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Abstract— We show how the recent works on data driven
open-loop minimum-energy control for linear systems can be
exploited to obtain closed-loop piecewise-affine control laws,
by employing a state-space partitioning technique which is at
the basis of the static relatively optimal control. In addition,
we propose a way for employing portions of the experimental
input and state trajectories to recover information about the
natural movement of the state and dealing with non-zero initial
conditions. The same idea can be used for formulating several
open-loop control problems entirely based on data, possibly
including input and state constraints.

I. INTRODUCTION

Recently, the control community has witnessed an in-
creased interest in data-driven approaches, that allow to
synthesize controllers directly from data, without resorting to
system identification. As a matter of fact, as the complexity
of the system to be controlled increases, building an accurate
model of the system dynamics can be difficult, expensive,
and time-consuming [1], [2]. Therefore, finding alternative
model-free approaches is desirable. In the case of linear,
unconstrained discrete-time systems, for example, explicit
formulas for the open-loop minimum energy control, based
entirely on experimental data, are provided by [3]. A gener-
alization to a less restricted experimental framework is pre-
sented in [4], while some applications on complex systems,
such as power-grid networks and brain networks, are reported
in [5]. Basically, these are off-line approaches, leading to
optimal open-loop input sequences from data-batch collected
in preliminary experiments. Besides the mentioned open-
loop approaches, the data-driven closed-loop control problem
has been studied as well, often employing the fundamental
lemma [6] stating that, under the assumption of persistence
of excitation, a finite set of input-output data is sufficient
to describe all possible trajectories of a linear time-invariant
system. In [7], [8] authors propose a data-driven formulation
of the linear quadratic regulator (LQR) problem with infinite
and finite optimization time horizons, respectively. The above
results can also be extended to nonlinear systems, if the data
collected during the experiment satisfy suitable conditions
[9]. An extension to the case when data are corrupted by
noise is proposed in [10]. [11], [12], [13] and [14] propose
data-driven solutions to address the model predictive control
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(MPC) problem, again relying on [6]. In [15] authors provide
tractable conditions to verify the dissipativity property in
non linear systems, without an explicitly identified model. In
particular, they present an offline data-based non-parametric
characterization of nonlinear functions based on polynomial
approximation. For a detailed literature overview, we refer
readers to [16].

In the present work, we deal with open-loop optimal
control sequences obtained by the sole experimental data, and
specifically, by sequences of inputs and the corresponding
states. The aim is to exploit such open-loop sequences to get
closed-loop control laws, without resorting to the knowledge
of the systems matrices; in other words, to obtain a data-
driven closed-loop controller. The state-space partitioning
technique described in [17], in the context of a static version
of the relatively optimal control [18] is suitable to that
aim, since it relies on the optimal input and state trajectory
only. In particular, it does not require the knowledge of the
system dynamics. The remaining of the paper is organized as
follows: Section II recalls how the static ROC can be used for
synthesizing a closed-loop controller starting from optimal
open-loop input and state sequences; Section III provides
an explicit, data-driven, formula for the minimum energy
control sequence leading the state to zero from an arbitrary
initial state and shows how to recover the corresponding state
trajectory; Section IV provides an extension that allows to
incorporate state and input constraints while computing the
optimal input sequence; two numerical examples are pro-
vided in Section V, and conclusions are drawn in Section VI.

II. STATIC RELATIVELY OPTIMAL CONTROL

The Relatively Optimal Control (ROC) [18] is a kind
of control that, besides being stabilizing, guarantees the
optimality of certain trajectories, specifically, those starting
from a given (or a set of given) initial conditions. Both linear
dynamic [18], and non-linear static [17] implementations
of ROC for linear systems have been proposed, as well
as a continuous-time solution based on the Youla–Kučera
parameterization [19].

