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A B S T R A C T

To more rapidly predicting the integrity of components weakened by sharp notches, notch stress intensity factors
(NSIFs) are usually evaluated. Many methods have been proposed evaluating NSIFs, ranging from the stress
gradient based formulation to methods evaluating strain energy density averaged over a control region. Here, we
compare different numerical and approximate methods applied to a square plate with a 45° tilted crack, posi-
tioned at the center of the plate. Hence, approximate methods need to FE solutions, obtained from models
discretized with fine mesh or, alternatively, with coarse mesh, having to consider the mean value of the local
Strain Energy Density (SED) to calculate NSIFs. Furthermore, 2D and 3D numerical simulations have been
carried out to investigate the solutions provided by these analytical methods. For this aim, two software based on
the Finite Element Method (FEM) and on the Dual Boundary Element Method (DBEM), respectively, have been
adopted to solve the proposed study case of the square plate with a 45° tilted crack. These methods can supply
accurate predictions of SIFs by means of J-integral calculation. Then, the NSIFs have been calculated at the
intersection between the crack front and the free surface of the plate and, to assess the thickness effect on the
provided solutions, they have also been calculated at half the thickness along the crack front and for increasing
thickness values. Finally, the NSIFs obtained from the analytical and numerical methods have been compared
each other to evaluate the level of agreement.

1. Introduction

NSIFs play an essential role in static strength assessments of com-
ponents made of brittle or quasi-brittle materials, weakened by sharp
notches [1]. This holds true also for components made of structural
materials undergoing high cycle fatigue loading [2] as well as for
welded joints [3,4]. In recent years, some approximate methods based
on the evaluation of the Averaged Strain Energy Density (ASED) were
proposed. One of the first and most significant models available in the
Literature was proposed by Lazzarin et al., based on the calculation of
the Strain Energy Density (SED) averaged in two different control vo-
lumes centered at the notch tip [5,6]. More recently, another approx-
imate method has been presented by Treifi and Oyadiji that takes ad-
vantage of the strain energy density averaged within two control
volumes (semi-circular sector) centered at the notch tip [7]. Further-
more, a new method based on the evaluation of the total and deviatoric
strain energy density averaged over a control volume was proposed
[8,27]. The new method and a modified version were compared to the
methods of Lazzarin et al. and Treifi and Oyadiji showing higher

accuracy [27]. A comparison between different failure criteria for V-
shaped notches has been done by Lazzarin et al. [29]. The finite fracture
mechanics criteria by Leguillon [30] and Carpinteri [31] were com-
pared to SED, both analytically and by use of finite element for calcu-
lating NSIF. All the methods gave good agreement with experiment
results.

In this work, the SED based methods described above were applied
to a square plate weakened by a 45° tilted crack positioned at the center
of the plate. When the opening angle of a v-shaped notch being zero,
the v-notch turns into a crack. Hence, NSIFs are firstly calculated ac-
cording to the Gross and Mendelson equations [9], by means of FE
refined mesh, and then approximate methods with coarse mesh were
used to calculate NSIFs by means of the ASED. Furthermore, two nu-
merical analyses of the notched plate were performed using the Dual
Boundary Element Method (DBEM) both considering 2D and 3D cases.
After that, a numerical analysis was carried out with a FEM-based
software for the one 3D case. The normalised SIFs, obtained by the
overall numerical investigations, were compared with each other and
with normalised SIFs obtained from the approximate methods. The
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thickness effect on normalised SIFs was inferred by means of three-di-
mensional FE analyses, varying the thickness from 1.0mm up to
3.0 mm on the same geometrical model.

2. Methods

2.1. Model geometry, boundary and loading conditions

The special case of a square plate weakened by a 45 tilted crack is
studied. The geometry is shown in Fig. 1, the notched square plate
subjected to mixed mode I+ II loading. The geometry of the plate is
characterized by equal width and height, 2W=H=10mm. The tilted
crack in the plate of finite extension (Fig. 6) can be described by a
projected crack length 2a=2mm and a crack inclination angle
ϕ=45°. For the numerical calculations, FEM and DBEM simulations
were employed to model the plate and obtain SIFs. The boundary
conditions and loads are shown in Fig. 1b.

