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ABSTRACT

Context. The identification of bright quasi-stellar objects (QSOs) is of fundamental importance to probe the intergalactic medium and
address open questions in cosmology. Several approaches have been adopted to find such sources in the currently available photometric
surveys, including machine learning methods. However, the rarity of bright QSOs at high redshifts compared to other contaminating
sources (such as stars and galaxies) makes the selection of reliable candidates a difficult task, especially when high completeness is
required.
Aims. We present a novel technique to boost recall (i.e., completeness within the considered sample) in the selection of QSOs from
photometric datasets dominated by stars, galaxies, and low-z QSOs (imbalanced datasets).
Methods. Our heuristic method operates by iteratively removing sources whose probability of belonging to a noninteresting class
exceeds a user-defined threshold, until the remaining dataset contains mainly high-z QSOs. Any existing machine learning method
can be used as the underlying classifier, provided it allows for a classification probability to be estimated. We applied the method to
a dataset obtained by cross-matching PanSTARRS1 (DR2), Gaia (DR3), and WISE, and identified the high-z QSO candidates using
both our method and its direct multi-label counterpart.
Results. We ran several tests by randomly choosing the training and test datasets, and achieved significant improvements in recall
which increased from ∼50% to ∼85% for QSOs with z > 2.5, and from ∼70% to ∼90% for QSOs with z > 3. Also, we identified a
sample of 3098 new QSO candidates on a sample of 2.6×106 sources with no known classification. We obtained follow-up spectroscopy
for 121 candidates, confirming 107 new QSOs with z > 2.5. Finally, a comparison of our QSO candidates with those selected by an
independent method based on Gaia spectroscopy shows that the two samples overlap by more than 90% and that both selection methods
are potentially capable of achieving a high level of completeness.
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1. Introduction

Light from distant and powerful quasi-stellar objects (QSO) has
proven to be a useful tool to probe the inter-galactic medium
(IGM; Meiksin 2009; McQuinn 2016; Péroux & Howk 2020),
investigate fundamental physics (Murphy et al. 2022), carry out
cosmological studies (Grazian et al. 2022), probe the growth of
supermassive black holes (Trakhtenbrot 2021), and even probe
the dynamics of the Universe (Liske et al. 2008; Boutsia et al.
2020; Cristiani et al. 2023). The role of such cosmological
beacons is expected to become even more important in the
⋆ Table B.1 is available at the CDS via anonymous ftp to
cdsarc.cds.unistra.fr (130.79.128.5) or via https:
//cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/683/A34

next decade with the upcoming availability of high-resolution
spectrographs on the 30 m-class telescopes. Therefore, com-
prehensive catalogs of high-z bright QSOs are of the utmost
importance to fulfill these goals, and a significant effort has been
devoted from the astronomical community to identify new QSOs
using machine learning techniques (e.g., Bailer-Jones et al. 2019;
Jin et al. 2019; Wolf et al. 2020; Wenzl et al. 2021; Nakoneczny
et al. 2021; Rodrigues et al. 2023). Similar techniques have been
used to identify stars and extragalactic sources (e.g., Khramtsov
et al. 2019; Nakazono et al. 2021; Barbisan et al. 2022; Hughes
et al. 2022).

Most of the past research in the field has been, however, car-
ried out using QSO samples in the northern hemisphere mainly
due to the sky coverage of large-area surveys such as the Sloan
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Fig. 1. Known QSO with δ < 0 and i mag < 19.5 from the considered
catalogs in literature (black symbols, see Sect. 4), from the QUBRICS
survey (red circles), and identified by the reverse selection method in
this work (blue squares, see Sect. 7).

Digital Sky Survey (SDSS, Lyke et al. 2020). However, several
advanced facilities such as the Ultraviolet and Visual Echelle
Spectrograph (UVES), the Echelle SPectrograph for Rocky Exo-
planets and Stable Spectroscopic Observations (ESPRESSO),
and the ArmazoNes high Dispersion Echelle Spectrograph
(ANDES) are or will be in operation in the southern hemisphere.
In order to fill this gap, we started the QUBRICS1 survey in
2018, aiming to identify the brightest high-z (z > 2.5) QSOs
in the southern hemisphere, using data available in photomet-
ric databases such as the SkyMapper, the Panoramic Survey
Telescope and Rapid Response System (PanSTARRS), the dark
energy survey (DES), Gaia, and the Wide-field Infrared Survey
Explorer (WISE) surveys, as well as machine learning selec-
tion algorithms. So far, we have obtained 1302 high-quality
spectra2 of QSO candidates using several facilities (Magellan
Telescopes: Baade/IMACS and Clay/LDSS-3, du Pont/WFCCD,
TNG/Dolores, and NTT/EFOSC2). Among these, 1219 (94%)
were actual new Actve Galaxy Nuclei (AGN) or QSO identifica-
tions, with 943 of them (72%) having z > 2.5, and 1079 (83%)
having z > 2. We also identified 123 QSOs with z > 4, with the
highest redshift being 5.16. The remaining sources were stars
(56) and galaxies (27). Figure 1 shows the distribution in the
i mag versus z plane of the QSOs known from literature and
of those identified by QUBRICS. The QUBRICS survey has
already produced several papers discussing both of the selec-
tion methods (Calderone et al. 2019; Guarneri et al. 2021) and
the exploitation of new QSO identifications (Boutsia et al. 2020,
2021; Cupani et al. 2022; Grazian et al. 2022).

The task of identifying bright, high-z QSO candidates in
photometric catalogs is the classical needle-in-a-haystack prob-
lem. For the catalogs considered in this work (Sect. 4), there are
roughly 104 stars and 100 galaxies for each bright QSO with
i ≲ 19 and z > 2.5, that is, the dataset is imbalanced toward
stars. Hence the selection methods need to be carefully tuned,
and their performance constantly monitored, in order to mini-
mize the required telescope time and maximize the success rate.
In the QUBRICS case the success rate (or precision, Sect. 2)
has always been ∼ 70 % (Calderone et al. 2019; Guarneri et al.

1 QUasars as BRIght beacons for Cosmology in the Southern
hemisphere.
2 Plus 149 spectra with uncertain classification due to low S/N or too
few available features for a robust classification.

