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Abstract
The search for gravitational-wave (GW) signals is limited by non-Gaussian
transient noises that mimic astrophysical signals. Temporal coincidence
between two or more detectors is used to mitigate contamination by these
instrumental glitches. However, when a single detector is in operation, coin-
cidence is impossible, and other strategies have to be used. We explore the
possibility of using neural network classifiers and present the results obtained
with three types of architectures: convolutional neural network, temporal con-
volutional network, and inception time. The last two architectures are spe-
cifically designed to process time-series data. The classifiers are trained on a
month of data from the LIGO Livingston detector during the first observing
run (O1) to identify data segments that include the signature of a binary black
hole merger. Their performances are assessed and compared. We then apply
trained classifiers to the remaining three months of O1 data, focusing specific-
ally on single-detector times. The most promising candidate from our search
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is 4 January 2016 12:24:17UTC. Although we are not able to constrain the
significance of this event to the level conventionally followed in GW searches,
we show that the signal is compatible with the merger of two black holes with
masses m1 = 50.7+10.4

−8.9 M⊙ and m2 = 24.4+20.2
−9.3 M⊙ at the luminosity distance

of dL = 564+812
−338Mpc.

Keywords: gravitational wave detection, machine learning,
convolutional neural network, temporal convolutional network,
inception time, single-detector analysis

1. Introduction

The breakthrough discovery of gravitational waves (GWs) on 14 September 2015 [1],
announced by the LIGO Scientific Collaboration [2] and the Virgo Collaboration [3], opened
the era of the GW astronomy. The detection happened during the first observing run (O1) of
the LIGO detector. With the subsequent observing runs, O2 and O3, performed jointly with
Virgo, the list of detected GW signals has grown to 90 events. While the detected sources
are mainly associated with the merger of binary black holes (BBHs), they also include binary
systems with neutron stars [4–7]. These detections are collected and characterised in the GW
transient catalogs GWTCs [8–11]. On May 2023 the fourth observing run (O4) started with
an increasing detector sensitivity and consequently an enhanced expected rate of detections.

GW transient signals are detected in the data by a variety of data analysis pipelines, see
e.g. [11] for a recent review. In particular, matched filtering [12] is a prominent technique to
search for signals when an accurate waveform model is available, as in the case of compact
star binary mergers. Algorithmically, this consists in correlating the data with a large set of
template waveform models (the ‘template bank’, see e.g. [13] and references therein) that are
representative of all the morphologies the expected signal can possibly take.

To make robust detection statements, those pipelines have to address a major difficulty: the
presence in the data of short-duration noise artefacts, often called ‘instrumental glitches’ [14,
15], that occur sporadically in the data and that can mimic the GW signal [16, 17]. A very
powerful tool to discriminate the signal from noise glitches is time coincidence across two or
more separate detectors (see [18] for a discussion onmulti-detector noise rejection techniques).

Obviously, coincidence cannot be used during periods when only one detector operates.
During the O1 and O2 observing runs, single-detector periods amount to about 30% of the
observation time [19, 20]. During O3, thanks to a more stable and reliable operation and to
the addition of a third detector to the network, this fraction was reduced to about 15% in O3a
[21] and 11% in O3b [22] (the first and second six months parts of O3). In total, converting
the percentages in time span, during O1, O2 and O3, for more than five months of observing
time only one detector was taking data. The O4 science run initiated recently may also have
long periods of single detector times.

The lack of coincidence results in difficulties to disentangle the signal from glitches and to
measure the statistical significance of a trigger to high confidence levels. Several studies invest-
igate ways to resolve these difficulties. Two methods [23, 24] that allow the identification of
GW candidates in single-detector data have been employed in production in the context of low-
latency GW searches [25], enabling the initial identification of GW170817 and GW190425.
Similarly, [26] introduces a framework for assigning significance to single-detector GW events
by leveraging the measured rate of BBH mergers. More recently, [27] studies the possibility
to extend the multi-variate likelihood-ratio statistics used by the GstLAL pipeline to generate
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single-detector events. The likelihood estimation has been recently updated in view of the O4
run [28] and one of the improvements is the addition of a tunable penalty in case of single
detectors candidates to down weight their significance [29]. To extrapolate the significance
measure of single-detector triggers produced by the PyCBC pipeline [30], a method proposed
in [31] allows to recover loud signals in single-detector data. In both cases, it is shown that the
search sensitivity is significantly reduced compared to multi-detector searches.

Despite those developments, single-detector periods have received less attention than the
rest of the observations and are covered in a few studies. Following a ‘multi-messenger’
approach, several works looked for coincidences between data from a solitary GW detector
with gamma-ray observations from the Fermi gamma-ray burst monitor [32–34]. Three
searches for binary mergers in single-detector periods relied on GW data only. Magee et al
[35] presents a search which specifically targets a narrow range of low masses motivated by
the population of known double neutron-star binaries. Two contributions present the results
of searches for binary mergers over the entire range from 1 to 100M⊙ for the component
masses, for the observing runs O1 and O2 [36] and for O3 [31]. The former finds two can-
didate events observed in single detector periods: 25 December 2015 04:11:44UTC with the
LIGOHanford detector and 4 January 2016 12:24:17UTCwith the LIGO Livingston detector.
The first candidate event has a low significance with a probability of astrophysical origin [37]
pastro = 0.12, while the second has a larger significance pastro = 0.47. However, for this event,
an excess power observed in the residual after subtraction of the best-fit waveform from the
data suggests this event may not be of astrophysical origin, and is thus discarded.

Glitches of different types vary widely in duration, frequency range and morphology. It is
difficult to construct a statistical model able to capture the overall complexity of the glitch
populations. Their complex and time-evolving nature makes glitch identification and rejection
a good problem and a use case for machine learning (ML). In principle, this approach allows to
train a classifier able to distinguish between different types of input (glitches versus real GW
signal in our case), and thus to learn a possibly very complex and high-dimensional statistical
model from a set of examples.

As in many scientific fields, the use of ML has recently gained in popularity in the context
of GW astronomy. There is a fairly large body of works pertaining to various aspects ranging
from denoising, glitch classification and cancellation, waveform modelling, searches for GW
signals, astrophysical parameter estimation, population studies (see e.g. [38–41] for recent
reviews).

