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INTrODUcTION 

While real solutions of polynomial equations were ever since investigated (for 
instance Newton classified all the possible equations and shapes of real plane 
cubic curves) a breakthrough came alongside of the impetuous development 
of complex function theory. 
Harnack, Klein and Weichold, just to name a few, [Har76], [Klein82], [Klein76], 
[Klein92], [Wei83] used the ideas of Riemann in order to study real equations 
and their real solutions. 
In this way the main branch of real algebraic geometry was born, the one 
which focuses on the pair of sets given by the complex solutions and the real 
solutions, with complex conjugation σ acting on them. 
The abstract formal outcome of this approach is the definition of a real 
manifold as a pair (X, σ) where X is a complex manifold and σ : X → X 
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is an antiholomorphic involution (involution means that σ2 is the identity). 
The substantial outcome was the use of topological methods and of methods 
from complex manifolds theory for real algebraic geometry. 
A strong boost towards the development of real algebraic geometry came 
from the Hilbert problems 16 and 17, posed in Paris in the year 1900. 
Especially problem 16 oriented the research towards the extrinsic geometry: 
real plane curves were the object of intensive investigations, and, later on, 
also surfaces of low degree in P3 ([Kharl76, Kharl84]). 
The Russian school was very influenced by Hilbert’s problem 16, with an even 
more prominent role of topology in the study of this extrinsic geometry of real 
varieties (see [DegKha00] for an excellent survey): but soon emerged the role 
of intrinsic geometry. 
These methods had been pioneered by Comessatti, who studied the topology 
of rational surfaces [Come12],[Come14], and later on the real structures on 
Abelian varieties [Come24-5], complementing previous results of Klein and 
others on real algebraic curves (see [CilPed96] for an excellent survey). 
An important endeavour was the extension of the Castelnuovo-Enriques clas- 
sification of surfaces to the case of real algebraic surfaces, with initial contri- 
butions in [Manin66], [Manin67], [Iskovskih67], [Iskovskih70], [Iskovskih79], 
[Nikulin79], [Sil89], and then achieved through a long series of papers among 
which [D-I-K00], [CatFre03], [Fre04], [D-I-K08] (we refer to [Mang17], [Mang20] 
as an excellent text and for more references of many other works by Mangolte 
and others). 
This said, the contribution of the present paper concerns the intrinsic real 
algebraic geometry and deals with Abelian coverings between real algebraic 
varieties (X, σ) and (X′, σ′) (i.e.,  Galois coverings such that the Galois group of 
X X′ is an Abelian group G normalized by σ). The complex case was 
initiated by Comessatti [Come30] who described the cyclic case and, after 
many intermediate works by several authors, the biregular theory of such 
coverings, in the case where X′ is smooth, was established in [Par91]. 
The present paper is divided into two parts: the first one is devoted to the 
birational theory, i.e., the description of the corresponding fields exten- sions 
R(X′)    R(X), the second is the biregular theory for X′ factorial, where the 
covering is described according to the scheme of Pardini’s paper through 
building data, which are divisors on X′ and line bundles on X′ sat- isfying 
some compatibility relations, and where we have to add the reality 
constraints. 
We should warn the reader that the birational theory, which is well-known 
and almost trivial in the complex case (where the cyclic case is the one where 
the field extension C(X′) C(X) is obtained by taking the n-th root z of a 
function f   C(X′), hence it is described by the simple formula zn = f ), is by 
no means easy in the real case. 
This is the reason why the title distinguishes between the cyclic and the 
Abelian case:  while we can describe the cyclic case as the fibre product (field 
compositum) of four basic fields extensions, this becomes considerably more 
complicated in the Abelian case. The underlying reason is a simple 
arithmetical fact: the group G′  generated  by the  Galois  group G  and  by the 
antiholomorphic involution σ is a semidirect product G′ = G ⋊ (Z/2), 
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classified by an automorphism M  : G  G such that M 2  = 1 (1 is here the 
identity of G). We dedicate Section 2 to the analysis of the algebraic 
structure of the group G′. 
In the cyclic case M (Z/n)∗ can be described through a splitting of the cyclic 
group G as a direct sum such that, on each summand (Z/h), M acts either  
as multiplication  by     1 or, possibly, if h is divisible by 8, by     1 + h. In the 
non cyclic case there is no such similar splitting and already the description 
of such pairs (G, M ) is slightly more complicated (see Lemma 2.5). 
Section 3 is dedicated to the description of the corresponding fields exten- 
sions. 
The easiest case where the field extension is given by zn  = f     R(X′) is the 
one where the group G′ is isomorphic to the dihedral group Dn (and the 
field extension R(X′) R(X) is not Galois). The other cases become 
progressively more complicated, and the main result of Section 3, and of the 
first part, is Theorem 3.2, describing the four basic cases. Since the state- 
ment of the theorem requires a complicated notation, we do not follow the 
usual order of exposition: instead, while preparing the necessary definitions, 
we provide at the same time the proof. 
Section 4 is devoted to the description of the biregular theory of real Abelian 
coverings in terms of branch divisors and invertible character sheaves, and 
the results are spelled out in particular in Theorem 4.1 (recalling the cyclic 
case in the complex setting), in Theorem 4.2, stating the result in the real 
cyclic case, while for the general Abelian case, to avoid too much repetition, 
we just indicate how to get the result from Theorem 4.2 mutatis mutandis. 

 

Passing to the biregular theory of more general Galois coverings, with non 
Abelian Galois group G, we should recall the real analogue of the complex 
Riemann existence theorem (in the general version given by Grauert and 
Remmert [G-R58]). 
It is based on the notion of the real fundamental group of (X, σ), denoted πR(X, 
σ), which, in the case where X has a real point x0 X(R), is the semidirect 
product π1(X, x0) ⋊ (Z/2), where conjugation  by  (Z/2)  is  given by σ∗; else, 
it is defined as the fundamental group of the Klein variety 

(X) := X/σ (see [CatFre03]). 
In both cases we have an exact sequence: 

1 → π1(X) → 

which splits in the first case. 

R 
π1 (X) → Z/2 → 1, 

Putting together definitions and results of [G-R58] and of [CatFre03] we 
obtain the following theorem, whose general statement might be new. 

Theorem 0.1. (Real Riemann existence theorem) A real Galois covering 
with Galois group G between normal real varieties (X, σ) and (X′, σ′) is 
determined by a σ′-invariant Zariski closed subset B of X′ and a surjective 
homomorphism 

R ′ ′ ′ 
Ψ : π1 (X \ B, σ ) → G , 

where G′ = G ⋊ (Z/2) is determined by an automorphism M Aut(G) of 
order 2 (i.e. M 2 = 1), such that the following conditions are satisfied: 
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i) the action of G′ on X, which is determined by Ψ, is such that its 
restriction to Z/2 < G′ coincides with the action associated to the 
real structure σ on X; 

ii) Ψ(π1(X′ \ B)) = G. 

In the case where X′ is smooth, there is a  minimal  B  which is  a  divisor. The 
analysis of its components and of the local monodromies in the Abelian case 
leads to the biregular theory of such coverings, to which section 4 is devoted. 
In general, the Riemann existence theorem works fine with complex curves, 
where the fundamental groups π1(X′ B) are well known. 
In a sequel to this paper we shall treat the case of real curves, which goes 
back to the Klein theory (revived and extended for instance in [Al-Gr71], 
and many other papers by Seppäla and other authors, for instance [Sep90]): 
here many arguments, except the final theorems, work for any finite group G. 
We shall discuss such coverings in terms of certain numerical and topological 
data, extending results of [Cat12] in the complex case (this was partly done 
in [Cat02] and [Cat08]), and with a view to the study of the corresponding 
moduli spaces of real curves with Abelian  symmetry group G and with a fixed 
set of invariants (M , local monodromies, ...). 