2.2. Background

In plane problems, the mode I and mode II NSIFs for sharp V-not-
ches, which quantify the intensity of the asymptotic stress distributions
in the close neighborhood of the notch tip, is expressed by means of the
Gross and Mendelson’s [9] equations:

= =K r2 lim[( ) ]
r

1
0

0
(1 )1

(1)

= =K r2 lim[( ) ]
r

r2
0

0
(1 )2

(2)

where (r, θ) are the component of the polar coordinate system centered
at the notch tip (Fig. 1), σθθ and τrθ are the stress components according
to the coordinate system; λ1 and λ2 are respectively the mode I and
mode II first eigenvalues in William’s equations [10]. The main prac-
tical disadvantage in the application of the NSIF-based approach is that
very refined meshes are needed to calculate the NSIFs by means of Eqs.
(1) and (2). Refined meshes are not necessary when the aim of the finite
element analysis is to assess the mean value of the local strain energy
density on a control volume surrounding the stress singularity. In fact,
SED can be derived directly from nodal displacements, so that also
coarse meshes are able to give accurate values. Recently, some ap-
proximate methods for the rapid calculation of the NSIFs, based on the
averaged strain energy density (ASED) have been proposed [5]. The
total elastic strain energy density averaged over a sector of radius R0
has been widely used in the Literature also for static [11–15] and fa-
tigue strength assessments [6,16]. In the case of mixed mode loading,
these methods require the solution of a system of two equations in two
unknowns (K1 and K2). Furthermore, a method based on the evaluation

of the total and deviatoric SED (DSED), averaged in a single control
volume, has been considered. Also, in this case, two independent
equations can be obtained, one linked to the total SED and the other to
the deviatoric one: in this way it is possible to evaluate the SIFs, KI and
KII, of cracks under mixed mode loading (see Fig. 2).

2.3. Approximate methods

2.3.1. Lazzarin et al. approach
This method has been proposed by Lazzarin et al. [4] and it is based

on the evaluation of the ASED on two different control volumes (cir-
cular sectors), centered at the notch tip and characterized by the radii
Ra and Rb (Fig. 3a). Known the SED values (Wa and Wb), by means of a
FE analysis, and defined the control radii (Ra and Ra), it is possible to
obtain a system of two equations in two unknowns (K1 and K2):
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where E is the Young’s modulus of the material whilst I1 and I2 are the
integrals of the angular stress functions, which depend on the notch
opening angle, 2α=2π−2γ, and the Poisson’s ratio ν. This method
cannot be applied to a crack subjected to mixed mode loading, since an
indeterminate system of equations would be obtained. Solving the
system of equations, the values of the NSIFs can be determined as fol-
lows:
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a b b a
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Nomenclature

ASED averaged strain energy density
a crack length
Ca, Cb constants of Wa,FE and Wb,FE

DBEM dual boundary element method
DSED deviatoric strain energy density
Da, Db constants of Wa,FE and Wb,FE

E Young’s modulus
ERR energy release rate
FEM finite element method
I1, I2 integrals of the angular stress functions
J J-integral
KI, KII mode I, II stress intensity factors
K1, K2 normalised mode I, II of stress intensity factors
LB large Block
LEFM Linear Elastic Fracture Mechanics

NSIF Notch Stress Intensity Factor
R control radius
Ra, Rb outer and inner control radii
R0 radius of the control volume
SB standard Block
SED Strain Energy density
SIF Stress Intensity Factors
Wa,FE SED component
Wb,FE SED component
r, θ polar system coordinates
t thickness of the plate
2α notch opening angle
γ notch bisector angle
υ Poisson’s ratio
λ1, λ2 mode I, II first eigenvalues in William’s equations
σθθ, τrθ notch tip stress components
Ω volume control

Fig. 1. Loaded square plate with the 45° tilted crack (a) and loads and boundary
conditions applied in FEA (b).
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2.3.2. Treifi and Oyadiji approach
The method has been proposed by Treifi and Oyadiji [7] and it is

based on the evaluation of the averaged SED on two different control
volumes (semi-circular sectors with a central angle equal to γ) centered
at the notch tip and characterized by a radius R (Fig. 3b). Known the
SED values (Wa and Wb) by means of a FE analysis, and defined the
control radius (R), it is possible to obtain a system of two equations in
two unknowns (K1 and K2):
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where I1,s, I2,s and I12,s are the integrals of the angular stress functions,
which depend on the notch opening angle, 2α, the angle defined by the
semi-circular sector, γ, and the Poisson’s ratio ν. In this case the con-
tribution of the mixed term (K1⋯K2) is present because the integration
for the strain energy evaluation is not performed on a control volume
symmetrical with respect to the notch bisector line (Fig. 3b). Due to the
presence of the mixed term, it is possible to decouple the contributions
of the loading modes, obtaining a solution of the system even in the
crack case. Solving the system of equations, the values of the NSIFs can
be determined:
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2.3.3. Approach based on the deviatoric SED
This approach has been presented for the first time in Ref. [5]. It is

based on the evaluation of the total and deviatoric SED averaged in a

single control volume (circular sector) centered at the notch tip and
characterized by a radius R (Fig. 4a). Two independent equations can
be obtained: one linked to the total SED and the other to the deviatoric
one. In this way, it is possible to obtain a solution of the system even in
the crack case.