2021), and has steadily improved up to the most recent observ-
ing runs. The latest progress has been driven by the adoption of
the probabilistic random forest (PRF; Guarneri et al. 2021) and
XGBoost (this work) algorithms in place of the canonical cor-
relation analysis used in the first works (Calderone et al. 2019;
Boutsia et al. 2020). The initial goal of QUBRICS, namely to
identify the brightest QSOs at redshift z > 2.5 to probe the IGM
and the dynamics of the Universe, has been partly achieved as
shown in Fig. 1.

For other cosmological studies, however, it is mandatory to
achieve a high and well-determined recall (i.e., the complete-
ness within the considered photometric sample, Sect. 2). The
recall is more difficult to estimate than precision since the for-
mer can only be assessed indirectly by estimating the (unknown)
true number of high-z QSOs in the subsample still lacking
spectroscopic classification. Precision, on the other hand, can
be extrapolated even with a limited set of observations. Until
recently, the main obstacle has been the limited overlap between
the southern hemisphere surveys used to search for new high-z
QSOs (namely, SkyMapper, DES, PanSTARRS) and other sur-
veys with significantly higher QSO completeness in the North
(such as SDSS). Depending on the adopted method and the
underlying assumptions, we estimated a recall between 70% and
85% (Calderone et al. 2019; Guarneri et al. 2021, 2022). With
the latest observations we now have more than 900 QSOs at
z > 2.5 and 600 at z > 3, that we can split into training and test
datasets (with the latter containing a few tens of objects), in order
to evaluate the recall in a self-consistent manner.

The QUBRICS survey aims to identify the remaining, not
yet identified, QSOs in the redshift range 2.5–5.0 (with the
upper limit due to the requirement of having a Gaia detection).
Hence we need to maximize the recall, even though this could
cause a reduced precision. We also need to take into account the
overwhelming number of noninteresting sources (mainly stars)
present in the photometric datasets compared to the number of
bright and high-z QSOs, which results in highly imbalanced
datasets. The goal of this work is to present a method to boost
the recall of a machine learning multi-label selection algorithm,
under the only assumption that the latter provides an estimate
of the probability for a source to belong to a given class. It
operates by iteratively discarding objects with high probability
of not being a QSO, thus automatically rebalancing the input
datasets, and providing higher recall rates with respect to other
classification methods (Sect. 3).

The paper is organized as follows: Sect. 2 describes the selec-
tion performance estimators used throughout the paper; Sect. 3
describes our method to boost recall in the multi-label selection
case and in Sect. 5 we apply it to the specific problem of identify-
ing new high-z QSO candidates; Sect. 7 reports the observations
of such candidates, and the comparison with the QSO candidates
obtained with an independent method. Finally, in Sect. 8 we draw
our conclusions.

2. Performance metrics

In order to measure the performance of a selection method,
we need proper metrics as described in this section. We intro-
duce the concepts of “positive” (P) and “negative” (N) classes
in the context of a binary classification, where the former rep-
resents the class of objects of interest for a specific purpose,
and the latter contains all the objects supposed to be rejected
by a selection algorithm. Whenever an object is correctly clas-
sified as belonging to either the P or N class we call it a “true
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Table 1. Representation of a confusion matrix for a two-class (P vs. N)
problem.

Predicted class
pP pN

True P TP (true positives) FN (false negative)
Class N FP (false positive) TN (true negative)

Notes. The rows represent the sources whose actual class is P or N. The
columns represent the Predicted Positive (pP) and Predicted Negative
(pN) sources respectively.

positive” (TP) or “true negative” (TN) prediction respectively.
Whenever the prediction is wrong we call it a “false negative”
(FN) or “false positive” (FP) respectively. The number of “true
positives”, “false negatives”, etc. can be arranged in a tabular
form known as “confusion matrix” (see Table 1 for an example).
With these definitions, the relevant metrics are:

Precision =
TP
pP
,

True Positive Rate (TPR or recall) =
TP
P
, (1)

False Positive Rate (FPR) =
FP
N

where “pP” represents the total number of sources predicted to
belong to the positive class (i.e., the sum along the first column),
while “P” and “N” represent the total number of sources actually
belonging to each class (i.e., the sum along the rows).

In a classification process the “precision” metric is the
expected success rate in identifying new sources belonging to the
P class, while the “recall” is the expected P-class completeness
within the considered sample. We note that the above metrics
may be biased if the datasets are imbalanced (e.g., when N ≫
P) and tend toward values which depend on the class ratio P/N
rather than measuring the actual capabilities of the method. As
a consequence, there is not an absolutely “good” or “bad” value
for precision and recall, since they depend on the specific case.
On the other hand, it is always possible to compare the perfor-
mance of two algorithms and decide which one provides the best
precision or recall performance, regardless of the “goodness” of
the absolute values of such metrics.

If the classifier algorithm also provides a probability esti-
mate for a source to belong to a specific class, it is possible to
adopt a discriminating threshold and accept a P-classification as
reliable only if its probability exceeds the threshold (Provost &
Fawcett 1997; Provost 2000). In a single run of a binary classifier
this would alter the metrics in a correlated way. As an example,
a conservative discriminating threshold would typically lead to
higher precision but lower recall and FPR metrics (see Sect. 3.1
and Fig. 4).

The above mentioned concepts can be easily extended to
the multi-label case by introducing the relevant classes such as
stars, galaxies, low-z QSOs, high-z QSOs etc., in place of the P
and N ones. For instance, the top panel of Table A.1 provides
the example of a confusion matrix in the multi-label case. An
alternative representation of the same confusion matrix is given
by normalizing each row by the total number of sources pre-
dicted to belong to a class (middle panel of Table A.1), or by the
total number of sources actually belonging to each class (lower
panel of Table A.1). In the former case the diagonal numbers

represent the precision (i.e., the expected success rate in iden-
tifying members of a given class), while in the latter case they
represent the recall of the method (i.e., the completeness for a
given class within the considered sample).

As mentioned in Sect. 1, we are mainly interested in high red-
shift sources with z ≳ 2.5 hence we consider separate classes for
low-z and high-z QSOs, with z = 2.5 as discriminating thresh-
old. Within the high-z QSO class we are much more interested
in sources with z > 3 or 4 rather than those at z ∼ 2.5, but the lat-
ter are more abundant than the former due to the uneven redshift
distribution of detectable QSOs. As a consequence, the recall
metric for high-z QSO might be biased to represent the popula-
tion at z ∼ 2.5, providing little information about the selection
performance at z > 3. To overcome this issue, we introduced a
new recall metric at z > 3 by considering only the QSOs with
z > 3 in the TP and P calculations. As we subsequently show
in the next sections, the recall at z > 3 is typically higher than
the standard recall metric at z = 2.5, the reason being that the
QSOs with redshift slightly larger than z = 2.5 may easily be
misclassified as low-z QSOs resulting in a lower high-z recall.