Consider the time-invariant discrete-time linear system

x(k + 1) = Ax(k) +Bu(k), (1)

where A ∈ Rn×n, B ∈ Rn×m, while x(k) ∈ Rn and u(k) ∈
Rm denote respectively the state and the input at time k ∈ N.
For a given horizon K, and initial state xini, the following
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open-loop control problem can be formulated:

Jopt(xini) = min
K−1∑
k=0

l(x(k), u(k))

subject to: (1) k = 0 . . .K − 1

x(0) = xini, x(K) = 0,

(2)

where l(·, ·) is a convex function of its arguments, and the
decision variables are the control actions u(0), . . . , u(K −
1). The main result (Theorem 3) of [17] states that, if the
optimal state and input trajectory (solution of the previous
optimization problem) is such that the residual cost is strictly
decreasing, i.e.,

K−1∑
k=k̄

l(x(k),u(k)) <
K−1∑

k=k̄+1

l(x(k), u(k)),

∀ k̄ = 0, . . . ,K − 2

(3)

then a piecewise-affine, globally stabilizing, and relatively
optimal control law can be computed based on a suitable
partition of the state-space. Such a static state-feedback is
referred to as static ROC. Furthermore, [17] provides a
constructive procedure, to get the mentioned control law, that
does not require the knowledge of A and B. The procedure
requires the knowledge of the sequence of control actions
u(0), . . . , u(K − 1), which brings the state from xini to zero
while minimizing the cost Jopt(xini), and the corresponding
state trajectory. The convex hull of states of the optimal
trajectory, and their opposite, defines a region in the state
space (the gray shaded polytope in the two-dimensional
example of Figure 1). Such a region is partitioned into
simplices, whose vertices are states of the optimal state
sequence (and their opposite).

The remaining part of the state space (i.e., the region
outside the convex hull), can be partitioned into cones,
centered in origin, and truncated to keep the cone part outside
the already defined convex hull (see the dot-dashed lines in
Figure 1).

For the detailed partitioning procedure, we refer the reader
to [17]. Here, we only recall that, given the simplicial
partition of the state space, the local control law associated to
each simplex (i.e., the control law to be applied to the system
when the current state belongs to a particular simplex) is
the convex combination of the control inputs corresponding
to the vertices of the simplex. The control law associated
with each truncated cone is, as well, a linear combination
of a properly chosen subset of the optimal control actions,
minimizing the cost Jopt(xini) (see [17] for details). As a
result, a piece-wise affine control law is obtained that is
proven to be stabilizing and guaranteeing the optimality of
the trajectories starting from xini.

In the following, we apply the static ROC to obtain a
closed-loop control law from data-driven, open-loop, optimal
trajectories.

III. DATA-DRIVEN MINIMUM ENERGY CONTROL
The present section is focused on the data-driven minimum

energy control, because some of the results we will apply

come from the literature on that subject. However, as it will
be shown in Section IV, the proposed methodology can be
applied to open-loop trajectories other than minimum-energy
ones. For a given horizon K, the minimum-energy control
problem to zero is that of finding, among the input sequences
that drive the state from x(0) = xini to x(K) = 0, the one
of minimum energy, i.e. the one minimizing

∑K−1
k=0 ∥u(k)∥22.

Clearly, the problem is a special case of (2), corresponding
to l(x(k), u(k)) = ∥u(k)∥22. Let us denote (with slight
abuse) by u the sequence [u(K − 1)⊤, . . . , u(0)⊤]⊤, and
by u∗ the optimal one. With the same notation, the optimal
input sequence u∗ can be expressed as the minimum 2-norm
solution of the following equation:

0 = AKxini +
[
B AB . . . AK−1B

]︸ ︷︷ ︸
RK

u, (4)

where RK is the K-steps reachability matrix. For A and B
(and, thus, RK) known, the solution of the above problem
is well-known to be [20]

u∗ = −R†
K

(
AKxini

)
, (5)

where † denotes the Moore-Penrose pseudo-inverse.
Here, we are interested in solving Equation (4) relying on

experimental data only. In addition, since the ROC technique
described in the previous section requires the optimal open
loop state trajectory, besides the optimal input sequence, we
need to compute from data the optimal state sequence as
well. The mentioned issues are dealt with in the following
subsections. When the optimal input and state sequences
have been computed based on data, the ROC technique can
be applied, leading to a closed-loop, stabilizing, data-driven
control law. An example is reported in Section V.

