SOC is present, the
spectrum of Pz displays two separate bands of eigenvalues symmetric around the origin and one can still
introduce a well-defined spin Chern number by selecting the eigenvectors with positive (or negative)
eigenvalues. Finally, the spin Chern number can be computed as:

Cs =
C+ −C−

2
mod 2 (4)

where C± are calculated on the uλ eigenstates with positive and negative eigenvalues respectively; in general
it is sufficient to compute either C+ or C− only and consider its parity. These results are of paramount
practical relevance, as it is typically much simpler to deal with a formulation based on generalised Chern
numbers, which can be written as full BZ integrals and do not require taking into account TR symmetry or
complex gauge fixing, as required instead by more general Z2 formulations [32, 51].

In principle, if the Rashba interaction is strong enough then the gap of the Pz spectrum might close,
preventing the spin Chern number to be defined. Remarkably, as we will discuss in full detail in the section 3,
this does not seem to occur in practice. As long as the system is insulating, equation (4) is well defined even if
the Rashba SOC is several times larger than the diagonal SOC. Hence, we adopt the approach of Prodan [50]
and target the derivation of a single-point formula. In order to obtain the correct single-point limit, we
follow the approach of Ceresoli and Resta [5] for the derivation of the single-point Chern number in
TR-broken systems (the latter admit a Z topological invariant). Let us start with the formula for the
generalised spin Chern number in 2D periodic systems:

Cσ =
1

2π

ˆ
BZ
Tr Ωσ

xy(k)dk (5)

=
1

2π

∑
λ∈{λσ}

ˆ
BZ
−2Im⟨∂kxuλ(kx,ky)|∂kyuλ(kx,ky)⟩dkxdky, (6)

where uλ are the eigenvectors of Pz with eigenvalues sλ (see equation (3)) and the set {λσ} includes only the
ones having either positive (σ =+) or negative (σ =−) eigenvalues. Now we consider the parallelogram
Brillouin zone and change coordinate system to have a rectangular integration domain:

Cσ =− 1

π
Im

∑
λ∈{λσ}

ˆ b1

0
dk1

ˆ b2

0
dk2⟨∂k1uλ(k1,k2)|∂k2uλ(k1,k2)⟩ (7)

≃−|b1||b2|
π

Im
∑

λ∈{λσ}

⟨∂k1uλ(k1,k2)|∂k2uλ(k1,k2)⟩|k=Γ, (8)

where b1,2 are the two reciprocal lattice vectors and the last step is performed in the limit of a very large
supercell. In the same limit, we can calculate derivatives through finite differences:

∂kj |uλ(k1,k2)⟩|k=Γ = lim
η→0

|uλ(ηbj)⟩− |uλ(Γ)⟩
η|bj|

, (9)

3



where, for a large supercell, we can drop the limit and just consider the difference |uλ(bj)⟩− |uλ(Γ)⟩.
Equation (9) requires a differentiable function, which is not guaranteed in numerical diagonalisations.
Hence, we fix the gauge by adopting a discretised version of the covariant derivative [52, 53] as successfully
performed for the Chern number by Ceresoli and Resta [5]. One replaces the states with their ‘duals’:

|ũλ(bj)⟩=
∑
µ

S−1
µλ(bj)|uµ(bj)⟩ (10)

where we define the overlap matrix Sλµ(bj) = ⟨uλ(Γ)|uµ(bj)⟩ and the dual states satisfy
⟨uλ(Γ)|ũµ(bj)⟩= δλµ. Next, we construct the states uλ(bj) by imposing the periodic gauge, which allows us
to perform a single diagonalisation at Γ:

|uλ(bj)⟩= e−ibj·r|uλ(Γ)⟩. (11)

The states in equation (11) are Pz eigenstates at bj, but they might correspond to different eigenvalues with
respect to the ones at Γ; the ordering is anyway fixed by the covariant derivative. We note in passing, that
while a non-trivial Chern number would prevent the adoption of a periodic gauge for the wavefunction, here
the periodic gauge is only temporarily imposed to build each |uλ(bj)⟩ from the knowledge of the |uλ(Γ)⟩,
but it is effectively replaced by the parallel transport gauge enforced by the covariant derivative. The final
single-point formula for the spin Chern number is

