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Abstract. Biological groups exhibit fascinating collective dynamics
without centralised control, through only local interactions between indi-
viduals. Desirable group behaviours are typically linked to a certain fit-
ness function, which the group robustly performs under different pertur-
bations in, for instance, group structure, group size, noise, or environmen-
tal factors. Deriving this fitness function is an important step towards
understanding the collective response, yet it easily becomes non-trivial
in the context of complex collective dynamics. In particular, understand-
ing the social feedback - how the collective behaviour adapts to changes
in the group size - requires dealing with complex models and limited
experimental data. In this work, we assume that the collective response
is experimentally observed for a chosen, finite set of group sizes. Based
on such data, we propose a framework which allows to: (i) predict the
collective response for any given group size, and (ii) automatically pro-
pose a fitness function. We use Smoothed Model Checking, an approach
based on Gaussian Process Classification, to develop a methodology that
is scalable, flexible, and data-efficient; We specify the fitness function as
a template temporal logic formula with unknown parameters, and we
automatically infer the missing quantities from data. We evaluate the
framework over a case study of a collective stinging defence mechanism
in honeybee colonies.

Keywords: Social feedback · Gaussian processes · Biological
collectives · Smoothed model checking

1 Introduction

Biological groups exhibit fascinating collective dynamics without centralised con-
trol, through only local interactions between individuals. Quantitative models
of the mechanisms underlying biological grouping can directly serve important
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societal concerns (for example, prediction of seismic activity [22]), inspire the
design of distributed algorithms (for example, ant colony algorithm [9]), or aid
robust design and engineering of collective, adaptive systems under given func-
tionality and resources, which is increasingly gaining attention in vision of smart
cities [17,21]. Quantitative prediction of the behaviour of a population of agents
over time and space, each having several behavioural modes, results in a high-
dimensional, non-linear, and stochastic system [12]. Computational modelling
with population models is therefore challenging, especially since model parame-
ters are often unknown and repeated experiments are costly and time-consuming.

In this paper, we focus on the phenomenon of collective social feedback in
biological groups, that is, how the collective behaviour adapts to changes in the
group size. Examples of social adaptation include the emergence of sensing abil-
ities through interactions and only exist at the group level [3], or, colony defence
[19] or thermoregulation [8] in social insects (as altruistic behaviours that do
not occur in isolated individuals), to name but a few. Understanding such social
adaptation cannot be done by extrapolating from observing individuals in isola-
tion. Computationally, the challenge of understanding how social context shapes
group behaviours emerges at two levels. First, models of group-behaviours enu-
merating each possible social context of an individual suffer from the combinato-
rial explosion of states, but also from a prohibitive number of model parameters.
With no simplifying assumptions, an individual within a group of size n adapts
to at least n different social contexts that need to be parametrized [14,27]. While
simplifying assumptions are justified for some experimental systems, they gener-
ally need to be validated for each experimental system at hand. For instance, in
modelling molecular dynamics with chemical reaction networks, mass-action law
assumes a linear influence of reactants’ counts to reaction propensities, but this
is not justified in case of animal collectives, due to a richer cognitive aspect of
individuals. Second, while experimentally measuring the overall group response
is significantly simpler than measuring the response of each individual within a
group via continuous tracking, it still remains impossible to measure the group
response for each group size; Instead, one must choose a set of representative
group sizes. In other words, in order to find a general pattern of behaviours, it
is necessary to analyse groups of many different sizes, both of small and large
scale.

For the above reasons, it becomes important to develop methods that are
scalable with respect to growing group size, flexible in terms of model size and
parameters, and data-efficient - producing reliable results for scarce data sets.
Our methodology relies on Gaussian Processes, a powerful Bayesian approach in
Machine Learning, to learn unknown functions from data. Gaussian Processes,
considered a “desired meta-model in various applications” [7], fulfil our require-
ments of scalability, flexibility, and data-efficiency. In addition, in contrast to
other Machine Learning models, Gaussian Processes deal not only with uncer-
tainty in the training data, but also provide guarantees of the predictions in form
of credible intervals.