xini

−xini

Fig. 1. State-space partition: the gray shaded part represents the convex
hull of the optimal trajectory (5-steps long) starting at xini and its opposite.
The green shaded polytope, corresponding to the last n steps of the optimal
trajectory, is not partitioned into simplices [17].
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A. Optimal input sequence from data

The experimental data employed is similar to that of [3], in
which a set of N ≥ n experiments is available, each starting
from x0 = 0 and lasting K steps. Denoting by ui the i-th
(arbitrary) input sequence, and by xi the state reached at
time K of the i-th experiment, the matrices

U = [u1 . . . uN ], and X = [x1 . . . xN ], (6)

are constructed. Here, according to [3], we assume that U is
a full rank matrix. Clearly, we have:

xi = RKui, i = 1, . . . , N. (7)

The previous can be written as X = RKU , and the solution
of problem min ∥X −RKU∥2F , i.e.,

R∗
K = XU†, (8)

is an estimate of the K-steps reachability matrix. Under
the assumption of N = Km [3], and rank [X⊤|U⊤] =
rank [U⊤], R∗

K exactly matches the reachability matrix. Note
that the full rank property of the U matrix is a sufficient
condition to ensure this match.

In the following we will employ such an estimate in place
of the unknown reachability matrix, and we will denote it
by RK .

Due to the term AKxini, substituting Equation (8) in
Equation (5) is not sufficient to get a solution based on data
only. A possibility would be to use the results of [4], that
extends [3] to more general problems and less restrictive
experimental setups. As a simpler alternative, we propose to
collect N sequences of length 2K:

u(2K − 1)⊤, . . . , u(K)⊤︸ ︷︷ ︸
û⊤
i

, u(K − 1)⊤, . . . , u(0)⊤︸ ︷︷ ︸
u⊤
i

x(1), . . . , x(K)︸ ︷︷ ︸
xi

, x(K + 1), . . . , x(2K)︸ ︷︷ ︸
x̂i

and construct the following matrices:

U = [u1, . . . , ui, . . . , uN ] , Û = [û1, . . . , ûi, . . . , ûN ]

X = [x1, . . . , xi, . . . , xN ] , X̂ = [x̂1, . . . , x̂i, . . . , x̂N ] ,

where U and X are the same of Equation (6), while Û and X̂
correspond to trajectories of length K, starting (in general)
from non-zero states. Then, by construction, ∀i = 1 . . . N
we have:

x̂i = AKxi +RK ûi,

which can be written in compact form as

AKX = X̂ −RKÛ , (9)

and, in view of Equation (8), as

AKX = X̂ −XU†Û . (10)

Thus, the right hand side of Equation (10) can be used to
compute the term AKxini for any xini in the column space
of X . Specifically, let α ∈ RN be such that

xini = Xα. (11)

Then, we have

AKxini = AKXα =
(
X̂ −XU†Û

)
α.

Using the least-norm solution for α in Equation (11), i.e.
α = X†xini, we get

AKxini =
(
X̂ −XU†Û

)
X†xini. (12)

Finally, by substituting in Equation (5), namely u∗ =
−R†

K

(
AKxini

)
, and recalling that RK = XU†, we get:

u∗ =
(
XU†)† (XU†Û − X̂

)
X†xini, (13)

which gives a data-driven open-loop minimum energy control
sequence leading the state to zero in K steps from xini. The
formula provides the optimal sequence when xini belongs to
the column space of X . In particular, if X is rank n, then
xini can be arbitrary.

