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A B S T R A C T 

We present a perturbative treatment of non-linear galaxy clustering in the context of the cubic Galileon modified gravity model, in 

terms of second-order Lagrangian Perturbation theory and an extension of ellipsoidal collapse that includes Vainshtein screening. 
We numerically implement such prescriptions in the approximate PINOCCHIO code, and use it to generate realizations of the 
matter density field and halo catalogues with different prescriptions for ellipsoidal collapse. We investigate the impact of three 
different approximations in the computation of collapse times on the halo mass function, halo bias, and matter power spectrum. 
In the halo mass function, both the modified gravity effect and the screening effect are significant in the high-mass end, similar 
to what is found for other MG models. We perform a comparison with N -body simulations to assess the validity of our approach, 
and show that we can reproduce the same trend observed in simulations for all quantities considered. With a simple modification 

to the grouping algorithm of PINOCCHIO to take into account the gravity modification, and without the need to re-calibrate the 
algorithm, we show that we can reproduce the linear halo bias and the mildly non-linear matter power spectrum of simulations 
with good accuracy, especially for the implementation with Vainshtein screening. We stress that, while approximate, our method 

is orders of magnitude faster than a full N -body simulation, making it an optimal tool for the quick generation of large sets of 
halo catalogues for cosmological observables. 

Key words: Galaxy: halo – dark energy – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

ithin the standard � CDM cosmological model, the observed
ccelerated expansion of the Universe is ascribed to the presence of
ark energy (DE) in the form of a cosmological constant � : a perfect
uid with constant energy and equation of state, whose ne gativ e
ressure P � 

= −ρ� 

is responsible for the accelerated expansion. DE
akes up most of the energy density of the Universe today together
ith cold dark matter (CDM), ho we ver, its nature remains elusive.

n the standard framework, the cosmological constant � is thought
o be related to vacuum energy: an interpretation that, despite the
odel fitting extremely well most cosmological observations (Alam

t al. 2017 ; Aghanim et al. 2020 ; DES Collaboration 2021 ), poses
evere theoretical problems (Carroll 2001 ). Additionally, tensions
n some of the cosmological parameters as measured by early and
ate-time probes such as the Cosmic Microwave Background and
edshift-space distortions of galaxies (Aghanim et al. 2020 ; DES
ollaboration 2021 ; Heymans et al. 2021 ) have prompted the study
f structure formation in the context of beyond- � CDM models.
an y alternativ es hav e been proposed, from exotic DE models to
odified gravity (MG, see Bull et al. 2016 ; Koyama 2018 ; Ishak
 E-mail: bhu@bnu.edu.cn 

>  

m
 

(  

Pub
019 for recent re vie ws). While the former are mainly characterized
y a dynamically evolving equation of state, the latter focus on the
ossibility that General Relativity (GR) is not the correct theory to
escribe gravity on cosmological scales, and introduce an additional
fth force that drives cosmic acceleration. 
On the other hand GR has successfully passed several stringent

ests, therefore any viable MG model should be able to e v ade such
onstraints and reduce to GR on small scales. In order to be consistent
ith both small- and large-scale observations, the additional MG fifth

orce has to be shielded in high density regions. This is achieved by
eans of a so-called screening mechanism. Screening mechanisms

an be classified in three general categories (Lombriser 2016 ), based
n the condition that the Newtonian gravitational potential � N or its
eri v ati v es e xceed a certain threshold � T : 

(i) screening at large field values, such as the chameleon
Khoury & Weltman 2004 ) or symmetron (Hinterbichler & Khoury
010 ) models. These are very similar to the large field inflation
odel: the screening effect turns on in regions where the New-

onian gravitational potential exceeds a certain threshold, | � N |
 � T . A high density environment plays a key role in this
echanism; 
(ii) screening with first deri v ati ves, such as in k-mouflage models

Babiche v, Def fayet & Ziour 2009 ). This screening effect operates
© 2022 The Author(s) 
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hen the local gravitational acceleration is abo v e a certain threshold,
∇� N | > � 

2 
T ; 

(iii) screening with second deri v ati ves, such as Vainshtein screen- 
ng (Vainshtein 1972 ). This screening mechanism acti v ates when 
he local curvature is large, |∇ 

2 � N | > � 

3 
T . Unlike the chameleon

echanism, Vainshtein screening does not rely on the environment, 
he screening radius is jointly determined by the Schwarzschild 
adius of the object and the Hubble radius. 

The investigation of alternatives to the standard cosmological 
odel is indeed one of the key targets of modern cosmology. Up-

oming Stage-IV galaxy surv e ys, such as Euclid, 1 LSST, 2 WFIRST, 3 

ESI, 4 J-PAS, 5 CSST, 6 will probe the clustering of galaxies to high 
recision, allowing to test different MG models in the linear and 
ildly non-linear regime of structure formation (Amendola et al. 

013 ; Alam et al. 2020 ). 
It is therefore key that accurate theoretical modelling beyond GR 

s prepared in advance in order to compare to observations, with a
articular focus on the non-linear and mildly non-linear regimes. The 
ost reliable tool to trace the growth of structures deep into the non-

inear regime are N -body simulations. Ho we ver, N -body simulations
re computationally extremely expensive, in particular when they 
nclude MG. 

This paper studies the modelling of non-linearities in the frame- 
ork of perturbation theory (PT) in the context of the cubic Galileon
odel (Nicolis, Rattazzi & Trincherini 2009 ). In particular, we focus

n a numerical implementation in the PINOCCHIO code (PINpointing 
rbit-Crossing Collapsed Hierarchical Objects; Monaco, Theuns 
 Taffoni 2002a ; Monaco et al. 2002b , 2013 ; Taffoni, Monaco &
heuns 2002 ; Munari et al. 2017 ), an algorithm to quickly generate
imulated dark matter halo catalogues based on Lagrangian PT and 
llipsoidal collapse. 

We organize the papers as follows: in Section 2 we describe the
ackground, linear and non-linear perturbation evolution of the cubic 
alileon model. In Section 3 , we present the first- and second-
rder Lagrangian PT for the cubic Galileon model. In Section 4 ,
e give the prescription of the ‘ G3-PINOCCHIO ’ algorithm, including 

he extension of ellipsoidal collapse. In Section 5 , we show the non-
inear matter power spectrum and mass function obtained with the 
ode, as well as a prediction for the linear bias. Finally, we present
ur conclusions in Section 6 . 

 CUBIC  G A L I L E O N  

alileon gravity (Nicolis et al. 2009 ) is proposed in the inspiration
f flat space quantum field theories. The latter are invariant under 
he transformation φ → φ + b μx μ + c , where b μ and c are a
onstant vector and scalar in flat space, respectively. The existence 
f b μ and c indicates, respectively, the Galilean and shift symmetry. 
o a v oid the Ostrogradski instability, the field equation includes 
p to second-order time deri v ati v es. When e xtending to curv ed
pace–time, the non-minimal coupling between the Galileon field 
nd the metric breaks the Galilean symmetry, but keeps the shift
ymmetry preserved. Such model, called covariant Galileon model, 
 http:// sci.esa.int/ euclid 
 ht tp://www.lsst .org 
 ht tps://wfirst .gsfc.nasa.gov 
 https://www.desi.lbl.gov 
 http:// www.j-pas.org/ wiki/index.php/Main Page 
 http:// www.bao.ac.cn/ csst/ 
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as a Lagrangian of the form 

 = 

∫ 
d 4 x 

√ −g 

{ 

M 

2 
pl 

2 
R − 1 

2 
c 2 X + 

c 3 

M 

3 
X � φ + 

c 4 

4 M 

6 
X 

2 R 

− c 4 

M 

6 
X[( � φ) 2 − φ; μνφ; μν] + 

3 c 5 
4 M 

9 
X 

2 G μνφ
; μν

+ 

c 5 

2 M 

9 
X[( � φ) 3 − 3 � φφ; μνφ

; μν + 2 φ; μνφ; μσ φ; σ
; ν ] 

