
A Reduced Order Model for the Stable 
LC-Filter Design on Shipboard DC Microgrids 

Andrea Alessia Tavagnutti  
Dept. of Engineering and Architecture 

University of Trieste 

Trieste, Italy 
andreaalessia.tavagnutti@phd.units.it 

Stefano Pastore  
Dept. of Engineering and Architecture 

University of Trieste 

Trieste, Italy 
pastore@units.it

Daniele Bosich  
Dept. of Engineering and Architecture 

University of Trieste 

Trieste, Italy 
dbosich@units.it 

Giorgio Sulligoi  
Dept. of Engineering and Architecture 

University of Trieste 

Trieste, Italy 
gsulligoi@units.it  

Abstract—In advanced ships, the power request is 

increasing as most of the loads, including propulsion, are 

electrically supplied. This aspect represents a challenge when 

focusing on the dynamics performance in balancing the power 

flows and when considering the large amount of energy to be 

managed. To this issue, the DC technology is an effective 

solution to prioritize the flexibility of shipboard power 

systems and for a better use of onboard energy. A DC 

shipboard microgrid is a complex system, incorporating 

several controlled converters. Between the main priorities, 

certainly the system stability has a prominent role. Indeed, 

unstable interactions among controlled converters and their 

filtering stages can arise during the ship operation, thus 

eventually compromising the ship mission. As the analytical 

stability assessment on this controlled system is not feasible, 

then equivalent models or order reductions help when 

investigating on stability performance. In this work, a 

cascade-connected shipboard DC system is studied, and an 

analytical expression of its stability boundaries is attained. 

The stability results are verified by means of circuital 

simulations to identify when the load filters are negligible, 

then achieving the chased order reduction. 

Keywords—small-signal stability, DC microgrids, DC-DC 

converters, LC filters. 

I. INTRODUCTION 

To achieve a green maritime transportation, the vessels 
designers are addressed towards reduction in emissions and 
fuel consumption [1]-[2]. One of the technological vectors 
for such a change is represented by the All-Electric Ship 
(AES) concept [3], meaning that all the onboard loads are 
powered from electric energy. The actual standard for such 
power systems in based on AC distributions. Nonetheless, 
the adoption of the Medium Voltage Direct Current 
(MVDC) technology represents the future to maximize both 
flexibility and efficiency of marine systems [4]. In an 
MVDC power system, the most important elements are 
definitely the power electronics interfaces, that serve as 
conversion stages. They enable the full controllability of the 
shipboard system and help during the fault management 
process [5]. On one hand, such converters are provided of 
input/output filters to ensure power quality requirements 
[6], on the other they are usually tightly controlled for 
dynamics reasons. If during the design phase on converters 
the choices on filters and control bandwidths are not 
integrated, harmful interactions can be triggered during 
operation, even resulting in system instability [7]. This issue 
is largely debated in literature [8]-[10] since an unstable 

behavior definitely determines a ship blackout. Indeed, the 
Std. 1709 [11] recommends the steps to verify the shipboard 
power system stability during the design phase. However, 
the analytical identification of the stability boundaries of a 
DC power grid is a complex task also for relatively simple 
systems. The perfect example is the cascade-connection of 
generating and load converters. With appropriate 
hypotheses, this system is studied in previous works [12]-
[13] as a fifth-order model, later simplified by neglecting the 
load converter filter. Thus, a third-order model is obtained 
to get analytical expressions for the stability boundary of the 
cascade-connected system. Albeit the third-order 
hypothesis is debated [12] and exploited [13]-[15] in 
previous papers, the analytical expression of its applicability 
area has not been defined yet. This paper fills this gap by 
deriving the analytical expression of the fifth-order model 
stability boundary. This is made possible thanks to an 
extension of the Routh-Hurwitz (R-H) theorem. The fifth 
and third-order stability conditions are visually contrasted in 
terms of dynamics performance and power quality. The 
results are then verified through numerical simulations on 
Matlab/Simulink and on Typhoon HIL.  

II. CASCADE-CONNECTED SHIPBOARD DC MICROGRID

A cascade-connected shipboard DC power grid is the 
case study. This simple configuration can be representative 
of the converters included in a single zone or can be 
considered as the equivalent of a more complex radial 
distribution with multiple load and generating converters.  