As previously, knowing the SED values (W andWdev), by means of a
FE analysis, and defining the control radius (R), it is possible to obtain a
system of two equations in two unknowns (K1 and K2):
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where I1,dev and I2,dev are the integrals of the angular stress functions
related to the deviatoric strain energy density, which depend on the
notch opening angle, 2α, and the Poisson’s ratio ν. Solving the system of
equations, the values of the NSIFs can be determined:
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As discussed earlier, the total SED can be derived directly from
nodal displacements, so that also coarse meshes are able to give accu-
rate values for it. However, the calculation of the deviatoric SED, by a
FE code, is based on the von Mises equivalent stress averaged within the
element. This quantity is more sensitive to the refinement level of the
adopted mesh, so that the new proposed method could not be mesh-
insensitive. With the aim to improve the results obtained from the ap-
plication of the new method (based on the deviatoric SED) in the case of
coarse meshes, a modified version has been proposed. This approach is
similar to the previous one, but it is applied to a control volume con-
sisting of a circular ring (Fig. 4a). The calculation of the deviatoric SED,
by a FE code, is based on the von Mises equivalent stress averaged
within the element that is a parameter sensitive to the refinement level
of the adopted mesh. In case of coarse meshes it could be useful to
exclude from the calculation the area characterized by the highest stress
gradient (i.e. the region close to the notch tip). The control volume
results to be constituted by a circular ring characterized by an outer
radius Ra and by an inner radius Rb (Fig. 4b). As before, knowing the
SED values (W and Wdev), by means of a FE analysis, and defining the
control radii (Ra and Rb), it is possible to obtain a system of two
equations in two unknowns (K1 and K2):

Fig. 2. Polar coordinate system centered at the notch tip [27].

Fig. 3. Control volumes in the Lazzarin et al. approach (a) and in the Treifi and
Oyadiji approach (b) [27].

Fig. 4. Control volumes in the approach based on the deviatoric SED (a) and in
the modified version of the approach based on the deviatoric SED (b) [27].
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Solving this system of equations, as already shown in the previous
cases, the values of the NSIFs can be determined.

2.3.4. SIFs normalization
Methods described in Section 2 have been applied to the case of

study of a notched plate subjected to mixed mode I+ II loading. Nor-
malised SIFs, K1 and K2, are calculated according to the Gross and
Mendelson Eqs. (1) and (2), by means of several FE analyses and
adopting very refined meshes in the close neighborhood of the notch tip
(the size of the smallest element is of the order of 10−5mm). After-
wards, the approximate methods have been applied taking into con-
sideration three different values of the control radius R0 (0.1, 0.01 and
0.001mm) and by using of a coarse FE meshes. Hence, the FE mesh has
been made of 8-node elements (PLANE 183) generated by means of the
FE code ANSYS® 14.5. In the FE analyses, a Poisson’s ratio ν equal to 0.3
and a Young’s modulus E equal to 206 GPa have been adopted. The
NSIFs have been reported in Table 1, according to the following defi-
nition:

=K K
ai normalized

i
, 1 i (13)

2.3.5. Numerical methods to calculate NSIFs
For the previous case of study of the notched plate, the 2D and 3D

numerical analyses have been performed using FEM and DBEM ap-
proaches, respectively, and to compare the NSIFs calculated by dif-
ferent methods. Thus, the NSIFs have been computed where the crack
front intersecting the free surface of the plate. In addition, using the
DBEM-based approach (Beasy), the same problem for the 2D and 3D
analyses has been solved while, using FEM-based approach (Abaqus
and Zencrack software) only 3D analysis has been solved because
Zencrack has the limit of only work in a 3D environment.” Then, the
stress scenario obtained from the several simulations has been com-
pared. A similar comparison of the normalised SIFs, calculated at dif-
ferent distances from the crack front, has been carried out.
Furthermore, the FEM-based analysis has been solved considering both
standard (SB) and large (LB) cracked blocks to model the crack front
with different j-path radii. Then, if SBs have been employed, the j-path
radius is equal to 0.002mm whilst, if LBs have been employed, the j-
path radius is equal to 0.1 mm (Table 2). For the DBEM-based analyses,
two j-path radii have been considered, that is, R= 0.07 for the 2D case
and R=0.1 for the 3D case, respectively.