For the sake of completeness, we introduce here the Normal-
ized Median Absolute Deviation metric (NMAD) which we use
to estimate the scatter when comparing the estimated and true
redshift of the QSO candidates in Sect. 6:

NMAD = 1.4826 median(|zest − ztrue|).

The NMAD is more robust than the standard deviation in pres-
ence of outliers, and the normalization factor 1.4826 makes the
two quantities equal for a normal distribution (Rousseeuw &
Croux 1993; Leys et al. 2013).

3. Boosting recall in selection methods

As discussed in Sect. 1, the purpose of this work is to present
a method to significantly boost recall in QSO selection over
highly imbalanced photometric datasets (at the possible expense
of slightly reducing the precision), while keeping the num-
ber of additional hyper-parameters3 at a minimum. The use of
imbalanced datasets in machine learning algorithms is, however,
known to be detrimental to performance (Prati et al. 2009), as
well as being a source of bias for the performance estimators
themselves (e.g., Batista et al. 2004). The issue is even more
compelling when trying to identify the brightest QSOs, since
they represent only a small subsample of the considered source
catalogs, and their identification may be challenging. Several
approaches have been suggested to address the issue of rebal-
ancing an imbalanced dataset (e.g., Batista et al. 2004; Prati et al.
2009), such as “undersampling” (random elimination of sources
in the majority class, in our case: the stars); “oversampling” (ran-
dom duplication of sources in the minority class, in our case:
high-z QSOs); “synthetic data generation” (simulate the avail-
ability of further data for the minority class, approach discussed
in Guarneri et al. 2022). These methods, although effective in
rebalancing the dataset, come with drawbacks such as the pos-
sible elimination of relevant sources in the undersampling case,
the possible overfit due to replication of nonrelevant features in
the oversampling case, and the difficulties associated with con-
veying useful knowledge to the machine learning method by
means of synthetic data, and generalizing the results to avoid
being model-dependent. Moreover, each of the above methods

3 A parameter affecting the learning process of an algorithm.
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requires the addition of one or more hyper-parameters to the
already long list characterizing each machine learning methods,
making the exploration of the hyper-parameters space even more
challenging. Besides, the worse performance of selection algo-
rithms dealing with imbalanced training datasets may not be due
to the imbalance itself, but possibly also to the “class overlap-
ping” issue, that is, the difficulty in distinguishing members of
two different classes with the available information (Prati et al.
2004). Smith et al. (2013), in particular, provides a definition of
the instance hardness as the likelihood for a source to be mis-
classified, and proposes an undersampling method to rebalance
the training dataset by removing problematic sources with high
instance hardness (using a calibrated threshold). Such supervised
undersampling method is called Instance Hardness Threshold
(IHT). Other methods based on threshold tuning to address spe-
cific problems are discussed in Zou et al. (2016); Johnson &
Khoshgoftaar (2021). Several other methods had been proposed
to deal with imbalanced datasets (Fernández et al. 2019).

Our heuristic method is similar to the IHT, but focuses on
removing sources with high probability of being noninterest-
ing ones, rather than on those being hard to classify. It builds
upon existing classifier algorithms such as random forest (e.g.,
Parmar et al. 2019), probabilistic random forest (Reis et al.
2019), gradient boosting (Friedman 2001), or any other classi-
fier able to provide an estimate of the classification probability.
Note in particular that our method capability to handle miss-
ing values (which are very common in astronomical photometric
data) is exactly the same as the underlying classifier algorithm.
The following sections illustrates the method in the binary case
(Sect. 3.1) and in the general multi-label case (Sect. 3.2).

3.1. The binary classifier case

By varying the classification probability threshold (hereafter,
τ) to reliably accept a P-classification we can alter the algo-
rithm performance metrics. More specifically, by increasing τ
the number of sources whose classification probability exceeds
the threshold would be smaller, and both TP and FP decrease.
As a consequence, pP decreases faster than TP, and the result-
ing precision is increased. On the other hand, the recall and
FPR decrease since both P and N are fixed (although unknown).
Figure 4 shows an example of such correlations.

In the binary case the association of the “interesting” sources
with the P or N class is arbitrary and we can consider the case of
exchanging their roles. The TP in the first case becomes the TN
in the swapped case, FP→ FN and, most importantly, FPR→ 1−
TPR. The consequence is that applying a threshold τ to accept a
P-classification amounts to decrease its FPR, and boost the recall
on the complementary class (N).

3.2. The multi-class case (reverse selection method)

The photometric sample discussed in Sect. 4 contains at least
four different classes: stars, galaxies, low-z and high-z QSOs. A
multi-label classifier, hereafter “direct selection method”, trained
using four such classes can be built upon a binary one follow-
ing either the one-vs-rest or one-vs-one heuristics (Allwein et al.
2000). In the former case we train a binary classifier to dis-
tinguish objects of one class (say high-z QSOs) from all other
sources, repeat for all available classes (four in our case), and
consider the label with the highest score as the output classifi-
cation. In the one-vs-one heuristic all possible combinations of
class pairs are fed to a binary classifier, and the final prediction is

based on the majority of votes in each run. However, the perfor-
mance of both heuristics is badly affected by the fact that there
is no mitigation for the imbalanced datasets.

The method proposed here is a mixture of the one-vs-rest
and undersampling techniques, the former being necessary to
apply a threshold τ on the classification probability for a source
in the P class (thus improving the recall of the sources in the N
class), and the latter being used to discard all sources belonging
to the noninteresting P class (thus rebalancing the datasets). We
note that in this case the discarded sources are not chosen ran-
domly as in the standard undersampling approach (Sect. 3), but
chosen among the sources with a high probability of belonging
to the noninteresting P class. Our algorithm proceeds through
the following steps (see also Fig. 2): (i) consider the class with
the largest number of sources (stars in our case). Train a binary
classifier to distinguish a star (P) from all other sources (N). Pre-
dict a classification on the training dataset and discard all the
entries with correct4 P-prediction whose probability is greater
than τ. Similarly, predict a classification on the test and unclas-
sified (Sect. 7) datasets, remove entries having P-prediction
with probability greater than τ and associate them with the
“Star” label. Ignore predictions with probabilities ≤ τ; (ii) repeat
for the next most abundant classes, namely galaxies and (iii)
low-z QSOs; (iv) train a multi-label classifier to associate a label
to the remaining sources in the test and unclassified datasets.
All classifications are accepted as reliable in this step, that is,
no threshold on the classification probability is adopted. We
note that, unlike other methods based on an a-posteriori “mov-
ing threshold” (e.g., Esposito et al. 2021; Baqui et al. 2021),
our method requires the models to be re-trained whenever the
threshold τ is changed.