In the context of GW signal searches, convolutional neural networks (CNNs) [42] have
been investigated to detect BBH signals for both single- and multi-detector cases [43–48].
The primary motivation put forward in those contributions is the computational gains expected
from the use of CNNs compared to matched filtering techniques.

So far a large fraction of those investigations use simulated Gaussian noise [43, 45, 46, 48].
In this case, it is not possible to learn the non-Gaussian component of the instrumental noise.
Few studies use real GW data including glitches [44, 47]. The classifiers obtained in those
contributions are limited to false positive probability (i.e. noise or glitches classified as signal)
of about 1%. This corresponds to a false alarm rate of once every 40min, which is not sufficient
in practice. A recent review [49] compares different approaches on a mock data challenge.

The purpose of this study is to enhance the ability of neural network based searches to
reject noise artefacts and improve their sensitivity, with a particular focus on analysing data
from a single detector. The goal is to achieve a false alarm rate similar to that of current online
searches performed by the LIGO-Virgo-KAGRA collaboration (LVK). The current convention
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defines two selectivity levels [50]: two false alarms per day for marginally significant or ‘sub-
threshold’ events and one false alarm per month for public alerts. We explore various network
architectures, particularly those designed for time series classification [51, 52].

We trained and tested neural network classifiers using a dataset produced from one month
of O1 data collected by the LIGO Livingston detector, during which no GW signals were
detected using the matched filtering based searches.

Section 2 provides details on how the training and testing sets are generated, while section 3
describes the structure of the various neural network classifiers being considered. The per-
formance and efficiency of the classifiers are assessed using testing data, and the results are
presented in section 4. We applied these classifiers to the remaining three months of O1 data,
including segments associated with the three GW events detected during O1. Section 5 sum-
marises the results of this analysis. We checked the classifiers’ response obtained with the
known detected events during O1. A particular focus is then given to the single-detector times.
Interestingly, we found that only one data segment was classified as ‘signal’ by all three clas-
sifiers we considered. This event coincides with the single-detector event found by [36] in the
LIGO Livingston data, as mentioned above, and was downgraded by the same study as a noise
artefact. Following the additional checks we conducted on this event, we arrived at a different
conclusion as they confirmed its compatibility with an astrophysical origin. Finally, section 6
concludes on the applicability of the proposed methodology.

Note that the choice of using only O1 data collected by the LIGO Livingston detector is
completely arbitrary and does not impact the method described. We expect to probe the data
collected in O1 by the Hanford detector and all the other observation runs in future works.

2. Generation of datasets for training and testing

The typical approach for applying MLmethods to GW detection is to treat it as a classification
problem, see e.g. [43–46, 48]. In this approach, we aim to determine whether a given segment
of GW strain data of fixed duration contains an astrophysical signal or not. This problem can
be solved by developing anML-based classifier that is trained using example data. We produce
training data labelled as follows:

• noise: the data are compatible with stationary background noise, i.e. are free of transient
instrumental artefacts (glitches) or known GW events,

• glitch: the data include one or several transient instrumental artefacts (glitches),
• signal: the data include a (simulated) astrophysical signal, added to the stationary back-
ground noise.

This three-class approach differs from other contributions in the literature, which consider only
two classes. The presence of glitches is known to significantly alter the statistical distribution
of the data. By assigning a specific label to data segments containing glitches, the idea is that
this may aid the classifier in achieving improved performance. Furthermore, the relative signi-
ficance assigned to each class could offer valuable information when evaluating the contents
of a given segment.

Training and testing data are extracted from the dataset of the observing run O1, which was
publicly released via the GW Open Science Center (GWOSC) [53]. Specifically, we utilise
the data from the LIGO Livingston (L1) detector spanning one month between 25 November
2015 (GPS time 1132 444 817) and 25 December 2015 (GPS time 1135 036 817). Throughout
this duration, no GW signals were detected by the standard search pipelines.
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Figure 1. Instances of the classes noise (blue), signal (black) and glitch (green).
Top (noise): one-second data segment recorded by LIGO Livingston at the GPS time
1132 550 972.487.Middle (signal): a simulated BBHwaveformwith SNRof 20 (dashed
red line) is injected in the previous timeseries. Bottom (glitch): data recorded at the GPS
time 1132 580 628.41 which contains a low-frequency transient instrumental artefact.

In this period the available L1 data amounts in total to about 13.3 days (1147 457 s), of
which 3.6 days (312 284 s) were in single-detector time, i.e. 27% of the time.

The raw data are sampled at 16 kHz.We have downsampled the data to 2048Hz,8 bandpass-
filtered between 20Hz and 1 kHz and whitened by applying the inverse amplitude spectral
density (ASD) in the frequency domain9. The ASD is estimated over stretches of variable
length, depending on the duration of uninterrupted data-taking periods (minimum duration
is 37 s and maximum is 100 573 s). The data are divided into one-second non-overlapping
segments.

The data are distributed into the three classes introduced above as explained in the next
sections. Representative instances of the three classes are shown in figure 1.

2.1. The noise class

The noise class corresponds to segments that are free of known GW signals, glitches (see next
section) or hardware injections10. All segments in the dataset passed the first criterion, as no
GW signals were confidently detected by standard pipeline over the selected period11. Overall,
a total of 1000 000 samples are obtained in this way from the one-month O1 dataset. Of these,
250 000 are only used to build the signal class for training as discussed in section 2.3, other

8 The method signal.decimate of the software package Scipy [54] is used to downsample.
9 For the preparation of the training and testing data, we acknowledge the use of the following software packages:
GWpy [55], PyCBC [30] and LALSuite [56].
10 During O1, hardware injections, which are simulated signals created by manipulating mirrors in the arms of the
interferometers, were added to the LIGO detectors for testing and calibration. See www.gw-openscience.org/o1_inj.
11 This implies that the noise label is essentially determined by the sensitivity limit of the matched-filtering based
searches.
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250 000 make up the noise samples for training and 500 000 are used both to generate the
noise and signal samples for testing.

2.2. The glitch class

A database of glitches is created using two different sources: the unmodelled transient search
coherent WaveBurst (cWB) [57, 58] and the citizen science project Gravity Spy [59].

