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a b s t r a c t

This paper introduces a novel state estimator designed for discrete-time nonlinear dynamical systems
that encompass unknown-but-bounded uncertainties, along with state linear inequality and nonlinear
equality constraints. Our algorithm is based on constrained zonotopes (CZs) and employs a DC
programming approach (where DC stands for difference of convex functions). Recently, techniques
such as mean value extension and first-order Taylor extension have been adapted from zonotopes to
facilitate the propagation of CZs across nonlinear mappings. While the resulting algorithms, known
as CZMV and CZFO, achieve higher precision compared to the original zonotopic versions, they still
exhibit sensitivity to the wrapping and dependency effects inherent in interval arithmetic. These
interval-related challenges can be mitigated through the use of DC programming, as it allows for the
determination of approximation error bounds by solving optimization problems. One direct advantage
of this technique is the elimination of the dependency effect. Our set-membership filter, referred to
as CZDC, provides an alternative solution to CZMV and CZFO. To showcase the effectiveness of our
proposed approach, we conducted experiments using CZDC on two numerical examples.
1. Introduction

Set-based techniques have been explored in the literature
or addressing a range of problems, including parameter estima-
ion (Bravo, Alamo, & Camacho, 2006a; Bravo, Alamo, Redondo,
Camacho, 2008), state estimation (de Paula, Raffo, & Teix-

ira, 2022; Rego, Scott, Raimondo, & Raffo, 2021), fault diagno-
is (Hast, Findeisen, & Streif, 2015; Xu, Puig, Ocampo-Martinez,
laru, & Stoican, 2015), control design (Bravo, Alamo, & Camacho,
006b; Mesbah, 2016), among others. In these instances, sets
re employed to represent unknown-but-bounded uncertainties.
he effectiveness of set-based techniques has been demonstrated
hrough their application in various domains, including fault de-
ection and isolation in industrial application (Hast et al., 2015),
ault diagnosis for wind turbines (Tabatabaeipour, Odgaard, Bak,
Stoustrup, 2012), dynamic robot localization and mapping (Di
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Marco, Garulli, Giannitrapani, & Vicino, 2004), active localiza-
tion of stationary features using range-only sensors for mobile
robots (Grocholsky, Stump, & Kumar, 2006), vehicle state esti-
mation (Ifqir, Puig, Ichalal, Ait-Oufroukh, & Mammar, 2020), and
robot-assisted dressing (Li, Stouraitis, Gienger, Vijayakumar, &
Shah, 2021).

Set-based filtering can be categorized into two branches: in-
terval observers and set-membership observers (Pourasghar, Puig,
& Ocampo-Martinez, 2019). In this context, our focus is on the
latter, where a key distinction lies in the incorporation of inter-
sections among sets to merge forecast and measurement sets.
Recently, constrained zonotopes (CZs) have motivated new ad-
vancements in set-membership techniques, primarily due to their
ability to efficiently represent any convex polytope. The class of
CZs expands the zonotopes (centrally symmetric convex poly-
topes) by incorporating linear equality constraints. One immedi-
ate benefit of this extension is the ability to propagate
asymmetric polytopes while retaining the computational advan-
tages of zonotopes. Additionally, by introducing a generalized
intersection operation among CZs that can be computed exactly,
it becomes possible, in principle, to eliminate the loss of precision
compared to zonotopic intersections, which generally require
approximation.
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The original paper on CZs (Scott, Raimondo, Marseglia, &
raatz, 2016) has focused on state estimation and fault diagnosis
or state–space linear uncertain systems. The authors demon-
trated that their state estimator achieves superior precision and
etection rates compared to other guaranteed estimators (Alamo,
ravo, & Camacho, 2005; Chisci, Garulli, & Zappa, 1996), albeit
ith a slight increase in processing time. Encouraged by these
dvantages, the algorithm from Scott et al. (2016) has been
xpanded to encompass more general cases, as seen in Rego,
ocatelli, Raimondo, and Raffo. Notably, recent contributions have
xtended CZs to address nonlinear systems, with Rego, Raffo,
cott, and Raimondo (2020), Rego et al. (2021) being notable

examples. In Rego et al. (2020), the focus has been on linear
output equations, while Rego et al. (2021) have further extended
(Rego et al., 2020) to accommodate nonlinear measurement mod-
els and introduced a step to enforce algebraic equations on
set-based estimates. These proposed algorithms have evolved
from existing methods based on zonotopes, specifically, the mean
value extension (Alamo et al., 2005) and first-order Taylor exten-
sion (Combastel, 2005).

All the aforementioned nonlinear methods rely on interval
arithmetic to compute interval enclosures concerning the ap-
proximation remainder. Consequently, the algorithms proposed
in Rego et al. (2020, 2021) still exhibit sensitivity to what is
referred to as the wrapping and dependency effects. These effects
encapsulate all the conservatism introduced by set-valued oper-
ations, with the dependency effect arising from the simultaneous
occurrence of variables, while the remaining conservatism can
be attributed to linear mappings and generalized intersections
resulting from the wrapping effect (de Paula et al., 2022). An
alternative approach to mitigate these interval-related issues is
the utilization of the DC programming method, which involves
approximating nonconvex mathematical programming problems
using convex analysis tools (Tao & An, 1997).

In the context of set-membership filtering, Alamo, Bravo, Re-
dondo, and Camacho (2008) has introduced approximate solu-
tions for DC programming problems by supplying lower and
upper bounds to enclose the global solutions. To accomplish this,
the authors have replaced the exact minimization and maximiza-
tion problems with approximate counterparts, the solutions of
which can be determined by evaluating them at the vertices
of a convex polytope. In accordance with this approach, Alamo
et al. (2008) have modified the zonotopic filter from Alamo et al.
(2005), which was originally based on mean value extension, to
incorporate DC programming. In doing so, they have successfully
mitigated the conservatism associated with the wrapping and
dependency effects. It is worth noting that the methodology
introduced in Alamo et al. (2008) differs from interval arith-
metic in several aspects, including how it determines the range
of nonlinear functions. Instead of using approximated functions
and set-valued operations, it relies on convex components and
real-valued operations.