A. Fifth and third-order model 

The goal is to obtain the analytical expression of the 
small-signal stability boundaries for a cascade-connected 
DC system (Fig. 1). These results will be then compared 
with the ones valid for a reduced-order model, depicted in 
Fig. 2. The power system is a cascade connection of two 
DC-DC buck converters, a generating (converter 1) and a 
load one (converter 2). Both voltage-controlled converters 
are provided of RLC output filters, designed to meet the 
power quality requirements [11]. The focus is on load 
converter control bandwidth, thus the converter 1 is 
modeled as an E constant voltage source. The load converter 
control (i.e. ω2 is the bandwidth) is conversely modeled by 
a pure integral regulator, whose gain is Ki=ω2/V1ref [14]. 
The converter 2 regulates the ratio D2=V2/V1 between 
generating voltage V1 and load voltage V2, with the 
dynamics imposed by the ω2 converter control bandwidth. 
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Fig. 1. Complete order cascade-connected MVDC power system [12]. 

Fig. 2. Reduced-order cascade-connected MVDC power system [12]. 

The fifth-order system is modeled by neglecting the 
switching behavior of the power converter, thus (1) are 
representative of an Average Value Model (AVM) for the 
power grid in Fig. 1. In those equations, the subscript 1 
identifies the generating converter, while the subscript 2 the 
load one. The supplied load is modeled by a resistance RL. 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧  

 
  (1) 

The fifth-order model described by previous equations 
can be further simplified to a third-order model. This 
becomes possible only if the condition ω2<< ωf2 is verified 

[12], where ωf2=1/  is the load converter resonance
frequency. The modeling hypotheses discussed in [12] 
make it possible to neglect the load converter filter, thus 
obtaining a third-order AVM as in Fig. 2. The related 
equations are simplified as in (2). 

⎩⎪⎨
⎪⎧  

 
(2) 

B. Filters design 

As in [12]-[13], a test case is proposed to study the 
relation between stability performance and parameters on 
load filtering stages. These results can be further extended 
by using data of a real shipboard DC power system. The 
RLC filters parameters for the generating converter are 
defined by the power quality requirements, and they are not 
changed during the whole study. Instead, the load converters 
filters will be calibrated to discuss about the small-signal 
stability of the DC system. The main requirements of the 
two cascade-connected converters are given in Table I. The 
converter power and the inductor current are identified 
respectively as Pnk and Ink. The ratio between Vnk output and 
Unk input voltage is defined as Dnk duty, and the switching 
frequency as fsk. Once chosen the power quality 
requirements (ΔV%k voltage and ΔI%k current ripple, ΔP%k 
percentage of losses), (3)-(4) are adopted to calculate the 
filters values. By this design procedure, the converter 1 filter 
values are R1=0.014 Ω, C1=1.8 mF and L1=50 μH. 
Conversely, the second filter is the goal of the study, both 
ΔV% 2 and ΔI% 2 are indeed not defined at this stage. 

TABLE I. Converters requirements. 

Converter 
1 

Converter 2 

Pnk [MW] 8.0 6.0 

Unk [V] 1630 1500 

Vnk [V] 1500 1000 

Dnk 0.92 0.67 

Ink [A] 5333 6000 

fsk [Hz] 1500 3000 

ΔP%k 0.05 0.03 

ΔV%k 0.05 - 

ΔI%k 0.3 - 
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%
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III. SMALL-SIGNAL STABILITY ANALYSIS

In previous works, the decision to neglect the load 
converter filter (under appropriate hypotheses) has greatly 
simplified the small signal stability study on controlled DC 
power grids [12], [13], [15]. Additionally, this assumption 
also allows the load converters aggregation [14]. However, 
this third-order hypothesis has an applicability limit. This 
work wants to find it, basing on the analytical definition of 
the stability boundary for the fifth-order model. The latter 
behaves strictly closer to the real controlled DC system, thus 
it constitutes the benchmark for later validate the third-order 
model. The fifth-order model analytical stability boundary 
is achievable thanks to the application of the R-H criterion.  

A. Stability boundaries 

To obtain the small-signal stability condition for the two 
models, (1)-(2) are linearized around the operating points 
while applying the Laplace transformation. The admittance 
Yin1 at the output of converter 1 and the total impedance Zt 
are thus obtained by neglecting the filter resistances. The 
study starts with the third-order model, where Yin1 is in (5) 
and Yt  is the inverse of (6). Now the equation DenYt(s)=0 
can be solved in ω2, whose result is the maximum-
admissible load converter control bandwidth (i.e. ω2max) to 
ensure the small-signal stability of third-order model (7).  