The cWB pipeline is an open-source software package designed to search for a wide range
of GW transients without prior knowledge of the signal waveform. To evaluate the analysis
background, cWB uses a resampling technique [57] that involves applying non-physical time
shifts to the data before analysis. Loud, i.e. high signal-to-noise ratio (SNR), background trig-
gers resulting from this procedure are good candidates for glitches. The loudest triggers in
LIGO Livingston with an SNR higher than 5.8 were selected (258 480 glitches). This list was
complemented with 8244 glitches from the Gravity Spy database. These glitches are iden-
tified by the Omicron trigger pipeline [60] with an SNR above 7.5 and can be downloaded
from zenodo [61] selecting the GPS time between 1132 444 817 and 1135 036 817, i.e. in the
one month we are considering in this step of the analysis. The timestamps and duration of the
identified glitches from these two sources are collected in a single list, which is then used to
label the one-second data segments from the O1 observing run. If the glitch duration is shorter
than 1 s, the associated segment is labelled as a glitch. Note that the glitch has a random posi-
tion within the one-second window. If the glitch duration is longer than 1 s, all segments that
overlap with that glitch duration are labelled as glitch. Only the glitches whose time belongs
to the data segments available on GWOSC (i.e. when the detector is on observing mode) are
considered. In many cases, the glitches are closer in time than one second, so multiple glitches
can fall in the same one-second segment.

The number of glitches over a given period is determined by the occurrence frequency of
those noise artefacts, typically tenths of seconds to tenths of minutes depending on the period,
and on the typical glitch amplitude. As glitches occur sporadically, this represents a small
fraction of the total observation time, thus resulting in a smaller number of samples in the
glitch class. From the one-month O1 data, a total of 150000 segments receive the glitch label.

2.3. The signal class

The samples from the signal class are produced by adding simulated GW signals from BBH
systems to the one-month O1 data in periods without known GW signals or hardware injec-
tions. For the training set, the data segments used to generate samples of the signal class are
not utilised for the noise class nor the glitch class, while for the testing set, the same data seg-
ments are used for both the noise and signal classes. To generate the astrophysical signals,
the waveform model SEOBNRv4 [62] is employed, with a lower frequency cutoff of 30Hz. The
simulated signals are sampled, whitened, and band-pass filtered in the same manner as the data
segments.

The masses of the BBH used for generating the simulated signals in the class signal are
chosen to ensure that they fall within the mass range observed by the LVK and that the sig-
nals are short enough to be contained within the one-second data segments. Specifically, the
component massesm1 andm2 are chosen randomly, with the constraint thatm1 > m2 ⩾ 10M⊙
and the total massM= m1 +m2 is uniformly distributed in 33M⊙ ⩽M⩽ 60M⊙. We consider
non-spinning BH, so the dimensionless spin magnitudes χ1 and χ2 are set to 0. The phase
at coalescence and the polarisation angle are drawn uniformly in (0,2π), and the inclination
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angle in (0,π). Since the focus is on a single detector, the right ascension and declination are
not particularly important and are thus fixed to zero.

The amplitude of the added signals is computed such that the corresponding optimal SNR
ρopt is uniformly distributed between 8 and 20. Following [63], it is defined as

ρ2opt = 4
ˆ ∞

0

|h̃( f) |2

Sn ( f)
df, (1)

where h̃( f) denotes the Fourier transform of the template h(t) and Sn( f) is the power spectral
density of the detector noise. To generate the signals, a fiducial luminosity distance dL of
100Mpc is initially chosen, and then scaled to obtain the desired ρopt. The final values of dL
range from 1 to 1300Mpc approximately.

The simulated signals are added at a random position within the segment while ensuring
the merger part of the signal is completely contained in the segment. More precisely, the whole
signal is shifted in such a way that the merger time is in the interval [0.25 s, 0.8 s]. A total of
750 000 signal samples are generated.

Overall, the training set consists of 250000 segments for the noise class, the same number
for the signal class, and 70000 for the glitch class. A 20% fraction of the training set is alloc-
ated for validation. The testing set, used to evaluate the classifier, comprises 500000 samples
for both the noise and signal classes, and 80000 for the glitch class. This ensures sufficient
statistical data for characterising the classifier’s performance. In total, the training and testing
datasets comprise 1650 000 one-second segments, with 45% for the noise class, 45% for the
signal class, and 10% for the glitch class. This amounts to a storage space of 26 gigabytes.
Out of the total number of segments, 28% is utilised for training, 7% for validation, and 65%
for testing.

3. Classifier architectures

This section discusses the type of neural network architectures considered in this study.
Similarly to other works [43–48], the classifier is directly fed by the one-second segment of
strain time series, so a vector size of 2048. We experiment12 with three different network
architectures, namely the CNN, as well as two other architectures specialised for time-series
classification: temporal convolutional network (TCN) [51] and inception time (IT) [52]. The
last two, to our knowledge, have never been tested with this type of problem, even if some
ideas on which they are based have been used in GW astronomy for other kind of analyses, for
example in the context of continuous GWs searches in [66] or for binary neutron star searches
in [67].

The architectures are described in more detail in the following subsections. The model
hyperparameters provided below have been tuned after a coarse exploration of the parameter
space.

3.1. CNN

CNNs were first introduced for image classification [42]. They are now used for a wide variety
of tasks, including the detection of GW signals [43–48]. In this study, we tested a range of
CNNs similar to those considered in previous works.

12 Implementations are based on the TensorFlow library [64] with the Keras API [65].
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Table 1. Structure of the CNN considered in this study. The type of the layer is either
convolutional (Conv) or fully connected (Dense). The activation function is either the
rectified linear unit (relu) or the softmax function [42].

Layer number 1 2 3 4 5

Type Conv Conv Conv Conv Dense
Number of filters 256 128 64 64 —
Kernel size 16 8 8 4 —
Stride length 4 2 2 1 —
Activation function relu relu relu relu softmax
Dropout rate 0.5 0.5 0.25 0.25 —
Max pooling 4 4 2 2 —

We limited ourselves to shallow networks with five layers, four convolutional layers, and
one final fully connected embedding layer. For simplicity, we only report here on the best-
performing CNN, whose structure is detailed in table 1.