Motivated by the advantages of DC programming over interval
arithmetic and the superiority of CZs compared to zonotopes,
we introduce a novel set-membership filter named CZDC. In
contrast to Alamo et al. (2008), CZDC offers the following ben-
efits: (i) utilizes CZs to represent both symmetric and asym-
metric convex polytopes, surpassing the capabilities of zono-
topes; (ii) utilizes the generalized intersection concept defined
for CZs, resulting in improved precision and explicit calculations;
(iii) enforces nonlinear equality constraints and linear inequal-
ity constraints on the state vector, leading to enhanced preci-
sion; and (iv) proposes a parallelotopic outer approximation for
CZs, reducing the frequent need for interval hull calculations
in solving DC programming problems. The aforementioned state
constraints find relevance in various real-world applications, in-
cluding compartmental systems (nonnegativity and conservation
2

laws) (Teixeira, Chandrasekar, Tôrres, Aguirre, & Bernstein, 2009),
unit-quaternion representations (holonomic constraints) (Rego
et al., 2021), and water distribution networks (physical con-
straints and static relations) (Wang, Blesa, & Puig, 2017). It is
essential to note that CZDC may entail a higher complexity level.
CZs introduce additional representational elements, necessitat-
ing the development of specific algorithms for order reduction,
interval hull computation, parallelotope calculation, and punc-
tual estimation (Rego et al., 2020, 2021; Scott et al., 2016), and
more. These operations are currently linked to linear program
solvers, which account for the increased computational resource
demand compared to Alamo et al. (2008). In contrast to de Paula
et al. (2022), our present paper explores different aspects, albeit
within a similar system framework. We focus on the class of
CZs instead of zonotopes, address state nonlinear equality con-
straints and state inequality constraints represented as convex
polytopes instead of zonotopes, and employ DC programming
for approximation purposes, differing from the approaches pre-
sented in de Paula et al. (2022). Another significant difference
lies in how the problems are approached and solved. Zonotopic
problems typically require the solution of optimization prob-
lems, whereas state estimation using CZs primarily involves the
concept of generalized intersection.

This paper is structured as follows: Section 2 formulates the
state-estimation problem within the context of nonlinear state–
space models that incorporate state constraints. Section 3 intro-
duces a set of preliminary results. Section 4 provides a detailed
presentation of the CZDC algorithm. In Section 5, CZDC is exe-
cuted and compared against the algorithms from Alamo et al.
(2008), Rego et al. (2021) using two numerical examples. Finally,
Section 6 offers concluding remarks.

Notation

The set of natural numbers is denoted as N. The set of positive
integer numbers is denoted as Z+. The set of real numbers is
denoted as R. An (n × 1)-dimensional vector and an (n × m)-
dimensional matrix are, respectively, denoted as b ∈ Rn and
A ∈ Rn×m. An (n × m)-dimensional zero matrix and an (n × n)-
dimensional identity matrix are, respectively, denoted as 0n×m
and In. The transpose of a matrix and the diagonal matrix ob-
tained from a vector are, respectively, denoted as (·)⊤ and diag(·).
The ith row of a matrix is denoted as (·)i,:.

2. Problem statement

Consider the discrete-time nonlinear dynamical system

xk = f (xk−1, uk−1, wk−1) , (1)

yk = h (xk, vk) , (2)

where f : Rn
× Rp

× Rq
→ Rn and h : Rn

× Rr
→ Rm

are the known process dynamics and measurement equations,
respectively, uk−1 ∈ Rp is the known deterministic input vector,
yk ∈ Rm is the measured output vector, and xk ∈ Rn is the state
vector to be estimated. We assume that xk satisfies the following
nonlinear equality and linear inequality constraints:

g (xk) = 0mc×1, (3)

Dkxk ≤ dk, (4)

where g : Rn
→ Rmc , Dk ∈ Rnc×n, and dk ∈ Rnc . Regarding (4), we

make the following assumption to enable the direct use of convex
polytopes.

Assumption 1. The inequality constraints given by (4), if present,
define a compact feasibility set X F

⊂ Rn.
k
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The process noise wk−1 ∈ Rq, the measurement noise vk ∈ Rr ,
and the initial state x0 ∈ Rn are bounded by convex polytopes
Wk−1, Vk, and X0. Our set-membership filter aims at estimating
the state vector xk through convex polytopes Xk over k ∈ Z+. To
achieve this goal at each k, given uk−1, we define five steps as
follows:

1. Forecast:
Xk|k−1 ⊇ {f (xk−1, uk−1, wk−1) : xk−1 ∈ Xk−1, wk−1 ∈ Wk−1};

2. Data assimilation:
X̆k ⊇

{
xk ∈ Xk|k−1 : h (xk, vk) = yk, vk ∈ Vk

}
;

3. Admissibility: X̌k = X̆k ∩ X F
k ;

4. Consistency: X̃k ⊇
{
xk ∈ X̌k : g (xk) = 0mc×1

}
;

5. Reduction: Xk ⊃ X̃k, with Xk being a set with lower
complexity than X̃k.

Steps 1, 2, and 4 will be supported by a DC programming
approach to obtain tight solutions. In steps 3 and 4, the state non-
linear equality and linear inequality constraints given by (3)–(4)
are enforced on the estimator. Step 5 corresponds to a complexity
reduction for convex polytopes, which is necessary to control the
demand of computational resources; see Section 3 for further
details.

3. Preliminaries

3.1. Constrained zonotopes

A constrained zonotope is defined as follows.

Definition 1 (Scott et al., 2016). Let Gx
∈ Rn×ng be the gener-

ator matrix, cx ∈ Rn the center, Ax
∈ Rnh×ng the constraint

matrix, and bx ∈ Rnh the constraint vector. Let also Bng ≜
[−1, 1]ng be the unitary box of dimension ng , and B (Ax, bx) ≜
{ξ ∈ Bng : Axξ = bx} the constrained unitary box. Then, the CZ
X ⊂ Rn is defined as

X ≜
{
Gx, cx, Ax, bx

}
=

{
Gxξ + cx : ξ ∈ B

(
Ax, bx

)}
. (5)

The terms ng and nh refer to the number of generators and
constraints, respectively. For zonotopes, Ax and bx do not exist.
In this case, the notation is abbreviated to X = {Gx, cx}.

Let m ∈ Rr , L ∈ Rr×n, Y = {Gy, cy, Ay, by} ⊂ Rn, W =

{Gw, cw, Aw, bw} ⊂ Rp, and M ∈ Rp×n. The affine transformation,
Minkowski sum, generalized intersection, and Cartesian product
of CZs are explicitly computed as, respectively,

LX ⊕ m =
{
LGx,

(
Lcx + m

)
, Ax, bx

}
, (6)

X ⊕ Y =

{[
Gx Gy

]
,
(
cx + cy

)
,

[
Ax 0nh×nyg

0nyh×ng Ay

]
,

[
bx

by

]}
, (7)

X ∩M W =

⎧⎨⎩[
Gx 0n×nwg

]
, cx,

⎡⎣ Ax 0nh×nwg
0nwh ×ng Aw

MGx
−Gw

⎤⎦ ,

⎡⎣ bx

bw

cw − Mcx

⎤⎦⎫⎬⎭ ,

(8)

X × W =

{[
Gx 0n×nwg

0nw×ng Gw

]
,

[
cx

cw

]
,

[
Ax 0nh×nwg

0nwh ×ng Aw

]
,

[
bx

bw

]}
.