The method sketched above is supposed to provide a higher
recall metric than its direct multi-class counterpart, although
with a possibly slightly lower precision. Also, we note that
the method is extremely simple to implement, and is agnostic
with respect to the underlying classification framework, pro-
vided the latter allows a classification score or probability to
be estimated. The interpretation of the classification probabil-
ity threshold τ is straightforward: the higher the threshold, the
more conservative the method is in discarding sources. Finally,
it deals naturally with highly imbalanced datasets by discard-
ing noninteresting sources and simultaneously rebalancing all
datasets (Table 4 shows the size the relevant datasets at each
step of the method). Our approach is dubbed reverse selection
method, since it focuses on the items to be removed from the
photometric datasets, rather than on those to keep, in order to
maximize the recall on high-z QSOs.

4. Datasets and features

The photometric dataset used throughout this paper has been pre-
pared as follows: we selected all objects from the PanSTARRS1
(DR2) survey5 (Chambers et al. 2016), with declination < 15◦,
galactic latitude > 25◦ (in absolute value) and Y band PSF
magnitude 14 < Y < 19.6 We considered the PanSTARRS mag-
nitudes in the g, r, i, z, and Y bands. Also, we cross-matched the

4 We can check the predictions are correct because we are in the train-
ing dataset. We keep the wrong predictions since they may involve the
very rare high-z QSOs.
5 https://outerspace.stsci.edu/display/PANSTARRS/PS1+
StackObjectView+table+fields
6 The lower limit on magnitudes is used since our training data does
not cover such bright objects at high redshifts.
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Fig. 2. Schema of the reverse selection method. In the first three steps a binary classifier is used to predict classification on all datasets, including
the training one. If the probability of belonging to the noninteresting P-class is greater than a threshold τ the source is discarded before proceeding
to the next step. By doing so all datasets decrease in size and, most importantly, they are rebalanced toward the interesting sources, namely the
high-z QSOs. The last step is a simple multi-label classification, just like the direct selection method.

resulting table with Gaia DR3 (De Angeli et al. 2023) with a
matching distance of 0.5′′. To avoid possibly spurious matches,
we discarded all sources with multiple matching counterparts
(∼0.004% of the total). We considered the G, RP, and BP mag-
nitudes. Finally, we cross-matched with the AllWISE catalog
(Wright et al. 2010) with a matching distance of 0.5′′, and dis-
carded sources with multiple matching counterparts (∼0.06%).
We considered the magnitudes in all the four WISE bands.
The overall sample contains 30 796 027 sources (hereafter “main
sample”). We identified stars in this sample as those sources hav-
ing a proper motion or a parallax (as measured by Gaia) greater
than zero with a 3σ confidence level. Also, we cross-matched
the main sample against several catalogs from the literature
(Colless et al. 2001; Jones et al. 2009; Véron-Cetty & Véron
2010, Yang et al. 2016, Schindler et al. 2019a,b; Wolf et al.
2020; Lyke et al. 2020; Onken et al. 2022), as well as from our
QUBRICS catalogs (Calderone et al. 2019; Boutsia et al. 2020;
Guarneri et al. 2021, 2022) to assign a spectroscopic classifica-
tion and, for AGN, QSOs, and galaxies, a redshift. For 2 639 184
sources we did not find any classification, hence this subset
constitutes our “unclassified” sample where we search for new
high-z QSO candidates to be observed spectroscopically.

Table 2. Composition of the main sample used in this work.

Class No. of sources Fraction

Stars 27 985 913 90.875%
Galaxies 150 581 0.489%
Low-z QSOs and AGNs 16 269 0.053%
High-z QSOs 1908 0.006%
Other(∗) 2172 0.007%
Unclassified 2 639 184 8.570%

Notes. The last line represents the sources for which we could not find
a spectroscopic classification, nor significant proper motion or parallax
measurements in the Gaia catalog, hence it is the subset we use to search
for new high-z (z > 2.5) QSO candidates (Sect. 7). (∗)Any other spectral
classification, such as Type 2 AGN, HII region, BL Lac, etc.

The composition of the main sample is shown in Table 2.
As expected, the main sample turns out to be highly imbalanced
toward stars and galaxies, and the high-z QSOs are just “needles
in a haystack” (0.006% of the whole main sample). A similar
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order of magnitude imbalance likely affects the unclassified
sample, and that a simplistic approach such as observing the
whole unclassified sample would definitely recover a recall
of 100%, but would also be extremely inefficient in terms of
telescope time since the maximum achievable precision would
be of the order 10−4.

We used the magnitude difference between neighboring
bands (i.e., colors), rather than the magnitudes themselves, as
features to train the classifier model since they provide bet-
ter performance when searching for very bright and rare QSOs
(Guarneri et al. 2022). We note that identifying the optimal
feature selection is not a purpose of this work: we are just inter-
ested in comparing the reverse selection method with its direct
counterpart using the color features.

5. Methodology

In the following sections, we apply three different selection
methods to the dataset described above, and compare their
precision and recall metrics in identifying high-z QSOs in pho-
tometric catalogs. We note that our analysis does not require a
specific classifier algorithm, the only requirement is that it pro-
vides an estimate of the probability for a source to belong to a
given class. In this work we used XGBoost7 (Chen & Guestrin
2016) as the underlying framework for all our analysis.