B. Optimal state trajectory from data

To get the closed-loop control law by means of the parti-
tioning procedure described in Section II, besides the optimal
input sequence u∗, given by Equation (13), the corresponding
optimal state trajectory is needed. Such trajectory can be
recovered from u∗ and the data obtained from the same
N sequences collected before (i.e., without the need of
collecting further data).

It is sufficient to define the matrices Uk, Ûk, Xk, and X̂k,
similarly as before, but based on subsequences of length 2k,
for k = 1 . . .K − 1. Let δk denote the starting index of the
subsequences of length 2k, and define

Uk =
[
ku1, . . . ,

k ui, . . . ,
k uN

]
,

Ûk =
[
kû1, . . . ,

k ûi, . . . ,
k ûN

]
,

Xk =
[
kx1, . . . ,

k xi, . . . ,
k xN

]
,

X̂k =
[
kx̂1, . . . ,

k x̂i, . . . ,
k x̂N

]
,

where kui =
[
u(δk + k − 1)⊤, . . . , u(δk)

⊤]⊤, kûi =[
u(δk + 2k − 1)⊤, . . . , u(δk + k)⊤

]⊤
, kxi = x(δk+k), and

kx̂i = x(δk + 2k).
Hence, by letting UK = U , XK = X , ÛK = Û , and

X̂K = X̂ we can write

AkXk = X̂k −RkÛk, k = 1, . . . ,K, (14)

where Rk is the k-step reachability matrix, corresponding to
the first k columns of RK :

Rk = RK

[
Ik
0

]
= XU†

[
Ik
0

]
,

where Ik denotes the identity matrix of dimension k. Equa-
tions (14) hold irrespective of the choice of the subsequences
(i.e., of indices δk). However, it is convenient to choose the
subsequences in such a way that rankXk = n, ∀k. This
is always possible, provided that rankX = n, and can be
achieved by taking δk = K−k, leading to Xk = X, ∀k. The
full-rank condition on the Xk guarantees that any initial state
xini can be written as a linear combination of the columns of

3



any of the Xk. As a consequence, the optimal state trajectory,
in terms of data, is given by:

x(k) =
(
X̂k −RkÛk

)
X†

kxini +Rku
∗
k

k = 1, . . . ,K
, (15)

where u∗
k is the vector composed by the first k steps of the

optimal input sequence: u∗
k =

[
u∗(k − 1)⊤, . . . , u∗(0)⊤

]⊤
.

IV. EXTENSIONS

The described approach is not restricted to minimum en-
ergy trajectories, but is suitable for any data-driven open-loop
optimal trajectory, provided that the residual cost is strictly
decreasing. In the following, we show how to obtain data-
driven optimal trajectories by solving optimization problems
that rely solely on experimental data. It is sufficient to
observe that, for a given initial state xini and K-steps input
sequence u, the state at time K can be expressed in terms
of data as

x(K) =
(
X̂ −XU†Û

)
X†xini +XU†u, (16)

which is the same as Equation (15) when k = K and the
control sequence is generic. As a consequence, the minimum
energy problem already discussed, can be stated equivalently
in the following quadratic programming (QP) form:

min ∥u∥22
subject to:

XU†u = −
(
X̂ −XU†Û

)
X†xini.

(17)

Such a formulation allows the introduction of linear con-
straints on the input and on the state, while retaining the QP
form. The constraints on the input can be directly introduced
since u is a decision variable. As far as the constraints on
the state are concerned, observe that the state at time k ≤ K
can be written as

x(k) =
(
X̂k −RkÛk

)
X†

kxini +Rkuk, (18)

where uk is the vector composed by the first k steps of
the input sequence: uk =

[
u(k − 1)⊤, . . . , u(0)⊤

]⊤
. Thus,

constraints on the state can be added as well. Furthermore,
different cost functions can be employed, possibly leading
to linear programming (LP) problems.