(9)

For brevity, M = In will be omitted in ‘‘∩’’. Note that the set
operations (7)–(9) imply increase of the number of constraints nh
nd generators ng for CZs. These values can be reduced to desired
uantities ϕc and ϕg , as done in Scott et al. (2016), at the price
f conservativeness (outer approximation). The following result is
sed to obtain the so-called interval hull of a CZ X , □X =

[
ζ L, ζU

]
,

uch that X ⊆ □X .

3

Proposition 1 (Rego et al., 2020). Let X = {Gx, cx, Ax, bx} ⊂

Rn. The interval hull
[
ζ L, ζU

]
⊇ X is obtained by solving linear

programs for each i = 1, . . . , n:

ζ L
i ≜ min

ξ

{
Gx
i,:ξ + cxi : ξ ∈ B

(
Ax, bx

)}
, i = 1, . . . , n,

ζU
i ≜ max

ξ

{
Gx
i,:ξ + cxi : ξ ∈ B

(
Ax, bx

)}
, i = 1, . . . , n.

As any box expressed in interval arithmetic, the interval hull
of a CZ can be equivalently expressed in affine arithmetic do-
ing □X = {diag (rad (□X )) ,mid (□X )}, where rad (□X ) ≜ 1

2
ζU

− ζ L
)

and mid (□X ) ≜ 1
2

(
ζ L

+ ζU
)
. For interval matri-

ces [M] =
{
M ∈ Rn×m

: ML
≤ M ≤ MU

}
, we have rad([M]) =

1
2

(
MU

− ML
)
and mid([M]) =

1
2

(
ML

+ MU
)
, with ML and MU

being known matrices with different values ML
i,j and MU

i,j, respec-
tively, for i = 1, . . . , n and j = 1, . . . ,m.

3.2. DC programming

As shown in Rego et al. (2021), (6)–(8) can be directly em-
ployed in state estimation when f , h, and g given by (1), (2),
and (3) are linear. Conversely, the nonlinear case requires some
approximation of such functions to enable the use of (6)–(8).
Contributions to this topic have been proposed in Rego et al.
(2021, Lemmas 1 and 2) using CZs.

In this paper, a DC programming approach is used to compute
linearization enclosures. This approach is convenient to reduce
conservatism in comparison with interval methods based on La-
grange remainder as those proposed in Althoff, Stursberg, and
Buss (2008), Combastel (2005), which concentrate the lineariza-
ion error in the quadratic term of a truncated Taylor series. Next,
e present definitions and results related to DC programming.

efinition 2 (Alamo et al., 2008). Consider a polytope P ⊂ Rn and
function ϱ : Rn

→ Rm. If ϱ can be rewritten as the difference
etween two convex functions ϱa and ϱb in P , then, ϱ is called
C on P .

efinition 3 (Alamo et al., 2008). Consider that the function ϱ :
n

→ Rm is DC on P ⊂ Rn, with ϱa and ϱb being its DC
omponents such that ϱ(z) = ϱa(z) − ϱb(z). Then, for each
omponent i = 1, . . . ,m, the ith DC programming problems are
ormulated as

min
z∈P

ϱi(z), max
z∈P

ϱi(z). (10)

efinition 4 (Alamo et al., 2008). Let ϱ(z) =
(
ϱa(z) − ϱb(z)

)
∈ Rm

e DC on P ⊂ Rn. Then, the linear minorant of ϱs, with s = {a, b},
s defined as

¯
s(z) ≜ ϱs(z̄) + F s(z − z̄), (11)

here

s ≜ ∇zϱ
s(z̄) =

⎡⎢⎢⎣
∂ϱs

1
∂z1

· · ·
∂ϱs

1
∂zn

...
. . .

...
∂ϱs

m
∂z1

· · ·
∂ϱs

m
∂zn

⎤⎥⎥⎦ ⏐⏐⏐⏐
z̄

(12)

s the Jacobian matrix evaluated at some z̄ ∈ P . The term mino-
ant comes from the convexity of ϱs that implies the inequalities
s(z) ≥ ϱ̄s(z), ∀z ∈ P .

roposition 2 (Alamo et al., 2008). Let ϱ(z) =
(
ϱa(z) − ϱb(z)

)
∈

Rm be a DC function on the polytope P ⊂ Rn. Then, according to
Definition 4, the following inequalities hold:

min ϱi(z) ≥ min ϱ̄a
i (z) − ϱb

i (z), (13)

z∈P z∈vert(P)
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max
z∈P

ϱi(z) ≤ max
z∈vert(P)

ϱa
i (z) − ϱ̄b

i (z), (14)

for i = 1, . . . ,m, with vert(P) being the set of vertices of P , with
ϱ̄a
i (z)−ϱb

i (z) being a concave function, and with ϱa
i (z)− ϱ̄b

i (z) being
convex function.

In order to control the number of vertices, and thereby, the
omputational cost associated to (13)–(14), we outer approxi-
ate the polytope P by either its interval hull □P ⊇ P or
parallelotope T ⊇ P , since these representations involve 2n

ertices. Polytopes are here represented by CZs. Therefore, the
nterval hull □P is obtained with Proposition 1. In order to obtain
tight parallelotope T to polytope P , we next propose a new

esult, in which a candidate parallelotope C ⊇ P is tightened via
inear programs. The set C is here computed as in Remark 1.

emark 1. If all constraints and generators of a CZ P are reduced
ith Method 4 of Yang and Scott (2018), then a parallelotope
⊃ P is obtained.

roposition 3. Let C = {Gc, cc} ⊂ Rn be a parallelotope containing
he CZ P = {Gz, cz, Az, bz} ⊂ Rn. By solving the linear programs

ζ L
i = min

ξ c,ξz

{
ξ c
i : Gc

i,:ξ
c
+ cci = Gz

i,:ξ
z
+ czi , ξ

c
∈ Bn, ξ z

∈ B
(
Az, bz

)}
,

U
i = max

ξ c,ξz

{
ξ c
i : Gc

i,:ξ
c
+ cci = Gz

i,:ξ
z
+ czi , ξ

c
∈ Bn, ξ z

∈ B
(
Az, bz

)}
,

or i = 1, . . . , n, we obtain the parallelotope
=

{
Gcdiag

(
rad

([
ζ L, ζU

]))
, cc + Gcmid

([
ζ L, ζU

])}
⊇ P .