C(asym)
σ =−|b1||b2|

π
Im

∑
λ∈{λσ}

⟨ũλ(b1)|ũλ(b2)⟩. (12)

In equation (12), we emphasise with the superscript ‘asym’ the implicit choice made in equation (9), which
corresponds to the right-hand derivative. In fact, an alternative choice is the symmetric derivative

∂kj |uλ(k1,k2)⟩|k=Γ ≃
|uλ(bj)⟩− |uλ(−bj)⟩

2|bj|
, (13)

which can also be computed with a single Γ-only diagonalisation and leads to the following formula for the
spin Chern number:

C(sym)
σ =−|b1||b2|

4π
Im

∑
λ∈{λσ}

(⟨ũλ(b1)| − ⟨ũλ(−b1)|)(|ũλ(b2)⟩− |ũλ(−b2)⟩) . (14)

In section 3, we will show how the symmetric formula converges much faster than the asymmetric version, at
essentially the same computational cost.

We have implemented the single-point formulas in a dedicated Python package, available on GitHub1.
The code provides user-friendly interfaces to two popular tight-binding (TB) packages such as PythTB2 and
TBmodels [54], and it can be easily interfaced to other codes.

3. Numerical results and discussion

We validate our approach on the paradigmatic Kane–Mele (KM) model [32, 55], both pristine and in
presence of Anderson disorder (see figure 1). It is a model of spin s= 1

2 fermions on the honeycomb lattice,
whose TB Hamiltonian reads

HKM = t
∑
⟨i,j⟩

c†i cj +∆
∑
i

ξic
†
i ci + iλSO

∑
⟨⟨i,j⟩⟩

νijc
†
i σ

zcj + iλR

∑
⟨i,j⟩

c†i (σ× d̂ij)zcj, (15)

where i and j run over all sites in the lattice and the creation and annihilation operators are expressed in the
contracted form c†i = (c†i↑, c

†
i↓). The first term is a real nearest-neighbour hopping (denoted by ⟨ ,⟩), if taken

alone that would yield four (pair-degenerate) bands with gapless Dirac cones centred at the high-symmetry
points K and K ′ in the BZ. The second term is a staggered on-site potential (ξi =±1 is the sublattice index of
the ith site) while the third term is the KM SOC [32, 55] which involves a complex next-nearest neighbour
hopping (denoted by ⟨⟨ ,⟩⟩) with a spin-dependent amplitude proportional to the Pauli matrix σz. The
factor νij = sign(d1 × d2)z depends on the orientation of the vectors d1 and d2 along the two bonds

1 https://github.com/roberta-favata/spinv
2 www.physics.rutgers.edu/pythtb/index.html
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Figure 1. The Kane–Mele model in the supercell approach. Left panel: pristine Kane–Mele model, the primitive cell is shown in
orange while a 3× 3 supercell is marked in blue. Right panel: random realisation of a disordered Kane–Mele model in a 3× 3
supercell (green) with periodic boundary conditions, where different colours are used to represent the on-site terms. In the
following, supercells are labelled by their integer size L× L (in units of the pristine primitive cell) and the corresponding number
of sites N= 2L2.

Figure 2. Convergence of the single-point spin Chern number, in its symmetric and asymmetric implementation, with respect to
supercell size for the Kane–Mele model, where the Hamiltonian is diagonalised at the Γ-point only. In the uppest insets, a sketch
of the corresponding point in the pristine phase diagram. The lowest insets show the difference between the single-point
calculations of the spin Chern number and the thermodynamic limit. Left panel: the spin Chern number converges to zero in the
trivial phase (∆/λSO = 5.5, λR/λSO = 3). Right panel: in the topological phase (∆/λSO = 0.8 , λR/λSO = 2) the spin Chern
number converges to one. In all cases, the asymptotic convergence is exponential, but the symmetric formula converges visibly
faster than its asymmetric counterpart.

connecting i to the next-nearest neighbour site j. The fourth term is the Rashba SOC and is a complex
nearest-neighbour hopping with off-diagonal spin components, where σ = (σx,σy,σz) is the vector of Pauli
matrices and d̂ij is the unit vector between sites j and i. In the following, we consider a KM Hamiltonian at
fixed parameters t= 1 and λSO = 0.03 t, which ensure that the energy gap is insulating all over the entire
phase diagram [32, 55].