 
 

1. THE basIc sET-UP 

In this paper, we consider the following situation: 
1) (X, σ) is a real projective variety (this means that X is a complex pro- jective 
variety given together with an antiholomorphic self map σ : X X which is 
an involution, i.e. σ2 is the identity); 
2) G is a finite subgroup of the group of complex automorphisms of X, 
and G is normalized by σ. If we consider the quotient X′ := X/G, since 
σG = Gσ, we see that σ induces an antiholomorphic involution σ′ on X′, 
defined by 

σ′(Gx) := σ(Gx) = Gσx. 

Hence, in particular, (X′, σ′) is also a real projective variety. 

We can of course consider the more general situation where X is a real space 
(replace the condition that X is a projective variety by the condition that 
X is a complex space). 

Definition 1.1. Saying that f : (X, σ) → (X′, σ′) is real G-Galois covering 

means that G      Aut(X) as in 2) above, X ′ =∼ X/G via f , and f  is real, that 
is, f σ = σ′ f . 
In this situation σ normalizes G, and we have a semidirect product 

G′ := G ⋊ Z/2,  Z/2 ∼= {1, σ}. 

If the finite group G is Abelian, respectively cyclic, we shall say that X X′ 
is an Abelian, respectively cyclic, covering of real varieties, with group G. 
For a projective variety X PN (C) defined by polynomial equations with 
real coefficients, σ is induced by complex conjugation 

σ(x0, . . . , xN ) := (x0, . . . , xN ). 
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It is important to observe that any real projective variety admits such an 
embedding, see for instance [Mang17], Théorème  2.6.44. 
More generally, if X is a complex variety, one says that σ is antiholomor- phic 
if it is differentiable and locally induced by an antiholomorphic map of 
complex manifolds, i.e., such that the derivative Dσ of σ satisfies 

J ◦  Dσ = −Dσ ◦  J, 

where J is the complex structure on the (Zariski) tangent space of X (J2 = 
1). 

The group G acts on the function field C(X), and the antiholomorphic map 
σ induces also an involution τ : C(X) C(X), which normalizes the action of 
G on C(X), given by g(f ) := f g−1. 
It is easy to understand τ in the prototype case where X is a projec- tive 
variety  X  ⊂  PN (C) defined by polynomial  equations  with real coef- 
ficients:   τ  is  indΣuced  by  the  map  that  acts  on  homogeneous  polynomials 
P (x0, . . . , xN ) = I aI xI just by conjugating their coefficients. 
I.e.,  τ (P )  := I aI xI; and  the  field  of  rational  functions  which  are  τ - 
invariant is just the field R(X), such that C(X) = R(X) R C. 
In this representation as a tensor product, τ is induced by complex conju- 
gation on C. 
In the general case, since 

Σ Σ 
P (σ(x)) = aI xI = aI xI , 

 
one defines 

I I 

 
 

τ (f ) := f ◦  σ. 

We shall work, at least in the first part of the paper, with the group G′ gen- 
erated by G and τ acting on the function field C(X). The same calculation 
can be performed in the general case working with line bundles instead of 
function fields. 
In the case where the group G is cyclic, G =∼ Z/n, since the field C contains 
all roots of unity, the field extension C(X) C(X′) has a simple description, as 

C(X) = C(X′)[z]/(zn − f ). 

But in this representation we do not see the action of τ . Indeed, in the next 
section, we show that, through the fibre product of two distinct coverings of 
X′, we can reduce to four basic cases: 

(1) G′ is the dihedral group Dn: this is the standard totally real covering 
case where 

R(X) = R(X′)[z]/(zn − f ). 

(2) G′ is a direct product (Z/n) (Z/2): this is a case which resembles the 
one of the complex dihedral coverings (see [CP17]), so we call it the 
dihedral-like case. 

It is important to observe that this is exactly the case where the 
field extension R(X) ⊃ R(X′) is Galois (with group G): since the 

subgroup Z/2 is a normal subgroup of G′ if and only if G′ ∼= G×Z/2. 
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(3) n is divisible by 8 and G′ is the semidirect product such that 

τgτ  = g1+n/2 : 

this will be called the twisted case, and it can be reduced to the 
dihedral-like case. 

(4) n is divisible by 8 and G′ is the semidirect product such that 

τgτ = g−1+n/2  : 

this will be called the esoteric covering 1. 

2. A NUMErIcaL LEMMa 

In the first part of this section we consider the following situation: we are 
given a finite group G′, which is a semidirect product 

G′ := (Z/n) ⋊ (Z/2) =: G ⋊ (Z/2) , G := ⟨ g|gn = 1⟩ , (Z/2) := ⟨ τ |τ 2 = 1⟩ . 

The semidirect product is then classified by an element m (Z/n)∗, such 
that m2 = 1 and such that τgτ = gm. 
The next lemma shows that, up to letting G be a direct product of two 
cyclic groups (of coprime order), we can reduce to four basic situations: 
m = ±1, or, when n is divisible by 8, m = ±1 + n/2. 

Lemma 2.1. Let m ∈ (Z/n)∗ be such that m2 = 1. Then we can write 
n = n1 · n2 · 2 , where: 

(1) k = 0 or k 3, 
(2) the factors are pairwise relatively prime (and possibly equal to 1), 
(3) using the Chinese remainder theorem to identify 

Z/n ∼= Z/n1 × Z/n2 × Z/2k , 

m corresponds to (1, −1, ±1 + 2 ). 

In particular, we can write n = N1 N2 with N1, N2 relatively prime (and 
possibly equal to 1), and either 

(4) m ∈ Z/N1 × Z/N2 equals (1, −1), or 
(5) N2 is divisible by 8 and m ∈ Z/N1 × Z/N2 equals (1, −1 + N2/2), or 
(6) N2 is divisible by 8 and m ∈ Z/N1 × Z/N2 equals (−1, 1 + N2/2). 

Proof. Let us first consider the case where n is a prime power and show that 
(the case n = 2 being trivial): 

(i) if n = pe, where p is an odd prime, then m = ±1; 
(ii) if n = 2e and e ≥ 2, then either m = ±1 or, in case e ≥ 3, we can 

also have m = ±1 + n/2. 

Indeed in both cases,  (i) and (ii),  m      ǫ (mod p),  where ǫ  =    1.   In case 
(i), let ph the biggest power of p that divides m    ǫ (h    1).  Then, 1 = m2 
= (ǫ + aph)2 = 1 + 2ǫaph + a2p2h, hence h = e since p > 2. 
In case (ii), it follows that h ≥ e − 1, hence either h = e and m = ǫ, or 
h = e − 1 and m = ǫ + 2 . 

1It appears esoteric only because we wish to find explicit algebraic formulae for the field 
extension, instead of using the real version, Theorem 0.1, of Riemann’s existence theorem 
of [G-R58] 
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In the general case where n > 1 is any natural number, it suffices to use the 
primary decomposition of Z/n and put together all the primary summands 
where m equals respectively 1,    1,    1 + 2k−1.  Here k = e, if n = n1   n2   2e with 
e 3 and the summand of m belonging to Z/2e is equal to 1 + 2e−1 (notice that, 
if e = 2, 1 + 2 = 1). This shows (1), (2) and (3). 
Finally, to prove (4), (5) and (6) observe that, if the third summand is 
nontrivial and m = (1,    1, 1+2k−1), then, setting N2 := n1  2k, we have that 
1 + n1   2k−1  is congruent to 1 modulo n1 and congruent to 1 + 2k−1 modulo 2k.  
The other case where m = (1,    1,    1 + 2k−1), that is, m =    1 + n22k−1, is 
entirely similar. 

Q 

The previous lemma says therefore that there are seven possibilities: three 
contemplated  in  (4)  (namely  N1  =  1,  or  N2  =  1,  or  N1  =/ 1 N2)  and 
respectively two for both (5) and (6) (namely, N1 = 1, or N1 1, since here 
we must have N2 1). Of these four are ‘pure’ (unmixed cases), and three 
are direct products of two pure cases. 
The way the lemma shall be applied is through the following well-known 
proposition; when stating our results we shall sometimes take this condition 
for granted (it distinguishes between irreducible and reducible covers). 