  (5) 

  (6) 

 (7) 

The same analysis can be performed on the fifth-order 
model. The Yin1 admittance at the output of converter 1 is in 
(8), whereas the total impedance Zt is again calculated in (6). 
The denominator of Yt(s)=I1(s)/E(s) admittance at the output 
of the generating converter 1 (Fig. 1) is defined in (A1), and 
then simplified as in (A2). In order to investigate the system 
stability, the R-H criterion is then applied to (A2). First of 
all, the degree of (A2) is lowered from fifth to third using an 
appropriate formulation (the details are in appendix). The 
result is again a third-order expression (9) 

   (8) 

0  (9) 

In order to guarantee the system stability, the R-H criterion 
states that all the ai coefficients and the bi=a1a2-a0a3 one 
must be positive. This results in the conditions (10)-(13): 

0,     (10) 

0,   (11) 

0,     (12) 

0,    0  (13) 

The condition (13) is always guaranteed, while among the 
other three the most stringent is the (12). The last condition 
to check is the one on bi, which results in (14). The complete 
expression of the C2

± is given in (A5). 0  (14a)    (14b) 

If (12) is satisfied, the curves C2
± in the ω2-C2 plane 

represent the stability limits for the cascade-connected DC 
system. All the previous equations describe the stability for 
the complete fifth-order model. Among all the above-
mentioned conditions, only the C2<C2

- sets an actual 
boundary, which will be explained later in the Section. To 
provide a complete overview on the complex fifth-order 
model, it is interesting to show how this boundary moves 
(Fig. 3) as the fixed values of L2 changes. In particular, if L2 
is short-circuited, the obtained blue curve is an absolute 
inferior limit. Therefore, if the capacitance/bandwidth cross 
stays below the blue line, the system stability is certainly 
guaranteed whichever the value of L2. 

B. Power quality and stability performance 

By replacing the C2 and L2 with ΔV% and ΔI% (4), it is 
possible to obtain all the expressions (10)-(14) as functions 
of power quality indices on load. If both voltage and current 
ripple play as variables, the surface in Fig. 4 is thus 
consequent, in which the stable combination of operating 
points lays above the surface. When a specific value of 
current ripple is set, the graph in the ω2–ΔV% plane is the 
result, as in Fig. 5 with ΔI%=0.2. In such a graph, the 
stability limit for the third-order model (7) is given by the 
green line. While the stability limit for fifth-order model is 
determined by observing the relative location on blue-red 
curves. Particularly, the stable region for the fifth-order 
model is above the ΔV2

- red  curve and below the ΔV2
+ blue 

Fig. 3. C2-=f(ω2) for different L2 values. The red curve (current example) 
refers to a ΔI% value of 0.2. 

Fig. 4. 3-D graph representing the stability boundary in terms of power 
quality requirements and control bandwidth. 
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Fig. 5. Stability conditions on the ω2-ΔV% plane. 

one. As also the condition (12) must be verified, the 
admissible values are the ones above the ΔVlimit black curve. 
This consideration allows to recognize the only ω2-ΔV 
points above the red curve as stable cross for the fifth-order 
model. In the admissible-stable area in Fig. 5, other zones 
are to be excluded for system design reasons on voltage 
ripple. The colored areas depict minimum-maximum limits 
for voltage ripple choices in the filter capacitance design. 
For example, the yellow area should be avoided as the 
related ΔV% are too small, thus unfeasible in a real design. 
Then, also the blue area is not doable, as characterized by 
voltage ripple values that are not in accordance with the 
requirements of Std. [11]. On the relative positions of 
third/fifth order limits in Fig. 5, a conclusion is consequent. 
On one hand, the stability study on third-order model is 
quite basic, thus feasible solutions are at hand especially 
when the control bandwidth is not that high. On the other, 
the fifth-order (complex) model can provide stable designs, 
also when pursuing high-bandwidths solutions. 

IV. VALIDATION OF STABILITY ANALYSIS 

The outcomes of stability analysis are validated in this 
Section with numerical simulations, performed both on 
Simulink and on Typhoon HIL high-performance platform. 

A. System configuration 

Firstly, Average Value Models (AVM) are developed in 
Simulink. To this purpose, the fifth-order model is 
developed as in (1), while the third order model comes from 
(2). On the other hand, the Typhoon implementation is a 
circuital one, including the switching phenomenon of the 
power converters. For the following test, the ΔI% is set at 
0.2, while the values of ΔV% and ω2 are modified to illustrate 
the behavior of the controlled DC grid. Once ΔI% is imposed 
and the curves are obtained (Fig. 5), the stable region for the 
fifth order model is above the red line, while the stable 
region of the third-order model is on the left of green line. 
The DC system starts to work from an initial condition on 
bus capacitor voltage, which is set at 95% of its rated value. 
This small perturbation on voltage forces the consequent 
dynamic transient towards the final equilibrium condition.  

B. Dynamics tests for stability confirmation 

Four points are chosen in the Fig. 5 (i.e. numbers) to 
investigate the behavior of AVMs. This study wants to 
emphasize the areas of ω2-ΔV% plane in which fifth and 
third-order models evolutions are in accordance or in 
contrast. The point 1 (ω2=2500 rad/s, ΔV%=0.05) belongs to 
the area in which both third and fifth-order model are stable, 
as demonstrated by the transients in Fig. 6. Then, the point 
2 (ω2=2500 rad/s, ΔV%=0.035) is located in a zone in which 

Fig. 6. Voltage transients, ω2=2500 rad/s ΔV%=0.05 (point 1). 