The convolutional layers are defined by the number of output filters, the length of the 1D
convolution window (kernel size), the stride length of the convolution, and the activation func-
tion. The dense layer only requires the definition of the activation function. The input of inner
convolutional layers is downsampled with a max pooling operation over a window size indic-
ated in the table. The output of convolutional layers is processed by a dropout layer that ran-
domly sets the input units to 0 with the frequency rate specified in the table. A global average
pooling, followed by a dropout with a rate of 10%, is applied to the output of the last convo-
lutional layer.

3.2. TCN

TCN [51, 68] is a neural network architecture specifically developed for sequence modelling
problems. TCN has been shown to outperform generic state-of-the-art architectures over a
diverse range of tasks and datasets. The TCN architecture is based on causal convolutions,
where an output at time t is only convolved with past inputs from the previous layer. This
allows the network to collect information from further in the past, using a combination of
deeper networks (augmented with residual layers) and dilated convolutions where the filter is
‘dilated’ by inserting gaps between the filter coefficients. The size of the gaps is fixed to d− 1
where d is referred to as the dilation factor.

In this study, we have tuned the hyperparameters of the TCN model to find a compromise
between the best performance and a reasonable training time. We ended up using a network
with a TCN layer consisting of N= 6 dilated convolutional layers with 32 filters, a kernel size
of k= 16, default values of dilation factors dk=1...6 = (1,2,4,8,16,32) for the six convolu-
tional layers, and a dropout rate of 0.1. The output of the TCN layer goes into a final dropout
layer with a rate of 0.5, and a dense embedding layer closes the model.

A key parameter that governs the training efficiency is the receptive field, which is the size
of the region in the input data that produces a given feature in the output. The receptive field
of the TCN can be expressed as R= 1 + 2(k− 1)dtot where dtot =

∑
dk [51]. With the above

configuration, we have R≈ 1900. The data used in this work have a sampling rate of 2048Hz
so each segment of data has 2048 points. The training with TCN is effective when R is much
larger than the length of the input sequence [51]. To satisfy this constraint, only for this model,
it is necessary to downsample the input data to 1024Hz, therefore producing an input vector
of size 1024.
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3.3. IT

IT [52] is a deep network ensemble designed specifically for time series classification. It lever-
ages the concept of residual networks and incorporates Inception modules [69]. In a nutshell,
the Inception module first produces a one-dimensional summary of the input multivariate time
series (this is the ‘bottleneck’ layer), and then convolves this summary through multiple filters
of different lengths, leading to a multivariate output that provides inherently multi-resolution
features. The module output is finally reduced by max pooling (pool size of 4) before passing
to the next module.

The IT architecture is composed of five ResNet networks with a sequence of depth d incep-
tion modules, with two residual blocks. The outputs of the five models are combined through
a global average pooling and a final softmax layer, used to produce the classification probab-
ilities for the different classes. In this study we have used the standard implementation of IT
provided by the authors [52] with networks of depth d= 10, each with a bottleneck size of 32
processed through 32 filters with kernel sizes 20, 40 and 80.

3.4. Training process

The three classifiers are optimised using the training set described in section 2 to minimise the
categorical cross-entropy loss function. The default implementations of the Adam optimiser
are utilised, with a batch size of 24 [64]. The training procedure is repeated 10 times with dif-
ferent (random) initialisations of the model weights and dropouts, and the instance exhibiting
the best receiver operating characteristic (ROC) curve on the testing dataset (as explained in
section 4) is chosen. Note that this evaluation cannot be done with the validation dataset, as
it does not provide enough statistics to compute the ROC in the relevant regime of low false
alarm rates.

Throughout the training process, the model’s area under the ROC curve [70] is evaluated
on the validation data, and the model with the highest value is ultimately selected. The CNN,
TCN, and IT models are trained for 50, 150, and 20 epochs, respectively. The best models are
obtained at the 24th epoch for CNN, the 34th epoch for TCN, and the 5th epoch for IT13. On
the Tesla K40d GPU we used, the training times per epoch were 220 s for CNN, 1000 s for
TCN, and 3320 s for IT.

3.5. Decision statistic

The final objective is to detect with high confidence the segments with a true astrophysical
signal, i.e. to classify them as signal and to reject the other segments as noise or glitch14.
We aim to constrain false alarms to a rate of two per day (similar to the current online search
pipelines). This implies that we should reject all but one noise or glitch segment from the
testing set in 1.7× 105 trials.

The classifiers output the probability of class membership for each of the classes, that is
three numbers between 0 and 1, summing to 1. The final detection is performed by applying
a threshold to the membership probability Ps assigned to the signal class, which thus defines
our decision statistic. The class membership probability is computed by the softmax activation
function applied to the raw output (the ‘logits tensor’) of the fully connected embedding layer

13 After the 5th epoch, the IT model displayed signs of overfitting.
14 The two classes noise and glitch will be later merged a posteriori into a single class associated with the absence
of an astrophysical signal.
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which concludes the classifiers. Because of the high-confidence level required, this threshold
is very close to 1, thus requiring attention to the numerical precision for the evaluation of the
membership probability. (This issue related to the precision of floating-point arithmetics was
already noted in [48]). This has consequences on the way the classification loss is computed
from the membership probability at the training stage. We found that the categorical cross-
entropy loss should be directly computed from the logits tensor rather than from the class
membership probability after the softmax transformation. The impact of this numerical issue
is shown later in section 4.3.

4. Classifier evaluation with the testing data

This section describes the results obtained with the three classifiers presented above applied
to the testing set.

The classifiers all exhibit poor separation power between the noise and glitch classes. This
can be attributed to several factors. The prevalent factor is the absence of a distinct boundary
between the two classes. To produce a large sample of glitches, the criterion used to identify
the training samples of the glitch class had to be relaxed, thus resulting in the selection of
glitch instances with low amplitude, that confine with noise segments where the background
noise present some level of non-stationarity. The relative class imbalance of the glitch class
being under-represented by a factor of 3.5 compared to the noise class in the training set is
also likely to play a role.