} 

, (1) 

here M pl is the Planck mass M 

−2 
pl = 8 πG , g , R , G μν are, respec-

ively, the determinant of the metric, the Ricci scalar and the Einstein
ensor, c 2 , c 3 , c 4 , c 5 are dimensionless constants and M 

3 = M pl H 

2 
0 ,

ith H 0 the present Hubble parameter. X = φ; μφ; μ is the kinetic
erm of the scalar field. The semicolon in equation ( 1 ) represents the
ov ariant deri v ati ve. There are three branches of covariant Galileon:
he G3 branch, known as cubic Galileon, with c 3 �= 0, c 4 = c 5 =
, the G4 branch, also called quartic Galileon, with c 3 , c 4 �= 0,
 5 = 0 and the G5 branch, also known as quintic Galileon, with
 3 , c 4 , c 5 �= 0. Some recent studies that focus on constraining
he covariant Galileon model by means of various cosmological 
bservations include Barreira et al. ( 2012 , 2013b , 2014b ), Neveu
t al. ( 2013 ), Peirone et al. ( 2018 ), Renk et al. ( 2017 ), and Frusciante
t al. ( 2020 ). Although this model is disfa v oured by current CMB
nd galaxy clustering data, its extension can fit current cosmological 
bservations (Peirone et al. 2019 ; Frusciante et al. 2020 ). 
The breakthrough disco v ery of gravitational waves (GW) from the
erger of a neutron star binary (Abbott et al. 2017a ) by the LIGO

nd Virgo collaborations puts a tight constraint on the GW speed
Abbott et al. 2017b ), ef fecti vely ruling out se veral MG models. In
articular, the G4 and G5 branches are ruled out (Baker et al. 2017 ;
reminelli & Vernizzi 2017 ; Ezquiaga & Zumalac ́arregui 2017 ) with
 high confidence level. In the G3 branch, however, the scalar field is
inimally coupled to gravity, and the GW speed is unaltered. Hence,
3 is still a viable MG model even according to GW constraints. 
An additional reason to investigate the cubic Galileon model is 

elated to the screening mechanism it features. Since the G3 field
rives cosmic acceleration via the non-canonical kinetic energy, the 
xtra gravitational force is screened via the Vainshtein mechanism. 

hile chameleon screening has been e xtensiv ely discussed during 
he past decades, in particular in the context of f ( R ) gravity (e.g. Li
t al. 2012 ; Puchwein, Baldi & Springel 2013 ; Llinares, Mota &
inther 2014 ), Vainshtein screening is usually studied as feature of

DGP modified gravity (e.g. Barreira, Bose & Li 2015 ; Winther et al.
015 , 2017 ; Hern ́andez-Aguayo et al. 2021 ). Studies of this type of
creening mechanism that focus on cubic Galileon are instead more 
are; some examples include the work of Schmidt ( 2009 ), Barreira
t al. ( 2013a ), and Li, Zhao & Koyama ( 2013 ). 

A first step to include MG in the PINOCCHIO code focused
ndeed on f ( R ) gravity, which features scale-dependent growth and
hameleon screening (Moretti et al. 2020 ). In this work, we present
n implementation of scale-independent MG models with Vainshtein 
creening, focusing in particular on the G3 model, and study its
erformance with PINOCCHIO . 

.1 Background evolution under cubic Galileon 

he Einstein equation and the scalar field equation can be obtained
y varying the action with respect to the metric and scalar field,
espectively. In the spatially flat Friedmann–Lema ̂ ıtre–Robertson–

alker (FLRW) metric, one can get the first- and second-Friedmann 
quations 

 H 

2 = κ( ̄ρm 

+ ρ̄r + ρ̄φ) , (2) 
MNRAS 516, 5762–5774 (2022) 
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Figure 1. Ratio of the Hubble parameter in G3 and the � CDM model as a 
function of the scale factor a . 
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 = 3 Ḣ + 3 H 

2 + 

κ

2 

[
ρ̄m 

+ ρ̄r + ρ̄φ + 3( P̄ φ + P̄ r ) 
]

, (3) 

here κ = 8 πG , P̄ r = 

1 
3 ρ̄r . Quantities with a bar are background

uantities and the o v er dot represents the time deri v ati ve. The
xpressions for P̄ φ, ρ̄φ are 

¯
 φ = 

1 

2 
c 2 ̇̄φ

2 − 2 
c 3 

M 

3 
˙̄φ2 ¨̄φ , (4) 

¯φ = 

1 

2 
c 2 ̇̄φ

2 + 6 
c 3 

M 

3 
H 

˙̄φ3 . (5) 

he matter component satisfies the continuity equation ˙̄ρm 

+
 H ρ̄m 

= 0, the radiation component satisfies ˙̄ρr + 4 H ρ̄r = 0, and
he scalar field component (or the DE component) satisfies ˙̄ρφ +
 H ( ̄ρφ + P̄ φ) = 0. For the scalar field, we use the tracker solution
f De Felice & Tsujikawa ( 2010 ): 

˙̄ = ξH 

2 
0 /H . (6) 

he meaning of tracker denotes that different initial conditions of the
ackground Galileon field give rise to different time evolution that
ventually merge into a common trajectory. Here φ̄ is the background
eld, H is the Hubble parameter, and ξ is a dimensionless constant.
quation ( 6 ) express the solution of the background scalar field in

erms of the Hubble parameter. Naively, it would seem that there
re three extra parameters in the G3 model compared with � CDM,
amely { c 2 , c 3 , ξ} . Ho we ver, that is not the case: in what follows
e show that the number of parameters in G3 is actually the same

s those in � CDM. By substituting the tracker solution equation ( 6 )
nto the 1st-Friedmann equation, one can get 

 

4 = ( �m , 0 a 
−3 + �r, 0 a 

−4 ) E 

2 + 

1 

6 
c 2 ξ

2 + 2 c 3 ξ
3 , (7) 

here E is the dimensionless Hubble parameter E = H / H 0 , �m , 0 =
¯m , 0 / (3 M 

2 
pl H 

2 
0 ), and �r, 0 = ρ̄r, 0 / (3 M 

2 
pl H 

2 
0 ) are the present matter

ensity and radiation density , respectively , and a is the scale factor.
efining 

�, 0 = 1 − �m , 0 − �r, 0 = 

1 

6 
c 2 ξ

2 + 2 c 3 ξ
3 , (8) 

e can get a parametrized Hubble parameter 

 = 

 0 

√ 

�m , 0 a −3 + �r, 0 a −4 + 

√ 

( �m , 0 a −3 + �r, 0 a −4 ) 2 + 4 ��, 0 

2 
. 

(9) 

o a v oid the scaling de generac y and without loss of generality (Bar-
eira et al. 2014b ), one can assume c 2 = −1. Combining the scalar
eld equation and the tracker solution, we can get a constraining
quation on the G3 parameters: 

 2 ξ + 6 c 3 ξ
2 = 0 . (10) 

rom equations ( 8 ) and ( 10 ), we have 

 3 = 

1 

6 
√ 

6 ��, 0 
, ξ = 

√ 

6 ��, 0 . (11) 

ne can see that, once �� , 0 is given, all the G3 model parameters are
xed and there are no additional parameters with respect to � CDM.
hrough the 2nd-Friedmann equation, we obtain the acceleration
arameter 

˙
 = 

H 

4 
0 

H 

2 
��, 0 − H 

2 − 1 

2 
H 

2 
0 ( �m , 0 a 

−3 + 2 �r, 0 a 
−4 ) 

1 + 

H 

4 
0 

H 

4 
��, 0 

. (12) 
NRAS 516, 5762–5774 (2022) 
he abo v e equations fully describe the background cosmology in the
3 model. Fig. 1 shows the ratio of the Hubble parameter between
3 and � CDM as a function of the scale factor a : one can see that

he two are the same at early times. Starting from a � 0.1, the ratio
ecreases, reaches a minimum around a � 0.5, then bounces back
nd approaches unity at present time. 