2.3.6. Methods for calculating fracture parameters
Zencrack [17] is a fracture mechanics tool designed to interact with

FEM-based software like Ansys or Abaqus [18]. By means of a Graphic
User Interface (GUI), Zencrack allows to easily insert a single crack or
multiple cracks through the substitution of hexahedral elements of the
uncracked model, that contain a part of the crack front, with hexahe-
dral elements belonging to special crack blocks for modelling the crack
front [17]. Moreover, this substitution implies an adaptation of the
surrounding mesh through a controlled and gradual deformation of
neighboring elements carried out by means of a remeshing algorithm. It
is worth noting that crack modelling is only possible if the mesh of the
uncracked starting model is made of hexahedral elements [17]. In this
work, the interaction between Zencrack and Abaqus allows inserting
the crack in the uncracked model and simulating the behaviour of the

cracked model under the action of the tensile load. Furthermore, Zen-
crack allows processing fracture parameters carried out from the FE
simulation directly in the GUI.

Each crack is modelled by means of a set of collapsed blocks that are
distinct in two groups: the first, consisting of collapsed facing elements
used for modelling the crack front; the second, consisting of a pair of
facing blocks whose adjacent nodes are separated each other to model
the crack faces. Each cracked block is a set of 3D elements positioned
inside a cube to hold each part of the crack front; each crack face has
been modelled with only one block or multiple adjacent blocks de-
pending on the crack extension. Moreover, each cracked block is stored
in a Zencrack library in the form of families. In the cracked blocks li-
brary, two macro families of collapsed blocks are distinct: the first,
containing “standard” blocks; the second, containing the “large” blocks.
The FE simulations shown in this work use “standard” and “large”
blocks, respectively. Zencrack calculates the Energy Release Rate (ERR)
for each node of the crack front by the corresponding value of the J-
Integral provided from Abaqus.

2.3.7. FE analysis using collapsed standard blocks
Using the SBs family SB04 [17] is useful to generate J-paths with a

small radius for J-integral calculation. Generally, using SBs needs a
bigger computational time for crack insertion and crack solution than
the needed of LBs. In this study, the choice of the best approach de-
pends essentially by the model and crack geometry. Fig. 5 shows the FE
model of a square plate with highlight of the strategy used to model the
central area where an inclined 45° crack will take place. Abaqus tie
constraints are not employed in this case, then the model geometry is
continuous everywhere as well as the mesh generated to discretize the
model.

2.3.8. FE analysis using collapsed large blocks
The use of LBs imposes to model the square plate geometry with two

distinct solid parts, as shown in Fig. 5. The adopted strategy of mod-
elling introduces a discontinuity in the body geometry that is between
the external surfaces of the Part 2, where the 45° tilted crack will take
place, and the internal surface of the Part 1 (Fig. 6). Thus, also the mesh
adopted to discretize these two parts will be discontinuous at the in-
terface between the two parts. However, Abaqus allows introducing “tie
constraints” conditions on the interfaces between the two parts that
solves the problem of the mesh discontinuity [18]. Furthermore, be-
cause the Part 1 is defined as master whilst the Part 2 is defined as
slave, the Part 2 should be discretized with a finer mesh than the Part 1.
In general, the nodes on interface of each part will not coincident each
other, thus the results in terms of nodal displacements and nodal
stresses will be inaccurate. Refining the mesh on these interfaces could
be a good modelling strategy to solve this problem; in this way, the
interpolated values of nodal stresses and nodal displacements will

Table 1
Comparison between approximate methods for NSIFs evaluation of central
tilted crack (2α=0°) in a plate of finite extension [27].

Coarse mesh (64 finite elements)

R0 [mm] Method K1 K2 ΔK1 (%) ΔK2 (%)

Gross and Mendelson 0.655 0.638
0.1 Treifi and Oyadiji 0.636 0.642 −2.90 0.63
0.1 Method based on DSED 0.697 0.620 6.41 −2.82
0.1 DSED modified method 0.639 0.645 −2.44 1.10

0.01 Treifi and Oyadiji 0.613 0.654 −6.41 2.51
0.01 Method based on DSED 0.708 0.616 8.09 −3.45
0.01 DSED modified method 0.653 0.640 −0.31 0.31

0.001 Treifi and Oyadiji 0.624 0.651 −4.73 2.04
0.001 Method based on DSED 0.712 0.615 8.70 −3.61
0.001 DSED modified method 0.657 0.639 0.31 0.16

4



describe accurately the respective fields of stress and displacement,
producing a solution that correctly predicts the behavior of the loaded
plate. Furthermore, the use of LBs is very useful when it is needed to
propagate a crack, because it is avoided an undesirable and excessive
distortion of the elements ahead of the crack front that normally occurs
in cases where SBs are used, especially for complex model and crack
geometry [28].

3. Results and discussion

3.1. Case study: results

The analytical results and the comparison between different ap-
proaches have been reported in Table 1.