Social Feedback in Collectives 183

The contributions of this work are as follows. We assume that the collec-
tive response is experimentally observed for a chosen, finite set of group sizes.
Based on such data, we propose a framework which allows to: (i) predict the
collective response for any given group size, and (ii) automatically propose a
fitness function that is robustly preserved under perturbations in group size. We
use Gaussian Process Regression for task (i), allowing to overcome the need of
conducting new experiments and analysing many large models, but still having
an informed estimate of the group response. Second, we apply Smoothed Model
Checking [5], a novel technique based on Gaussian Process Classification, for
task (ii) to derive the fitness function a collective robustly performs by setting
up a template formula and inferring the missing quantity from data to under-
stand the social feedback mechanism of the collective. An illustrative example
of the developed methods in context of elucidating social feedback in collectives
is provided in Sect. 1.1. Finally, we test and evaluate the proposed methods over
a real-world case study with social honeybees.

Related Work. The framework we present here is specifically inspired by the
application of collective defence in honeybee colonies. Honeybees protect their
colonies against vertebrates by releasing an alarm pheromone to recruit a large
number of defenders into a massive stinging response [25]. However, these work-
ers will then die from abdominal damage caused by the sting tearing loose [30].
In order to achieve a balanced trade-off towards efficient defence, yet no critical
worker loss, each bee’s response to the same amount of pheromone may vary
greatly, depending on its social context. Our own related works [14,27] focus
on extracting individual behaviours from group-level data, by hypothesising a
mechanistic behavioural model and developing suitable methods for parameter
inference. Here, instead, we also assume that group-level data is available, but
we provide a model-free methodology with different aims - predicting the group
response, and inferring the group-level fitness function. To the best of our knowl-
edge, our method is the first application of Smoothed Model Checking towards
understanding collective animal behaviour.

Methodologically, our work is inspired by the general technique of Smoothed
Model Checking [5] (SMMC), implemented in the software tool U-Check [4].
SMMC was used for several applications in systems and synthetic biology. Bar-
tocci et al. [1] propose a notion of robustness degree for stochastic biochemical
circuits; They furthermore show how such robustness measure can be used for
designing a biochemical circuit robustly exhibiting a certain temporal property;
Specifically, the design goal is that a specific behaviour of a biological process
is maintained despite uncertainties from noise or uncertain model parameters.
Instead of computing the robustness degree of each sample trajectory of a system,
in this work we focus on measuring the satisfaction only on steady state data and
evaluate the robustness over the satisfaction distribution across different group
sizes. In [2], the proposed notion of robustness is used so to optimise certain
control parameters of a stochastic model to maximise the robustness of desired
specifications. In [6], the authors show how to learn and design continuous-time
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Markov chains (CTMCs) from observations formulated in terms of temporal
logic formulae; They maximise the likelihood of parameters with the Gaussian
Process Upper Confidence Bound (GP-UCB) algorithm. In contrast to the pre-
viously mentioned works, we consider a model-free approach and aim to infer a
general description of the collective response based only on experimental data.
Hence, we do not analyse varying model parameters, but different group sizes.
In reference to inferring the fitness function, [18] propose how to infer parame-
ters given a requirement template expressed in signal temporal logic (STL) and
simulation traces of the model; The approach is based on finding the tightest val-
uation function to prevent getting overly conservative parameters. Our method
of finding the parameter of a given template differs in selecting the value not
according to the tightest valuation function, but according to a measure of vari-
ation.