3.1. Validation and convergence tests for crystalline systems
In the single-point approach, the topological invariants become exact integer numbers only in the
thermodynamic limit of an infinite supercell. First, we test the convergence properties of the single-point
spin Chern number (SPSCN) on the pristine KMmodel, in both asymmetric (equation (12)) and symmetric
(equation (14)) formulation. We inspect the SPSCN as a function of the supercell size L, here defined as the
number of primitive cells along each lattice vector that makes the supercell L× L (see figure 1); the number
of sites inside the supercell is N= 2L2. A representation of a supercell 3× 3 is given in the left-hand panel of
figure 1. In our calculations only values of L which are multiple of 3 are considered, to always include the
special points K and K ′ folded at Γ. We benchmark the accuracy of the formulas inside the Z2-even and
Z2-odd domains in figure 2.

The symmetric formula converges faster than the asymmetric one in both trivial and topological phases.
Remarkably, the quantity∆Cσ = |Cσ(L)−Cσ(∞)|, which is the difference between the spin Chern number
given by the single-point formulas at finite sizes and the exact value obtained in the thermodynamic limit,
decreases exponentially in both formulations. However, the global prefactor in the symmetric case is an order
of magnitude smaller than the one of the asymmetric formula, leading to more accurate results at
significantly smaller sizes L. Hence, in the following we adopt the symmetric formula only and study the
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Figure 3. Left panel: the single-point spin Chern number (symmetric formula) versus the on-site term∆ at fixed λR/λSO = 2
for the Kane–Mele model. Different supercell sizes are considered (L= 9, 21, 51, and corresponding number of sites
N= 162, 882, 5202). As the supercell size increases, the transition becomes sharper and approaches the analytical solution.
Right panel: gap Ẽg of the P̂szP operator versus the on-site term∆ for the same supercell sizes as on the left-hand panel.
A non-vanishing Ẽg guarantees that the spin Chern number is well defined.

Figure 4. Upper panel: topological phase diagram of the Kane–Mele model calculated with the single-point spin Chern number
(symmetric formula), for a supercell size L= 36 containing N= 2592 sites. Black dashed line marks the analytical solution for the
semi-metallic state separating the topological and trivial phases. Lower-left panel: gap Ẽg of the P̂szP operator for the same
calculations performed in the upper panel. Notably, Ẽg is non-vanishing over all the phase diagram and guarantees that the spin
Chern number is well defined everywhere. Lower-right panel: the single-point spin Chern number versus the Rashba coupling
λR, at fixed∆/λSO = 0.3, for different supercell sizes L= 21, 36, 48 and corresponding number of sites N= 882, 2592, 4608.
In that region of the phase diagram, band gaps are very small and finite size effects intensify; still the single-point approach can
distinguish the two phases.

topological phase transition as a function of the on-site∆, results are reported in figure 3. Our SPSCN is able
to reproduce the sharp topological transition already at relatively small supercell sizes, as shown in the
left-hand panel of figure 3. The band gap vanishes on the boundary of the phase transition and in the
corresponding neighbourhood of parameters convergence is slower and larger supercell sizes must be
employed. In the right-hand panel of figure 3, we show how the gap Ẽg of the Pz operator varies across the
topological phase transition, but always remains finite, ensuring that our single-point invariant is everywhere
well defined. Then, we validate the SPSCN by calculating the entire topological phase diagram of the KM
model, which is reported in the upper panel of figure 4. Notably, the method can distinguish topological and
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Figure 5. Convergence of the single-point spin Chern number, in its symmetric and asymmetric implementation, with respect to
supercell size L for the disordered Kane–Mele model. We report the average and standard deviation of the single-point invariant
calculated onM= 100 realisations with disorder strengthW/t= 1. In the upper insets, the point in the corresponding pristine
phase diagram is shown. In the lowest insets, we report the difference between the mean value and the thermodynamic limit as a
function of L. Left panel: the spin Chern number converges to zero for∆/λSO = 5.5 and λR/λSO = 3. Right panel: the spin
Chern number converges to one for∆/λSO = 0.8 and λR/λSO = 2. Also in presence of disorder, the asymptotic convergence is
exponential and the symmetric formula converges visibly faster than its asymmetric counterpart. Statistical fluctuations are very
small and negligible at almost any supercell size.