3.2. FEM and DBEM analyses

Numerical models corresponding to the geometric model shown in

Fig. 1 were created by means of a FEM-based and a DBEM-based soft-
ware, respectively. Then, two commercial codes FEM and DBEM-based
namely Abaqus [18] and Beasy [19], have been employed respectively
to model the square plate of a unit thickness for both 2D and 3D cases.
Later, the 45° tilted crack have been inserted in the square plate for
both 2D and 3D cases. Moreover, the Young’s modulus and the Pois-
son’s ratio chosen to model the square plate have been placed equal to
206,000MPa and 0.3, respectively. Then, boundary conditions have
been applied to the numerical model for reproducing the case of a plate
uniaxially loaded along the Y direction of the global reference system.
Geometrical dimensions, loading and boundary conditions have been
reported in Fig. 7 for the 2D Beasy model. These crack modelling
techniques have been already extensively used in the past in several
works [20–24,32]. Especially, the combination of the FEM-DBEM
methods has proven the importance of this approach in the study of
fatigue crack propagation [25,26].

3.2.1. DBEM analysis
A first evaluation of stress field and SIFs has been performed in a bi-

Table 2
Comparison between the K1 and K2 calculated with the approximate methods for NSIFs evaluation and the corre-
sponding calculated by 2D and 3D numerical analyses by DBEM (red) and FEM (green) approaches.

Fig. 5. Assembly of the square plate with highlight of the adopted geometry
and boundary conditions.

Fig. 6. Highlighting of the Part 1 and Part 2 of the assembly. Tie constraint
conditions have been applied at interfaces between the two parts.
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dimensional environment using the DBEM code (Beasy) [19]. The
square plate has been modelled with four lines subsequently meshed
with quadratic elements. Later, an embedded crack tilted of an angle
ϕ=45°, compared to the X-axis, is inserted meshed in the center of the
square plate. The projection of the tilted crack along the X-axis provides
a crack length equal to 2a=2mm. Then, tractions equal to 1.0MPa
and −1.0MPa and directed along the Y-axis have been applied on the
upper and lower surfaces of the plate, respectively. Springs of stiffness
equal to 10 N/mm have been introduced in the model as boundary
conditions (Fig. 7) to eliminate the degrees of freedom of rigid body.
The whole model has been meshed with 320 and 340 quadratic ele-
ments for the uncracked and cracked configurations, respectively.

For the cracked plate in the undeformed and deformed configura-
tions, two plots of the stress field have been reported in Fig. 8(a and b),
respectively.

In the 3D case, the numerical solution was carried out by means of a
model with the same geometry of the 2D model and on which the same
load and boundary conditions, used for solving the 2D problem (Fig. 9),
have been applied. In this case, the thickness of the body, equal to
1mm, was explicitly modelled. Hence, the adopted mesh was made of
total 1913 quadratic elements with 42,015 nodes whilst, for the em-
bedded crack only 104 quadratic elements have been used. The KI and

KII, subsequently normalised, have been calculated using the most ex-
ternal J-path with a radius equal to 0.025mm. Furthermore, a second
DBEM analysis was carried out to obtain SIFs from a smaller J-path
radius. In the latter case, the global mesh was made of 3042 quadratic
elements and 66,285 nodes whilst, for the embedded crack, 212
quadratic elements with a J-path radius equal to 0.01mm have been
used. Then, the contour plots of the principal stress, σyy, on deformed
scale has been shown in Fig. 9 with highlight of the refined mesh on the
crack fronts.

In Fig. 10 more details of the 3D crack, for the case with refined
mesh, are shown.

3.2.2. Three-dimensional FEM analysis
Calculations of stresses and SIFs are carried out by means of the

interaction between Abaqus, as FEM modeler and solver, and Zencrack
as fracture mechanics tool [17]. This latter is necessary to insert the
embedded crack and to evaluate the SIFs on the free surface or along
the crack front. Hence, Zencrack generates a crack front starting from of
a meshed uncracked model and substituting each original element,
where the crack front will take place, with a unit block of cracked
elements taken from a library where they are stored in form of families
[17]. Each unit block differs from each other for the number of con-
tained elements. To have more or less refined meshes on the crack front
the user can select a cracked block with more or less elements, re-
spectively. In this work, three kinds of unit blocks are employed to
model the crack. The first is a SB belonging to the SB04 family, which
provides the maximum accuracy for that family. The second and third
are LBs belonging to LB02 and LB06 families, respectively, which
provide the maximum accuracy for those families. Then, three analyses
are carried out using three different approaches as shown in Figs. 12, 14
and 16. Furthermore, several J-paths with different radius are disposed
along the crack fronts.

3.2.2.1. Standard blocks belonging to SB04 family. The FE model was
meshed with SB04 that contains a total of 121,980 fully quadratic
elements with 532,514 nodes. The KI and KII have been calculated in
agreement of the third J-path (third ring), where the distance from the
crack front is 0.002mm (J-path radius). Similarly, to the DBEM model,
nodal constraints have been applied on four nodes in the plane at half
the thickness of the square plate, to remove the degrees of freedom of
rigid body (Fig. 11). Hence, the principal stresses, σ22, have been
plotted for the undeformed and deformed configurations, respectively

Fig. 7. Highlight of the mesh adopted for the square plate with the 45° tilted
crack with boundary conditions.