1.1 Illustrative Example

We next illustrate how the methodology we develop can be used to study social
influence in groups, i.e., how the group size affects the behaviour of individuals.
Assume a group of n identical agents in which each individual is confronted
with a task and either solves it successfully or fails, with certain probability. We
further assume that, each time an agent in a group succeeds, other individuals
in the group are more likely to succeed. Specifically, if the baseline probability of
success is p0, assume that the probability of succeeding with i already successful
agents in the system grows with the number of successful agents according to a
function pi = f(p0, α, i) (simple examples could be pi = p0+α·(i > 0), where the
probability increases by α if at least one other agent in the group succeeded, or
pi = p0 +α · i, where the probability increases linearly with the number of other
successful agents). Now, if measurements are available for groups of size 1, 2, and
10 (n ∈ {1, 2, 10}), inferring parameters p0 and α clearly becomes possible from
only measurements over isolated individuals (groups of size n = 1), and pairs
of interacting individuals (groups of size n = 2). These two parameters, coupled
with an underlying mechanistic model of interaction, would allow to predict the
outcome for n = 10. Finally, if model-based predictions for n = 10 significantly
differ from the experimental data for n = 10 – the increment parameter α differs
significantly for groups of size 2 and 10 – we can conclude that the agent is
aware of its social context and there is a feedback mechanism from the group
that influences the individual’s behaviour. Otherwise, if there is no significant
difference, one may conclude that there is no influence of group size to the
problem solving efficiency.

The methodology we develop here allows to predict group outcomes for any
group size, with uncertainty quantification, when group measurements are avail-
able for only certain group sizes. In the context of our illustrating example, this
means that one could predict measurements for groups of e.g. size n = 3, from
measurements for n ∈ {1, 2, 10}. Then, the hypothesis of social feedback can be
accessed by only making predictions for the model for group with n = 3 agents,
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that is dramatically smaller than the model for n = 10 agents (due to combina-
torial explosion of the state space, models for n agents would be described by
O(2n) states).

Furthermore, assume that the group aims to satisfy a certain group outcome,
independently of its size. In the above example, such function may be that
‘eventually, between 40% and 60% of group members succeed at solving the
task’. Inferring such fitness function - a high-level behavioural outcome that
tends to be robustly preserved under environmental perturbations - is of high
importance for a biological understanding of grouping. While the qualitative
form of the fitness function is often assumed by experts, quantitative parameters
(e.g. the range from 40% to 60%) are typically not explored in an automated
way. To this end, our second methodological contribution is automatising the
search for such a fitness function from only available data measurements and a
template logical formula.

2 Methods

In this section, we present the methodology based on Gaussian Processes
to understand social feedback mechanisms in biological collectives. First, we
describe the theoretical and mathematical background of the methods and subse-
quently we demonstrate how to apply these existing techniques in our framework
to address the previously stated research problems. All definitions of Gaussian
Processes and the corresponding regression and classification follow closely the
description by Rasmussen and Williams [29].

2.1 Gaussian Process

A Gaussian Process (GP) is a generalisation of a multivariate Gaussian distri-
bution to infinite dimension. As a non-parametric distribution over a space of
functions, a GP is designed to solve regression and classification problems by
approximating unknown functions. Since a GP model is data-driven, applicable
without specifying the underlying distribution beforehand, and powerful even
for little data, it surpasses many of the traditional regression and classification
methods. The predictions of a GP are probabilistic, such that the results provide
not only an estimate, but additionally a quantification of uncertainty in form of
credible intervals.

Mathematically, we define a prior probability distribution directly over func-
tions, from which the posterior distribution can be inferred when data is
observed. A kernel-based probabilistic model is set up to learn relationships
between observed data and make predictions about new data points. In general,
a GP’s characteristics are completely specified by a mean function m(x) and a
positive definite kernel function k(x, x′) for input values x, x′ ∈ R. Kernels are
used as a similarity measure between data points and generate the covariance
matrix Σ by evaluating the kernel function at all pairs of input points.