roof. Given the parallelotope C ⊇ P , a new parallelotope
is investigated. The set T must be an outer approximation

f P containing or being equal to C. To achieve that, both the
enerator matrix Gc and the center cc of C are firstly fixed. After,
he slack variable ξ c

∈ Bn is manipulated to tighten the facets of
onto the CZ P . This strategy implies 2n linear programs with
c
i,:ξ

c
+ cci = Gz

i,:ξ
z
+ czi being the ith linear equality constraint,

here i = 1, . . . , n and ξ z
∈ B (Az, bz). Since the minimization

nd maximization of ξ c
i yield the smallest possible box

[
ζ L, ζU

]
⊂

n, we guarantee that T ⊆ C. Then, T = Gc
[
ζ L, ζU

]
⊕ cc is

parallelotopic outer approximation of P , which can be rewrit-
en as a zonotope using a rescaling (see T in the statement of
roposition 3). ■

A procedure to compute the DC decomposition of a function ϱ

s presented in Proposition 4.

roposition 4 (Adapted from Adjiman and Floudas (1996), Alamo
et al. (2008)). Let ϱ : Rn

× Rp
→ Rm be a function of class C2

in P and with deterministic input u ∈ Rp, and □P ⊂ Rn be the
interval hull of P . Consider functions ϱa

i (z, u) = ϱi(z, u)+ϱb
i (z) and

ϱb
i (z) =

λ̃i

2
z⊤z, for i = 1, . . . ,m, where

˜ i = max
{
0, −λ̆i

}
, (15)

ith λ̆i ∈ R being computed as in Adjiman and Floudas (1996,
quation (12)), which is a lower bound for the smallest eigenvalue
f interval Hessian matrix [Hi] = (∂2/∂z2)ϱi (□P, u). Then, ϱ =
a
− ϱb is a DC function on □P .

roof. This proof follows the same discussion presented in Alamo
t al. (2008, Section 3), with the difference being the introduction
f the deterministic input u. ■

emark 2. Each function ϱb
i could be defined with 1

2 z
⊤Qiz,

where Qi is a diagonal matrix whose elements could be obtained
via semidefinite programming. Moreover, instead of convexifying
4

ϱ (obtaining ϱa), we could convexify −ϱ and place this result in
ϱb.

4. The novel state estimator

Next, we present the novel set-membership filter based on
CZs and DC programming, called CZDC. This algorithm solves the
problem formulated in Section 2 in five steps. The general idea is
to firstly linearize models. Then, operations (6)–(8) are performed
on the linearized models. Finally, DC programming is employed
to bound the linearization error.

In order to obtain linearization error enclosures R, we present
Lemma 1. For practical reasons, the input CZ Z may be outer ap-
proximated by either a box □Z (Proposition 1) or a parallelotope
T (Proposition 3), yielding the desired polytope P , before solving
the problems (17)–(18).

Lemma 1 (Adapted from Alamo et al. (2008)). Let ϱ : Rn
×Rp

→ Rm

be a function in the CZ Z and with deterministic input u ∈ Rp, whose
first-order expansion is given by

ϱ̄(z, u) = ϱ (z̄, u) + F (z − z̄) , (16)

where F = ∇zϱ(z̄, u), z̄ ∈ P is any punctual estimate, and P ⊇ Z is
a convex polytope. Let e(z, u) ≜ ϱ(z, u)− ϱ̄(z, u) be the linearization
error. Let also ϱa and ϱb be convex functions such that ϱ = ϱa

− ϱb

is DC on P . Finally, let
(
ϱa

− ϱ̄b
− ϱ̄

)
be a convex majorant of e,

and let
(
ϱ̄a

− ϱb
− ϱ̄

)
be a concave minorant of e. Then, according

to Proposition 2, a linearization enclosure R =
[
e−, e+

]
∋ e is given

by

e−

i = min
z∈vert(P)

(
ϱ̄a
i (z, u) − ϱb

i (z, u) − ϱ̄i (z, u)
)
, (17)

e+

i = max
z∈vert(P)

(
ϱa
i (z, u) − ϱ̄b

i (z, u) − ϱ̄i (z, u)
)
, (18)

for i = 1, . . . ,m. Once (17)–(18) are solved, the intervals are
expressed as the zonotope R = {Ge, ce} with

Ge
= diag

(
rad

(
[e−, e+

]
))

, (19)

ce = mid
(
[e−, e+

]
)
. (20)

Proof. This proof is similar to Alamo et al. (2008, Proof of Lemma
1), with the difference being that Z is a CZ (instead of zonotope),
and ϱ is any DC function in P and with deterministic input u. ■

Remark 3. In Lemma 1, the variable u is different from the
uncertain variable z because it is deterministic (or a singleton).
Then, the linearization of ϱ with respect to u is zero. It means
that z is actually responsible by the uncertainty of e.

In the following, the results to execute a loop of CZDC are
presented, which were inspired from Rego et al. (2021).

heorem 1 (Forecast Step). Consider the CZs Xk−1 ⊂ Rn and
k−1 ⊂ Rq, and the deterministic input uk−1 ∈ Rp. Let f : Rn

×
p
×Rq

→ Rn (1) be rewritten as ϱf
: R(n+q)

×Rp
→ Rn using the

ugmented vector zk−1 =
[
x⊤

k−1 w⊤

k−1

]⊤. Let also ϱf
= ϱfa

− ϱfb

e DC on the polytope Pk−1 ⊇ Zk−1 = Xk−1 × Wk−1. Finally,
et Rk−1 ⊂ Rn be the set returned by Lemma 1 to enclose the
inearization error of ϱf for a given punctual estimate z̄ ∈ Pk−1.
hen, the exact image ϱf (Zk−1, uk−1) is outer approximated by the
Z

k|k−1 =
(
ϱf (z̄, uk−1) − F z̄

)
⊕ FZk−1 ⊕ Rk−1, (21)

ith F = ∇zϱ
f (z̄, uk−1) being the Jacobian matrix evaluated at

¯ =
[
x̄⊤ w̄⊤

]⊤.