V. NUMERICAL EXAMPLE

We consider the double integrator:

x(k + 1) =

[
1 1
0 1

]
x(k) +

[
0
1

]
u(k). (19)

We set K = 9 and perform N = 20 experiments lasting
2K = 18 steps, starting from x0 =

[
0 0

]⊤
and applying

randomly chosen inputs. The collected states and inputs
are then used to construct the U, Û , X and X̂ matrices
used in Equation (13). We choose xini =

[
1 −5

]⊤
, and

we solve the minimum-energy control problem by applying
Equation (13), thus obtaining the minimum energy input
sequence that leads the system to x(9) = 0 starting from

x(0) = xini. The obtained optimal (open-loop) control
sequence is:

u∗ = [2.156 1.756 1.356 0.956 0.556 0.156

−0.244 − 0.644 − 1.044] ,
(20)

while the resulting optimal trajectory, say x∗, obtained by
applying (18), is shown in Figure 2.
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Fig. 2. Optimal trajectory corresponding to the optimal input sequence in
(20).

According to the static ROC framework, the optimal
control and state trajectories u∗ and x∗ are then employed
to compute the closed-loop control law. The partition of the
state-space is shown in Figure 3, where the vertices of the
polytopes are the states of the optimal state trajectory and
its opposite. In the same figure, the trajectories obtained
by applying the static ROC from four non-nominal (i.e.,
different form xini) initial conditions are reported in blue.
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Fig. 3. Triangulation induced by the optimal trajectory and the trajectories
from the following non-nominal initial conditions x1 = [0 − 5]⊤, x2 =
[−5 4]⊤, x3 = [2 − 4]⊤, x4 = [0 3]⊤.

Finally, we report results obtained by solving the data-
driven minimum-energy problem (17), with the following
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additional state and control constraints:
|x(k)| ≤ 6.5 ∀k = 1, . . . ,K

|u(k)| ≤ 3 ∀k = 1, . . . ,K.
(21)

where the (component-wise) inequalities involving the state
have been imposed thanks to the (18). The optimal control
sequence, obtained by solving a QP problem, is:

u∗ = [2.831 1.839 0.849 0.582 0.315 0.047

−0.221 − 0.488 − 0.755] ,
(22)

while the resulting optimal trajectory is shown in Figure 4.
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Fig. 4. Optimal trajectory corresponding to the optimal input sequence in
(22).
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Fig. 5. Triangulation and trajectories induced by the optimal trajectory
obtained solving the QP problem (17) from the following non-nominal initial
conditions x1 = [0 −5]⊤, x2 = [−5 4]⊤, x3 = [2 −4]⊤, x4 = [0 3]⊤.
The orange trajectory violates the state constraints.

Figure 5 reports the resulting trajectories from some non-
nominal initial conditions. We can observe that all the
trajectories starting from initial conditions included in the
polytope represented in gray (which is the convex hull of the
states of the optimal trajectory and its opposite), satisfy the
imposed constraints. Not all the trajectories resulting from
initial conditions outside that polytope, however, turn out to

satisfy the constraints, (see the orange trajectory of Figure 5).
Indeed, the static ROC guarantees the satisfaction of (state
and input) constraints from all the initial states belonging
to that polytope, while there is no such guarantee for other
initial states.

VI. CONCLUSIONS

In this paper, we derived a novel data-driven approach to
obtain closed-loop control laws from open-loop data-driven
optimal control sequences. The approach is based on the
static ROC, which leads to a piece-wise affine static and
globally stabilizing control, starting from optimal state and
control sequences. It can be applied whenever an open-loop,
optimal control sequence is available that leads the system to
zero from a given initial state. We reported two numerical ex-
amples, based respectively on a minimum energy open loop
data-driven control sequence, and on a sequence obtained by
solving a constrained, data-driven, minimum energy problem
formulated as a quadratic program. Future work includes the
experimental assessment on real systems, and the use of the
dynamic ROC, instead of the static one. The dynamic version
of ROC is not based on the partition of the state space, thus it
does not suffer of the well-known computational difficulties
associated to state partitioning techniques when applied to
high dimensional systems.
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