.2 Linear perturbations in cubic Galileon 

n the context of linear perturbation theory and in the framework of
R, the matter anisotropic stress can be ignored. The Weyl potential
 + 

= (  + �)/2 felt by relativistic particles is equal to the Newtonian
otential � felt by non-relativistic particles, namely  + 

=  =
. Here, we denote the Newtonian potential as � and the spatial

urvature perturbation as  . Generally, the equality  = � does not
old in MG models due to the existence of the Compton wavelength
f the extra scalar field: the gravitational force below and above this
avelength is different. This phenomenon can be parametrized in the
0 component of the Einstein equation by means of a function μL , 7 

hat in general is time- and scale-dependent: 

 

2 � = −4 πGμL ( a , k) a 2 ρ̄m 

� , (13) 

here � = δ + 3 aHv / k , with δ = δρm 

/ ̄ρm 

the matter density contrast
n the Newtonian conformal gauge, and v the irrotational part of the
eculiar velocity. One can read the μL function as the ratio between
he ef fecti ve gravitational coupling G eff and the Ne wton constant G N ,
ith the superscript ‘L’ denoting linear level. In general, chameleon
odels feature a k -dependent μL function, which translates in scale-

ependent gro wth e ven at linear le v el. F or the k-essence type of
G models, ho we ver, cosmic acceleration is driven by the non-

anonical kinetic energy, the scalar field is ef fecti vely massless and
he corresponding Compton wavelength is on or abo v e the Hubble
orizon scale. The ef fecti ve gravitational coupling at linear level may
ot be equal to the Newton constant, but it is constant on all the scales
ele v ant to the linear regime (Peirone et al. 2018 ). Hence, for this
ype of MG models (that include the G3 model we are considering
n this work),  = � is still valid and μL is a function of time only. 

The linear perturbation regime of MG models has been extensively
tudied in the past few years. In particular, it has been shown both
heoretically and numerically that single field models can be re-
xpressed in the language of the Ef fecti ve Field Theory of Dark

art/stac2298_f1.eps
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nergy (EFTofDE; Bloomfield et al. 2013 ; Gubitosi, Piazza & 

ernizzi 2013 ; Piazza & Vernizzi 2013 ; Hu et al. 2014 ; Zu-
alac ́arregui et al. 2017 ; Frusciante & Perenon 2020 ). The action in

he EFTofDE reads 

 = 

∫ 
d 4 x 

√ −g 

{ 

M 

2 
pl 

2 
�( t ) R + � ( t ) − c( t ) δg 00 

+ 

M 

4 
2 ( t) 

2 
( δg 00 ) 2 − M̄ 

3 
1 ( t) 

2 
δg 00 δK 

μ
μ − M̄ 

2 
2 ( t) 

2 
( δK 

μ
μ ) 2 

− M̄ 

2 
3 ( t) 

2 
δK 

i 
j δK 

j 

i + 

ˆ M 

2 ( t) 

2 
δg 00 δR 

(3) 

+ m 

2 
2 ( t)( g 

μν + n μn ν) ∂ μ( g 00 ) ∂ ν( g 00 ) 
}+ S m 

[ g μν, χi ] , (14) 

here δg 00 , δK μν , δK , and δR 

(3) are perturbations of the time–time
omponent of the metric, the external curvature and its trace, and the
D Ricci scalar in the constant time hypersurface, S m 

is the minimally
oupled term for all matter fields χ i with metric g μν , and M i , M̄ i , and
ˆ 
 i are the EFT functions. The perturbation of the scalar field can be

xpressed by the infinitesimal time diffeomorphism, t → t + π ( x μ),
here π is the perturbation of the scalar field. 
Following Pogosian & Silvestri ( 2016 ), we combine the Einstein

quation and the scalar field equation under the quasi-static approxi- 
ation, which applies only to scales below the sound horizon of the

calar field. Under this approximation, we ignore the time deri v ati ves
f the gravitational potential and the scalar field. One can then derive
he following expression for μL ( a , k ) in the EFTofDE framework: 

μL 

2 M 

2 
pl 

= 

f 1 + f 2 a 
2 /k 2 

f 3 + f 4 a 2 /k 2 
, (15) 

ith 

 1 = c − 1 

2 
( H + ∂ t ) M̄ 

3 
1 , 

 2 = −3 c Ḣ + 

3 

2 
(3 H Ḣ + Ḣ ∂ t + Ḧ ) M̄ 

3 
1 , 

 3 = 2 M 

2 
pl �f 1 − 1 

2 
M̄ 

6 
1 , 

 4 = 2 M 

2 
pl �f 2 . (16) 

In the upper panel of Fig. 2 , we show the linear part of the
function as a function of redshift z and wavenumber k . The

alues are encoded in the colour bar. On top of that, we show
ontours with constant μL values. One can see that the contours are 
ertically distributed, in line with the fact that the modification of the
ravitational force is scale independent. Furthermore, the μ values 
re significantly larger at low redshifts: the gravity enhancement 
eaches a value of around 2 at present time, while it approaches unity
or redshifts z > 1. In the lower panel of Fig. 2 we show the non-
inear μNL function that includes Vainshtein screening, discussed in 
he next section, as a function of both redshift z (horizontal axis)
nd the local density contrast δ (vertical axis). One can see that with
igher local density, the extra gravitational force is shielded for all 
edshifts considered. 

.3 Nonlinear clustering in cubic Galileon 

e now consider the second-order perturbation contribution. Under 
he quasi-static approximation, after ignoring the terms suppressed 
y the time deri v ati ves and Hubble expansion, the 00 component of
he Einstein equation reads (Frusciante & Pace 2020 ) 

∂ 2  

a 2 
= 4 πG ̄ρm 

δm 

− 8 πG 

c 3 

M 

3 
˙̄φ2 ∂ 

2 ( δφ) 

a 2 
, (17) 
here ∂ denotes deri v ati ves with respect to comoving spatial coor-
inates. The equation for the scalar field is 

− c 3 

M 

3 
˙̄φ2 ∂ 

2 � 

a 2 
= 

[
1 

2 
c 2 + 2 

c 3 

M 

3 
( ̈̄φ + 2 H 

˙̄φ) 

]
∂ 2 δφ

a 2 

+ 

c 3 

M 

3 

[
( 
∂ 2 δφ

a 2 
) 2 − ( 

∂ i ∂ j δφ

a 2 
) 2 
]

. (18) 

ince � =  is valid in both the linear and non-linear regime,
ombining equations ( 17 ) and ( 18 ) one gets 

∂ 2 ( δφ) 

a 2 
+ λ2 ( a ) 

[
( 
∂ 2 ( δφ) 

a 2 
) 2 − ( 

∂ i ∂ j ( δφ) 

a 2 
) 2 
]

= −4 πGζ ( a) ̄ρm 

δm 

, (19) 

here 

2 ( a) = 

c 3 /M 

3 

1 
2 c 2 + 2 c 3 

M 

3 ( ̈̄φ + 2 H 

˙̄φ) − 8 πG ( c 3 
M 

3 ) 2 ̇φ̄4 
, ζ ( a ) = λ2 ˙̄φ2 . 