Proof. This proof is similar to Alamo et al. (2008, Proof of
Theorem 1), with the difference being the propagation of CZs
instead of zonotopes, and the introduction of deterministic input
uk−1. ■

Theorem 2 (Data-Assimilation Step). Consider the CZs Xk|k−1 ⊂ Rn

and Vk ⊂ Rr , and the measured output yk ∈ Rm. Let h : Rn
×Rr

→

Rm (2) be rewritten as ϱh
: R(n+r)

→ Rm using the augmented
vector zk =

[
x⊤

k v⊤

k

]⊤. Let also ϱh
= ϱha

− ϱhb be DC on
the polytope Pk ⊇ Zk = Xk|k−1 × Vk. Finally, let Rk ⊂ Rm

be the set returned by Lemma 1 to enclose the linearization error
of ϱh for a given punctual estimate z̄ ∈ Pk. Then, the exact set{
xk ∈ Xk|k−1 : yk = h (xk, vk) , vk ∈ Vk

}
is over approximated by the

CZ

X̆k = Xk|k−1 ∩Hx Yk, (22)

where Yk =
(
yk − ϱh(z̄) + Hz̄

)
⊕ (−HvVk) ⊕ (−Rk), with H =[

Hx Hv
]
, Hx

= ∇xϱ
h(z̄), and Hv

= ∇vϱ
h(z̄).

Proof. Let

yk = ϱh(z̄) + H (zk − z̄) + ehk

be the analytical linearization of the DC function ϱh
= ϱha

− ϱhb

on Pk, and let the CZ Rk ∋ ehk be the linearization error enclosure
given by Lemma 1. By making explicit the term Hxxk from Hzk =[
Hx Hv

] [
xk
vk

]
, we obtain Hxxk = yk − ϱh(z̄) + Hz̄ − Hvvk − ehk ,

which implies the CZ Yk =
(
yk − ϱh(z̄) + Hz̄

)
⊕(−HvVk)⊕(−Rk).

Then, we employ the generalized inter Eq. (8) to match Xk|k−1
with Yk, yielding X̆k. ■

Remark 4. If functions f and h are affine in the noise terms wk−1
and vk, respectively, then these terms are canceled during the
computation of R in Theorems 1 and 2. It means that, instead
of 2(n+q) and 2(n+r) vertices, we need to process 2n vertices only.

The consistency step enforces the nonlinear invariants de-
scribed in (3). In algebraic terms, (3) is a special case of (2). Then,
the consistency step is a direct consequence from Theorem 2,
being next presented as a corollary. For brevity, the admissibility
step is presented together with the consistency one.

Corollary 1 (Consistency Step). Consider the CZ X̆k ⊂ Rn (Theo-
rem 2) and the feasible set X F

k ⊂ Rn. Let X̌k = X̆k ∩ X F
k be the

admissible set (admissibility step in Section 2). Let g : Rn
→ Rmc (3)

be rewritten as g = ga
− gb, where ga and gb are convex functions

in the polytope P̌k ⊇ X̌k. Let also Rk ⊂ Rmc be the set returned by
Lemma 1 to enclose the linearization error of g for a given punctual
estimate x̄ ∈ P̌k. Then, the exact set

{
xk ∈ X̌k : g (xk) = 0mc×1

}
is

over approximated by the CZ

X̃k = X̌k ∩H Ck, (23)

where H = ∇xg(x̄) and Ck = (−g(x̄) + Hx̄) ⊕ (−Rk).

Proof. This proof is similar to the proof of Theorem 2, whose
difference is the replacement of yk, h, and zk by 0mc×1, g , and xk,
respectively. ■

We summarize the steps of CZDC in Algorithm 1.

Remark 5. We recall that DC programming is motivated to
mitigate the wrapping and dependency effects related to interval
arithmetic, but its computational challenge (control and manip-
ulation of vertices) is transmitted to CZDC. Besides, the fact of
CZs demanding solvers of linear programs, to compute interval
5

Algorithm 1: Xk = CZDC
(
f , f a, f b,Xk−1, uk−1,Wk−1,

yk, h, ha, hb,Vk, g, ga, gb,X F
k , ϕc, ϕg

)
1 Apply Theorem 1 to obtain the CZ Xk|k−1

2 Apply Theorem 2 to obtain the CZ X̆k

3 Compute X̌k = X̆k ∩ X F
k

4 Apply Corollary 1 to obtain the CZ X̃k
5 Apply the steps of (i) rescaling, (ii) preconditioning, (iii)

elimination of constraints and (partial) generators, and
(iv) elimination of generators proposed in Scott et al.
(2016) to reduce the number of constraints nh and
generators ng of X̃k to ϕc and ϕg , respectively, yielding
the CZ Xk

hulls and parallelotopes for instance, may become the CZDC more
costly than the algorithm of Alamo et al. (2008).

4.1. Complexity analysis

The worst-case computational complexity O(·) for each step
of CZDC (Algorithm 1) is shown in Table 1. Such complexities
were derived using basic operations among CZs (Rego et al.,
2020). Regarding the forecast, data assimilation, and consistency
steps, the complexity order to obtain the linearization point z̄
is not included since it depends on the employed methodology.
As in Rego et al. (2020), we also assume that the evaluation of
nonlinear functions has complexity O(1). In the second column
of Table 1, the cubic term between parenthesis refers to either
the computation of parallelotope via linear programs or the order
reduction. The term 2ñ is related to either the computation of
vertices or the DC programming problems (17)–(18). In turn, the
third column of Table 1 presents the amount of constraints and
generators for the state CZ X over the different steps.

Table 1 makes the following assumptions:
Xk−1 =

{
Gx
k−1, c

x
k−1, A

x
k−1, b

x
k−1

}
⊂ Rn,

Wk−1 =
{
Gw
k−1, c

w
k−1, A

w
k−1, b

w
k−1

}
⊂ Rq, Vk =

{
Gv
k, c

v
k , A

v
k, b

v
k

}
⊂

Rr , and X F
k =

{
GxF
k , cx

F

k , AxF
k , bx

F

k

}
⊂ Rn, where Gx

k−1 ∈ Rn×ng ,

Gw
k−1 ∈ Rq×nwg , Gv

k ∈ Rr×nvg , GxF
k ∈ Rn×nx

F
g , cxk−1 ∈ Rn, cwk−1 ∈ Rq,

cvk ∈ Rr , cx
F

k ∈ Rn, Ax
k−1 ∈ Rnh×ng , Aw

k−1 ∈ Rnwh ×nwg , Av
k ∈ Rnvh×nvg ,

AxF
k ∈ Rnx

F
h ×nx

F
g , bxk−1 ∈ Rnh , bwk−1 ∈ Rnwh , bvk ∈ Rnvh , and bx

F

k ∈ Rnx
F

h .
These sets are evaluated over the functions f : Rn

×Rp
×Rq

→ Rn,
h : Rn

× Rr
→ Rm, and g : Rn

→ Rmc , considering the vectors
uk−1 ∈ Rp and yk ∈ Rm. At the end of an iteration of CZDC, the
desired CZ Xk is returned with ϕc constraints and ϕg generators.