Proposition 2.2. Let K be a field of characteristic zero and containing all 
roots of 1. 
Then L := K[z]/(zn f ) is a field if and only  if  there  is no divisor  h of  n, with 
h 2, and no element a of K such that ah = f (equivalently, the same 
condition with h a prime number). 
Assume now that L := K[z]/(zn     f ) and L′ := K[x]/(xm     φ) are fields, and 
that n, m are relatively prime.  Then L   K L′ is a field extension of K, Galois 
with Galois group cyclic of order nm. 

Proof. For the first assertion, assume that such an element a exists and set 
n = hk: then zn    f = zhk   ah, which is divisible by zk    a. 
Conversely,  assume that F  := zn    f  is not irreducible in K[z].  We have an 
action of the group G of n-th roots of 1 on K[z], z      ζjz.  Since F is G-
invariant, G permutes the irreducible factors of F . If F  has a linear factor z a, 
we have that an  = f .  Otherwise, the orbit of a factor P  of minimal degree 
has cardinality < n, hence we have a factor P stabilized by a subgroup of G, 
generated by some power ζh, where h 2 divides n, and equal to the group 
of k-th roots of 1 (n = kh). 
Therefore this factor is of the form 

P (z) = 
Σ 

bjzkj , 
j 

and, setting w := zk, we get that Q(w) := 
Σ 

b wj divides wh − f . 
j 

Now, Q must be linear, otherwise it would have a nontrivial stabilizer in 
the group of h-th roots of 1, contradicting that the stabilizer of P has order 
exactly k. Since Q is linear, it is of the form w a, hence ah = f . 
For the second assertion, observe that 

L ⊗K L′ = K [x, z]/(zn − f, xm − φ) 

j 
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admits an action by the group Z/n Z/m = Z/nm (since n, m are relatively 
prime) which,  given  ζ  a primitive  n-th root of 1,  and ǫ  a primitive  m- 
th  root  of  1,  sends  z         ζ iz,  x         ǫjx.    Hence  xz  is  an  eigenvector  for 
the standard generator of Z/nm, in particular it generates the K-algebra 
L K L′, satisfying indeed the relation (zx)nm = f mφn. 
By the first assertion, if L K L′ is not a field, there exists a K such that 
ah = f mφn, where h 2 divides nm. 
Without loss of generality we may assume that h is prime, and that it divides 
m, so that m = hk. 
Since ah = f hkφn, it follows that, setting b := a  f −k, bh = φn. 
However, since n, m are relatively prime, there exist integers r, s such that 
1 = hr + ns. 
We finally derive: 

φ = φhr+ns = (φrbs)h  =: ch 

and since h m , we have contradicted that L′ is a field, because of the first 
assertion of this proposition. 

Q 

Remark 2.3. In the case where K = C(X′) is the function field of a factorial 
variety X′, the condition of existence of a with f = ah can be verified once 
we write f = s as the quotient of two relatively prime sections of a line 

bundle L, and we then take the unique factorization of f : 
Πisni

 
i 

Πjt
mj

 

where the si, tj, are prime. 
h should divide the greatest common divisor GCD(ni, mj) of all the expo- 
nents ni, mj. We shall often omit to specify this condition each time. 

More generally, we can consider the situation where G is a finite Abelian 
group and we have a semidirect product 

G′ = G ⋊ (Z/2), 

where the semidirect product is determined by an automorphism 

M ∈ Aut(G),  such that M 2 = 1 := IdG. 

Using the primary decomposition of G, G = ⊕pGp, where Gp is the p- 
primary component, it suffices to describe Mp : Gp → Gp. 
Gp is isomorphic to a direct sum 

Gp = ⊕r(Z/(pr))nr . 

Lemma  2.4.  Let Gp = ⊕r(Z/(pr))nr   be a finite Abelian group  of exponent 
a power of p, where p is an odd  prime,  and Mp  : Gp  → Gp  with M 2  = 1: then 
we have a splitting Gp = G+ ⊕ G− into +1 and −1 eigenspaces. 

Proof. As usual, G+ = { 1 (x + Mpx)}, G− = { 1 (x − Mpx)}. 
p 2 p 2 

Q
 

 

The following Lemma applies in particular to the case of a finite Abelian 
group of exponent 2s, G2 = ⊕r(Z/(2r))nr , endowed with an automorphism 
M2 : G2 → G2 with M 2 = 1: 

f = , 
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Lemma 2.5. Let G be a finite Abelian group endowed with an automorphism 
M : G G such that M 2 = 1. 
Let 

G+ := Ker(M − 1), G− := Ker(M + 1) 

be the respective eigenspaces for the eigenvalues +1, 1, and define U  := 
G+ G−, W = G+ + G−. 
Then 
(1) U = G+ = G− , where G± denotes the subgroup of 2-torsion elements 

[2] [2] [2] 

of  G±,  and  we  have  a  canonical  isomorphism  W  ∼= (G+ G−)/U; 
(2) V := G/W is a vector space over Z/2, with an induced action by M, 
which is the identity; 
(3) for x G, M (x) = x + F (x), where F : G G− vanishes on G+, and equals 
2x for x G−. 
(4) For fixed G, G+, G−, we have a set of possible homomorphisms M with 
M 2 =  1  and  such  that  G+  is  contained  in  the  (+1)-eigenspace  for  M, and 
G−  is contained in the (  1)-eigenspace for M, parametrized by the set 
Hom(V, U ). 
(5) Take now an Abelian group G containing subgroups W, G−, G+ such that 

(I) W = G− + G+, 

(II) W  =∼ (G− ⊕ G+)/U,  where  U  = G+ − 
[2] 

(III) G/W =: V is a vector space over Z/2. 

Let FW : W G− be defined as in (3). 
Then there exists an extension F : G G− of  FW ,  and  the  set  of  au- 
tomorphisms of G with M 2 = 1 such that G+ equals the (+1)-eigenspace 
for M, G− equals the ( 1)-eigenspace for M, is in bijection with all those 
extensions F ′ = F + φ, φ Hom(V, U ), satisfying  the  further  properties: 
G+ = Ker(F ′), G− = Ker(F ′ + 2). 

Proof. Let us first consider the baby case where G is a vector space over 
Z/2. 
Since M : G → G satisfies  M 2  =  1,  we get  a  Jordan normal form  for  G with 
eigenvalues 1 and blocks of length ≤ 2, that is, there is a direct sum G = 
G+ ⊕ G′  such that M (v+, v′) = (v+ + f (v′), v′), with f  : G′  → G+ 
linear  and  injective.  Observing  that  G′  =∼  G/G+ ,  we  have  established  that 
we have an injective homomorphism f : G/G+ → G+ such, that for y ∈ G, 
letting p1 : G → G/G+ be the natural surjection, then M (y) = y + f (p1(y)). 

In general, since M : G G satisfies M 2 = 1, we get two filtrations by 
submodules 

0 ⊂ Im(M − 1) ⊂ Ker(M + 1) =: G− ⊂ G = Ker(M 2 − 1), 

0 ⊂ Im(M + 1) ⊂ Ker(M − 1) =: G+ ⊂ G = Ker(M 2 − 1), 

which are invariant since M acts as 1 on G−, and as +1 on G+. 
Observe then that U := G+ G− =  y 2y = 0, My = y G[2], hence (1) 
follows immediately. 
Moreover,  2y  = (M +1)y −(M − 1)y shows that G/W  has exponent 2, hence 
it is a vector space V  over  Z/2. As we noticed,  Im(M − 1) ⊂ G−  ⊂ W , hence 
(M − 1) : G/W → G/W is = 0, hence (2) holds. 