We denote matrices by capitalised letters and vectors in bold type. A sub-
script asterisk refers to a test set quantity.
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2.2 Gaussian Process Regression

We define a GP prior f(x) ∼ GP(m(x), k(x, x′)) independent of any training data
that specifies some properties of the unknown functions through the choice of
the kernel function. Three of the most common kernel functions are implemented
in our framework:

– Linear kernel : klin(x, x′) = σ2
b +σ2(x−c)(x′−c) with variance σb, scale factor

σ2 and offset c,
– Radial Basis Function (RBF): krbf (x, x′) = σ2 exp(− ||x−x′||2

2�2 ) with scale fac-
tor σ2 and lengthscale �, and

– Periodic kernel : kper(x, x′) = σ2 exp(− 2 sin2(π||x−x′||/p)
�2 ) with scale factor σ2,

periodicity parameter p and lengthscale �.

Beyond that, all kernels are pairwise combined by addition and multiplication
to achieve higher-level structures [13].

Let X be the training data set with observed function values f, and X∗ the
test data set for which we want to predict the corresponding function outputs
f∗. The joint distribution of training and test outputs is given by

[
f
f∗

]
∼ N

([
μ
μ∗

]
,

[
Σ Σ∗
ΣT

∗ Σ∗∗

])
, (1)

where μ = m(xi), i = 1, ..., n, denotes the training mean values and analo-
gously μ∗ the test mean values. The covariance matrix Σ is evaluated at all
pairs of training points, Σ∗ at training and test points, and Σ∗∗ at test points.
The posterior distribution is obtained by conditioning the joint Gaussian prior
distributions on the observations:

f∗|X∗,X, f ∼ N (ΣT
∗ Σ−1f, Σ∗∗ − ΣT

∗ Σ−1Σ∗). (2)

By evaluating the mean and covariance we derive the function values f∗ from
the posterior distribution. Computing two times the standard deviation of each
test point around the mean generates 95% credible regions.

Normally distributed observational noise can be considered in the training
data, y = f(x) + ε with f ∼ GP(0, Σ) and ε ∼ N (0, σ2

fI). The noise variance σ2
f

is independently added to each observation, p(y|f) = N (y|f, σ2
fI), what changes

the joint distribution of training and test values to
[
y
f∗

]
∼ N

(
0,

[
Σy Σ∗
ΣT

∗ Σ∗∗

])
(3)

with Σy := Σ + σ2
fI. Deriving the posterior distribution results in:

f∗|X∗,X, y ∼ N (ΣT
∗ Σ−1

y y, Σ∗∗ − ΣT
∗ Σ−1

y Σ∗). (4)

Each kernel has a number of hyperparameters that specify the precise shape of
the covariance function. Optimising the kernels’ hyperparameters increases the
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accuracy of predictions. As standard practice, we follow an empirical Bayesian
approach to maximise the log marginal likelihood

log p(y|X) = log N (y|0, Σy) = −1
2
yΣ−1

y y − 1
2
log |Σy| − 1

2
N log (2π), (5)

where the first term is a data fit term, the second term a model complexity term,
and the third term a constant. Minimising the negative log marginal likelihood
with respect to the hyperparameters of a kernel gives us an optimised posterior
distribution [24].

2.3 Gaussian Process Classification

Gaussian Process Classification (GPC) is applied to binary classification prob-
lems, where class labels y ∈ [0, 1] are observed for input values X. After defining
a GP Prior over a suitable function space, the functional form of the likelihood is
determined to approximate the posterior distribution. The goal is to get an esti-
mate of a class probability for unknown data points from Boolean observations.
The probability of belonging to a certain class at an input value x is related
to the value of some latent function f(x) at this location. In the first step, a
GP prior is placed over the latent function f(x). As we apply GPC only for
multi-dimensional input, we implement the RBF-ARD kernel for all data sets:
krbf−ard(x,x′) = σ2 exp(− 1

2

∑D
d=1

||xd−x′
d||2

�2d
) for d dimensions with scale factor

σ2 and d different lengthscales �i.
The prior is squashed with the inverse probit transformation to transform

real values into probabilities,

Φ(z) =
∫ z

−∞
N (x|0, 1)dx =

1
2

+
1
2

· erf

(
z√
2

)
, (6)

where erf is the Gauss error function, defined as erf(z) = 2√
π

∫ z

0
e−t2 dt [26].