5.1. Training and test datasets

In the following sections we describe two subsets of the main
sample for which we have a reliable spectroscopical classifi-
cation and redshift estimate into two subsets. The first one,
containing 22 525 474 sources (i.e., 80% of the whole sample), is
used to train the classifier. The second one, containing 5 631 369
sources (20% of the sample) is used to estimate its performance
and generate the confusion matrix. We chose the 80–20 split-
ting schema rather than, say, 70–30 since the former is closer
to the case described in Sect. 7 where we used the 100% of the
known dataset to train the models. The split is chosen randomly
by shuffling the data before splitting, and following a “stratified”
approach, that is, by keeping the class ratios approximately con-
stant in both the training and test datasets. We did not use any
validation dataset since the optimal value for the τ parameter
can be established using the procedure described in Sect. 5.7.
Also, the extreme imbalance would not allow us to have a suf-
ficient number of high-z QSO in all datasets. We note that we
used exactly the same training-test split for the specific analy-
sis runs discussed in the following sections and to produce the
results shown in Table 3 and Appendix A. When multiple runs
are involved (Figs. 4 and 6, Sect. 5.6) we generated randomized
training-test splits as described above. The unclassified dataset
contains 2 639 184 sources (∼8.6% of the main sample) and it is
used in Sect. 7 to identify the list of high-z QSOs candidates for
the observations.

5.2. XGBoost hyperparameters

The values of the hyperparameters for the XGBoost classifier are
as follows:8 we set num_round (number of iterations for boost-
ing) to 40 for the direct selection, 15 for the direct selection with

7 https://xgboost.ai/
8 The list of all XGBoost hyper-parameters, along with their default
values, is available at https://xgboost.readthedocs.io/en/
stable/parameter.html

Table 3. Comparison of the metrics for the selection of high-z QSOs
using the three methods discussed in this work.

Method Precision Recall

Direct (Sect. 5.3) 70.3% 57.1%
Direct with undersampling (Sect. 5.4) 1.1% 94.8%
Reverse (Sect. 5.5) 55.1% 85.6%

undersampling, and 20 for the reverse selection method. The
maximum depth of a decision tree (max_depth) is set to 20, and
the tree construction algorithm (tree_method) to hist as this is
the suggested setting for large datasets. Finally, (learning objec-
tive) (objective) is set to multi:softprob as this is the only
setting producing probability estimates for a source to belong to
a class, in a multi-class problem. The value for num_round has
been chosen as the one where the recall curves for the consid-
ered selection method stop increasing, as determined from Fig. 3
which shows precision and recall metrics averaged over five runs
(with randomly chosen training-test splits) for the direct (upper
panel), direct with undersampling (middle panel) and reverse
(lower panel) selection methods. We note that at higher val-
ues of num_round both precision and recall are approximately
constant, hence our results would be scarcely affected by adopt-
ing larger values. The reverse selection method involves training
several models (see Fig. 2), hence a num_round value may in
principle be identified for each step. However, the performance
at each step is affected by the outcomes of all other steps, and
identifying the optimal num_round values for each step sepa-
rately does not necessarily yield the maximum overall recall.
A thorough exploration of the parameter space would thus be
required to identify optimal num_round values for each step.
This is beyond the scope of this paper, hence we simply adopt
the same num_round value for each step in the reverse selection
method.

The max_depth parameter controls the allowed complex-
ity of the model, hence it is strictly related to num_round: we
may achieve similar performance by increasing the former and
decreasing the latter. The chosen value of max_depth = 20
enables us to achieve the performance shown in Fig. 3 in a
reasonable time (training time is ∼2 min). All the remaining
hyper-parameters are left at their default values. We note that
the probabilities provided by XGBoost are not necessarily cal-
ibrated, that is, their reliability diagrams (Niculescu-Mizil &
Caruana 2005) may deviate from the linear 1:1 relation. This is,
however, not a problem for the reverse selection method since the
probabilities are relevant only when compared to the threshold
τ, which in any case needs to be calibrated for the specific prob-
lem following the procedure described in Sect. 5.7. Hence there
is no need to calibrate both the probabilities and the threshold.
Finally, the method described in Sect. 3.2 aims to be agnos-
tic with respect to the underlying classifier, hence the XGBoost
framework used in the following sections may be replaced with
any other as long as a classification probability can be estimated.

5.3. Results with the direct selection method

The XGBoost framework natively provides multi-label classifi-
cation capabilities, hence we used it to train a model and predict
the classes of the test dataset without applying any threshold on
classification probability. The relevant metrics for the test dataset
of a specific run are shown in Table 3, while the entire confusion

A34, page 6 of 14

https://xgboost.ai/
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html


Calderone, G., et al.: A&A, 683, A34 (2024)

Fig. 3. Precision (dashed black line), recall at z > 2.5 (blue line), and at
z > 3 (red line) as a function of the XGBoost num_round parameter for
the direct selection method (upper panel), direct selection with under-
sampling (middle panel), and reverse selection (lower panel) methods.
The precision curve in the middle panel is multiplied by a factor 100 to
provide a clearer view. The point and error bars represent respectively
the mean and the standard deviation over five runs with randomly cho-
sen training-test splits.

matrix is available in Table A.1). On this specific run, the direct
selection method features a 70% precision and 57% recall for the
high-z QSOs. The relatively low value for the recall is likely due
to the aforementioned class imbalance problem, as shown by the
significantly higher values obtained for the stars and galaxies.

Fig. 4. Precision (dashed black line), recall at z > 2.5 (blue line), and at
z > 3 (red line) as a function of the classification probability threshold τ
for the direct selection method (Sect. 5.3) over five runs (with randomly
chosen training-test splits). The point and error bars represent respec-
tively the mean and the standard deviation over the five runs.

Although no probability threshold is involved in the direct
selection method we can, a-posteriori, apply one such threshold
to ignore those predictions whose confidence is too low (e.g.,
Esposito et al. 2021; Baqui et al. 2021). By considering such
cases as noninteresting ones (i.e., not a high-z QSO) we can
estimate threshold-dependent precision, recall, and FPR met-
rics. Figure 4 shows such values calculated over five runs (with
randomly chosen training-test splits). As expected, applying a
threshold allows the algorithm to select only the most reliable
high-z QSOs candidates, increasing the precision but lowering
the recall and FPR metrics, in contrast to our goal of raising the
recall. In principle, we can tune the threshold to achieve arbi-
trarily high values for the precision. On the other hand, there is
no way to tune the threshold to improve the recall, as the latter
achieves the maximum value when no threshold is being applied
(i.e., when τ = 09).

5.4. Results with the undersampling heuristic

A common approach to deal with class imbalance is to use the
undersampling heuristic (Fernández et al. 2019), namely to dis-
card randomly chosen sources in the majority class(es) in order
to rebalance the training dataset. We followed this approach
by creating a balanced training dataset which consists of 1526
sources (i.e., 80% of the total number of high-z QSOs, see
Table 2) randomly chosen from each class, and used it to train a
new classifier following the direct selection method to predict the
classification on the test dataset. We note that we did not attempt
to undersample the test dataset, which is now much larger than
the training set. The justification for this choice is that we want
to use a test dataset with the same, or similar, imbalance of the
unclassified dataset, which we cannot undersample or rebalance.