ssuming a spherically symmetric profile for δφ, equation ( 19 )
ecomes 

1 

r 2 

d 

dr 

(
r 2 

dδφ

dr 

)
− 2 λ2 

r 2 

d 

dr 

[ 

r 

(
dδφ

dr 

)2 
] 

= −4 πGζ ρ̄m 

δm 

, (20) 
MNRAS 516, 5762–5774 (2022) 
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 second-order ordinary differential equation. After integrating once,
t becomes 

 

2 dδφ

dr 
− 2 λ2 r 

(
dδφ

dr 

)2 

= −Gζm ( r) , (21) 

here m ( r) = 4 π
∫ r 

0 r 
′ 2 ρ̄m 

( r ′ ) δm 

( r ′ ) dr ′ is the mass enclosed in a
phere of radius r . Considering a top-hat density profile with radius
 , when r ≤ R the physical solution of equation ( 21 ) reads (Frusciante
t al. 2020 ) 

dδφ

dr 
= 

r 

4 λ2 

(
1 −

√ 

1 + 

r 3 V 

r 3 

)
, (22) 

here r V is the Vainshtein radius of the enclosed mass, given by 

 

3 
V = 8 Gm ( r) λ2 ζ . (23) 

rom equation (22) one can see that d δφ/d r ∝ r for r ≤ R, so
hat ∂ 2 ( δφ) is constant within radius R.Taking the deri v ati ve of
quation ( 22 ) and substituting it in equation ( 17 ), we get the modified
oisson equation 

∂ 2 � 

a 2 
= 4 πGμNL ( a, R) ̄ρm 

δm 

, (24) 

here μNL ( a , R ) includes the non-linear contribution which is
onstant within the Top Hat 

NL ( a, R) = 1 + 2( μL − 1) 
( R 

R V 

)3 (√ 

1 + 

R 

3 
V 

R 

3 
− 1 

)
. (25) 

n the abo v e equation, μL = 1 + 8 πG 

c 3 
M 

3 
˙̄φ2 ζ ( a) is the linear part

f the μ function. R V is the Vainshtein radius of the enclosed mass
ith a top-hat density profile R 

3 
V = 8 Gm ( R) λ2 ζ ∝ R 

3 . Then, one
an write 

R 

R V 

)3 
= 

1 

4 �m 

H 

2 λ2 ζ

1 

δm 

. (26) 

hen the density perturbation is large such that R 
 R V , μNL → 1
eco v ering GR, while for small perturbations when R � R V , μNL →

L , reco v ering the linear result. In the lower panel of Fig. 2 , we plot
NL as a function of redshift z and the top-hat object density δ. One
an see that for low redshifts z < 1, it deviates from GR, same as the
inear μL function. When the density contrast is about 0.01–0.1, μNL 

s similar to μL , roughly depending on time only. For large values of
> 1000, μNL → 1, reco v ering GR. At fix ed redshift, the value of
NL for a high density contrast is smaller than that of a low density
ontrast. 

 L AG R A N G I A N  P E RTU R BAT I O N  T H E O RY  

O R  CUBIC  G A L I L E O N  

n this section, we briefly re vie w the linear and second-order
agrangian perturbation theory (LPT) for the G3 model (Song &
u 2021 ). The equation of motion for the displacement field ( � S ) in
agrangian coordinates are 

 x · ˆ T � S = −A ( a ) δ − B( a ) 

[ (
∂ 2 ( δφ) 

a 2 

)2 

−
(

∂ i ∂ j ( δφ) 

a 2 

)2 
] 

, (27) 

here 

ˆ 
 = 

d 2 

dt 2 
+ 2 H 

d 

dt 
, (28) 

 ( a) = 4 πG ̄ρm 

(
1 + 8 πG 

c 3 

M 

3 
˙̄φ2 ζ ( a) 

)
, (29) 
NRAS 516, 5762–5774 (2022) 
( a) = 8 πG 

c 3 

M 

3 
˙̄φ2 λ2 ( a) . (30) 

otice that the differential operation ∇ x is in Eulerian coordinates.
ransforming to Lagrangian coordinates one can write 

 x · ˆ T � S = ( J −1 ) ij ˆ T S i,j = ( δij − S i,j ) ̂  T S i,j 

= 

ˆ T S i,i − S i,j ˆ T S i,j , (31) 

here J is the Jacobian of the coordinate transformation, and
 i , i , S i , j are now spatial derivatives with respect to Lagrangian
oordinates. Substituting equation ( 31 ) in equation ( 27 ), we can write
he displacement field equation in Lagrangian coordinates 

ˆ T S i,i − S i,j ˆ T S i,j = −A ( a) δ

− B( a ) 

[ (
∂ 2 ( δφ) 

a 2 

)2 

−
(

∂ i ∂ j ( δφ) 

a 2 

)2 
] 

. (32) 

xpanding δ, δφ, � S with respect to a small parameter ε 

= ε δ(1) + ε 2 δ(2) + ..., (33) 

� 
 = ε � S (1) + ε 2 � S (2) + ... (34) 

φ = ε ( δφ) (1) + ε 2 ( δφ) (2) + ..., (35) 

ne can split the abo v e equations into serial differential equa-
ions according to their orders. At first order, the displacement field
quation reads 

 ̂

 T − A ( a)) S (1) 
i,i ( t, � q ) = 0 . (36) 

ince ( ̂  T − A ( a)) only depends on time, S (1) 
i,i ( t, � q ) can be separated

nto time- and space-dependent components. Transforming the abo v e
quation to Fourier space, we obtain 

 

(1) 
i,i ( � k , t) = −D 1 ( t) δ

(1) ( � k , t 0 ) , (37) 

here the first-order growth factor D 1 ( t ) satisfies 

 ̂

 T − A ( a)) D 1 ( t) = 0 . (38) 

ike in standard GR, the linear growth in G3 only has temporal
ependence. For second order in PT, the displacement field equa-
ion reads 

ˆ 
 S 

(2) 
i,i ( � k , t) − [ S (1) 

i,j 
ˆ T S 

(1) 
i,j ]( � k , t) = 

A ( a) δ(2) ( � k , t) − B( a) 

[ (
∂ 2 ( δφ) (1) 

a 2 

)2 

−
(

∂ i ∂ j ( δφ) (1) 

a 2 

)2 
] 

( � k , t) . 

(39) 

hrough equation ( 19 ) we obtain 

k 2 

a 2 
( δφ) (1) ( � k , t) = 4 πGζ ( a) ̄ρm 

D 1 ( t) δ
(1) ( � k , t 0 ) . (40) 

lugging equation ( 40 ), ( 37 ) into equation ( 39 ), we can write 

 ̂

 T − A ( a)] S (2) 
i,i ( � k , t) = −

[
1 

2 
A ( a) + B( a)(4 πG ̄ρm 

ζ ( a)) 2 
]

∫ 
� k 12 = 

� k 

[ 

1 − ( � k 1 · � k 2 ) 2 
k 2 1 k 

2 
2 

] 

D 

2 
1 ( t) δ

(1) 
k 1 

( t 0 ) δ
(1) 
k 2 

( t 0 ) 

 −C( a) 
∫ 

� k 12 = 

� k 

[ 

1 − ( � k 1 · � k 2 ) 2 
k 2 1 k 

2 
2 

] 

D 

2 
1 ( t) δ

(1) 
k 1 

( t 0 ) δ
(1) 
k 2 

( t 0 ) , (41) 

here 
∫ 

� k 12 = 

� k is short-hand notation for 
∫ 

d 3 � k 1 d 3 � k 2 
(2 π) 3 

δ( � k − � k 1 − � k 2 ), and

( a ) = 

1 

2 
A ( a ) + B( a )(4 πG ̄ρm 

ζ ( a )) 2 . 
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Figure 3. The linear (top panel) and second-order (third panel) growth 
factors as a function of the scale factor a . Dashed blue lines are � CDM 

quantities, while solid red lines are G3 quantities. The second and bottom 

panels sho w, respecti vely, the ratio of the G3 linear and second-order growth 
functions to their � CDM counterparts. 
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he second-order displacement field then reads 