To support this interpretation we trained and tested the classifiers with much smaller data-
sets in which the three classes had the same number of samples. In those trials, the glitch
samples only included distinct noise artefacts of large amplitude. The resulting classifiers did
not have the confusion issue as we observe here.

The initial assumption that a three-class division would enhance classification performance
thus turned out to be incorrect, at least with this dataset. Consequently, we proceed by combin-
ing the noise and glitch classes into a single class representing the absence of an astrophysical
signal.

4.1. Noise rejection

We first assess the noise rejection capabilities of the classifiers. Figure 2 compares the distri-
butions of the decision statistic Ps (the membership probability assigned to the signal class)
when the input segment belongs to each of the three classes. The Ps distributions obtained with
samples from the noise or glitch classes have very similar shapes, reflecting the intrinsic sim-
ilarity of those two classes (see above). The best classifier is the one that provides the greatest
contrast between the distributions of the Ps statistic obtained in the presence of a signal (blue)
versus noise or glitch (red dot-dashed and black).

The distributions obtained for the noise or glitch classes exhibit maxima at zero for the
TCN and IT classifiers, while the maximum is shifted to around 0.1 for CNN. Moving from
the peak to Ps higher values, the distributions show a monotonic decay until the last bin Ps = 1
where distributions exhibit an count increase which is more prominent for TCN15. The TCN
classifier appears to reach the lowest background ≲10−2 in normalised count units.

Since our objective is to achieve high-confidence classification, we are primarily interested
in the immediate vicinity of Ps = 1. This motivates us to reparameterise the Ps statistic as

15 We relate this increase in the background count to an issue with the floating-point precision.
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Figure 2. Distributions of Ps (the class membership probability assigned to the signal
class), conditioned on the class of the input segment from the testing set: signal (blue),
noise (dot-dashed red), or glitch (black). These distributions were computed for the
CNN (left), TCN (middle), and IT (right) architectures. The histograms are normalised
to have a unit sum. The classifiers do not distinguish between samples from the noise
and glitch classes, thus resulting in practically identical probability distributions (see
section 4 for a discussion on this point).

λ :=− log10(1−Ps). While Ps ranges from 0 to 1, λ can theoretically take values across the
entire real line. Our main focus lies in the range of large λ values, that is λ≳ 7 because the
computations are performed in single precision16. The most stringent criterion is to require
Ps = 1 at machine precision, which corresponds to λ=∞. The number of noise and glitch
samples in the testing set that satisfy this selection criterion is 0, 1, and 2 for the CNN, TCN,
and IT classifiers, respectively. Such rejection power (between 0 and 2 false alarms in 5.8× 105

trials) is in agreement with the false-alarm rate targeted initially.

4.2. Signal extraction

We proceed to assess the classifiers’ ability to extract signals. Figure 2 illustrates the distribu-
tions of the decision statisticPs when the input segment belongs to the signal class, represented
in blue. As anticipated, all distributions exhibit a peak at Ps = 1. However, the peak appears
narrower for the IT classifier. To focus on the region of interest near Ps = 1, we employ the λ
reparametrisation, as depicted in figure 3. This figure also incorporates the dependencies on the
SNR of the injected GW signal and the chirp mass M of the source binary. The distributions
are computed separately for three ranges of chirp mass M: low, mid, and high, correspond-
ing to M values between 13 and 17M⊙, 17 and 21M⊙, and 21 and 26M⊙, respectively. The
histograms on the right-hand side are computed with the samples of the signal class that are
classified with Ps = 1, showing their distribution in terms of SNR for the three chirp mass
ranges.

It is worth noting that we have either λ≲ 7.5 or λ=+∞ (i.e. Ps = 1).17 In a sense, the
latter case seems to accumulate all samples with λ≳ 7.5. From the left column of the figure,
it is apparent that the IT classifier assigns larger λ (or Ps) values more uniformly over the
full range of chirp mass and to lower SNR. In contrast, the CNN fails to do so for the lower
chirp mass interval shown in blue. This is confirmed by the histograms in the right column,

16 With single-precision floats, the closest Ps can get to 1, without being 1, is Ps = 1− 2−24. For this value of Ps we
have λ=− log10(1−Ps)≈ 7.22.
17 This comes from the use of single-precision floating point numbers (see discussion above).
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which indicate that the TCN and IT classifiers have a higher overall count (approximately
76%, compared to 65% for CNN) and extend to lower SNR values. In general, the histograms
with Ps = 1 tend to be more populated at large SNR. For the samples classified with Ps < 1,
the correlation between the SNR and λ is visible for IT and less clear for the other classifiers,
for which the chirp mass seems to play a more important rôle.

4.3. Global assessment with ROC

To fully characterise the performance of the classifier, the noise rejection and signal extraction
capabilities have to be evaluated jointly. This can be done by computing the ROC curves [70].
The classification efficiency Sth/Stot and false alarm rateNth/Ntot are evaluated from the testing
set, with Sth and Nth, the number of signal samples and noise and glitch samples with a Ps

value above some threshold, and Stot and Ntot the total number of samples for each category.
Note that since each sample has a duration of 1 s, Ntot is intended here as the total duration in
seconds of noise and glitch samples, so Nth/Ntot is measured in s−1. By varying the threshold,
one obtains the ROC curves in figure 4 which displays the classification efficiency versus the
false alarm rate. The TCN and IT classifiers appear to have similar ROC curves and show
a clear improvement with respect to CNN. Figure 4 also shows the ROC computed for two
instances of the IT architecture, when the categorical cross-entropy loss is calculated from the
logits tensor (green) and when it is calculated from the class membership probability after the
softmax transformation (red), see section 3.5 for an explanation and discussion. The shaded
area represents the range between the best and worst models among the ten instances computed
at training. When softmax is used, the uncertainty in the performance is larger (the shaded area
is wider) and the classification accuracy reached at small false alarm rates is lower.

Figure 5 shows the classification efficiency for a given false alarm rate set to 10−5 s−1 (that
is 2 per day), as a function of the injected SNR as defined in equation (1). The classifiers
TCN and IT give similar efficiencies and surpass uniformly over CNN. Note that the effi-
ciency shown in this figure is averaged over the full chirp mass range and thus does not show
the differences evidenced in figure 3. Overall, signals with SNR = 10 can be detected at the
considered significance level with a good probability, larger than 50%.