Remark 6. According to Table 1, the output CZs obtained by
Theorems 1–2 and Corollary 1 have smaller number of constraints
and generators than those pointed out by Remarks 5, 7, and 10
from Rego et al. (2021). Exceptionally, the number of constraints
for Xk|k−1 coincides with the value indicated in Rego et al. (2021,
Remark 5) for the CZMV algorithm. Then, although CZDC seems
more costly due to the quantity of operations, the achieved small-
est number of constraints and generators may compensate the
final performance in comparison with CZMV and CZFO.

5. Numerical results

In this section, CZDC is experimented over two case studies.
For comparison purposes, we also implement the state-of-the-art
algorithms proposed in Rego et al. (2021), called CZFO (based on
Taylor expansion) and CZMV (based on mean value extension).
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Table 1
Complexity order of the forecast, data assimilation, admissibility, consistency, and reduction steps from CZDC using Proposition 3.
Step O(·) Definition

Forecast ñh
(
ñh + ñg

)3
+ ñ

(
ñ + ñg

) (
ñ + ñh + ñg

)3
+ ñ22ñ ñ = n + q, ñh = nh + nw

h , ñg = ng + nw
g

Data assimilation ñh
(
ñh + ñg

)3
+ ñ

(
ñ + ñg

) (
ñ + ñh + ñg

)3
ñ = n + r , ñh = nh + nw

h + nv
h , ñg = ng + nw

g + n + nv
g

+
(
ñ2

+ m
)
2ñ

+ mrnv
g + mn

(
ñg − nv

g

)
+ mñ + m2

Admissibility n2ñg + nnxF
g ñg = ng + nw

g + n + nv
g + m

Consistency ñh
(
ñh + ñg

)3
+ n

(
n + ñg

) (
n + ñh + ñg

)3
+

(
n2

+ mc
)
2n

+ mcnñg + m2
c

ñh = nh + nw
h + nv

h + m + nxF
h + n

ñg = ng + nw
g + n + nv

g + m + nxF
g

Reduction kc
(
ñh + ñg

)3
+ kcnñ2

g + (n + ϕc)
2 (ñg − kc ) + kg (ñg − kc ) (n + ϕc)

kc = ñh − ϕc , kg = ñg − kc − ϕg ,
ñh = nh + nw

h + nv
h + m + nxF

h + n + mc ,
ñg = ng + nw

g + n + nv
g + m + nxF

g + mc
o
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To yield punctual estimates z̄, and thereby, to approximate the
nonlinear models, we make the following choices: CZDC uses the
center of the polytope P associated to Lemma 1, where P is a
box or a parallelotope, whose procedure is O(1); CZFO is run with
metric (Rego et al., 2021, C3) to minimize the diameter of an
interval matrix; CZMV is run with metric (Rego et al., 2021, C2) to
minimize the diameter of an interval vector. Two performance in-
dexes are computed, namely: (i) the mean processing time (T CPU),

given by T CPU ≜
1
ms

1
kf

ms∑
j=1

kf∑
k=1

tk,j, where kf ∈ N is the number of

ime steps, ms ∈ N is the number of Monte Carlo simulations, and
tk,j is the time to execute the kth iteration of a given algorithm in
the jth Monte Carlo simulation; and (ii) the average area ratio of
box (A□), given by

A□ ≜
1
ms

1
kf

ms∑
j=1

kf∑
k=1

n∏
i=1

diam
(
[x]i,k,j

)
,

ith diam([x]) = 2rad([x]). The noise terms wk−1 and vk are taken
rom uniform distributions defined in Wk−1 and Vk, while the
nitial state x0 belongs to the initial set X0. The following com-
uter configuration was used: 8 GB RAM 1333 MHz, Windows
0 Pro, and AMD FX-6300 CPU 3.50 GHz. All implementations
ere executed in MATLAB 9.11 with INTLAB 12 (Rump, 1999),
PT3 (Herceg, Kvasnica, Jones, & Morari, 2013), and Gurobi 10.0.
Since the measurement y0 is available, all three algorithms

xecute a first loop with Xk|k−1 = X0, whose goal is to improve
the precision of the starting set X0. Soon after, the state estima-
tors are normally executed. For all examples, CZFO employs order
reduction with fixed values ϕc and ϕg at the end of each step, as
recommended in Rego et al. (2021).

.1. Two-state nonlinear process

Consider the nonlinear uncertain system (Alamo et al., 2008)

xk=
[
−0.7x2,k−1 + 0.1x22,k−1 + 0.1x1,k−1x2,k−1 + 0.1 exp

(
x1,k−1

)
x1,k−1 + x2,k−1 − 0.1x21,k−1 + 0.2x1,k−1x2,k−1

]
+ wk−1, (24)

k = x1,k + x2,k + vk, (25)

here wk−1 ∈ W = {0.1I2, 02×1} and vk ∈ V = {0.2, 0}. To
imulate this system, we set x0 =

[
1 1

]⊤
∈ X0 = {3 × I2, 02×1},

f = 40, and ms = 100. This example aims at illustrating
hat CZDC is a promising option to substitute the use of CZFO
nd CZMV whenever the wrapping and dependency effects imply
ivergence of estimates, and that CZDC reaches a better preci-
ion than the zonotopic filter based on DC programming (ZDC)
roposed in Alamo et al. (2008). To reduce order of CZs, we set

= 3 and ϕ = 8. This latter value is also used to reduce order
c g

6

f zonotopes in ZDC with Method 4 of Yang and Scott (2018). To
mprove both the computational efficiency and the precision of
he minimum-volume zonotopes computed in ZDC, we employ de
aula et al. (2022, VM3) and Bravo et al. (2006a, Definition 8).
otivated by Alamo et al. (2008), we propose the DC function

k = f a − f b + wk−1 such that

f a =

[
x⊤

k−1A1xk−1
x⊤

k−1A2xk−1

]
+

[
0.1 exp

(
x1,k−1

)
x1,k−1 + x2,k−1

]
=

[
0.1x21,k−1 + 0.1x1,k−1x2,k−1 + 0.1x22,k−1 + 0.1 exp

(
x1,k−1

)
0.1x22,k−1 + x1,k−1 + x2,k−1

]
,

b
=

[
x⊤

k−1B1xk−1
x⊤

k−1B2xk−1

]
+

[
0.7x2,k−1

0

]
=

[
0.1x21,k−1 + 0.7x2,k−1

0.1x21,k−1 + 0.1x22,k−1 − 0.2x1,k−1x2,k−1

]
,

ith A1, A2, B1, and B2 being positive semidefinite matrices (not
ecessarily symmetric). Then, there exist different choices of
atrices to ensure that f a and f b are convex. Although Hessian
atrices could be here chosen as candidate, we present the

ollowing choices whose eigenvalues are nonnegative:

1 =

[
0.1 0.1
0 0.1

]
, A2 =

[
0 0
0 0.1

]
,

B1 =

[
0.1 0
0 0

]
, B2 =

[
0.1 −0.2
0 0.1

]
.

ince DC functions were directly defined, Proposition 4 was not
employed, and thereby, the polytope Pk−1 associated to Theo-
rem 1 is a parallelotope (given by Proposition 3) that contains
he CZ Zk−1 = Xk−1.

In Fig. 1(a), we point out that both CZFO and CZMV diverge due
o the direct usage of interval arithmetic. In this case, both wrap-
ing and dependency effects are present and lead to large fore-
asts. Therefore, the application of measurements is not enough
o correct the enlargement of CZs over iterations, justifying why
hose algorithms diverge. Although the direct usage of interval
rithmetic was used to experiment CZFO and CZMV in Rego et al.
2021), it is not enough to reach convergence in this case study.

Differently, both ZDC and CZDC achieve convergent solu-
ions because DC programming involves evaluation of elementary
unctions rather than inclusion functions. In Fig. 1(b) and (c),
ne-dimensional intervals are sketched to illustrate that those
lgorithms provide guaranteed solutions. As shown in Table 2,
ZDC provides a significantly better precision than ZDC at the cost
f a larger total T CPU.

.2. Attitude estimation

Now, we show the application of CZDC to a more challeng-
ng and technological example, containing multiplicative process
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Fig. 1. State estimation for the first case study (Section 5.1). Graph (a) depicts
the time evolution of the area of boxes computed by ZDC, CZDC, CZFO, and
CZMV. In (b) and (c), true states are involved by interval hulls of CZs computed
by ZDC and CZDC.

noise, nonlinear measurements, and state equality constraints.
The considered system concerns the attitude estimation of a fly-
ing robot. By employing quaternion representation, the attitude is
expressed as xk ∈ R4 such that ∥xk∥2

2 = 1. These states evolve at
discrete time according to Rego et al. (2021), Teixeira et al. (2009)

xk =

(
cos

(
p
(
ǔk−1

))
I4 −

Ts
2

sin
(
p
(
ǔk−1

))
p
(
ǔk−1

) Ω
(
ǔk−1

))
xk−1, (26)

where Ts = 0.2 s is the sampling time, p
(
ǔk

)
=

Ts
2

ǔk

2,(

ǔk
)

=

⎡⎢⎣ 0 ǔ3,k −ǔ2,k ǔ1,k
−ǔ3,k 0 ǔ1,k ǔ2,k
ǔ2,k −ǔ1,k 0 ǔ3,k

−ǔ1,k −ǔ2,k −ǔ3,k 0

⎤⎥⎦, and

ˇk =

[ 0.3 sin ((2π/12) kTs)
0.3 sin ((2π/12) kTs − 6)
0.3 sin ((2π/12) kTs − 12)

]
is the physical input that

rives the actual system. For state-estimation purposes, we as-
ume that ǔk is acquired by gyroscopes. Then, ǔk is corrupted by
n additive noise wk ∈ W =

{
3 × 10−3I3, 03×1

}
, whose result is

he known signal uk = ǔk + wk. The measurement is given by

k =

[
C (xk) r [1]

[2]

]
+ vk, (27)
C (xk) r

7

Table 2
Results of T CPU and A□ for the first example (SubSection 5.1). The
percentage reduction of A□ for CZDC in comparison with ZDC
is shown between parenthesis. The suffixes -F, -D and -R for
T CPU denote the elapsed time during, respectively, the forecast,
data-assimilation and reduction steps, while -T the total time.
Indexes ZDC CZDC

T CPU-F 1.07 s 1.34 s
T CPU-D 19.7 ms 0.100 ms
T CPU-R 0.100 ms 5.90 ms
T CPU-T 1.09 s 1.35 s
A□ 2.16 1.33 (↓38.4%)

where r [1]
=

[
1 0 0

]⊤, r [2]
=

[
0 1 0

]⊤,

C (xk) =

⎡⎢⎣x21,k − x22,k − x23,k + x24,k 2
(
x1,kx2,k + x3,kx4,k

)
2
(
x1,kx2,k − x3,kx4,k

)
−x21,k + x22,k − x23,k + x24,k

2
(
x1,kx3,k + x2,kx4,k

)
2
(
−x1,kx4,k + x2,kx3,k

)
2
(
x1,kx3,k − x2,kx4,k

)
2
(
x1,kx4,k + x2,kx3,k

)
−x21,k − x22,k + x23,k + x24,k

⎤⎥⎦
is a rotation matrix, and vk ∈ V = {0.15I6, 06×1}.

To simulate the system, we consider the uncorrupted signal
ǔk, initial state x0 =

[
0 1 0 0

]⊤
∈ X0 ={

0.18I4,
[
0.1 0.9 0.1 0.1

]⊤
}
, realizations of uniform noise

defined in V for vk, kf = 200, and ms = 10. To estimate states,
we consider the corrupted signal uk, fixed values ϕc = 10 and
ϕg = 30, the invariant g (xk) = x⊤

k xk − 1, and the feasible set
X F

= {I4, 04×1}. Since ǔk is unknown, the algorithms replace ǔk
by (uk−wk). Due to the nonlinearity of xk = f (xk−1, uk−1, wk−1) in
(26), we define the DC function f = f a − f b such that f ai = fi + f bi
and f bi =