The relevant metrics for the test dataset of a specific run are
shown in Table 3, while the entire confusion matrix is available
in Table A.2. On this specific run, the direct selection method
with under sampled training dataset provides a significant boost

9 For a generic multi-label classification problem with N classes all
predictions have probabilities ≥1/N, hence any threshold τ smaller than
1/N would be equivalent to τ = 0.
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Table 4. Evolution of dataset sizes and class imbalance at the beginning
of each step of the reverse selection method.

Step 1 Step 2 Step 3 Step 4

N train 22 525 474 138 505 18 568 5749
N test 5 631 369 32 141 5237 1891
Nunclassified 2 639 184 1 324 967 107 193 81 853

f train
high−z QSO 0.007% 1.102% 8.218% 26.544%

f test
high−z QSO 0.007% 1.126% 6.912% 17.610%

Notes. The first three rows report the size of the training, test, and
unclassified datasets. The last two rows report the fraction of high-z
QSOs in the training and test datasets (this quantities are not available
for the unclassified dataset).

in recall reaching 95%, but the precision falls down to ∼1.1%
and the number of predicted high−z QSOs increases to 33 207
sources (to be compared to the 310 candidates from Table A.1). In
other words, the undersampling classifier predicts a high−z QSO
much more frequently than the simple direct method, achiev-
ing a very large recall rate. However, the resulting list of high-z
QSO candidates identified in the unclassified sample would be
so large that it would be impossible to perform a spectroscopic
follow-up. Since the precision is so low, we no longer consider
the undersampling heuristic in the following discussion.

5.5. Results with the reverse selection method

We now consider applying the reverse selection method sketched
in Sect. 3.2 using a probability threshold of τ = 0.9 (see Sect. 5.7
for a justification). In brief, the purpose of the method is to
iteratively rebalance the datasets toward the high-z QSOs by
discarding sources with high probability (exceeding τ) of being
noninteresting ones. Table 4 shows the size of the datasets and
the high-z QSO fractions at each step of a specific run of the
reverse selection method. We note that the size of all datasets
decreases, and that the high-z fractions increases significantly
from ∼0.007% at the beginning of first step, to ∼20% in the last
step, allowing to approximately get rid of the imbalance dataset
problem. Similarly, also the number of sources in the unclassi-
fied dataset decreases, possibly increasing the fraction of high-z
QSO contained therein.

The relevant metrics for the test dataset of a specific run are
shown in Table 3, while the entire confusion matrix is available
in Table A.3. On this specific run, we obtained a significantly
higher recall (85.6%) at the cost of a relatively lower precision
(55.1%). We note that the loss in precision is not dramatic, unlike
in the undersampling heuristic. On the other hand, the high recall
is not due to a specific choice of the training-test split in a specific
run, as shown by the point in Fig. 6 corresponding to τ = 0.9,
whose symbol and error bar represent the average and stan-
dard deviation over five runs (with randomly chosen training-test
splits).

5.6. Estimation of recall improvement

In order to quantify the recall improvements due to the reverse
selection method when compared to the direct selection one we
ran 100 analysis for both the direct and reverse selection method,
randomly selecting the training and test datasets at each run (fol-
lowing the same procedure outlined in Sect. 5.1). The histograms

of the resulting precision and recall (for QSOs with z > 2.5 and
z > 3) are shown in Fig. 5.

The legend also reports the mean and standard deviation for
each metric, confirming that the reverse selection method allows
us to improve the recall from ∼50% to ∼85%, and that the recall
for the QSOs with z > 3 is ≳90%, while the precision shows
only a slight decrease from ∼70% to ∼60%, when compared to
the direct selection method.

5.7. Optimal value for the probability threshold τ

The reverse selection method relies on a probability threshold τ
to be calibrated in order to achieve the best possible results. Hav-
ing a threshold which is too low implies we are rejecting sources
for which the classification is questionable, and this may be
harmful for recall. On the other hand, having a threshold which
is too high prevents the algorithm from rebalancing the datasets,
again limiting the recall. Hence, the proper value depends on the
specific problem and possibly on the underlying classifier, and
should be identified by exploration of the possible range until
the recall is maximized. Note in particular that the search for the
optimal values for τ implies that a calibration of the probability
estimates (Niculescu-Mizil & Caruana 2005) is, in general, not
needed.

Figure 6 shows a comparison between the high-z QSO preci-
sion (dashed black line) and recall (solid blue line) for the reverse
selection method, as a function of the probability threshold τ.
Each point represents the mean and standard deviation over five
runs (with randomly chosen training-test splits). We note that the
trends of the precision and recall (z > 2.5) curves are symmetric
to those observed in Fig. 4: as τ increases the recall is boosted
only for the reverse selection method. On the other hand, preci-
sion is somewhat reduced since in the last multi-label step the
training set contains high-z QSOs as well as all those sources
whose classification were uncertain in the previous steps, hence
they are hardly representative of the remaining classes (stars,
galaxies, etc.). The recall of the reverse selection method is max-
imized, and has a smaller scatter, for τ = 0.9, hence this is the
value adopted in this work Sects. 3.2 and 5.6.

6. Redshift estimation

Besides classification, we also need to estimate the redshift of
the QSO candidates in order to prioritize the observations (i.e.,
giving higher priority to higher redshift candidates, Sect. 7).
Many approaches are available to estimate a photometric redshift
(e.g., Brescia et al. 2021) with different level of complexity and
resulting accuracy. The requirement for the prioritization, how-
ever, is not particularly tight and any method providing redshift
accuracy better than ∼0.5 is enough. Hence we simply used the
regression capabilities provided by XGBoost to estimate the red-
shift for the low-z and high-z QSOs candidates identified with
the reverse selection method. Specifically, we used the redshift
values and the same features described in Sect. 5 to train a regres-
sion model using the XGBoost framework, with the objective set
to reg:squarederror and both num_round and max_depth
equal to 15. The latter values were chosen by requiring the
rmse metric (root mean square error) on the test data to reach
a minimum.