Fig. 8. Principal stresses σ22 on the undeformed plot (a) and on the deformed plot (b).
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(Fig. 11). The maximum value of the stress scale was the same adopted
for the corresponding DBEM analysis whilst, the minimum scale value
was set to −1MPa to better evidence the stress field in the plate.
However, the stress distribution is substantially the same previously
calculated in the DBEM analysis and the symmetry of the square plate
permits to consider only the SIFs calculated on a crack front.

In Fig. 12, the previous stress scenario has been shown for the 45°
cut model to highlight the surface containing the two crack fronts. J-
paths have been highlighted for only one crack front.

3.2.2.2. Large blocks belonging to LB02 family. In this case, a hexagonal
volume containing the tilted crack has been meshed with LBs of family
LB02. The model was meshed with a total of 123,024 fully quadratic
elements with 537,704 nodes. The KI and KII have been calculated in

agreement of the second ring (second J-path) where the distance from
the crack front was equal to 0.1mm (J-path radius). In Figs. 13 and 14,
the principal stress field, σ22, has been shown with highlight of a crack
front on the deformed plot. Moreover, the mesh on the cracked surfaces
has been highlighted as well as the j-paths along the crack front
(Fig. 14).

3.2.2.3. Large blocks belonging to LB06 family. This model contains a
hexagonal volume meshed with LBs of family LB06. In this case, the
model has been meshed with a total 134,288 fully quadratic elements
with 586,952 nodes. The KI and KII have been calculated in agreement
of the second ring where the distance from the crack front is equal to
0.1 mm (J-path radius). The part 1 of this model is meshed with the
same number of quadrilateral elements as in the previous case whilst, to

Fig. 9. Contour plot of principal stresses, σyy, on deformed plot with highlight of the crack front.

Fig. 10. Contour plot of σyy with highlight of a crack front.
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model the crack, the part 2 is meshed by using LBs more enriched of
elements and belonging to family LB06. Also, in this case the principal
stress, σ22, and some details of the crack front as well as the j-paths have
been highlighted. Comparing Figs. 13,14 and 15,16, respectively, it is
worth noting that the stress field slightly changes. The stress scenario
reported in Figs. 15 and 16 shows a more accurate evaluation of the
stress field because a greater number of elements has been used for
modelling the crack. Therefore, the result of the latter analysis can be
considered as the convergence result. The same occurs for the SIFs
values.

3.2.2.4. Comparison of normalised SIFs. The SIFs, KI and KII, obtained
from the numerical analyses and distributed along the crack front have
been reported in normalised form in Figs. 17 and 18. Hence, in Table 2,
all the calculated values of the K1 and K2, related to the analytical and
numerical analyses, have been reported. Similarly, in Table 3, the K1

and K2 values, calculated at the intersection of the crack front with the
free surface, have been reported. Then, the K1 and K2 values calculated
at the midside position of the crack front have been shown in Table 4.

Each cracked block of family LB06 has about 86,000 quadrilateral
elements while each cracked block of family LB02 holds about 63,500
quadrilateral elements. Moreover, each cracked block of family SB04
holds only 35 quadrilateral elements. Hence, the LB06 can have up to 8
contours for j-integral calculation, the LB02 can have up to 12 contours
for J-integral calculation while the SB04 can have up to 6 contours for j-
integral calculation. Despite the different peculiarities of each cracked
block, in this case the three different families of cracked blocks have
been used only to study the convergence of results because they allow
to mesh the crack with a very different number of elements.

In Figs. 17 and 18 the normalised KI (K1) and normalised KII (K2),
obtained from the numerical FEM and DBEM-based analyses versus the
dimensionless length of the crack fronts have been reported. The trends

Fig. 11. Contour plots of the principal stresses, σ22, for the undeformed and deformed configurations, respectively, with highlight of the stress scenario for a single
cracked zone.

Fig. 12. Contour plot of the principal stress, σ22, for the 45° cut square plate with highlight of the J-paths along a crack front.
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of different K1 show a good agreement along the crack front except for
that values calculated on the free surfaces, where they converge in
pairs. Hence, the K1 produced by DBEM and FEM-based (SB04) analyses
converge to the same value (0.61MPa) whilst the second pairs, that
have been produced by the two FEM-based analyses (with LB06 and
LB02) converge to the value of 0.64MPa. The trends of the K2 values,
obtained from the FEM-based analyses, show a good agreement along
the whole crack front and then in correspondence of the intersection
between the crack front and the free surfaces. On the other hand, the K2
values, obtained from the DBEM-based analysis, show a good agree-
ment in correspondence of the breakthrough points but not along the
whole crack front, where the maximum percentage difference located at
the midside position is equal to 7.1%.