Therefore, we obtain a prior on class probabilities π(x) � p(y = 1|x) = Φ(f(x)).
Then, the distribution of the latent variable corresponding to a test case is
computed with

p(f∗|X,y, x∗) =
∫

p(f∗|X,x∗, f)p(f|X,y)df. (7)

This distribution contains the posterior over the latent variables as the product
of a normalisation term containing the marginal likelihood, the prior and the
likelihood,

p(f|X,y) =
1

p(y|X)
p(f|X)

n∏
i=1

p(yi|fi). (8)

To increase the accuracy of the approach, the kernel’s hyperparameters are opti-
mised by minimising the negative log marginal likelihood. For predictions for a
class probability we have

π∗ � p(y∗ = 1|X,y, x∗) =
∫

Φ(f∗)p(f∗|X,y, x∗)df∗. (9)
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As the observations are Boolean and the probit function is used, the correspond-
ing likelihood is non-Gaussian and consequently the integral of the posterior dis-
tribution in Eq. 7 is intractable. Therefore, we approximate the joint posterior by
a Gaussian distribution using the popular analytic approximation Expectation
Propagation [20].

2.4 Smoothed Model Checking

When modelling biological collectives, it is often necessary to analyse uncertain
stochastic systems and infer missing parameters. A novel approach based on
GPC is called Smoothed Model Checking [5] (SMMC) and aims to estimate
the satisfaction function of an uncertain CTMC for a specific temporal logic
property. Given is an uncertain CTMC Mθ with unknown parameters θ and
a temporal logic property ϕ. For a few fixed values of θ, several trajectories of
Mθ are simulated and the satisfactions of ϕ (i.e. Mθ |= ϕ) collected. These
observations follow a Binomial distribution and are the input to GPC. However,
the algorithm of GPC is changed in such a way that it can deal with multiple
observations per data point and make use of the exact statistical model. As
a result, we get an accurate estimation of the satisfaction function fϕ(θ) =
P (Mθ |= ϕ) over varying parameters θ.

In contrast to the original work, we use SMMC to estimate the satisfaction
of a property not over varying model parameters, but over varying group sizes.
Our application of SMMC aims to find the most plausible value of the missing
quantity in a template formula to derive the fitness function. We explain the
detailed workflow in Sect. 2.6.

2.5 Model Selection

Gaussian Process models are essentially defined by the chosen kernel function
that determines the shape of the function to be estimated. Without prior knowl-
edge about the shape, it is recommended to test different kernels and afterwards
select the best fit. Because of only few data available, we apply Leave-One-
Out Cross-Validation (LOOCV) to estimate the expected prediction error and
decide for the best model. LOOCV provides reliable and unbiased estimates of
the model’s performance, even for small data sets [24]. In particular, the training
data is split into K = n folds, where n is the size of the data set. Then, for each
fold k ∈ {1, ...,K}, the model is trained on all folds but the k-th one, and tested
on the remaining ones [16].

The summary statistics of the test set gives an overall evaluation of the
goodness of the model. Here, we compute the amount of error for each kernel
with the Mean Squared Error (MSE),

MSE =
∑n

i (yi − f∗i
)2

n
(10)

with yi being the observations, f∗i
the predictions, and n the size of the

test set [24].
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For GPR, we consider multiple kernel functions and use LOOCV to auto-
matically select the best kernel. However, for GPC we always use the RBF-ARD
kernel and thus only compute the MSE to evaluate the quality of the model and
perform no model selection.

2.6 Problem Statement

Predict the Collective Response with GPR. In our two-folded approach,
we first use GPR to predict the collective response for varying group sizes to
obtain more information about the social influence within the collective. We
assume to have only data about the collective response of a few group sizes
available that consist of the final states of the agents. That means we can present
the data as histograms counting the frequencies of different outcomes for each
available group size. We extract the mean and variance of the histogram and use
it as a measure of collective response, e.g. how many agents have successfully
solved the task on average. Then, we apply GPR on mean values and variances
with different kernels for which we optimise the hyperparameters. We select the
best kernel using LOOCV, where we compare the MSE of each model. As a result,
we get a prediction of the mean collective response (and variance) within a 95%
credible interval for different group sizes and thus gain a better understanding
of the general collective behaviour without making any previous assumptions.