FABRIZIO  CATANESE,   MICHAEL  LÖ NNE,  AND  FABIO  PERRONI 10 
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Write M (x) = x + F (x). 
Here F = M − 1 vanishes on G+, and equals −2x for x ∈ G−, hence (3) is 
established and F W is canonically determined. 
Now, F : G G− is an extension of F W . 
Observe that G is an extension: 

 
0 → W → G → V → 0. 

Hence we have an exact sequence 

 
0 → Hom(V, G−) → Hom(G, G−) → Hom(W, G−) → Ext1(V, G−). 

Since V has exponent 2, and F |W is determined, the choice of an extension 
F of F W is determined up to a homomorphism φ Hom(V, U ). 
φ can be taken arbitrarily, since M acts as the identity on V , hence also 
(M + φ)2 = 1: hence (4) holds. 
Take now  an  Abelian  group  G  containing  subgroups W, G−, G+  as  in  (5) 
such that W  =∼ (G− ⊕ G+)/U , where U  = G+ − 

[2] 

Take F |W as above: the question is whether there exists F : G →  G− extending 
F W . If the answer is positive, then we define M := F + 1, and clearly M 2 = 1. 
It suffices to see that F W  is sent to 0   Ext1(V, G−), because then there exists 
F Hom(G, G−) extending F W . 
Now, the coboundary map of the exact sequence is given via the natural 
pairing 

(Ext1(V, W ) × Hom(W, G−)) → Ext1(V, G−) 

by pairing with the extension class of 0      W      G      V      0 (an element of 
Ext1(V, W )). 
Observe also that Ext1(V, W ), since V is a vector space over Z/2, equals 

V ⊗Z/2 Ext1(Z/2, W ) = V ⊗Z/2 (W/2W ), 

similarly  Ext1(V, G−) equals 

V  ⊗Z/2 Ext1(Z/2, G−) = V  ⊗Z/2 (G−/2G−), 

Now, we have that F W sends W 2G−, hence F W maps to 0 and there 
exists F Hom(G, G−) extending F W . 
Finally, M (x) = x    F (x) = 0, and M (x) =    x     F (x) =    2x. 
This said, we have that G+ is just contained in the (+1)-eigenspace, and 
similarly G− is just contained in the ( 1)-eigenspace. Equality holds if G+ 

= Ker(F ),  G− = Ker(F  + 2) Q 

Remark 2.6. (i) The case where G is of exponent 2 (a vector space over 
Z/2), and U = W = G+ shows that the 2- torsion subgroup of G can be 
strictly larger than U . 
(ii) The same example shows that, fixed G+, the (+1)-eigenspace for M 
contains G+ and it is equal to it if and only if f : V U is injective. If we 
change f with f + φ, and the latter is not injective, then (+1)-Eigenspace 
becomes larger, it is equal to the inverse image of Ker(f + φ) ⊂ V under 
the projection p : G → V . Likewise also U becomes larger. 
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(iii) An easy issue of Lemma 2.5 is the one where G is any group, and 
M = ±1 + ϕ, where ϕ : G → G[2] is a homomorphism vanishing on G[2]. Let ǫ 
∈ {+1, −1}, so that M (x) = ǫx + ϕ(x). Then 

M 2(x) = ǫ(ǫx + ϕ(x)) + ϕ(ǫx + ϕ(x)) = x + ϕ(ϕ(x)) = x. 

In the case ǫ = 1, G+ = Ker(ϕ) ⊃ G[2], G− = Ker(ϕ − 2), and 

U = Ker(ϕ) ∩ Ker(2) = G[2]. 

3. THE FUNcTION FIELD ExTENsIONs IN THE FOUr basIc casEs 

We begin with a very simple observation. 

Remark  3.1.  Le√t R(X ′) be a finitely  generated  extension  field  of  R  which 
does not contain −1, let Φ ∈ R(X′) be not a square, and consider the field 
extension R(X0) given by y2 = Φ. 
Then there are two real structures on R(X0): for one of them (the one we 
shall choose) τ (y) = y, for the other τ ′(y) = −y (τ ′ = ι ◦  τ , where ι is the Galois 
involution y ›→ −y). 

3.1. The case where G′ is  a  dihedral  group.  We have here τgτ = g−1. Let 
us assume that the cyclic field extension is generated by w, such that wn = 
F , F C(X′). 
If g is a generator of G, we have 

g(w) = ζw, 

where ζ is a primitive n-th root of 1. 
Hence 

g(τ (w)) = τ (g−1(w)) = τ (ζ−1w) = ζτ (w), 

so that τ (w) is also an eigenvector for g with eigenvalue ζ (in particular there 
exists A ∈ C(X′) with τ (w) = Aw). 
Let Vζ be the eigenspace for the eigenvalue ζ: then any nonzero element z 
inside Vζ generates the extension C(X′) ⊂ C(X). 
If there is now a w ∈ Vζ such that z := τ (w) + w /= 0, then z ∈ R(X) 
generates the extension and zn = f ∈ R(X′), as we want to show. 
Otherwise, τ would act as −1 on Vζ. This assumption leads to a contra- 
diction, since Vζ is a complex vector space, and we would have τ (λw) = λ(−w) 
=/     −λw  if λ is  not a real number. 

3.2. The case where G′  is a direct product G′ = G τ . We have 
here τgτ = g. 
A  first  observation  is  tha√t  g  preserves  t√h e  two  eigenspaces  for  τ ,  therefore 
g(R(X)) = R(X),  and g(    −1R(X)) = −1R(X). 
Assume that the field extension is generated by z, such that zn = f , f 
C(X′). 
If g is a generator of G, we have g(z) = ζz, where ζ is a primitive n-th root 
of 1. 
Hence 

g(τ (z)) = τ (g(z)) = τ (ζz) = ζ−1τ (z), 

so that τ exchanges the two eigenspaces Vζ and Vζ−1 . 

∈ 
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∗∗ 
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Hence we have 
   φ := z · τ (z) ∈ R(X′). 

Moreover, if z = a + 
√   

1b, a, b R(X), then φ = a2 + b2, a function which 

on the real locus takes real positive values. 
If we now set w := τ (z), we have wn = τ (f ) and, setting 

F := f + τ (f ) ⇒ F ∈ R(X′), 

we have  
(∗) zw = φ, zn + wn = F. 

It follows that f, τ (f ) are roots of the quadratic equation 

x2 − Fx + φn = 0. 

Let ψ ∈ R(X′) be twice the imaginary part of f : then 

1 √  1 √   f = (F + 
2 −1ψ), τ (f ) = 

2 
(F − 

−1ψ) 

and the discriminant ∆ is minus a square in R(X′), since 

(∗∗) ∆ = F 2 − 4φn = −ψ2. 

Conversely, if there are F, φ, ψ  R(X′) satisfying (   ), then equations (  ) define 
a cyclic extension of C(X′) of order n: since we can eliminate w = φ/z, and for 
the resulting equation 

z2n − Fzn + φn = 0 ⇔ (zn − 
1 

(F + 
√

−1ψ))(zn − 
1 

(F − 
√

−1ψ)) = 0 

we can take the root z of zn = f :=  1 (F + 
√

−1ψ) or the root w of wn = 

1 
√  2 

τ (f ) = 2 (F −   −1ψ). 
If f := 1 (F +   −1ψ) satisfies the property that there do not exist any divisor 

2 √  √ 
h

 

of n, h > 1, and a rational function ϕ = α + −1β with (α + −1β)  = f , 
then Proposition 2.2 applies and the cyclic extension is a field (cf. remark 
2.3). 
Exchanging ψ with ψ has the effect of replacing z with w. 
We can then extend τ to C(X) by setting w := τ (z) z = τ (w). 
Finally, concerning the existence of such functions F, φ, ψ we simply use the 
rationality of the variety defined by ( ). 
Namely, let n = 2m + 1 for n odd, else let n = 2m + 2. Setting 