trivial phases even for small, but still finite, values of both the gap of the Hamiltonian and the gap of Pz
(the latter is reported in the lower left-hand panel in figure 4). Larger differences between the SPSCN and the
exact value (zero), which are visibile in the upper-left side of the topological phase diagram (marked in blue),
are finite-size effects and are reduced for large supercells, as highlighted in the lower right-hand panel in
figure 4: in that region both the Hamiltonian and the Pz operator gaps are indeed very small. Therefore, our
formulas work well also in presence of very strong Rashba SOC and small band gaps.

3.2. Convergence tests and topological phase transitions in presence of disorder
The presence of disorder is often modelled by means of an ensemble of large supercells, each representing a
specific random realisation as schematically represented in the right-hand panel of figure 1. In electronic
structure simulations, defect calculations are performed by considering large supercells, to suppress the
spurious interactions due to the periodic replicas. Alloys are often simulated through the so-called special
quasi-random structures [56]. In addition, a non-perturbative treatment of temperature effects always
requires working with supercells, being a single structure with special atomic displacements [57] or a
collection of snapshots obtained from ab initiomolecular dynamics.

The SPSCN particularly suits this framework, and we now assess the accuracy and convergence
properties of our formula on the KMmodel supplemented by an Anderson disorder term [58], where we
highlight its capability to detect topological phase transitions due to the presence of disorder. We emphasise
that the simple KMmodel in presence of rather strong Anderson disorder is used as a prototype and a proxy
for testing, although our approach targets the more general scenario mentioned above, of supercell
calculations, either for model Hamiltonians or first-principles simulations.

The Hamiltonian of the disordered KMmodel reads

Hdis =HKM +
∑
i

wic
†
i ci, (16)

where wi ∈
[
−W

2 ,
W
2

]
is a randomly distributed on-site potential andW is the disorder strength which, in the

following, is reported in units of the nearest-neighbour hopping amplitude t. In figure 5 we test the
convergence of the single-point formulas (equations (12) and (14)) with increasing supercell size L for the
disorder strengthW/t= 1, which is weak enough not to destroy the topological phases of the corresponding
pristine KMmodel. The SPSCN is evaluated as the mean value overM realisations of random disorder with
supercells of size L× L. Also in presence of disorder, the convergence of the formulas is exponential and the
symmetric version converges faster than the asymmetric one.

In addition, we consider increasing disorder strengths and study the robustness of the topological phase,
results are reported in figure 6. For sufficiently strong disorder, the topological phase is destroyed and the
SPSCN becomes trivial. As expected, the width of the phase transition becomes smaller with increasing
supercell sizes.

Furthermore, as investigated in [59], for a certain range of parameters, the disordered KMmodel given
by equation (16) displays a topological state called topological Anderson insulator (TAI). It is a phase of
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Figure 6. Robustness of the topological phase with respect to disorder. The symmetric single-point spin Chern number is
calculated as a function of the disorder strengthW/t, starting from the system in the topological phase (∆/λSO = 3,
λR/λSO = 1). For eachW, we report the mean and standard deviation overM= 50 realisations of Anderson disorder for
supercells of sizes L= 15, 42 and number of sites N= 450, 3528 respectively. Upper inset: a sketch of the point where the
calculations are computed reported on the pristine phase diagram (W/t= 0). Lower inset: minimum value, over the disorder
realizations, of the gap Ẽg of the P ŝzP operator as a function ofW/t. With increasing supercell size L, the transition becomes
sharper. Ẽg does not vanish with Anderson disorder and the approach performs well also in the strong-disorder regime.