Inferring the Fitness Function with SMMC. After the first part helps to
understand the trend of the collective response over varying group sizes, we aim
to find out how the social context influences the individual response in the second
part. More precisely, we propose a general fitness function that is likely to explain
the collective behaviour but contains an unknown parameter t ∈ R that specifies
the exact mechanism. The fitness function is defined as a template temporal
logic formula ϕt in the language Probabilistic Computation Tree Logic [15] for
discrete systems, and in Signal Temporal Logic [23] for continuous systems. We
expect the fitness function to describe a behaviour that is robustly performed
across all group sizes n, which relates to ϕt being robustly satisfied over all
n. Specifically, we set up the template formula as an atomic proposition with
one unknown parameter t. To finally infer the value of t that best describes the
behaviour, we choose a few equally-spaced values of t and for each of these collect
the number of satisfactions of ϕt for given group sizes. Then, we run SMMC for
each t individually to obtain a smooth satisfaction function of ϕt over all varying
group sizes.

The resulting posterior distributions are then compared with respect to their
shapes. A high mean value indicates a high satisfaction probability of the prop-
erty, while a low standard deviation implies small variation across different group
sizes, and therefore a robust behaviour. For our specific scenario, we compute
the coefficient of variation for the posterior distribution of each t as the frac-
tion of mean and standard deviation, cv(t) = μ

sd . According to the literature
(e.g., [10,28]), a cv < 0.1 is considered low and indicates a distribution with our
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desired properties, specific to the previously defined fitness function template.
Finally, we select the largest value of t with cv(t) < 0.1 to get the most plausible
quantity of the formula and a valid fitness function the collective robustly per-
forms. This fitness function helps to describe how the social context influences
the individual’s response.

3 Results

In this section we present the results of our framework on a case study discussing
a social feedback mechanism found in honeybees. Biological collectives of hon-
eybees protect their colonies against a threat by releasing an alarm pheromone
that warns the other bees and leads to a recruitment of a large number of further
defenders. More specifically, to successfully defend their territory, some of the
bees become aggressive, decide to sting, and consequently die. During stinging,
the alarm pheromone P is released and increases the aggressiveness of other bees
in the colony. However, if the aggressiveness increased endlessly, eventually all
bees of the population would die, which is an unreasonable assumption. There-
fore, there needs to be some regulatory mechanism that prevents the colony from
becoming extinct, while still being able to effectively defend against the threat.
From this follows the hypothesis that the bee is socially influenced by its colony
and aware of its social context, i.e., the group size. See [14] for a more detailed
description of the case study and the assumptions for the associated stochastic
model. To better understand the exact underlying mechanism of social feedback,
we apply our methods on experimental data of this phenomenon for a few group
sizes. We use Gaussian Process Regression to predict the collective response
over all intermediate group sizes and learn about the trend of how the context
regulates the bees’ behaviour. We then aim to derive the non-trivial fitness func-
tion by setting up a plausible template formula and applying Smoothed Model
Checking to automatically infer the missing quantity that explains the collective
dynamics.

3.1 Data

To test our framework on real-world observations, we make use of experimental
data collected at the University of Konstanz (Germany) [27]. In three experi-
ments, groups of 1, 2, 5, 7, 10, or 15 bees were put into an arena and exposed to
a threat. After a certain time, the number of stinging bees was counted which
provides a measure of the collective response. This procedure was repeated sev-
eral times for each population size within each experiment. Hence, we get three
histograms with the frequencies of stinging bees of each population size. See
Fig. 1 for the result distributions of all data sets.