Another standard metric to assess the performance of the classifier is the sensitive distance,
see e.g. [71]. This metric can be computed by running the classifiers over a new test set for
the signal class generated using the same configuration as above, but with sources distributed
uniformly in volume instead of uniformly in SNR18. We obtain a sensitive distance of about
500Mpc for the IT, TCN and CNN classifiers for a false alarm rate of 10−5 s−1. The sensitive
distances measured by [49] (dataset 4, using O3a data from LIGO Livingston and Hanford)
range from 700 to 1700 Mpc approximately with the same requirement on the false alarm rate.
In this range, we have ignored the method ‘TPI FSU Jena’ [48] whose sensitive distance drops
close to 0 Mpc when applied to real data. This comparison is only indicative as the search
sensitivities evaluated in [49] are for a two-detector network.

18 The parameters other than the distance are distributed as described in section 2.3. The classifiers previously trained
with the sources distributed uniformly in SNR are used for this evaluation.
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Figure 3. Distribution of the statistic λ :=− log10(1−Ps) obtained with testing
samples from the signal class and computed for the three considered classifiers: CNN
(top), TCN (centre) and IT (bottom). The column on the left shows a kernel density
estimate of the λ distribution for the samples with Ps < 1, thus leading to a finite value
for λ. The shaded area is the 50% containment region, and the line is the 90% contain-
ment region. Those distributions are shown versus the SNR of the injected GW signal
and computed separately for three ranges of chirp mass. The column on the right shows
a histogram for the samples with Ps = 1. The signal samples detectable with high con-
fidence fall in the range of large λ≳ 7 (i.e, Ps values very close or equal to 1).
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Figure 4. ROC curves for the three considered classifiers, CNN, IT, and TCN, illustrat-
ing the classification efficiency versus the false positive rate. Each classifier has been
trained ten times, and the continuous line represents the result obtained for the best
model, while the shaded area covers the range from the best to the worst model. The left
panel displays the TCN (orange) and CNN (blue) ROC curves. In the right panel, the
ROC curves are shown for two instances of the IT architecture: one trained with softmax
activation (red) and another without softmax activation (green) (refer to section 3.5).
The TCN ROC curve is reproduced in this panel as a dashed orange line to facilitate
comparison.

Figure 5. Classification efficiency versus SNR for a false alarm rate of 10−5 s−1. The
classifiers TCN and IT give similar efficiencies and surpass uniformly over CNN.
Overall, signals with SNR = 10 can be detected at the considered significance level
with a good probability, larger than 50%.

5. Application to the remaining O1 single-detector data

This section presents the results of applying the different classifiers to the remaining O1 data
from the Livingston detector. Our primary focus is on the IT classifier, while the results for
the other models can be found in appendix.
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Figure 6. Evolution of the statistic Ps produced with IT classifier versus the relative
delay∆t of the analysis window to the O1 event merger time (GW150914, GW151012
and GW151226). For ∆t=−1 s, the analysis window only includes the initial part of
the signal (inspiral), whereas, for∆t= 0 s, the analysis window starts at the merger time
and thus only includes the final part (merger and ringdown).

5.1. Analysis of known O1 GW events

We first investigate how the three events detected in the O1 data [8] by matched filtering
searches are classified by the considered models. The statistic Ps is evaluated for different
positions of the one-second window, that is for different time delays ∆t between the start of
the analysis window and the merger time. This definition implies that, for∆t=−1 s, the ana-
lysis window only includes the initial part of the signal (inspiral), whereas, for ∆t= 0 s, the
analysis window starts at the merger time and thus only includes the final part (merger and
ringdown). Figure 6 shows the evaluation of Ps between those two extreme cases for the IT
model for GW150914, GW151012 and GW151226 (see also appendix).

As expected, when the merger is not included in the analysis window, the classifier is not
able to detect the presence of the signal. GW150914 appears to be loud enough to be always
identified with Ps = 1, regardless of its position in the time window, even if it is partially vis-
ible. GW151012 is only detected with Ps ∼ 0.9 when the merger is at the centre of the analysis
window. GW151226 is not detected (i.e. Ps is always below 0.2). This is expected as the binary
component masses are outside the range used to generate the astrophysical signals in the sig-
nal class of the training data. Both GW151012 and GW151226 have single detector optimal
SNRs for Livingston from parameter-estimation analyses lower than the minimum value of
8 we used to train the network (namely, 5.8+1.2

−1.2 for GW151012 and 6.9+1.2
−1.1 for GW151226

according to table V of [8]).

5.2. Analysis of the remaining O1 data

We analysed all the remaining L1 data in O1 excluding the month we used to train
and test the classifiers (see section 2). This corresponds to the period between GPS =
1126 051 217 (9 December 2015 00:00:00UTC) and GPS = 1132 444 817 (25 November
2015 00:00:00UTC) and between GPS = 1135 036 817 (25 December 2015 00:00:00UTC)
and GPS = 1137 254 417 (19 January 2016 16:00:00UTC). In this period we excluded the
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Figure 7. Distribution of the λ=− log10(1−Ps) statistic (shown in blue) obtained
using the IT classifier on the remaining O1 dataset (refer to section 5.2 for details).
The segments with Ps = 1 have been assigned a value of λ= 8 for plotting purposes.
The pink histogram corresponds to a subset labelled as ‘Blip’ glitches by Gravity Spy
[72]. The markers at the top indicate the highest values for the three O1 events displayed
in figure 6. Please note that the vertical position of these markers is arbitrary.

intervals of ±1 s around the chirp time of the three known events (see previous section). This
amounts to a total of 4216 489 s (about 49 days), of which 1054 564 s (about 12 days) are
single-detector times, corresponding to 25% of the total. This data set is whitened following
the same procedure used to produce the training set (the ASD was calculated from periods of
non-interrupted data taking with 26 s minimum and 146 978 s maximum). The data are then
divided into non-overlapping one-second segments that are processed through the three classi-
fiers. For each, we used the best-performing model on the testing data. The processing time for
the full data set is about 4 h per model on NVIDIA Tesla V100S GPUs, but most of this time
is taken to load the data, the extraction of the model predictions takes about 8min for CNN,
18min for TCN and 52min for IT. No data quality information was used, so this analysis is
solely based on the GW strain data.