The comparison of the true and predicted redshift values
for the low-z and high-z QSOs candidates in the test dataset is
shown in Fig. 7. Only in a few cases the predicted redshift is
significantly different than the true one, especially in the upper
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Fig. 5. Distributions of precision (black histogram) and recall (blue histogram for the sample of high-z QSOs with z > 2.5, red histogram for the
sample with z > 3) as measured on 100 randomly selected test datasets (Sect. 5.6). The upper panel shows the results obtained with the direct
selection method (Sect. 5.3) while the lower panel shows the same quantities obtained with the reverse selection method (Sect. 5.5).

Fig. 6. Precision (dashed black line) and recall as a function of the
classification probability threshold τ for the reverse selection method
(Sect. 5.5) over five runs (with randomly chosen training-test splits).
The point and error bars represent respectively the mean and the
standard deviation over the five runs. The recall lines are calculated con-
sidering the whole sample of high-z QSOs with z > 2.5 (blue line) and
its subsample of QSOs with z > 3 (red line). The recall curves peak,
and have the smaller scatter, at a value of τ = 0.9, hence this is the
value adopted as threshold for the analysis in Sect. 5.5.

left corner where predicted high-z QSOs have an estimated red-
shift smaller than 2.5. This suggests that the standard deviation
of the difference (0.47 for the high-z QSOs) may be biased by
the presence of outliers. A more robust estimator of the scatter
in presence of outliers is the NMAD (Leys et al. 2013), whose
value for the predicted low-z and high-z QSOs is, respectively,
0.11 and 0.29. Among the 530 sources predicted to have z > 2.5,
we found 35 outliers (∼6%) whose estimated redshift lies at more
than 3 × NMAD from the true redshift.

7. The high-z QSO candidates sample

The high-z QSO candidates in this sample were selected among
the unclassified data sources with no spectroscopic classifica-
tion (Table 2) using the entire known dataset to train the models
in the reverse-selection method (no test dataset is required for
this purpose). The selection method identified 3098 sources as
high-z QSOs candidates, corresponding to ∼0.1% of the whole
unclassified sample.

We selected the targets for spectroscopic follow-up from our
list of candidates according to the observing period and giv-
ing higher priority to brighter sources in the i band, as well as
to higher estimated redshifts (Sect. 6). So far, we carried out
a spectroscopic observations for 121 candidates, and identified
107 new QSOs with z > 2.5 (success rate of 88%), 2 stars and
12 QSOs with z < 2.5. The new QSO identifications are listed
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Fig. 7. Comparison of estimated and true redshifts for low-z and high-z
QSO candidates in the test dataset.

in Table B.1. Moreover, using data collected from the literature,
which we ignored at the time of selection, we obtained 21 new
spectroscopic redshifts (all >2.5) in our unclassified sample. In
total, we could identify 143 QSOs among our candidate sam-
ple, which adds to the previously known QUBRICS QSOs (see
Fig. 1).

We also compared our list of candidates with the catalog of
QSO redshifts obtained by a newly developed spectral energy
distribution fitting technique exploiting both photometric infor-
mation and Gaia DR3 spectroscopy (Cristiani et al. 2023). Such
catalog contains 1672 new redshift estimates, out of which 1142
fall in the same footprint as the dataset described in Sect. 4,
and 717 have a redshift greater than 2.5. We cross-matched this
717 sources with our candidates and found 658 sources in com-
mon (92%). If we consider only the sources with estimated
redshift greater than 3, our candidates sample includes 103 of
the 110 sources also selected by Cristiani et al. (94%). Such high
overlaps between QSO candidates identified with independent
methods (although on similar initial samples) show that both are
potentially able to reach high level of completeness. Our method,
however, relies on photometric estimates and does not require the
Gaia spectra.

The Cristiani et al. sample also includes 1142 − 717 =
425 sources with z ≤ 2.5, corresponding to 381 sources in our
sample. These have to be considered “failures” of our selection
method since their redshift is smaller than 2.5. They are present
because of the limitations of our algorithm in correctly classi-
fying QSOs whose redshift is close to the threshold of z = 2.5.
In fact, our redshift estimates for such spurious source is in the
range 2 ≲ zXGBoost ≲ 3, with only 2 sources having an estimated
redshift greater than z = 3. As already mentioned in Sect. 2,
this issue is the reason to introduce the recall metrics at z > 3
(rather than z > 2.5) to estimate the performance of our method.
Concerning the other metrics, the presence of these spurious

sources with z < 2.5, besides the above mentioned 658 ones
with z > 2.5, in our candidate sample implies an upper limit of
658/(658+381) = 63% for the precision of our method, which is
in line with the precision estimated with the analysis described in
Sect. 5.6. We note that we may improve the precision by simply
neglecting the sources with estimated redshift smaller than 2.5.
In this case, we would approximately halve the candidate sam-
ple (1563 sources rather than 3098), but the recall with respect
to the Cristiani et al. sample of QSOs with z > 3 would fall to
∼78%. The joint adoption of multiple selection algorithms, such
as reverse selection and SED fitting (Cristiani et al. 2023) may
improve the redshift estimates and the precision while keeping a
recall ∼90%. This will be the subject of a future work.

8. Conclusions

We presented a novel heuristic method, dubbed reverse selection
method, designed to improve the recall (i.e., the completeness
over the considered dataset) of a classifier algorithm, even in
the presence of a highly imbalanced dataset, at the expense of
a slight decrease in precision. The method relies on the adop-
tion of a classification probability threshold for the validation of
the outcome of a binary classifier, in order to improve its pre-
cision. When applied repeatedly following the class size order
(i.e., starting from stars, then galaxies, low-z QSOs, etc.) this
allows us to identify and remove noninteresting objects in order
to rebalance the datasets toward the less common sources (high-z
QSOs).

We applied the reverse selection method to search for high-z
QSOs in a highly imbalanced dataset where most of the sources
are stars or galaxies, and compared the precision and recall to its
simple, direct selection multi-label classifier counterpart, both
with and without random undersampling. Our results confirm
that the reverse selection method provides a significant boost
in recall, up to 90% (for QSOs with z > 3) with only a small
decrease in precision (∼60% rather than ∼70%). In order to show
that the improvement in recall is not due to a particular split of
the datasets, we tested the robustness of our results by randomly
generating the training and test datasets at each run, confirming
that our method is capable of achieving a recall of ∼90% (for
QSOs with z > 3).