3.2 Predict the Collective Response

Our data contains information about the collective response of a few selected
group sizes. However, to get predictions for all other intermediate group sizes,
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Fig. 1. Overview of experimental data from three data sets showing the frequencies
of the number of stinging bees. Experiments were repeated with sample sizes NA =
[60, 60, 60, 60], NB = [40, 40, 40, 40] and NC = [68, 68, 60, 56, 52, 48].

we apply GPR on the three data sets. As mentioned above, we consider the
number of stinging bees as the collective response to defend the territory. We
compute the mean and variance of each histogram, corresponding to the mean
and variance of stinging bees for each population size, and use these values as
input to the algorithm. Noise, computed as the 95% credible interval, is added to
each data point to account for observation errors and limited sample sizes [31].
Then, we run GPR for each implemented kernel and combination of two kernels
with optimised hyperparameters. As a result, we get the posterior predictive
distribution of the collective response for different population sizes. The best
model is selected with the lowest MSE according to LOOCV and shown in
Fig. 2.

We observe that the uncertainty increases for larger group sizes due to the
small sample size. For a group size of one bee, there are only two outcomes of
the experiment: either no bees sting, or one bee stings. In contrast, for a group
size of ten bees, there are eleven possible outcomes of the experiment. Since the
sample size remains the same, the uncertainty increases.

The results show that we can model different trends of collective response
with the same algorithm and without specifying any previous assumptions
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Fig. 2. Posterior distributions for mean and variance of histograms for experimental
data. Points are training data points, dashed lines are predictive means and shaded
areas are 95% credible regions. Best kernel according to LOOCV is written in the left
upper corner with following MSEs: Experiment A - Mean: linear kernel, MSE = 0.8882
- Variance: multiplication of RBF and linear kernel, MSE = 4.4019. Experiment B
- Mean: RBF, MSE = 0.5536 - Variance: linear kernel, MSE = 0.1219. Experiment
C - Mean: linear kernel, MSE = 0.2157 - Variance: multiplication of RBF and linear
kernel, MSE = 7.3824.

beforehand. The linear trend of the number of stinging bees in Experiment A
and C is well captured, as well as the non-trivial trend in Experiment B. From
these distributions we can easily infer the collective response of all other group
sizes. In the case of having social feedback in a colony, we are therefore still
able to get reliable estimates of the behaviour of the colony without the need
of conducting new experiments. Note that predictions for group sizes outside
the range of available data points are also possible, but introduce even larger
uncertainties.
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3.3 Inferring the Fitness Function

In the second step, we aim to get a better understanding of social feedback
and how the collective behaviour adapts to changes in the group sizes. For this
case study, we want to investigate if there is always a certain proportion of
the population defending the whole collective. Therefore, we want to derive the
most plausible quantity for the fitness function ’at least (100 · t)% of the colony
survives’ and set up the corresponding template temporal logic formula ϕ :
F(X ≥ t) with X being the number of surviving bees and t ∈ [0, 1] the unknown
threshold.

We select 21 equally-spaced thresholds t and analyse the satisfaction function
of ϕ for different group sizes with SMMC with optimised hyperparameters. For
each t, the inputs to SMMC are the number of observations for which the prop-
erty is satisfied in each group size, read from the respective histogram. Again, we
get a posterior distribution with 95% credible regions for different group sizes.
Computing the coefficient of variation of the posterior distribution for all values
of t gives us an estimate about the most plausible distribution with respect to
the previously defined fitness function. We select the largest t with a low cv < 0.1
to obtain a distribution with high mean values and little variation. This gives us
the property that defines a behaviour that is robustly satisfied by the collective
over all group sizes. In Fig. 3, we show on the left side the coefficients of variation
cv for different thresholds t together with the mean and standard deviation of
the posterior distributions for each experiment. On the right side, we visualise
the SMMC posterior of the selected value of t.

The obtained results indicate the most plausible values to be t = 0.5 for
experiment A and B, and t = 0.65 for experiment C. The biological inter-
pretation of the analysis is that, on average, 50 − 65% of a honeybee colony
survives when being exposed to a threat. Put differently, at least 50 − 65% of
a colony needs to perform a stinging response to successfully defend the terri-
tory. With this method we were able to automatically quantify the high level
behavioural outcome of the collective that is robustly performed under perturba-
tions. Furthermore, we observe that all posterior distributions capture the data
well according to the low MSEs.