F  = φmF̂ ,  ψ = φmψ̂, 

we reduce to the respective equations 

φ =  
1 

(F̂ 2  + ψ̂2),  4φ2 = F̂ 2  + ψ̂2. 
4 

In the first case, where n = 2m + 1, we see that the solutions correspond to 

the choice of two arbitrary functions F̂ , ψ̂  R(X ′) such that (F̂ 2 +ψ̂2)m(F̂ + 
√

−1ψ̂) is not of the form ϕh  for any divisor h of n = 2m + 1.  Since we have 

4m(F +
√

−1ψ) = (F̂ 2 + ψ̂2)m(F̂  +
√

−1ψ̂) = (F̂ + 
√

−1ψ̂)m+1(F̂  −
√

−1ψ̂)m, 

we conclude that, if F + 
√

−1ψ = ϕh, then 

4mϕh  = (F̂  + 
√

−1ψ̂)m+1(F̂  − 
√

−1ψ̂)m. 
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We can for instance show that h = 1 in the following situation: if X′ is 
factorial, any rational function f can be written uniquely as f = s, where s, 
t are relatively prime sections of a line bundle L. We shall say that 

• f is irreducible if either s or t is prime, 
• f is strongly irreducible if both s and t are prime, 

 

A s F = B is not associated to f = t if A is relatively prime to s and B 
is relatively prime to t. 

Now, if (F̂  + 
√

−1ψ̂) =  s ,  (F̂  − 
√

−1ψ̂) =  A  are irreducible and not associ- 
a   

t B 
ated, then write ϕ = b . We obtain that 

ah = sm+1Am, bh = tm+1Bm. 

If s is prime, then the first equality implies that h divides m + 1, and if t 
is prime, then the second equality  also implies h (m + 1).  Similarly,  if A is 
prime, then h m, and the same conclusion holds if B is prime. Hence h 
divides m, m + 1, hence h = 1. 

In the second case, where n = 2m + 2, we simply have to parametrize the 
quadric: setting 

 
we get 

φ = 1 + λφ̃, F̂  = 2, ψ̂  = λψ̃  
 

8φ̃ + 4λφ̃2  = λψ̃2 λ = 
8φ̃ 

, 

ψ̃2  − 4φ̃2 

hence the solutions correspond to the choice of two arbitrary functions φ̃, ψ̃  

satisfying a similar condition to the above one for the case where n is odd. 
Indeed in this case, up to constants, 

F  + 
√

−1ψ = (1 + λφ̃)m(2 + 
√

−1λψ̃). 

A  similar  argument  shows  that,  if  1 + λφ̃, 2 + 
√    

1λψ̃  are  irreducible  and 

not associated, then h = 1. 

3.3. The  case  where  τ gτ  = g1+n/2  (and  n  is  divisible  by  8).  The first 
basic observation here is that G′ contains the index 2 subgroup G′ev := 
(2Z/nZ) (Z/2) =: Gev (Z/2), generated by g2 and by τ . 
Hence we have a sequence of field extensions 

C(X′) ⊂ C(X0) ⊂ C(X), 

where X0 := X/Gev.  The extension C(X0)   C(X) is dihedral-like, since τ g2τ   
=  g2(1+n/2)  =  g2,  thus  it  has  the  description  given  in  the  previous 
subsection. 
For convenience set n = 2N , and recall that N is even. Let 

C(X) = C(X′)[z]/(zn − P ), g(z) = ζz. 

Then the extension C(X0) ⊂ C(X) is given as above by (w := τ (z)) 

(∗) zw = φ, zN + wN = F = f + τ (f ), f 2 = P, 

(∗∗) F 2 − 4φN = −ψ2. 

From  gτ  = τg1+n/2  follows  that 

g(w) = gτ (z) = τ g1+n/2(z) = τ (−ζz) = −ζ−1w, 

• 
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hence g(φ) = g(zw) = −zw = −φ, and φ2 is G′ invariant, so that 

φ2 = Φ ∈ R(X′). 

Moreover g(F ) = −zN − wN = −F ; hence φ and F generate the degree two 
extension R(X′) ⊂ R(X0) and there exists therefore A ∈ R(X′) such that 
F = Aφ. We can rewrite now condition (∗∗) as: 

A2 − 4ΦN/2−1 = −(ψ)2/Φ. 

Observe that, since g(zN ) = −zN , ψ ∈ R(X0) satisfies g(ψ) = −ψ, and in 
particular ψ2 = Ψ ∈ R(X′). 
Moreover, since φ, ψ generate the quadratic extension R(X′) ⊂ R(X0) there 
exists therefore B ∈ R(X′) such that ψ = Bφ. 
Hence we can rewrite (∗∗) as 

(∗ ∗ ∗) A2 − 4ΦN/2−1 = −B2. 

Conversely, given (   ), we define ψ, φ by ψ2 = Ψ, respectively φ2 = Φ, set F 
:= Aφ and observe that these generate a quadratic extension which we 
denote R(X′) R(X0). 
Then we use ( ) to get a cyclic extension R(X0)    R(X). 
Since g(F ) =   F , g(φ) =    φ, we can extend g to R(X) setting g(z) := ζz, g(w) 
:= ζ−1w, and τ can be extended setting τ (z) := w. 
The datum of such functions A, Φ, B  satisfying (         ) is  shown, exactly  as in 
the previous subsection, to be equivalent to the datum of two arbitrary 
functions in R(X′). 

3.4. The  case  where  τ gτ  =  g−1+n/2  (and  n  is  divisible  by  8).  Again 
a basic observation here is that G′ contains the index 2 subgroup G′ev := 
(2Z/nZ) ⋊ (Z/2), generated by g2 and by τ . 
Hence we have a sequence of field extensions 

C(X′) ⊂ C(X0) ⊂ C(X), 

where X0 := X/Gev.   The extension C(X0)      C(X) is of standard type, since  
τg2τ  =  g2(−1+n/2)  =  g−2  so  it  has  the  description  given  in  the  first 
subsection (it is generated by a real element which is an eigenvector for g2 
with eigenvalue ζ2). 
Set again n = 2N , where N is even. 
Pick as usual a generator z of the extension such that 

zn = z2N = P ∈ C(X′), g(z) = ζz. 

We have g2τ (z) = τg−2(z) = ζ2τ (z), and we set 

W := z + τ (z) ⇒ W ∈ R(X). 

If W = 0, then z = −τ (z) and it follows that 
−1+n/2 

−ζz = g(−z) = gτ (z) = τg (z) = −ζτ (z) = ζz, 

a contradiction. 
Hence 0 /= W ∈ R(X) and it generates the cyclic extension R(X0) ⊂ R(X), 
so that we may write W N = f ∈ R(X0). 
We can write 2z = W + u, where u := z − τ (z) ∈ 

   
−1R(X). 

√ 



REAL ABELIAN COVERINGS 15 
 

2 − 

2 − 

√ 
′
 

— − 

∈ − 

− 2 

2 

 

The action  of g  is as  follows:  gτ (z) = τ g−1+n/2(z) = −ζτ (z), hence 

g(W ) = ζz − ζτ (z) = ζu, 

g(u) = g(z − τ (z)) = ζ(z + τ (z)) = ζW. 

Since W N = f ∈ R(X0), g(f ) = g(W )N = −uN ∈ R(X0), hence 

uN  = h := −g(f ). 

We have  g(f ) = −h, g(h) = −f  hence 

y := f + h ⇒ y ∈ R(X0), g(y) = −y ⇒ y2 = Φ ∈ R(X′). 

Likewise g(fh) = fh ⇒ fh = Ψ ∈ R(X′). 
Since every element f in R(X0) can be written in the form f = αy+β,  α, β ∈ 
R(X′), the equations f + h = y, g(f ) = −h, fh = Ψ, imply that 

1 1 1 2 

f = 
2 

y + β, h = 
2 

y − β, Ψ = 
4 

Φ − β . 