Figure 7 shows the distribution of the λ=− log10(1−Ps) statistic obtained with the IT
classifier (similar plots can be found in appendix for the other models). To find GW signals
in these data we apply the most restrictive selection cut, by requiring Ps = 1 (at machine pre-
cision). In other words, detected events correspond to segments classified with Ps = 1. Given
the result of the previous section, this implies that, with this selection cut, GW150914 would
be the only detected event among the three known detections during O1. We recall that this
selection cut corresponds to a false-alarm rate of≲ 4× 10−6 s−1 (that is one false alarm per 3
days) and a classification efficiency of 76% when estimated on the testing set, see sections 4.1
and 4.2. Based on these results, we estimate from basic counting statistics that the maximum
number of false alarms expected for this analysis should be 29, 43 and 55 for CNN, TCN
and IT respectively at 95% level for the full data set, and 9, 13 and 16 when restricting to the
single-detector part.

For the IT classifier, a total of nine segments pass the selection cut, with two occurring in
single detector time at GPS = 1131 289 775 (11 November 2015 15:09:18UTC) and GPS =
1135 945 474 (4 January 2016 12:24:17UTC). For the CNN and TCN classifier, we obtain 4
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and 105 segments passing the cut, with 2 and 14 falling in single detector periods. The results
are thus consistent with the expectations for CNN and IT, while there is a clear excess with
TCN.We have observed that a significant fraction of the triggers comes from two time intervals
around 20 October 2015. Our interpretation is that the data from those periods could differ in
nature from those of the training set, and TCN may be sensitive to this difference.

Interestingly there is only one segment passing the selection cut for all three classifiers:
GPS= 1135 945 474 (4 January 2016 12:24:17UTC) which we investigate further in the next
section. As single-detector searches cannot employ statistical resampling techniques with time
shifts [73], we can only provide an upper limit on the false alarm rate for this detection. The
upper limit is estimated to be 1 event every 49 days, based on the available data from the
three-month analysis period. This segment on 4 January 2016 corresponds to the event iden-
tified in the Livingston detector data during the O1 single-detector periods using a standard
matched-filtering-based search, as reported in [36]. However, this candidate is subsequently
eliminated by the authors of [36] after examining the residual obtained by subtracting the best-
fit waveform from the data, since excess power is observed in the residual at frequencies below
80Hz.

5.3. Detailed analysis of the 4 January 2016 event

We have performed a number of detailed checks of the 4 January 2016 event. We have per-
formed a ‘visual’ inspection with the time-frequency constant-Q transform [55, 74]. Figure 8
provides a time–frequency representation of the entire segment. A transient is visible ∼0.37 s
after the start of the segment, at a frequency of about 150Hz. In the magnified view, the shape
of the transient is clearly indicative of a frequency modulated chirp-like transient.

The Gravity Spy database [72] has marked this specific GPS time classified as being an
instrumental artefact of the ‘Blip’ type. The term refers to a well identified family of instrument
glitches whose origin is still largely unknown (see, e.g. [14, 75] for more details). Generally,
‘Blip’ glitches do not exhibit a chirping frequency (see figure 1 of [76] for a typical example).
To complement this initial inspection, figure 7 gives in pink the statistic λ (or equivalently Ps)
of the 600 blip glitches listed in Gravity Spy overlappingwith the part of theO1 dataset being
analysed. The resulting distribution is compatible with the overall background distribution.
The 4 January segment appears to be an outlier with respect to the blip glitches identified in
the data.

Further, we checked if the transient signal can be fitted by a GW waveform model asso-
ciated to a compact binary merger. To do so, we ran the Bayesian inference library Bilby
[77] and used the IMRPhenomXPHM waveform model [78]. It is assumed that the component
spins are co-aligned with the orbital momentum. For the rest of the source parameters, gen-
eric and agnostic priors are assumed, along with a standard Λ-CDM cosmology model with
H0 = 67.9kms−1Mpc−1 [79]. The analysis did not include a marginalisation over calibration
uncertainties. The analysis results in a signal-versus-noise log Bayes factor of 47. The estim-
ated time of arrival of the merger at the detector is GPS = 1135945474.373+0.076

−0.07 and the
measured optimal SNR is 11.34+1.8

−1.6.
Figure 9 shows the result of the fit in the time domain, by comparing the whitened data in

orange to the reconstructed waveform corresponding to the maximum likelihood fit (green),
and from the posterior mean (blue), shown with the 90% credible belt. We do not visu-
ally identify any notable residual after subtraction of the best fitting waveform as shown in
figure 10. As an independent check of the nature of the signal, figure 9 also includes the wave-
form estimate produced by the denoising convolutional autoencoder described in [80] (dashed
red). The reconstructed waveforms are in good agreement, following a similar phase evolution,
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Figure 8. Time–frequency representation of the segment at 4 January 2016
12:24:17UTC (GPS= 1135 945 474 (s) recorded by the LIGO Livingston detector. The
top panel shows the entire segment over a frequency range between 50 and 800Hz. The
bottom panel is a detailed view that focuses on the transient signal at t∼ 0.37 s with a
zoom in the frequency range between 50 and 500Hz. This representation is obtained
through a constant-Q transform [55] with quality factor Q= 12. To facilitate compar-
ison, the dynamic range is fixed, following a similar approach as described in [36], and
the colormap is saturated at a maximum value of 30 for the normalised energy.

except for the initial and final parts of the signal, where the denoiser’s reconstruction is not
optimal because of its low-frequency cut-off (see [80]), and lower SNR of the signal. In addi-
tion, we note that the denoising autoencoder was trained on the waveform family SEOBNRv4
which is different than the one used for Bilby (IMRPhenomXPHM), which may contribute to
differences.