3.2.2.5. Thickness effect on normalised SIFs. A study to evaluate the
effect produced by the increasing of the thickness on normalized SIFs
has been also carried out. Starting from a square plate of unit thickness,
four increments in the thickness, each one equal to 0.5 mm, have been
assessed. In Tables 3 And 4, results of these calculations have been
reported whilst, in Figs. 19, 20 and Figs. 21, 22, a comparison among
these results have been shown in more details. These results have been
evaluated both where the crack front intersects the free surfaces of the
plate and at the deepest point of the crack front. In this case, all the FEM
and DBEM-based numerical analyses have been carried out considering
only 3D models with elements distribution on the external surfaces as
for the previous cases, except for the distribution of elements along the
thickness direction that has been changed.

Fig. 13. Contour plots of the principal stress, σ22, for the undeformed and deformed configurations, respectively, with highlight of the stress scenario for a single
cracked zone.

Fig. 14. Contour plot of the principal stress, σ22, for the 45° cut square plate with highlight of J-paths along the crack front.
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From Fig. 19, it is worth noting that normalised KI, obtained from
the FEM-based analyses that use LBs of family LB02 and LB06 are quite
insensitive as the thickness increases. Moreover, the maximum per-
centage difference between the starting values for t= 1.0mm and as-
sessed on the free surface is equal to 0.62%. The explanation is that,
within the LB, the mesh is distributed in such a way that the rings
constructed for the J-contour calculation allow to obtain more accurate
SIF than those obtained with the use of SB. Hence, percentage differ-
ences are greater if SBs have been used in the FE analysis. In the latter
case the maximum difference for t= 1.0mm was equal to 5.6%. On the
other hand, the DBEM based solution provides an intermediate value of
normalised KI showing a maximum percentage difference, with respect
to the corresponding FEM based analysis with LB06, equal to 4%. It is

worth noting that, all the normalised KI values tend to decrease as the
thickness increases up to 2.0 mm, after that normalised KI values tend to
increase as the thickness increases up to the final value equal to 3.0mm.

On the other hand, observing the results shown in Fig. 20, it is worth
noting that trend of K2 values obtained from the FEM-based analyses by
using of LB02 and LB06 change as the thickness increases. Moreover,
the maximum percentage difference between the starting values of K2
(t= 1.0mm) and evaluated on the free surfaces of the plate is equal to
0.5%. As in the previous case for t= 1.0mm, the percentage differences
are greater if in the FE analysis SBs have been used. In the latter case,
the maximum percentage difference calculated for t= 1.0mm is equal
to 5.5%. The DBEM based solution returns intermediate value of K2
with respect to the FEM-based solution by using LB02 and LB06,

Fig. 15. Contour plots of principal stress, σ22, for the undeformed and deformed configurations, respectively, with highlight of the stress scenario for a single cracked
area.

Fig. 16. Contour plot of principal stress, σ22, for the 45° cut square plate with highlight of J-paths along the crack front.
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showing a maximum percentage difference equal to 2.4% for
t= 1.0mm. It is interesting to observe that K2 values, related to the
case where LBs have been used, tend to decrease as the thickness in-
creases up to the final value equal to 3.0 mm. On the contrary, the K2
values obtained from the FEM based analysis, in which SBs have been
used, and the K2 values obtained from the DBEM-based solution tend to
increase as the thickness increases until the value of 2.0 mm, respec-
tively. Furthermore, the K2 values tend to decrease as the thickness
increases until the final thickness (3.0mm) has been reached. In the
latter case, a convergence value of K2 can be obtained considering a
comparison between the FEM-DBEM based solutions that corresponds
to about 0.773MPa (Table 3).

The K1 obtained from the FEM-based analyses that use LB02, LB06
or SB04, and the corresponding K1 values, obtained from the DBEM
based analyses, have been all evaluated at midside position of the crack

Fig. 17. 3D Beasy and Zencrack normalised KI comparison.

Fig. 18. 3D Beasy and Zencrack normalized K2 comparison.

Table 3
Comparison among the normalised SIFs calculated by 3D numerical analyses (FEM, DBEM) on the free surface.