Up to now we have described the field extension as a cyclic extension W N = 
f = 1 y + β of a quadratic extension y2 = Φ, and clearly g(y) =   y. 
In this situation, the fact that the global extension is cyclic means that 
g   extends to the larger field;   indeed, we know that g(W )   =   ζu, where uN  
= h = 1 y     β, hence the root u must be in the field extension; and since W, u 
are both in the ζ2-eigenspace for g2, this condition amounts to: 

(a) ∃C, D ∈ C(X′) such that u = W (C + yD). 

Recall that τ (W ) = W, τ (u) = −u: hence 

τ (C + yD) = −C − yD ⇒ C, D ∈ 

 
   
−1R(X ). 

Furthermore, 

g(W ) = ζu, g(u) = ζW ⇒ W = ug(C + yD) ⇒ 

(b) C2 − ΦD2 = 1. 

Condition (b) means that (C, D, 1) is a point of the conic X2 ΦY 2 Z2 = 0. 
Since the real conic has already the rational point (1, 0, 1), we get a parametriza- 
tion setting C = 1+DΘ, Θ C(X′), and therefore, since (1+DΘ)2  ΦD2 = 
1, we obtain 

2Θ Φ + Θ2 
D = −

Θ2 − Φ 
, C = −

Θ2 − Φ 
. 

Multiplying numerator and denominator by (τ (Θ) Φ), our condition is 
that 

2Θ(τ (Θ)2 − Φ), (Φ + Θ2)(τ (Θ)2 − Φ) 

are both imaginary. 
An easy  solution  is given  by taking Φ = Θ · τ (Θ√).   

This is the√only one, bec√ause, writing Θ = A + −1B, the first condition is 
that (A + −1B)((A − −1B)  − Φ) is imaginary, equivalently, 

A(A2 + B2 − Φ) = 0. 

The solution A = 0 must be discarded since then C is real, a contradiction. 
Remains exactly the solution 

A2 + B2 = Φ ⇔ Φ = Θ · τ (Θ), 
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′ • we are given C, D ∈ −1R(X ) such that condition (b) C −ΦD 

2 

 

and then 
2 τ (Θ) + Θ 

(Theta) : Φ = Θ · τ (Θ),  D = −
Θ  − τ (Θ) 

,  C = −
Θ  − τ (Θ) 

. 

The condition that u is a root of uN = h = 1 y − β is then expressed, using 
(a) , as 

(a′) 
1 

y 
2 

 
1 

β = ( 
2 

 
y + β)(C + yD)N , 

equivalently it can be expressed by requiring that the ratio 
1 y − β 

 
 

1 y + β 

is the N -th power of (C + yD). 

1   1 
= 

Ψ
( 

2 
y − β) 

Observe that we wrote condition (a′) as a condition in R(X0), but this is 
indeed equivalent to two conditions in R(X′), since we require that 

 
(C+yD)N = 

Σ 
N 
    

CN−2j D2j Φj+y 
N 

 
CN−2j−1D2j+1Φj =: M +M ′y 

 
equals 

2j 
j 

 

1 1 

Ψ
( 

2 
y − β)  = 

2j + 1 
 

1 
( 
1 

Φ + β2 
Ψ 4 

 

 
1 

) − y 
Ψ 

β. 

These equations can be rewritten as two equations for β, namely 
1 2 1 2 ′ ′   1 2 

M Ψ = M ( 
4 

Φ − β 
) = Φ + β 

4 ,   M Ψ = M ( 
4 

Φ − β 
) = −β, 

hence, using the first equation to eliminate β2 in the second one, 

(a′′)  β2(1 + M ) = 
1 

Φ(M 1), 
4 

(a′′′ )   − β = 
1 M ′ 

Φ . 
2 M + 1 

Then β is determined by the equation (a′′′), and β is real since, C, D being 
imaginary, M, M ′ are real; and we want then β to yield a solution of the equation 
(a′′). This amounts to: 

1 M ′ 
( Φ 
2 M + 1 

 

)2(1 + M ) = Φ(M − 1) ⇔ Φ(M ′)2 
 

= (M 2 — 1). 

However, this last condition 1 = (M 2 Φ(M ′)2) = M 2 y2(M ′)2 is auto- 
matically true, since 

M 2−y2(M ′)2 = (M +M ′y)(M −M ′y) = (C+yD)N (C−yD)N = (C2−ΦD2)N = 1. 

The final conclusion is that also β is determined by Θ C(X′).  
Conversely, it is now easy to see that we get a real cyclic covering with group 
G = Z/n = Z/2N , and exhibiting the esoteric case τgτ  = g−1+n/2  provided 
that: 

• we are given Θ ∈ C(X′), such that 
• Φ := Θ · τ (Θ) is not√a  square, and 

 

holds (hence C, D are determined by Θ as in formula (Theta)). 

− 

2 2 = 1 

2 

1 

4 



REAL ABELIAN COVERINGS 17 
 

− 

⊗ 

∈ 

∈ 

2 

∈ 

2 − 

⊂ ⟨  
⟩  

∈ ∗∗ 

 

In fact, letting y be defined by y2 = Φ and choosing (see remark 3.1) the 
real structure on C(X0) such that τ (y) = y, and letting β be determined by 
Θ according to (a′′′), so that condition (a′) holds, the covering with group 
G = Z/n = Z/2N is defined by the extension 

W N = f := 
1 

y + β. 
2 

Defining then τ (W )  :=  W,  τ (u)  := u we obtain a real cyclic covering 
exhibiting the esoteric  case  τ gτ  = g−1+n/2. 

 

We shall summarize the above discussion in the following theorem 3.2: 

Theorem 3.2. Let R(X), R(X′), be two real function fields, that is, two finitely 
generated field extensions of R such that C(X) := R(X)   R C and C(X′) are 
fields with an antilinear automorphism (τ, τ ′ respectively) induced by complex 
conjugation on C. 
Then a real cyclic covering R(X′) ⊂ R(X), that is, an extension inducing a 
Galois extension C(X ′) C(X) with Galois group G =   g   ∼= Z/n, and such 
that τ  normalizes G (then conjugation is given via τgτ = gm, m2 = 1    G), is 
a fibre product of two such real cyclic coverings belonging to the following 
four basic types: 

(1) m = −1 if and only if we are in the Standard (totally real) case: 
there exist f ∈ R(X′), z ∈ R(X) such that 

zn = f, g(z) = ζz, ⟨ ζ⟩  = µn = {η|ηn = 1}. 

(2) m = +1 if and only if we are in the Dihedral-like case: there exist 

F, φ, ψ ∈ R(X′),   such that (∗∗) 4φn = ψ2 + F 2, 

such that the extension is given as 

C(X) = C(X′)(z),  and,  for  w := τ (z),  (∗)zw = φ,  zn + wn = F. 

The choice of such F, φ, ψ      R(X′) satisfying (    ) is equivalent to the  

choice  of  two  arbitrary  functions  φ̃, ψ̃      R(X ′). 
(3) n is divisible by 8 and, defining N := n , m = 1 + N if and only if 

we are in the Twisted case: there exist 

A, B, Φ ∈ R(X′),  such that (∗ ∗ ∗) A2 + B2 = 4ΦN/2−1 

and such that φ2 = Φ defines a real quadratic field extension R(X′) 
R(X0). 

Then, setting F := Aφ, ψ := Bφ, the field extension C(X) is 
generated by z such that (w := τ (z)) 

zw = φ,  zN  + wN  = F,  g(z) = ζz, g(w) = −ζ−1w. 

The choice of such functions A, B, Φ R(X′) satisfying the above 
conditions is equivalent to the choice of two arbitrary functions in 
R(X′). 