 

(2) 
i,i ( � k , t) = 

∫ 
� k 12 = 

� k 
˜ D 2 ( � k 1 , � k 2 , t ) D 

2 
1 ( t ) δ

(1) 
k 1 

( t 0 ) δ
(1) 
k 2 

( t 0 ) , (42) 

here ˜ D 2 ( � k 1 , � k 2 , t) is a normalized second-order growth factor that
atisfies 

 ̂

 T − A ( a)] ̃  D 2 ( � k 1 , � k 2 , t) = −C( a) 

[ 

1 − ( � k 1 · � k 2 ) 2 
k 2 1 k 

2 
2 

] 

. (43) 

ince [ ̂  T − A ( a)] depends only on time, ˜ D 2 ( � k 1 , � k 2 , t) can also be
eparated into the product of time component ˜ D 2 ( t) and space 

omponent [1 − ( � k 1 ·� k 2 ) 2 
k 2 1 k 

2 
2 

]. Thus equation ( 42 ) can be rewritten as 

 

(2) 
i,i ( � k , t) = D 

2 
1 ( t) ̃  D 2 ( t) 

∫ 
� k 12 = 

� k 

[ 

1 − ( � k 1 · � k 2 ) 2 
k 2 1 k 

2 
2 

] 

δ
(1) 
k 1 

( t 0 ) δ
(1) 
k 2 

( t 0 ) . (44) 

edefining −2 D 

2 
1 ( t ) ̃  D 2 ( t ) as D 2 ( t ), then the second-order growth

actor D 2 ( t ) satisfies 

 ̂

 T − A ( a)] D 2 ( t) = 2 C( a) D 

2 
1 ( t) . (45) 

Again, D 2 is independent of k , as it is in the standard GR case. To
et the second-order displacement field S (2) 

i,i ( � k , t), one just needs
o convolve the initial linear density fields with a kernel as in
quation ( 44 ). The difference between G3 and � CDM lays in the
emporal evolution of the linear and second-order growth factors. 

hen A ( a) = 4 πG ̄ρm 

, B( a) = 0 , C( a) = 2 πG ̄ρm 

, the equations for
he first- and second-order displacements reco v er � CDM (Song &
u 2021 ). 
We choose the initial conditions for the D 1 differential equation to
atch an Einstein–de Sitter universe, i.e. D 1 ( a) = a, dD 1 

da 
= 1. In the

op panel of Fig. 3 , we show D 1 ( a ) in G3 (red solid line) and � CDM
blue dashed line), with their ratio in the second panel, as a function of
he scale factor a . One can see that D 1 in G3 is the same as in � CDM
t early times. Starting from a � 0.2, D 1 in G3 increases faster than in
 CDM, with their ratio reaching ∼ 15 per cent at present times. The

nitial conditions for D 2 are assumed to be D 2 ( a ) = 

3 
7 a 

2 , dD 2 
da 

= 

6 
7 a ,

orresponding to matter domination. In the third panel of Fig. 3 , we
how D 2 ( a ) in G3 (red solid line) and � CDM (blue dashed line),
ith their ratio in the bottom panel, as a function again of the scale

actor a . Similarly to D 1 , at early times D 2 for G3 and � CDM are
he same. Moreo v er, at a � 0.2, D 2 in G3 increases much faster
han in � CDM. The difference is more sizable than in D 1 , about
0 per cent for a = 1. Since the growth functions are enhanced, 
ubic Galileon predicts stronger galaxy clustering than � CDM. In 
ig. 4 , we show the ratio of D 2 /D 

2 
1 . This ratio is exactly 3/7 in the

instein–de Sitter universe. The extra clustering power in G3 comes 
rom a larger ef fecti ve gravitational constant G eff compared to the
tandard Newton constant G N . 

 I MPLEMENTATI ON  O F  G 3  IN  PINOCCHIO 

he PINOCCHIO code (PINpointing Orbit-Crossing Collapsed Hierar- 
hical Objects; Monaco 1997 ; Monaco et al. 2002a , b , 2013 ; Taffoni
t al. 2002 ; Chuang et al. 2015 ; Munari et al. 2017 ; Rizzo et al.
017 ) is a semi-analytical algorithm for generating realizations of 
ierarchical formation history of dark matter haloes. It is based on
PT and ellipsoidal collapse. The code evolves the initial linear 
ensity field of a given primordial power spectrum on a regular
rid in Fourier space. Then, particles are displaced according to 
agrangian PT. For cubic Galileon, the first- and second-order initial 
isplacement fields in Fourier space are given by 

S 
(1) 
i,i ( � k , a 0 ) = −δ(1) ( � k , a 0 ) , (46) 
MNRAS 516, 5762–5774 (2022) 
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(2) 
i,i ( � k , a 0 ) = −1 

2 

∫ 
� k 12 = 

� k 

[ 

1 − ( � k 1 · � k 2 ) 2 
k 2 1 k 

2 
2 

] 

δ
(1) 
k 1 

( a 0 ) δ
(1) 
k 2 

( a 0 ) . (47) 

he initial time a 0 is arbitrary and related to the normalization choice
or the linear power spectrum, PINOCCHIO chooses to normalize at a 0 
 1 so that D 1 ( a 0 ) = 1. For convenience, one can define normalized

rowth functions 

 

′ 
1 ( a) = 

D 1 ( a) 

D 1 ( a = 1) 
, D 

′ 
2 ( a) = 

D 2 ( a) 

D 

2 
1 ( a = 1) 

. (48) 

hen the positions of dark matter particles then are given by 

�  ( a) = � q + D 

′ 
1 ( a) � S (1) ( � q , a 0 ) + D 

′ 
2 ( a) � S (2) ( � q , a 0 ) , (49) 

here � S ( i) ( � q , a) are the Fourier transforms of the displacements of
quation ( 46 ). 

Ellipsoidal collapse is used to predict the collapsing time of each
ark matter particle. The dynamics of ellipsoidal collapse can be
ompletely described by following the evolution of the three principal
xes of the ellipsoid (Bond & Myers 1996 ). The physical length of
llipsoid semi axes is r i = a i q , where q is the comoving radius of
he ‘Lagrangian sphere’ (a sphere concentric with and sharing the
ame mass as the ellipsoid, but with density equal to the background
ensity) and a i denotes the time evolution of each axis. By enforcing
ass conservation we can write a 3 q 3 ρ̄m 

= a 1 a 2 a 3 q 
3 ρm , e , where ρm, e 

s the density within the ellipsoid, so that the non-linear o v erdensity
is 

= 

a 3 

a 1 a 2 a 3 
− 1 . (50) 

ollowing the approach of Bond & Myers ( 1996 ), we can derive the
volution for the a i for the G3 model: 

d 2 a i 

dt 2 
= 

ä 

a 
a i − 4 πGμρ̄m 

[
δ

3 
+ 

5 

4 
b ′ i ( t) + 

b ′ i ( t) 
2 

δ

]
a i , (51) 

here 

 

′ 
i ( t) = −2 

3 
+ a 1 ( t) a 2 ( t) a 3 ( t) 