Figure 7. Topological Anderson insulator (TAI). The symmetric single-point spin Chern number is calculated as a function of the
disorder strengthW/t, starting from the system in a trivial state close to the phase transition. We report the mean value and the
standard deviation overM= 50 realisations of Anderson disorder for supercells of sizes L= 15, 42 and corresponding numbers
of sites N= 450, 3528 respectively. For 5 ⩽W/t ⩽ 10 the number of random realisations is purposely increased toM= 100 to
reduce the standard deviation. Left panel: TAI state in absence of Rashba coupling (∆/λSO = 5.5, λR = 0). Right panel: TAI at
finite Rashba coupling (∆/λSO = 5.3, λR/λSO = 1). Here, the minimum value of the gap Ẽg (overM disorder realizations) is
reported versusW/t in the lower inset (the same plot is not present in the right-hand left panel since Ẽg is constantly equal to one
for λR = 0).

quantized conductance which is obtained adding Anderson disorder to a trivial insulator or metal which are
relatively close to a topological phase transition [60–62]. The mechanism for this disorder-induced transition
has been discussed in terms of a renormalization of the model parameters such as the on-site term [61]. The
weak-disorder boundary of a TAI can be studied within an effective-medium theory and the self-consistent
Born approximation [59, 61], but these perturbative approach might fail in the strong-disorder regime,
where the TAI phase is destroyed in favour of a trivial insulating phase, as we show next. In figure 7 we use
the SPSCN to inspect the topological invariant as a function of the disorder strength. In order to compare
with previous work on the disordered KMmodel [59] and for the sake of clarity, we consider a value of
λSO = 0.3 t which is an order of magnitude greater than the one used for the previous examples. First, we fix
λR = 0 (left-hand panel) and observe that the TAI appears at aboutW/t= 2, in agreement with the
conductance calculation in [59] and the spin Bott index results in [46] (note the factor of two with respect to
theW defined therein). Then, we consider finite Rashba SOC and show the results in the right-hand panel of
figure 7, where we note that the TAI region has become narrower, in agreement with [59]. A check on the gap
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Ẽg of the operator Pz is performed for every SPSCN calculation in presence of disorder: Anderson disorder
never fully closes the gap and the invariant can always be computed.

4. Conclusions

In this work, we have introduced a robust and efficient single-point formula to calculate the Z2 topological
invariant in non-crystalline 2D materials. We have validated our method with supercell numerical
simulations on the KMmodel, both pristine and disordered. Our approach can reproduce the entire phase
diagram of the KMmodel, where each calculation requires only a single-point diagonalisation in the
supercell framework, even in presence of strong Rashba SOC. In addition, we have extensively tested our
method in presence of Anderson disorder, and we have shown how the single-point formula can correctly
describe topological phase transitions appearing in the presence of strong disorder. In particular, we have
discussed both the process where disorder destroys the topological phase and where disorder actually
promotes it, as for the TAI phase; that is in agreement with calculations of the conductance [34, 59] and spin
Bott index [46] reported in the literature. Our single-point approach converges exponentially with size, so it
is typically sufficient to work with relatively small supercells, which is critical for applications in ab initio
modelling. One of the side benefits of adopting Prodan’s approach is that the formula can, at least in
principle, be meaningful also in presence of weak TR-breaking perturbations [50, 63]. This feature could be
useful to study how the bulk topology is affected by the presence of magnetic impurities, or of a magnetic
substrate through the proximity effect; even though the absence of TR symmetry would allow backscattering
between the two helical edge states. To encourage the use of our approach, we release a dedicated Python
package that allows to seamlessly calculate the single-point Chern (Z) and spin-Chern (Z2) invariants of any
TB model thanks to dedicated interfaces to PythTB and TBmodels, two very popular TB codes. Notably,
these two packages also allow working with Wannier Hamiltonians, which are read in the format produced
by Wannier90 [64, 65]; that provides a simple way to apply our work in the context of first-principles
calculations. Then, it would be interesting to explore the effect of the TB approximation where the real-space
position operator is taken to be diagonal, versus considering all off-diagonal elements, essentially taking into
account the overlap between Wannier functions. Nonetheless, the formalism is rather simple and it could be
implemented with limited effort directly into plane-wave first-principles codes, such as Quantum
ESPRESSO [66, 67]. In short, our approach allows studying 2D topological insulators in a supercell
framework, which is crucial to investigate very relevant phenomena such as disorder, defects, alloying, and to
study dynamical and temperature effects through ab initiomolecular dynamics simulations.
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