SB04 Free surface LB02 Free surface LB06 Free surface Beasy Free surface
R=0.002 R=0.1 R=0.1 R=0.1

Thickness K1 K2 K1 K2 K1 K2 K1 K2

1.0 0.610 0.754 0.642 0.798 0.646 0.794 0.620 0.779
1.5 0.604 0.774 0.638 0.796 0.642 0.792 0.616 0.792
2.0 0.605 0.778 0.639 0.792 0.643 0.787 0.615 0.801
2.5 0.605 0.783 0.641 0.785 0.645 0.780 0.625 0.785
3.0 0.608 0.774 0.644 0.778 0.648 0.773 0.632 0.773

Table 4
Comparison among the normalised SIFs calculated by 3D FEM and DBEM-based
numerical analyses at the midside position of the crack front.

SB04 Midside
position

LB02 Midside
position

LB06 Midside
position

Beasy Midside
position

R=0.002 R=0.1 R=0.1 R=0.1

Thickness K1 K2 K1 K2 K1 K2 K1 K2

1.0 0.690 0.644 0.695 0.655 0.695 0.655 0.690 0.705
1.5 0.686 0.645 0.690 0.655 0.690 0.655 0.687 0.708
2.0 0.682 0.646 0.686 0.657 0.686 0.657 0.683 0.709
2.5 0.678 0.646 0.682 0.658 0.682 0.657 0.679 0.711
3.0 0.674 0.645 0.678 0.658 0.678 0.658 0.676 0.711

Fig. 19. Comparison of the normalized KI at free surface and with increasing
thickness.

Fig. 20. Comparison between the K2 values, obtained from the FEM-DBEM
based analyses, calculated at the free surfaces and with increasing thickness.
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front and have been shown in Fig. 21. It is worth noting that, K1 values
change as the thickness increases. In this case, the maximum difference
among all the calculated K1 values for t= 1.0mm is equal to 0.72%.
Hence, the DBEM based solution returns intermediate values of the K1,
calculated along the crack front, up to the final thickness (3.0mm). It is
interesting to observe that, all the K1 values tend to decrease as the
thickness increases, namely from the initial thickness (1.0 mm) to the
final thickness (3.0mm). However, these results have shown a certain
insensitivity to the variation of K1 as the thickness increases.

On the other hand, observing Fig. 22, it is worth noting that K2
values obtained from the FEM-based analyses that use LB02 and LB06,
respectively, substantially do not change with increasing of thickness.
Moreover, the maximum percentage difference between the K2 values
for t= 1.0mm is equal to 0.5%. As for the previous case, the percen-
tage differences have been greater if in the FE analyses SBs have been
used. Then, in the latter case, the maximum percentage difference
evaluable, compared to the case in which LB06 have been used, is equal
to 1.7% for t= 1.0mm. The DBEM-based solution returns the highest
value of the K2 showing a maximum percentage difference, compared to
the K2 values obtained from a FEM based analysis with LB06, which is
equal to 7.1%. It is worth noting that K2 values, related to the case
where SBs have been used, tend not to change as the thickness in-
creases. On the contrary, the K2 values obtained from the DBEM-based
solution tend to increase slightly as the thickness increases.

4. Conclusions

Results shown in Tables 1 and 2 have been obtained for a notched
plate subjected to mixed mode I+ II loading, by adopting coarse me-
shes if the approximate methods for rapid calculation of NSIFs have
been used. Conversely, finer meshes have been used considering Gross
and Mendelson’s equations as well as for both FEM and DBEM-based
numerical simulations. It is worth noting that the percentage error has
been found about 12% for the case of tilted cracks with Treifi and
Oyadiji approach (Table 1). For the method based on the evaluation of
total and deviatoric SED, a percentage error, close to that observed in
the case of Treifi and Oyadiji, has been found. However, the deviation
remains greater than that observed in the case of Lazzarin et al., be-
cause of the dependence of the deviatoric SED on the mesh size. This
problem has been overcome by the modified version of the method
based on deviatoric SED that, through a control volume consisting of a
circular ring, has enabled to exclude the region characterized by the
highest stress gradient making the method less sensitive to the refine-
ment level of the adopted mesh. The method based on deviatoric SED,
and in particular the modified version, has provided very good ap-
proximations and a greater applicability than the approach of Lazzarin
et al. so it could be useful for rapid calculation of the NSIFs. Further-
more, two different numerical analyses have been carried out by using
commercial software based on FEM and DBEM, respectively. The NSIFs
have been firstly calculated at the intersection between the crack front
and the free surface of the part under investigation. Then, a good level
of agreement among the K1 and K2 (NSIFs), calculated analytically by
the methods for rapid calculation of NSIFs and those calculated by FEM
and DBEM-based numerical analyses, has been found. Secondly, the
effect produced on NSIFs according to the increasing thickness has been
performed. Hence, starting from the unit thickness, four steps with in-
crements of 0.5mm each one, have been considered and the solutions
for the K1 and K2 have been reported. The K1 have shown greater
sensitivity with increasing thickness, whilst the K2 have not shown
significant variations with increasing thickness.
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