4 Conclusion

In this paper, we presented a framework based on Gaussian Processes to better
understand the phenomenon of social feedback in biological collectives. Our con-
tribution is two-fold: first, we predict the collective response for any given group
size from only limited experimental data; Second, we derive a fitness function
that is robustly preserved under perturbations in group size. On the one hand,
the application of our methods helps to test the hypothesis of social feedback
in a collective, when only measurements of few group sizes are available. The
resulting predictions of collective response eliminate the need of conducting new
experiments and analysing combinatorialy large stochastic models. Still, we get
reliable results for any group size, together with a quantification of uncertainty.
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Fig. 3. SMMC results of experimental data for the property ϕ : at least (100 · t)%
of the colony survives. Left: mean (blue), standard deviation (orange), and coefficient
of variation (green) of posterior distributions over varying t are shown. Black dotted
line shows the threshold cv = 0.1. Black rectangle shows the values for the largest t
with cv(t) < 0.1. Right: SMMC posterior for selected t, points are training data points,
dashed lines are predictive posterior means and shaded areas are 95% credible regions.
Experiment A - t = 0.5 with cv(t) = 0.052, MSE = 0.0038. Experiment B - t = 0.5
with cv(t) = 0.0731, MSE = 0.0136. Experiment C - t = 0.65 with cv(t) = 0.093,
MSE = 0.0072. (Color figure online)

On the other hand, our framework can be used to assess the trend of social feed-
back in the sense of how social context influences the collective response. The
missing quantities in a template logical formula (usually proposed by experts),
is automatically inferred to derive a fitness function that describes the collective
behaviour under group-size perturbations.

Both applications are based on Gaussian Processes, which has several key
advantages compared to traditional methods. Usually, the analysis of models
for larger group sizes becomes computationally infeasible due to state explo-
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sion. Gaussian Processes, as a non-parametric and model-agnostic approach, are
instead scalable for any given group size and therefore particularly useful to mea-
sure the collective response with respect to growing group size. Beyond that, the
analyses of our proposed methods are data-efficient and produce reliable results
with uncertainty quantification even for scarce data sets. Especially when work-
ing with real-world experimental data, there are often not enough resources
available to collect large amounts of data. Therefore, we decided to use Gaus-
sian Processes that are able to find the underlying relationships between only
few available data points and also provide statistical guarantees. Last, we want
to emphasise the flexibility of this framework, where we not only discard any
previous assumptions on the underlying model and its parameters, but further
are able to use it on any related application. While we focus on understanding
social feedback in honeybees in this work, other use cases of analysing collec-
tive behaviour are possible. Instead of predicting the steady state for any group
size, the method could also be applied to any quantitative measurement of the
collective. Accordingly, the template fitness function can be exchanged by any
temporal logic formula for which we can assess the satisfaction probability, and
the coefficient of variation by a different measure of robustness to suit the par-
ticular case study and research question.

Despite highlighting the power of the proposed methods, we also want to
point out possible limitations. One major drawback of Gaussian Processes is
the computational complexity of O(N3) [24]. In our work, we implemented all
functions by hand, in order to have full control over the computations. How-
ever, using available libraries like GPyTorch [11], could speed up the calcula-
tions. Another limitation of Gaussian Processes is the extrapolation needed for
larger or smaller group sizes than those available in the data set. In this case,
the uncertainty quickly becomes large and the predictions imprecise. In prac-
tice, one would encourage to conduct a new experiment for much smaller/larger
group sizes to counteract these high uncertainties and focus on interpolation of
intermediate group sizes.

Future work will focus on exploring the full potential of the presented tech-
niques in terms of automatically learning unknown parameters of a model or
even the entire mechanisms. In general, the approach could be automatised and
integrated into a probabilistic reasoning framework.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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