Following [80] we calculate the SNR of the denoised waveform using equation (1) and
obtain a value of 9.7. Bacon et al [80] investigates the ability of the denoising algorithm to
denoise data in the presence of glitches depending on the denoised SNR, see figure 5 of [80].
A value of 9.7 is shown to be sufficiently high to hint an astrophysical origin of the signal.
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Figure 9. Comparison of the whitened L1 data (orange line) with the reconstructed
waveform obtained from the posterior mean (dotted blue line), and from the max-
imum likelihood fit (solid green line) both computed using Bilby, and the 90% credible
interval (blue) along with the ML denoising convolutional autoencoder neural network
described in [80] (dashed red line).

Figure 10. Time–frequency representation of the residual after the subtraction of the
maximum likelihood fit waveform obtained with Bilby (green line in figure 9) from the
data segment at 4 January 2016 12:24:17 UTC (GPS= 1135 945 474 (s). This represent-
ation adheres to the same settings as in figure 8, utilising a frequency range between 50
and 500Hz, a constant-Q transform with a quality factor Q= 12 and the dynamic range
is capped at a maximum of 30 for normalised energy, aligning with [36] to facilitate
comparison. No excess power is visible in this plot.

This candidate signal was also identified by [36] using standard matched filtering tech-
niques, but the event was subsequently downgraded to a noise artefact due to an excess
observed in the residual. Figures 8 and 10 are produced with similar dynamic scale, col-
our range and time-frequency resolution as in [36]. Therefore, the mismatch either comes
from a difference in the parameters estimated for the best fitting waveform (unfortunately, not
included in [36]), from the difference in the waveform model (IMRPhenomPv2 was used by
[36]) or both.

Above checks are all compatible with the event being of astrophysical origin. The corner
plot in figure 11 displays the posterior distribution of the source parameters including the
binary component masses, spins and source distance. Since only one detector is available, the
source direction is not localised in the sky. The 90% credible intervals for those parameters are:
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Figure 11. Posterior distribution of the chirp mass M, luminosity distance, component
masses m1 and m2, and effective spin χeff for the 4 January 2016 event (see section 5.3
for details).

the measured (redshifted) chirp massM= 30.18+12.3
−7.3 M⊙, the (redshifted) component masses

m1 = 50.7+10.4
−8.9 M⊙ and m2 = 24.4+20.2

−9.3 M⊙, the binary effective spin χeff = 0.06+0.4
−0.5 and the

luminosity distance dL = 564+812
−338Mpc; see [81] for a definition of those physical parameters.

Overall, these values are consistent with the observed population of BBH to date.

6. Conclusions

This contribution demonstrates the viability of training neural network classifiers on real
detectors’ data for analysing single-detector observing periods of ground-based GW detectors.
We show that architectures specifically designed for time-series classification, such as IT or
TCN, outperform the standard CNN typically used so far. The SNR required to reach 90%
classification efficiency with IT and TCN is lowered by 15% compared to CNN. The models
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were trained with one month of the observing run O1 data from the LIGO Livingston detector.
When applied to the remaining three months of O1 data, the classifiers independently detect
a plausible GW signal of astrophysical origin on 4 January 2016. The various diagnostics we
performed substantiates the possibility of its astrophysical origin.

Operationally, we propose an approachwhere themultiple detector data from the first month
of an observing run, labelled by standard matched filtering-based pipelines, are used to train
the neural network models. The resulting classifiers can then be applied to the remaining data
collected during single-detector periods. Once trained, the computational cost is such that the
classifiers can produce low-latency triggers. However, the poor sky localisation obtained with
only one detector limits the relevance of this approach.

The current approach faces two limitations: (i) using real data for training and testing inher-
ently limits the statistical characterisation of these algorithms and their noise rejection capab-
ilities, as already highlighted in [49] and observed with the excess of triggers produced by the
TCN classifier; (ii) there is a technical issue arising from the use of bounded selection statist-
ics (i.e. class membership probabilities in our case) that leads to numerical intricacies. Those
issues can be tackled in the future by resampling techniques for (i), and using double precision
floating point numbers for (ii). More generally, due to the absence of a mathematical theory
for neural networks, their precise statistical characterisation on noisy data remains an open
question. Consequently, research in this field is limited to a trial and error heuristic approach.

This contribution opens up new possibilities for analysing the fairly large single-detector
data set. Applying the proposed classifiers to other LIGO-Virgo observing runs and broaden-
ing the parameter space to include lower masses and effects such as higher-order modes or
precession would be interesting directions for future work.
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doi.org/10.5281/zenodo.11093596 [82].
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Appendix. Additional results

In addition to the figures presented with the IT classifier in section 5, we provide here the
corresponding figures for the CNN and TCN models.

This includes the analysis conducted with known O1 GW events in section 5.1. Comparing
figures 6 and A2, we observe that GW150914 is the only event classified with Ps = 1 by all
classifiers, while GW151012 and GW151226 never satisfy this selection criterion. For TCN,
the Ps statistic is particularly low for both of these events, whereas CNN yields the highest Ps

value.
We also present background histograms obtained with the remaining O1 data, similar to

figure 7 in section 5.2. Figure A1 shows the same distribution for CNN and TCN. The dis-
tribution obtained with CNN decays faster than the other two models but exhibits a tail that
reaches the extreme point, Ps = 1. CNN appears to be more sensitive to the presence of blip
glitches, as the total number of blip glitches with λ> 3 is twice as high as the number in the
other two models.
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Figure A1. Distribution of the λ=− log10(1−Ps) statistic (shown in blue) obtained
using the CNN (top panel) and TCN (bottom panel) classifiers on the remaining O1
dataset (refer to section 5.2 for details). The segments with Ps = 1 have been assigned a
value of λ= 8 for plotting purposes. The pink histogram corresponds to a subset labelled
as ‘Blip’ glitches by Gravity Spy [72]. The markers at the top indicate the highest
values for the three O1 events displayed in figure 6. Please note that the vertical position
of these markers is arbitrary.
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Figure A2. Top panel: evolution of the statistic Ps produced with CNN classifier versus
the relative delay ∆t of the analysis window to the O1 event merger time (GW150914,
GW151012 and GW151226). For ∆t=−1 s, the analysis window only includes the
initial part of the signal (inspiral), whereas, for ∆t= 0 s, the analysis window starts at
the merger time and thus only includes the final part (merger and ringdown). Bottom
panel: the TCN classifier results.
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