(4) n is divisible by 8 and, defining N := n , m = 1 + N if and only if 
we are in the Esoteric case: there exist 

Φ, β ∈ R(X′),  C, D ∈ i R(X′)  such that (b)C2 − ΦD2 = 1, 

⊂ 
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2 ⊂ 

X 

→ 

→ 

 

and moreover, if y2 = Φ defines a quadratic field extension R(X′) ⊂ 
R(X0) ∋ y, we have: 

′  1 1 N 

(a ) 
2 

y − β = ( 
2 

y + β)(C + yD)  . 

Then,  setting f  :=  1 y + β,  the real extension R(X0) R(X) is 
generated by W, where 

W N = f, τ (W ) = W, g(W ) = ζu, u := W (C + yD),  τ (u) = −u. 

The  choice  of  such  functions  sat√isfying  the  above  conditions  is 
equivalent to the choice of Θ = A + 
A2 + B2 is not a square. 

−1B ∈ C(X′) such that Φ := 

 

4. BIrEGULar sTrUcTUrE OF THE cOVErINGs 

The main purpose of this section is to use the description of Abelian cover- 
ings through line bundles (invertible sheaves) and effective (branch) divisors 
Dg. If D is an effective divisor, then σ(D) is also an effective divisor. 
To see this, consider that, if (X, σ) is a real variety, then τ  acts on C(X), in 
particular it acts on the group of Cartier divisors H0(X, C(X)∗/O∗ ). 
If a collection (Uα, fα), (here fα ∈ C(X)∗) defines a Cartier divisor D, then 
the conjugate Cartier divisor is given by the collection (σ(Uα), τ (fα)). 
An invertible sheaf L = OX(D) has the property that its space of sections 
H0(X, L) is the space 

{φ ∈ C(X)|φfα =: φα ∈ OX (Uα)}, 

hence 

τ : H0(X, L) → H0(X, τ (L)) = H0(X, OX (σD)). 

Given a cyclic covering of real varieties X     X′, we can replace X′ by a 
smooth real model Y , and replace X by the normalization of the fibre product 
of the cyclic covering with the resolution Y X′, and obtain that (as in 
[Cat12], whose notation we shall now adopt) 

(1) Y  = X/G, G ∼= Z/n 
(2) X is normal, real, 
(3) Y is real smooth, with σ′ induced by σ; 
(4) f : X → Y is finite and flat. 

More generally, we can relax assumption (3) and assume that X, Y are normal 
real projective varieties, and Y is moreover factorial. 
By flatness we have a decomposition 

M 
f∗(OX ) = OY  ⊕ ( OY (−Lχ)), 

χ∈G⋆\{0} 

with a notation that we now explain. 
C(X) is a cyclic Galois extension of C(Y ), and we denote now by 

G ∼= µn := {ζ  ∈ C|ζn = 1} 

its Galois  group,  by G⋆  the group of  characters:  G⋆  := Hom(G, C⋆),  and 
we  observe  that  G⋆  =∼  Z/n,  where  the  isomorphism  G⋆    

∼=
 Z/n associates 

to χ ∈ G⋆ the residue class j ∈ Z/n such that χ(ζ) = ζ j 
−→ 

, for all ζ ∈ µn. 
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σ 

τ 

i 

∈ { − } 

χ,χ 

χ,χ 

n of G = µn. 

mj 

 

As in [Cat12] we observe that for each character χ of order n the extension 
is given by 

C(X) = C(Y )(w), wn = F (y) ∈ C(Y ), 

where w is a χ-eigenvector. 
Since Y is factorial, F admits a unique prime factorization as a fraction of 
pairwise relatively prime sections of line bundles, and we can write 

Q ni
 

wn = Q i    i 

j  j 

where the sections σi, τj are prime. 
Writing 

ni = Ni + nn′ ,    mj  = −Mj + nm′ 
i 

with 0 ≤ Ni, Mj ≤ n − 1 and setting 
Y 

 
−n′ 

Y 

j 
 

 
m′

j
 

z := w · σi 

i 

i τj    , 
j 

we get a rational section z of a line bundle on Y  and we have 

zn = 
Y 

σNi 
Y 

τ 
Mj . 

i j 
i j 

Put together the prime factors which appear with the same exponent, ob- 
taining: 

zn = 
nY−1 

 
i=1 

δi. 

Here  each  factor  δj  is  reduced,  but  not  irreducible,  and  corresponds  to  a 
Cartier divisor that we shall denote Dj.  Calculating the local monodromy 
around Dj  isΣeasily seen that Dj  is exactly  the divisorial part of the branch 
locus D  := j Dj where the local monodromy is the j-th power of the 

2π
√

−1 ∼ 

We write characters additively, in the sense that we view them as G∗ = 
Hom(G, Z/n). 
To χ we associate the normal covering 

Zχ := X/ker(χ). 

A similar argument (see for instance [Cat12] page 285, section 1) shows now 
that we have a linear equivalence 

(∗) nLχ ≡ 
Σ 

[χ(i)]Di 
i 

where [r], for r Z/n, is the unique residue class in   0, 1, . . . , n 1 . 
We observe for further use the following formula: 

(I)  [χ(i)] + [χ′(i)] = [(χ + χ′)(i)] + ǫi ′ n, 

which defines the numbers ǫi ′  ∈ {0, 1}. 
The following theorem is in part a special case of the structure theorem for 
Abelian coverings due to Pardini ([Par91], see also [Come30]). 

standard generator γ := e 

, 
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{ | 

O 

i 

δ  χ,ξ   ∈ 0H  (O   (−L + L   + L  )).Y
  χχ+ξ  
 ξ 

 

Theorem 4.1. i) Given a factorial variety Y , the datum of a pair (X, γ) where 
X is a normal variety and γ is an automorphism of order n such that,  G  

being  the  subgroup  generated  by  γ,  one  has  X/G =∼ Y ,  is  equivalent 
to the datum of reduced effective divisors D1, . . . , Dn−1 without common 
components, and of a divisor class L such that we have the following linear 
equivalence 

(∗) nL ≡ 
Σ 

iDi 
i 

and moreover , setting h := G.C.D. i Di 
(**) h = 1 or the divisor class 

0}, either 

(∗ ∗ ∗) L′ := 
n 

L − 
Σ i 

D 
h h i 

i 

has order precisely h. 
ii) If L is the geometric line bundle whose sheaf of regular sections is Y (L), 
then X is the normalization of the singular covering 

nY−1 

X′ ⊂ L, X′ := {(y, z)|zn = 

2π
√

−1 
 

 

 
 
i=1 

δi}. 

And γ acts by z ›→ e n z. 
iii) The scheme structure of X is explicitly given as 

M 
X := Spec(OY ⊕ ( 

χ∈G⋆\{0} 

OY (−Lχ))) 

where  the  divisor  cΣlasses  Lχ  are  recursively  determined  by  L1  := L,  and  by 
Lχ+ξ ≡ Lχ + Lξ − i 

χ,ξ Di. 

Finally the ring structure is given by the multiplication maps 

OY (−Lχ) × OY (−Lξ) → OY (−Lχ+ξ) 

determined by the section 

Y ǫi 

i 
i 

 
 

At this stage we want to consider the extra data coming from the real 
structure. 
It is convenient to view X embedded in 

structure via the fundamental equation 

L 
χ∈G⋆\{0} Lχ and to write the ring 

(∗ ∗ ∗∗)  zχ · zξ = zχ+ξ 
Y ǫi 

δ χ,ξ , 
 

i 

where zχ is a fibre variable on the geometric line bundle Lχ (it is the natural 
section on Lχ of the pull back of OY (−Lχ)) and where we use the convention 
that z0 = 1. 
The action of τ on C(X), hence also on the subfield C(Y ), induces, by the 
description that we recalled above of the building data of the cover, an action 
of τ on the building data Lχ, Di, zχ, δi. 

i 

i ǫ 
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−ǫ 

 

For simplicity of calculations, we write from now on the characters as ele- 
ments of Z/n. 
From the relations τγτ = γm, and γzj = ζjzj, we obtain that 

γ(τ (zj))  = τ (γm(zj)) = ζ−mjτ (zj), 

hence τ (zj) is an eigenvector for ζ−mj, and τ maps 

Lj ›→ L−mj. 