×
∫ ∞ 

0 

dτ

[ a 2 i ( t) + τ ] � 

3 
j= 1 ( a 

2 
j ( t) + τ ) 1 / 2 

(52) 

nd the deviation from � CDM is encoded in the μ function discussed
n the previous sections. Equation ( 51 ) is an integro-differential
quation, which should in principle be solved for each particle,
esulting in a computationally e xpensiv e prescription. In its standard
ersion, PINOCCHIO relies on an approximation based on LPT to
ompute collapse times. Such an approximation ho we ver does not
old in the case of models where growth is substantially different than
 CDM. For our purposes, we adopt the description of the ellipsoid’s

volution presented in Nadkarni-Ghosh & Singhal ( 2016 ). This is
qui v alent to the Bond & Myers ( 1996 ) approach, but avoids the
ntegral of equation ( 52 ) by resorting to a set of nine dimensionless
arameters: 

a , i = 1 − a i 

a 
, (53) 

v , i = 

1 

H 

ȧ i 

a i 
− 1 , (54) 

d , i = 

δ

3 
+ 

5 

4 
b ′ i ( t) + 

b ′ i ( t) 
2 

δ. (55) 

ere λa, i correspond to the eigenvalues of the deformation tensor and
haracterize the shape of the ellipsoid, λv, i describe the deviation of
he velocity of the i th axis from the background Hubble flow and
NRAS 516, 5762–5774 (2022) 
d, i correspond to the eigenvalues of the tensor of second deri v ati ves
f the gravitational potential. Taking the time deri v ati ve of λa, i , λv, i ,
d, i , we obtain the second-order ordinary differential equations 

dλa , i 

d ln a 
= −λv , i (1 − λa , i ) , (56) 

d ln λv , i 

d ln a 
= −3 

2 
μ�m 

λd , i − λv , i 

(
2 + 

Ḣ 

H 

2 

)
− λ2 

v , i , 

dλd , i 

d ln a 
= −(1 + δ) 

(
δ + 

5 

2 

)−1 (
λd , i + 

5 

6 

) 3 ∑ 

j= 1 

λv , j 

+ 

(
λd , i + 

5 

6 

) 3 ∑ 

j= 1 

(1 + λv , j ) −
(

δ + 

5 

2 

)
(1 + λv , i ) 

+ 

∑ 

j �= i 

[ λd , j − λd , i ][(1 − λa , i ) 2 (1 + λv , i ) − (1 − λa , j ) 2 (1 + λv , j )] 

(1 − λa , i ) 2 − (1 − λa , j ) 2 
, 

here δ = λd, 1 + λd, 2 + λd, 3 . The initial conditions for this set of
quations are 

λa , i = D 

′ 
1 , ini λi , (57) 

v , i = 

D 

′ 
1 , ini λi 

D 

′ 
1 , ini λi − 1 

, 

d , i = D 

′ 
1 , ini λi , 

here λi is the eigenvalue of −S 
(1) 
i,j ( � k , a 0 ), and D 

′ 
1 , ini is the normalized

rowth factor D 

′ 
1 at an initial time a ∼ 10 −5 . At this initial time,

he Zel’dovich approximation is accurate enough, hence we can
ompute the 1st-order initial displacement field S (1) 

i,j ( � k , a 0 ) from the

ealization of the density contrast. Then we diagonalize S (1) 
i,j ( � k , a 0 ) to

et its eigenvalues. Finally, by solving equations ( 56 ) we can get the
ollapse time for each particle. The collapse time is defined as the
oment of collapse of the first axis of the ellipsoid collapsed, λa, i 

 1. 
Collapsed particles may become part of dark matter haloes or of

he filament network that connects them. Haloes are constructed with
n algorithm that mimics their hierarchical formation: (i) for each
ollapsing particle the code checks their 6 neighbours in Lagrangian
pace; (ii) a particle that collapses before its neighbours becomes a
-particle halo; (iii) a collapsing particle may accrete on a halo if it
touches’ it in Lagrangian space. The accretion condition is satisfied
f, after the halo and the particle are mo v ed using equation ( 49 ),
heir distance is less than a threshold distance (discussed below); (v)
ollapsed particles that do not accrete on haloes become filaments,
nd may accrete later if a neighbour is accreted to a halo; (vi)
alo mergers are checked each time a collapsing particle ‘touches’
wo haloes, the merger takes place if the haloes, mo v ed again with
quation ( 49 ), get nearer than a threshold distance. 

In the PINOCCHIO code, the threshold distance for the collapsed
articles being accreted into haloes is defined as 

 

2 
thr = 

⎧ ⎨ ⎩ 

( f a R 

e ) 2 + ( f 200 R ) 2 , D 

′ 
1 σ ≤ σ ′ , { 

f a R 

e [1 + f ra ( D 

′ 
1 σ − σ ′ )] 

} 2 
+ ( f 200 R ) 2 , D 

′ 
1 σ > σ ′ , 

(58) 

here R = ( M h ) 1/3 , and M h is the halo mass. The threshold distance
or merging between haloes is defined as 

 

′ 2 
thr = 

⎧ ⎨ ⎩ 

( f m 

R 

e 
lar ) 

2 + ( f 200 R lar ) 2 , D 

′ 
1 σ ≤ σ ′ , { 

f m 

R 

e 
lar [1 + f rm 

( D 

′ 
1 σ − σ ′ )] 

} 2 
+ ( f 200 R lar ) 2 , D 

′ 
1 σ > σ ′ , 

(59) 

here R lar = ( M h, lar ) 1/3 , with M h, lar is the mass of the larger halo, σ is
he variance of the linear density contrast on the grid, and is a function
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Figure 5. Distribution of collapse times for the dark matter particles (top 
panel) and its cumulative number (bottom panel) for � CDM (red), ‘grG3’ 
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f time. σ
′ 

is a free parameter that controls the change of the ‘virial
adius’, and { e , f a , f m 

, f ra , f rm 

, f 200 } are additional free parameters
hat have been calibrated with N -body simulation in � CDM. Due
o the enhancement of gravitational force in G3, the accretion and 
erging conditions are easier to be satisfied in G3, even for the same

alo mass. Via the Poisson equation, one can absorb the gravitational 
nhancement into the rescaled density and eventually the mass: 

∂ 2 � 

a 2 
= 4 πG eff δρm 

= 4 πGδρm , eff , (60) 

here δρm, eff = μδρm 

. The true halo mass is M h = 

¯m 

∫ r vir 

0 4 πr 2 δρm 

dr . After the redefinition, the ef fecti ve halo mass
eads 

 h, eff = ρ̄m 

∫ r vir 

0 
4 πr 2 δρm , eff dr = ρ̄m 

∫ r vir 

0 
4 πr 2 μδρm 

dr. (61) 

hen one can simply replace the ef fecti ve masses computed with the
bo v e formula in the expression for R and R lar . On linear scales, μL 

s independent of radius. From equation ( 61 ), one can read M h, eff 

 μL ( a ) M h . On the non-linear scale, μNL ( a , δ) also depends on the
adius or equi v alently on the local density. For simplification, we
x δ = 200, then M h, eff = μNL ( a , 200) M h . As a consequence, the
th force is screened in virialized objects. The output halo mass is
omputed as N × m p , where N is the number of particles within the
alo and m p = 4.62 × 10 9 M � h −1 is the particle mass. 