λ̃i
2 z

⊤

k−1zk−1, with zk−1 =
[
x⊤

k−1 w⊤

k−1

]⊤, i = 1, . . . , 4,
and with λ̃i being given by Proposition 4 over each time step. In
this case, the polytope Pk−1 related to Theorem 1 is a box (given
by Proposition 1) that contains the CZ Zk−1 = Xk−1 × Wk−1. By
xploiting the quadratic nature of both yk = h (xk) + vk in (27)

and g (xk) = 0, we propose the DC functions yk = ha
− hb

+ vk
and g = ga

− gb such that

ha
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x⊤

k A1xk
x⊤

k A2xk
x⊤

k A3xk
x⊤

k A4xk
x⊤

k A5xk
x⊤

k A6xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x21,k + x24,k
x1,kx2,k − x3,kx4,k
x1,kx3,k + x2,kx4,k
x1,kx2,k + x3,kx4,k

x22,k + x24,k
x2,kx3,k − x1,kx4,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ga

= g,

hb
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x⊤

k B1xk
x⊤

k B2xk
x⊤

k B3xk
x⊤

k B4xk
x⊤

k B5xk
x⊤

k B6xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x22,k + x23,k
−x1,kx2,k + x3,kx4,k
−x1,kx3,k − x2,kx4,k
−x1,kx2,k − x3,kx4,k

x21,k + x23,k
x1,kx4,k − x2,kx3,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, gb

= 0,

where

A1 =

⎡⎢⎣1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤⎥⎦ , A2 =

⎡⎢⎣0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎤⎥⎦ ,

A3 =

⎡⎢⎣0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎦ ,
0 0 0 0
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Fig. 2. 3D projection with respect to x1,k = 0 of the interval hulls of CZs, computed by CZDC (blue color), CZFO (red color), and CZMV (magenta color), for the
econd case study (Section 5.2). The true states are sketched in black solid line. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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4 =

⎡⎢⎣0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎦ , A5 =

⎡⎢⎣0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤⎥⎦ ,

6 =

⎡⎢⎣0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0

⎤⎥⎦ ,

B1 =

⎡⎢⎣0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎦ , B2 =

⎡⎢⎣0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎦ ,

B3 =

⎡⎢⎣0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎤⎥⎦ ,

B4 =

⎡⎢⎣0 −1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎤⎥⎦ , B5 =

⎡⎢⎣1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤⎥⎦ ,

B6 =

⎡⎢⎣0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0

⎤⎥⎦ .

Remark 7. Hessian matrices are not here candidate to replace
the prior non-symmetric matrices. To achieve that, new func-
tions ha and hb must be defined, but this procedure may en-
large the current eigenvalues, yielding more conservative DC
approximations.

Having in mind the choice of matrices here adopted, the poly-
topes Pk and P̌k, in Theorem 2 and Corollary 1, are parallelotopes
given by Proposition 3) that contain the CZs Zk = Xk|k−1 and
ˇk = X̌k, respectively. We employ parallelotopes instead of boxes
ecause the DC components are fixed, and thereby, Pk and P̌k may
each better precision.

Fig. 2 depicts a separate simulation with the CZDC, CZFO
nd CZMV algorithms. Boxes were sketched rather than CZs for
omputational simplicity. According to the figure, CZDC generates
Zs with the smallest associated interval hulls. Moreover, a faster
eduction of uncertainty is expected with CZDC during the initial-
zation effect. Table 3 corroborates the improvement of precision
aused by CZDC in comparison with both CZMV and CZFO. Since
8

ZFO is, in general, more costly than CZMV (Rego et al., 2021,
able 1), it demands a larger total T CPU as shown in Table 3.
ifferently, CZDC can enhance the precision of CZMV using much
ess computational resource, and this advantage is related to both
ight linearization remainder (Lemma 1) and low-dimension CZs
Remark 6). However, the quantity of operations involved with
ZDC may be larger than the CZMV one, justifying the difference
f T CPU.
In order to verify if the precision of CZDC would be enlarged

ith respect to Table 3 (reduction of A□), we also tested if con-
exifying each row of f or −f , for each time step, would be better
Remark 2), selecting the strategy with the smallest lower bound
f eigenvalue. However, the tests pointed out that convexifying f
lways yielded the best solutions.
During the state estimation, CZMV and CZFO diverged for

ome simulations, whose results were discarded and not included
n the computation of A□. In this case, the enlargement of CZs
as increasing, but fixed by the admissibility step, resulting in
he own feasible set X F. In principle, the prior results could be
mproved with the increase of ϕc and ϕg . However, the generator
eduction can imply conservatism for some directions due to
he wrapping effect. This effect is influenced by the evolution
f CZs, which is different for each Monte Carlo simulation since
he noise realizations are present in uk and yk, affecting then the
ntersections.

For completeness, the ZDC algorithm was also tested with
ive steps. The box constraints, represented by X F, were enforced
sing the steps 2–11 of de Paula et al. (2022, Algorithm 3). For all

simulations, ZDC diverged and demanded a total T CPU around 110
s because of the volume minimization. Differently, CZDC reached
convergence and demanded a much smaller T CPU as shown by
Table 3.

6. Conclusions

This paper proposed a new set-membership filter for discrete-
time nonlinear uncertain systems with state constraints, called
CZDC. A DC programming approach was used to provide a new
nonlinear approximation for CZs. Thus, CZDC established an al-
ternative estimation basis with respect to the state-of-the-art
algorithms, called CZMV and CZFO (Rego et al., 2021). We showed
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Table 3
Results of T CPU and A□ for the second example (SubSection 5.2). The percentage
reduction of A□ for CZDC and CZFO in comparison with CZMV is shown between
parenthesis. The suffixes -F, -D, -A, -C and -R for T CPU denote the elapsed time
uring, respectively, the forecast, data-assimilation, admissibility, consistency
nd reduction steps, while -T the total time.
Indexes CZDC CZFO CZMV

T CPU-F 3.70 s 12.9 s 1.26 s
T CPU-D 0.265 s 6.48 s 0.162 s
T CPU-A 38.7 µs 57.7 µs 55.7 µs
T CPU-C 0.278 s 0.164 s 0.302 s
T CPU-R 0.0207 s 20.6 s 0.473 s
T CPU-T 4.26 s 40.1 s 2.20 s
A□(×10−4) 0.0244 (↓97.4%) 0.189 (↓79.9%) 0.939

that the performance of these two algorithms can be signifi-
cantly deteriorated due to the wrapping and dependency effects,
with CZDC being a good option to mitigate divergence and con-
servatism issues. Over two numerical examples, we discussed
advantages of CZDC over CZMV and CZFO. These three algorithms
can readily enforce linear inequality constraints on the state
vector by using CZs. However, the nonlinear case requires inves-
tigation and will be intended in the future. Other challenge is
the proof of convergence for CZDC. Currently, the interval bounds
returned by Lemma 1 are only guaranteed, being then necessary
technique that additionally delimits the extreme values.
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