Observe here that j = −mj  if and only if j(m + 1) = 0 ∈ Z/n; in particular, if 
m = −1, all the line bundles are real and linearized. The line bundles 
corresponding to {j|j(m+1) /= 0 ∈ Z/n} come in pairs, which are exchanged 

We look now at the branch divisors Di. It is clear that the antiholomorphic 
map σ′ carries the branch locus to itself, but we show now how the divisors 
Di are permuted. 
We know that the local monodromy around Di is given by γi, and we take 
local coordinates (y, δi) (y = y1, . . . , yd−1), where d = dim(Y ), at the general 
point of Di.   Then, in appropriate local coordinates,  σ′  is given  by (y, δi), and 
since σgiσ = gmi, and the orientation in the normal bundle is reversed by σ′, 
it follows that 

σ′(Di) = D−mi, 

in particular  τ (δi) = δ−mi  and Di  is real if  and only  if i = −mi. 
Applying now τ to the fundamental equation (****) we obtain, since τ (zj) = 
z−mj, that the real structure extends to the covering if and only if 

 
 

 
and since 

Y 
z−mj · z−mh = z−m(j+h) 

k 

 

k 
j,h 

−mk 

z−mj · z−mh = z−m(j+h) 

this is equivalent to requiring that 

Y ǫi 

δ −mj,−mh , 
 

i 

Y ǫi Y 
δ −mj,−mh = 

 

i i 

mi 
j,h 

i 

a property  which  clearly  holds  true  by  virtue  of  (I)  (just  observe  that 
−mj(i) = j(−mi), −mh(i) = h(−mi)). 

It is now easy to derive the real version of the biregular theory of cyclic 
coverings. 

Theorem 4.2. i) Given a real factorial variety (Y, τY ), the datum of a real finite 
cyclic covering (X, τX ) → (Y, τY ), where X is  a normal  variety  and the  group  

G  ∼=  Z/n  with  X/G  =∼  Y   is  generated  by  an  automorphism  γ  of 
order n, is equivalent to: 

(1) the datum of an element m ∈ Z/n with m2 = 1, 
(2) the datum of reduced effective divisors D1 = div(δ1), . . . , Dn−1 = 

div(δn−1)  without  common  components,  and  such  that 

τY (δi) = δ−mi, for i = 1, . . . , n − 1, 

i 

i 

δ 
ǫ 

δ 

, 

, 

by τ . 
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{ | 

− 

i 

− 

O − 

µ−1,1 

 

(3) and the datum of a divisor class L such that we have the following 
linear equivalence 

(∗) nL ≡ 
Σ 

iDi. 
i 

The above data should satisfy the following conditions: 
(I) setting h := G.C.D. i Di 

n = hd, the divisor class 
0}, either (**) h = 1 or, setting 

(∗ ∗ ∗) L′ := 
n 

L − 
Σ i 

D 
h h i 

i 

has order precisely h (this condition guarantees that Y is an 
irreducible variety, otherwise it is just a normal scheme); 

(II) defining divisor classeΣs Lχ recursively by L0 = OY , L1 := L, and 
by Lχ+ξ ≡ Lχ + Lξ − i 

χ,ξ Di, there are choices of tautological 

sections  zj  on  Lj  of  the  pull  back  of  OY (−Lj)  such  that 

τY (zj) = z−mj, 

in  particular  τ (Lj) ∼= L−mj . 

ii) In the situation of i) X is the normalization of the singular covering 

nY−1 

 

and γ acts by z ›→ e 

X′ ⊂ L, X′ := {(y, z)|zn = 

2π
√   

1 
 

 

n z. 

 

i=1 

δi}, 

iii) The scheme structure of X is explicitly given as 
M 

X := Spec(OY ⊕ ( 
χ∈G⋆\{0} 

OY (−Lχ))), 

L 
that is, X is embedded in χ∈G⋆\{0} Lχ and defined by the fundamental 
equations 

(∗ ∗ ∗∗)  zχ · zξ = zχ+ξ 
Y ǫi 

δ χ,ξ . 
 

i 

iv) The real structure τX on X is defined by extending τY from OY to OX 
via the action of τY on the zj, δi’s (clearly then τgτ = gm for all g ∈ G). 

Remark 4.3. (a) Since Y  is  a  complete  variety,  condition  (I) in  Theorem 
4.2, ensuring connectedness of the covering, may be replaced by H0(  Y (   Lχ)) = 
0 for all χ = 0. 
(b) Condition (II) in Theorem 4.2 holds if it holds for j = 1, as it follows 
inductively by the linear equivalences (II). 
In order to spell out concretely condition (II) for j = 1, τ (L1) ∼= L−m, let us 
set µ = [ m], and use the recursive definition of the Lχ’s, for convenience 
working in the Picard group of Y . 
Then Σ 

L−m = Lµ = µL1 − 
i 

 
i 
1,1 

 
i 
2,1 + · · · + ǫi 

 
)Di. 

i 

i ǫ 

(ǫ + ǫ 
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µ−1,1 

− 

2 

i 

 

Now, because of the equation 

nLµ = µ 
Σ Σ 

iDi − 
i i 

i 
1,1 

i 
2,1 + · · · + ǫi )Di = 

Σ 
[µi]Di, 

 

 
satisfies 

η := τ (L1) − Lµ 

Σ 
nη = τ ( 

i 

iDi) − 
Σ 

[µi]Di = 
i 

Σ 
(i − [i])D−mi = 0, 

i 

hence η is an n-torsion  divisor (a torsion  divisor of  order dividing n).  If η 
= 0, one can still alter the choice of L1 keeping the divisors Di fixed, in 
view of (3), adding another n-torsion divisor, call it λ. 
We can then satisfy condition (II) for j = 1 if we find λ which solves the 
equation 

η = τ (λ) − µλ. 

For m = 1, µ = 1, where condition (II) for j = 1 simply means that L1 
should be real, we want to find λ solving: 

η := τ (L1) − L1 = τ (λ) − λ. 

Remark 4.4. A quite analogous theorem holds,  mutatis mutandis,  for real 
Abelian coverings, describing real normal (not necessarily connected) 
schemes. 
These are the changes to be done: 

• Z/n is replaced by a finite Abelian group G. 
• in (1), m is replaced by M ∈ Aut(G) such that M = 1. 
• in (2), we choose divisors Dg for g ∈ G,  g 0. 

• (3) and (I) disappear, while (II) is replaced by : the character sheaves 
Lχ must satisfy 

 
 
 

(see [Par91]) 

Σ 
Lχ+ξ ≡ Lχ + Lξ − 

i 

χ,ξDi 

• in (II) we replace zj by zχ, Lj by Lχ , and so on.. 
• ii) disappears, iii) and iv) are identical. 
• If Y is complete, then connectedness of X is verified by imposing 

that the global sections of OX are just the constants. 
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(Über  Riemanns  Theorie  der  algebraischen  Functionen  und  ihrer  Integrale.)  ) 
Leipzig. Teubner (1882). 

[Klein92]  FELIx KLEIN, Über  Realitätsverhältnisse  bei  der  einem  beliebigen  Geschlechte 

zugehörigen  Normalkurve  der  ϕ,  Math.  Annalen 42  (1892). 
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[Sep90] MIKa  SEPPäLa,  Real  algebraic  curves  in  the  moduli  space  of  complex  curves, 
Comp. Math. 74 (1990), 259=283. 

[Sil89]  RObErT SILHOL, Real algebraic surfaces. Lecture Notes in Mathematics, 
1392.Springer-Verlag, Berlin, 1989. x+215 pp. 

[Wei83]    GUIDO WEIcHOLD, On symmetric Riemann surfaces and the moduli of period- 

icity  of  the  accompanying  abelian  normal  integrals  of  the  first  kind.  (Über  sym- 
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