 RESULTS  

e extend the standard PINOCCHIO algorithm according to what 
escribed in the previous sections. The code, dubbed as ‘ G3- 
INOCCHIO ’, will soon be available in the official repository. In order
o compare our results with full N -body simulations, we choose the
ox size, number of particles, and cosmological parameters as in 
arreira et al. ( 2013a , 2014a ). We run ‘ G3-PINOCCHIO ’ in a box with

ize 200 Mpc h −1 with 512 3 particles. The cosmological parameters 
e adopt are �m, 0 = 0.279, �� 0 = 0.721, h = 0.731, σ 8 = 0.997,
 s = 0.953, both for G3 and � CDM. In what follows, we describe
hree different prescriptions for the G3 model, namely ‘linearG3’, 
vainG3’, and ‘grG3’. For all three G3 models, we compute the 
isplacement fields of dark matter particles with 2LPT as presented 
n Section 3 . For ‘linearG3’, we compute the collapse times with the
inear expression for the gravitational slip function, μL ( a ), with no
creening. For ‘vainG3’, we use the Vainshtein screened gravitational 
lip function, μNL ( a , δ). In ‘grG3’ we compute ellipsoidal collapse
s in GR: we choose this case as benchmark to demonstrate the
f fecti veness of the screening mechanism; in fact, the ‘grG3’ case
an be seen as an extreme case of screening. A similar approach
s taken in Barreira et al. ( 2013a , 2014a ), where the authors define
 ‘Linear model’, equi v alent to our ‘linearG3’, and a ‘Full model’,
ame as our ‘v ainG3’. Ho we ver, their ‘QCDM model’ differs from
ur ‘grG3’: the former only modifies the background evolution, while 
n the latter we modify the 2LPT displacements. As a consequence, 
ur ‘grG3’ run already includes the power spectrum enhancement 
redicted by linear theory, i.e. the amplitude of the power spectrum 

n large scales is the same in ‘grG3’ and ‘linearG3’, ‘vainG3’. 
In Fig. 5 , we plot the distribution of collapse times for each particle

n a smaller simulation with 200 3 particles and 500 Mpc h −1 box size.
he upper panel shows the number of collapsed particles for each 

edshift bin, while the lower panel shows the cumulative numbers. 
he red, pink, cyan, and purple shaded regions denote, respectively, 
 CDM, ‘grG3’, ‘linearG3’, and ‘vainG3’ models. From the zoom- 

n sub-panel, we see that at redshift z = 0 the cumulative collapsed
article numbers in � CDM and ‘vainG3’ are almost the same. This
s because we normalize the linear power spectra of both � CDM
nd G3 models with the same linear perturbation amplitude at z = 0.
rom the top panel of Fig. 5 , one can see that the � CDM collapsing
ate at low redshift is lower than the one of all G3 models. On
he contrary, the � CDM model has more collapsed particles abo v e
edshift ∼1.8. This is because D 

′ 
1 , ini for � CDM is larger than that

or G3 by 10 − 15 per cent (as shown in Fig. 3 ), thus the ellipsoidal
ollapse for � CDM begins with larger density perturbations. This 
s again an artefact due to the chosen normalization setup. In the
ame figure, the ‘vainG3’ collapsing rate is lower than the one of
linearG3’ between redshifts 0.5 and 0. This is due to the μNL going
ack to unity at late times, resulting in a weaker gravitational force
ith respect to the cases without screening. As an extreme screening

imit, ‘grG3’ further suppresses gravitational collapse. 
The input linear power spectrum can be computed with an 

instein–Boltzmann solver such as CAMB/CLASS (Lewis, Challi- 
or & Lasenby 2000 ; Lesgourgues 2011 ) or using the analytical
tting formula of Eisenstein & Hu ( 1998 ). To suppress sample
ariance in the power spectrum, the moduli of Fourier-space modes 
f the linear density field are fixed to their expectation value given by
he power spectrum, while phases are randomly distributed between 
 and 2 π . Since the linear growth rate in G3 is larger than the one
f � CDM, to reach the same final amplitude the G3 model has to
tart from a more uniform density initial condition. For this reason,
MNRAS 516, 5762–5774 (2022) 
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M

Figure 6. Relative differences in the cumulative mass function with respect 
to the ‘grG3’ case at a = 1 (top panel) and a = 0.8 (bottom panel) for our 
two approaches to ellipsoidal collapse, ‘linearG3’ and ‘v ainG3’, sho wn with 
green and blue lines, respectively. 
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Figure 7. Linear halo bias at a = 1 (top panel) and a = 0.8 (bottom panel), 
as a function of the halo mass. We mark our predictions with cross symbols, 
and compare to the results of Barreira et al. ( 2014a ) showing their simulations 
results with triangles with errorbars, and their prediction based on the Sheth–
Tormen formula with solid lines. We show the results for the ‘grG3’ case, 
the ‘linearG3’ case, and the ‘vainG3’ case with red, green, and blue lines and 
symbols, respectively. 
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he high redshift matter power spectra in G3 are lower than those in
 CDM cases. 
In Fig. 6 , we show the relative differences in the cumulative
ass function of ‘linearG3’ (green lines) and ‘vainG3’ (blue lines)
ith respect to our benchmark, ‘grG3’. The role of the Vainshtein
echanism can clearly be seen in the high-mass end, where the fifth

orce is screened and the ‘vainG3’ case shows a smaller deviation
rom ‘grG3’ than ‘linearG3’. 

Additionally, we compute the linear halo bias. We use the Pow-
rI4 package 8 to read the halo catalogues and compute the halo
ower spectra at different redshifts, then we compute the square root
f the ratio between the halo power spectrum and the linear matter
ower spectrum for k < 0.2, namely the linear halo bias. 
In Figure 7 we compare our results for the halo bias with the N -

ody simulations of Barreira et al. ( 2014a ). The cross symbols are our
esults, the solid curves are the best-fitting Sheth–Tormen formalism
o the cumulative halo mass function data from simulations, and
he triangles with error bars are the measurement of halo bias
irectly from the simulations. Different colours mark the different
pproximations for collapse times, as detailed in the legend. It can
e seen that our results, despite being computed with a completely
NRAS 516, 5762–5774 (2022) 

 ht tps://github.com/sefusat ti/PowerI4 . 9
ifferent method, match remarkably well the general trend of the
 -body simulations. 
Finally, we plot our result for the matter power spectrum in Fig. 8 .

or PINOCCHIO , this is obtained by displacing with 2LPT particles that
o not belong to haloes, while halo particles are distributed around
he halo centre of mass assuming an NFW profile (Navarro, Frenk
 White 1996 , 1997 ). These power spectra are computed with the
ylians package. 9 For comparison, we also show the simulation

esults with solid curves. The relative differences are with respect to
he ‘grG3’ model in our case, and with respect to the ‘QCDM’ model
n the case of the simulations. One can see that, at large scales, the
wo results are discrepant: in particular, the Barreira et al. ( 2013a )
atios also show the amplitude difference in the power spectra that is
ue to the different linear evolution between G3 and � CDM, while
urs do not. As mentioned previously, this is due to the fact that our
grG3’ is not exactly the same as ‘QCDM’, since we modify both
he background and the Lagrangian perturbations up to the 2nd order
hile the ‘QCDM’ model in Barreira et al. ( 2013a ) only modifies the
 ht tps://pylians3.readt hedocs.io/en/master/. 
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Figure 8. Matter power spectrum relative differences at a = 1 (top panel) 
and a = 0.8 (bottom panel). The green lines mark the ratio of the ‘linearG3’ 
simulations to the ‘grG3’ case, while we show the ‘vainG3’ case in blue. Our 
results, measured from PINOCCHIO snapshots, are plotted as dashed curves. 
The shadowed areas mark the 1 σ errors on the measurements. We also show 

the results from Barreira et al. ( 2013a ) with solid lines, remarking that these 
ratios are obtained to their QCDM simulations, which does not correspond to 
our ‘grG3’ case exactly since it only includes modifications to the background 
evolution. 
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ackground evolution. For this reason, we cannot do a quantitative 
omparison with Barreira et al. ( 2013a ), although it can be seen that
ur results reproduce the general trend of the simulations. We report 
n Appendix A a more detailed analysis of our halo catalogues. We
ompare the halo properties of matched and unmatched catalogues, 
ncluding the halo mass distributions, the halo mass functions, and 
alo power spectra. 