Fig. 7. Voltage transients, ω2=2500 rad/s ΔV%=0.035 (point 2). 

Fig. 8. Voltage transients, ω2=2750 rad/s ΔV%=0.06 (point 3). 

Fig. 9. Voltage transients, ω2=2750 rad/s ΔV%=0.04 (point 4). 

the fifth-order model shows an unstable behavior, while the 
stability is ensured by the third-order model. Also these 
considerations are confirmed by the transients of Fig. 7. In 
this area, the third-order model cannot predict the stability 
performance of DC grid. Thus, the fifth-order one is here 
mandatory, as it performs closer to the real behavior of 
cascade-connected controlled systems. Other remarks in 
Fig. 8 by looking at point 3 (ω2=2750 rad/s, ΔV%=0.06), 
where the fifth-order model is still stable and the third one 
demonstrates an unstable evolution. Also in this case, the 
analytical study is validated. In the point 4 (ω2=2750 rad/s, 
ΔV%=0.04) third and fifth-order models perform again in 
accordance, showcasing the unstable evolution of Fig. 9. 
Also for this last point, the results in Fig. 5 are consistent.  
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Fig. 10. Voltage transient, ω2=1500 rad/s. 

Fig. 11. Voltage transient, ω2=2200 rad/s. 

Finally, some Typhoon HIL circuital emulations are 
executed to further verify the mathematical conclusions. 
For this HIL test, two new crossing points are selected in 
Fig. 5, assuming a voltage ripple of 3% and two control 
bandwidths, 1500 rad/s (stable case, S) and 2200 rad/s 
(unstable case, U). The tests performed on HIL are similar 
to the ones made on AVMs. The dynamics transients 
confirm what is foreseen in Fig. 5. The Fig. 10 depicts the 
stable evolution for the control bandwidth of 1500 rad/s, 
while the evolution with the control bandwidth of 2200 
rad/s results out of control as in Fig. 11. Evidently, this 
large variation in voltage activates the protection trip. 

C. Final conclusions 

The stability study in Fig. 5 provides interesting results 
on order reduction and new stable cross in the filter design. 
The analysis confirms how the third-order model is effective 
for a large zone of superimposition (i.e. points like 1). Then, 
the study identifies a critical zone (i.e. points like 2), where 
third-order modeling is insufficient. In the zone of point 3, 
the fifth-order model opens new possibilities of stable 
designs. Finally, the unstable designs for the points like 4 is 
confirmed both by fifth and third-order model. 

V. CONCLUSIONS 

The stability issue in cascade-connected DC shipboard 
microgrids is debated in this work. The analytical definition 
of the stability boundary for the complete fifth-order model 
is deduced thanks to an extension of the R-H criterion. This 
boundary is compared to the one from third-order model to 
understand its range of applicability. The results from this 
study on cascaded-converters case are useful also for more 
complex multi-converter DC grid. Indeed, it is possible to 
use equivalents on generating and load side converters in 
order to reduce the initial system to a simplified cascade-
connected one. The design methodology of this paper 
shows its effectiveness when sizing stable filtering 
solutions in the converter-based DC microgrids. 
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APPENDIX 

The expression (A1) identifies the denominator of the Yt(s)=I1(s)/E(s) admittance at the output of the generating converter 
1 for the fifth order model (Fig. 1). The (A1) is then simplified as in (A2), the R-H criterion is then applied to this last expression. 

    
(A1) 

0 (A2) 

The alternative formulation of the R-H criterion [16] states that all the roots of a real nth-degree equation (A3), have negative 
real parts if and only if this is true for the (n-1)st-degree equation (A4). This theorem may be applied repeatedly. For the purposes 
of this work, it is sufficient to lower the degree of eq. (A2) to three, applying eq. (A4) twice. The alternative formulations states 
also that the number of roots with negative real parts is precisely equal to the number of negative multipliers -a0

(j)/a1
(j) (j=1,…,n-

1; a0
(0)=a0>0,a1

(0)=a1) encountered in successive applications of the theorem. This last part of the theorem is not used in this 
work. Once obtained the (A2) expression reduced counterpart (9), it is possible to apply the original formulation of the R-H 
criterion, thus identifying the conditions for system stability. Those conditions (10)-(14) are included in Section III, and the 
complete expression of C2

± is given in (A5). 

⋯ 0 (A3) 

⋯ ⋯ ⋯ 0 (A4) 

± ±
(A5) 
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