Our heuristic method relies on an external classifier algo-
rithm, which is XGBoost for the analysis discussed here. How-
ever, the method is agnostic with respect to the underlying
classifier, and an alternative algorithm providing a classification
probability estimate can in principle be used. The method relies
on the probability threshold τ whose interpretation is straightfor-
ward and whose optimal value for a specific case can be easily
tuned. Also, the boost in recall metrics can be easily quantified
following the procedure outlined in Sect. 5.6.

Finally, we applied our method to a sample of objects without
any known spectroscopic classification, and identified a sample
of 3098 new QSO candidates among them. For 121 candidates
we obtained a follow-up spectroscopy, and identified 107 new
QSOs with z > 2.5. A comparison with the recently released
catalog of Cristiani et al. (2023) shows that both selection meth-
ods are able to achieve similar recall rates up to ∼90%, but our
method shows such performance with no need for the Gaia spec-
troscopic data. On the other hand, our method still needs to
be complemented with a reliable redshift estimate algorithm in
order to be able to reduce the number of spurious sources while
keeping the same recall rate.
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Appendix A: Confusion matrices

This section reports the confusion matrices for three specific
runs of the direct selection (Sect. 5.3), direct selection with
undersampling (Sect. 5.4), and the reverse selection (Sect. 5.5)
methods. In all cases we used exactly the same training-test split.
Relevant metrics highlighted in bold are (from top to bottom):
the true positives (TP), the number of predicted positives (pP),
the precision and the recall at z > 2.5. The latter two are also
reported in Table 3 for an easy comparison of the performance
of the three methods.

Appendix B: List of newly classified high-z QSO

The 107 new QSO classifications and redshift identified with the
reverse selection method are reported in Table B.1 (available at
the CDS).
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Table A.1. Confusion matrix, precision, and recall for the direct selection method (Sect. 5.3).

Predicted class:
Confusion matrix: Galaxy QSOhighZ QSOlowZ Star other TOTAL

Tr
ue

cl
as

s: Galaxy 26399 1 282 3428 6 30116
QSOhighZ 0 218 129 35 0 382
QSOlowZ 516 82 2571 79 6 3254
Star 84 8 22 5597069 0 5597183
other 408 1 15 5 5 434
TOTAL 27407 310 3019 5600616 17 5631369
Precision: Galaxy QSOhighZ QSOlowZ Star other

Tr
ue

cl
as

s: Galaxy 96.3% 0.3% 9.3% 0.1% 35.3%
QSOhighZ 0.0% 70.3% 4.3% 0.0% 0.0%
QSOlowZ 1.9% 26.5% 85.2% 0.0% 35.3%
Star 0.3% 2.6% 0.7% 99.9% 0.0%
other 1.5% 0.3% 0.5% 0.0% 29.4%
TOTAL 100% 100% 100% 100% 100%
Recall: Galaxy QSOhighZ QSOlowZ Star other TOTAL

Tr
ue

cl
as

s: Galaxy 87.7% 0.0% 0.9% 11.4% 0.0% 100%
QSOhighZ 0.0% 57.1% 33.8% 9.2% 0.0% 100%
QSOlowZ 15.9% 2.5% 79.0% 2.4% 0.2% 100%
Star 0.0% 0.0% 0.0% 100.0% 0.0% 100%
other 94.0% 0.2% 3.5% 1.2% 1.2% 100%

Table A.2. Confusion matrix, precision, and recall for the direct selection method with undersampling (Sect. 5.4).

Predicted class:
Confusion matrix: Galaxy QSOhighZ QSOlowZ Star other TOTAL

Tr
ue

cl
as

s: Galaxy 21622 41 793 807 6853 30116
QSOhighZ 1 362 13 5 1 382
QSOlowZ 67 346 2598 18 225 3254
Star 183999 32456 8528 5371001 1199 5597183
other 113 2 18 0 301 434
TOTAL 205802 33207 11950 5371831 8579 5631369
Precision: Galaxy QSOhighZ QSOlowZ Star other

Tr
ue

cl
as

s: Galaxy 10.5% 0.1% 6.6% 0.0% 79.9%
QSOhighZ 0.0% 1.1% 0.1% 0.0% 0.0%
QSOlowZ 0.0% 1.0% 21.7% 0.0% 2.6%
Star 89.4% 97.7% 71.4% 100.0% 14.0%
other 0.1% 0.0% 0.2% 0.0% 3.5%
TOTAL 100% 100% 100% 100% 100%
Recall: Galaxy QSOhighZ QSOlowZ Star other TOTAL

Tr
ue

cl
as

s: Galaxy 71.8% 0.1% 2.6% 2.7% 22.8% 100%
QSOhighZ 0.3% 94.8% 3.4% 1.3% 0.3% 100%
QSOlowZ 2.1% 10.6% 79.8% 0.6% 6.9% 100%
Star 3.3% 0.6% 0.2% 96.0% 0.0% 100%
other 26.0% 0.5% 4.1% 0.0% 69.4% 100%
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Table A.3. Confusion matrix, precision, and recall for the reverse selection method (Sect. 5.5).

Predicted class:
Confusion matrix: Galaxy QSOhighZ QSOlowZ Star other TOTAL

Tr
ue

cl
as

s: Galaxy 25628 8 657 3389 434 30116
QSOhighZ 0 327 29 24 2 382
QSOlowZ 277 203 2615 77 82 3254
Star 772 54 31 5596316 10 5597183
other 322 1 18 2 91 434
TOTAL 26999 593 3350 5599808 619 5631369
Precision: Galaxy QSOhighZ QSOlowZ Star other

Tr
ue

cl
as

s: Galaxy 94.9% 1.3% 19.6% 0.1% 70.1%
QSOhighZ 0.0% 55.1% 0.9% 0.0% 0.3%
QSOlowZ 1.0% 34.2% 78.1% 0.0% 13.2%
Star 2.9% 9.1% 0.9% 99.9% 1.6%
other 1.2% 0.2% 0.5% 0.0% 14.7%
TOTAL 100% 100% 100% 100% 100%
Recall: Galaxy QSOhighZ QSOlowZ Star other TOTAL

Tr
ue

cl
as

s: Galaxy 85.1% 0.0% 2.2% 11.3% 1.4% 100%
QSOhighZ 0.0% 85.6% 7.6% 6.3% 0.5% 100%
QSOlowZ 8.5% 6.2% 80.4% 2.4% 2.5% 100%
Star 0.0% 0.0% 0.0% 100.0% 0.0% 100%
other 74.2% 0.2% 4.1% 0.5% 21.0% 100%
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