 C O N C L U S I O N S  

his work presents first- and second-order Lagrangian perturbation 
heory for the cubic Galileon model, as well as its ellipsoidal collapse
ynamics. As in the case of � CDM, both the first- and second-order
rowth factors of the cubic Galileon model are scale independent, 
ince the extra scalar field which drives the accelerated expansion 
s ef fecti v ely massless. Its Compton wav elength is indeed on the
ubble horizon scale: below this scale, the modifications of gravity 
eep constant in space and vary slowly with time. Since both growth
unctions are larger that their � CDM counterparts, as shown in Fig. 3 ,
lustering in enhanced. In particular, the maximum enhancement of 
ravity happens at redshift zero, when the ef fecti ve gravitational
onstant is about twice the Newton constant. Once we include the
ainshtein screening mechanism in the high local curvature regime, 

he gravitational interaction restores to the standard GR case. 
Using both the extension of standard 2LPT and ellipsoidal collapse 

o the G3 model, we create a new branch of the PINOCCHIO code,
ubbed as G3-PINOCCHIO : our extension provides a fast tool to
enerate approximated dark matter halo catalogues with the G3 
odified gravity model. We run the G3-PINOCCHIO code in a box with

ize 200 Mpc h −1 and 512 3 particles and study the properties of the
btained halo catalogues at different redshifts. To illustrate the effect 
f Vainshtein screening, we run three different implementations of 
llipsoidal collapse, namely ‘linearG3’, ‘vainG3’, and ‘grG3’. From 

hese realizations, we compute the cumulative mass function, the 
inear halo bias, and the matter power spectrum. We find that,
s for other types of modified gravity, the Vainshtein screening 
echanism in cubic Galileon also suppresses the extra gravitational 

orce in the high-mass end of the mass function. We compute
he linear halo bias and the matter power spectrum and perform
 qualitative comparison to N -body simulations, showing that we 
an reproduce all trends remarkably well. Given the significantly 
educed computational time required to generate halo catalogues 
ith PINOCCHIO with respect to more computationally e xpensiv e 
 -body simulations, our implementation provides an optimal tool 

or the fast generation of large sets of realizations. Additionally, the
ode can be readily extended to include other MG models that feature
ainshtein screening. 
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PPENDI X  A :  H A L O  C ATA L O G U E S  

e describe here a more detailed analysis of the halo catalogues.
ince we use the same initial conditions for the different imple-
entations of the modified gravity model, namely ‘linearG3’ and

vainG3’, we can match the IDs of haloes that are formed in both
imulations. We call them ‘matched’ haloes, while haloes that are
nly present in one of the two realizations are called ‘unmatched’.
n Fig. A1 we show the halo number density for the matched and
nmatched haloes. 
One can see that most haloes appear in both realizations, while

nly ∼ 1 per cent of the haloes in ‘linearG3’ are unmatched and
10 per cent haloes in the ‘vainG3’ are unmatched. In Fig. A2 ,

e show the mass distribution of the matched haloes for the
linearG3’ and ‘vainG3’ prescriptions. Because the modification to
he gravitational slip is stronger in the linear case with respect to

http://dx.doi.org/10.1088/1475-7516/2014/08/059
http://dx.doi.org/10.1088/1475-7516/2015/12/059
http://dx.doi.org/10.1088/1475-7516/2013/08/010
http://dx.doi.org/10.1086/192267
http://dx.doi.org/10.1016/j.dark.2016.02.001
http://dx.doi.org/10.12942/lrr-2001-1
http://dx.doi.org/10.1093/mnras/stv1289
http://dx.doi.org/10.1103/PhysRevLett.119.251302
http://dx.doi.org/https://doi.org/10.1103/PhysRevD.105.023520
http://dx.doi.org/10.1103/PhysRevLett.105.111301
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1103/PhysRevLett.119.251304
http://dx.doi.org/10.1016/j.dark.2020.100686
http://dx.doi.org/10.1016/j.physrep.2020.02.004
http://dx.doi.org/10.1103/PhysRevD.101.064001
http://dx.doi.org/10.1088/1475-7516/2013/02/032
http://dx.doi.org/10.1093/mnras/stab694
http://dx.doi.org/10.1051/0004-6361/202039063
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://dx.doi.org/10.1103/PhysRevD.89.103530
http://dx.doi.org/10.1007/s41114-018-0017-4
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1142/S0218271818480012
http://arxiv.org/abs/1104.2932
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://dx.doi.org/10.1088/1475-7516/2013/05/023
http://dx.doi.org/10.1051/0004-6361/201322412
http://dx.doi.org/10.1088/1475-7516/2016/11/039
http://dx.doi.org/10.1093/mnras/287.4.753
http://dx.doi.org/10.1046/j.1365-8711.2002.05162.x
http://dx.doi.org/10.1086/324182
http://dx.doi.org/10.1093/mnras/stt907
http://dx.doi.org/10.1093/mnras/staa312
http://dx.doi.org/10.1093/mnras/stw3085
http://dx.doi.org/10.1093/mnras/stw075
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1051/0004-6361/201321256
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.97.063518
http://dx.doi.org/10.1103/PhysRevD.100.063540
http://dx.doi.org/10.1088/0264-9381/30/21/214007
http://dx.doi.org/10.1103/PhysRevD.94.104014
http://dx.doi.org/10.1093/mnras/stt1575
http://dx.doi.org/10.1088/1475-7516/2017/10/020
http://dx.doi.org/10.1088/1475-7516/2017/01/008
http://dx.doi.org/10.1103/PhysRevD.80.043001
http://dx.doi.org/10.1360/SSPMA-2021-0025
http://dx.doi.org/10.1046/j.1365-8711.2002.05441.x
http://dx.doi.org/10.1016/0370-2693(72)90147-5
http://dx.doi.org/10.1093/mnras/stv2253
http://dx.doi.org/10.1088/1475-7516/2017/08/006
http://dx.doi.org/10.1088/1475-7516/2017/08/019
art/stac2298_fa1.eps


G3 PINOCCHIO 5773 

F  

a

t
d  

s

c
h
c
t  

b
f

F  

w  

i  

h
 

p  

fi  

d
t  

fi  

d
a

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/4/5762/6678439 by U
niversita deglie Studi di Trieste user o
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he non-linear ‘vainG3’ one, the halo masses shift to the massive 
irection in the ‘linearG3’ case (i.e. they mostly sit below the black
olid line). 

In Fig. A3 , we show the halo power spectra computed for the whole 
atalogue, and for the catalogue split in matched and unmatched 
aloes. The halo power spectra are computed with PowerI4 , 
onsidering all haloes with at least 100 particles. It can clearly be seen 
hat the halo power spectra of the matched haloes are very similar for
oth ‘linearG3’ and ‘vainG3’, while they are significantly different 
or the unmatched haloes. One can conclude that the differences 
igure A3. Halo power spectra at a = 1 (top panel) and a = 0.8. As abo v e,
e show results for the whole catalogue, the matched and unmatched haloes.

n the final halo power spectra actually come from the unmatched
aloes. 
Finally, in Fig. A4 we show the relati ve dif ferences in the halo

ower spectra with respect to the ‘grG3’ model. At a = 1, we
nd a difference of ∼ 20 per cent on all scales for ‘linearG3’. Such
ifference is strongly reduced for ‘vainG3’, highlighting once again 
he ef fecti veness of the Vainshtein mechanism in screening the MG
fth force. Similar results can also be seen for a = 0.8, with
ifferences of ∼ 10 and ∼ 2 per cent , respectively, for ‘linearG3’ 
nd ‘vainG3’. 
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Figure A4. Relative differences in the halo power spectra at a = 1 and a 
= 0.8, shown for the ‘linearG3’ prescription (green line) and the ‘vainG3’ 
prescription (blue line). In both cases, the ratio is computed with respect to 
the ‘grG3’ case. 
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