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Abstract: Attention-deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder with
known brain abnormalities but no biomarkers to support clinical diagnosis. Recently, EEG analysis
methods such as functional connectivity have rekindled interest in using EEG for ADHD diagnosis.
Most studies have focused on resting-state EEG, while connectivity during sleep and spindle activity
has been underexplored. Here we present the results of a preliminary study exploring spindle-related
connectivity as a possible biomarker for ADHD. We compared sensor-space connectivity parameters
in eight children with ADHD and nine age/sex-matched healthy controls during sleep, before, during,
and after spindle activity in various frequency bands. All connectivity parameters were significantly
different between the two groups in the delta and gamma bands, and Principal Component Analysis
(PCA) in the gamma band distinguished ADHD from healthy subjects. Cluster coefficient and path
length values in the sigma band were also significantly different between epochs, indicating different
spindle-related brain activity in ADHD.

Keywords: sleep spindle; connectivity; graph analysis; EEG; ADHD

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder marked
by a persistent pattern of inattention and/or hyperactivity-impulsivity that interferes with
functioning or development. By definition, the symptoms are present in two or more
life contexts, and there is clear evidence that they interfere with or reduce the quality of
social, school, or work functioning [1]. Although the neurobiological pathogenesis of the
disorder is longstanding and shared, no biological marker is available to date [2]. It has
been proposed to integrate an EEG biomarker (theta/beta ratio) together with a standard
clinical ADHD evaluation as support for diagnosis [3–6]. However, to date, the diagnosis
remains essentially clinical, based on clinical assessment integrated with questionnaires and
rating scales [2]. Several issues continue to affect the diagnostic process: the subjectivity of
ADHD symptoms, the irregular correlation between classification scales and the overlap of
attention and behavioral symptoms with other disorders.

The study of connectomics, which focuses on analyzing the brain’s network structure,
is shedding light on the underlying causes of neuropsychiatric disorders such as ADHD. As
more and more research is conducted in this field, novel discoveries are leading to greater
understanding and advancements. Recognizing the fundamental value of dynamical
changes in network functioning, the lens of connectomics is attractively orienting its focus
from the study of the resting state to the analysis of time variation of brain functioning.
Specifically, the study of brain dynamics is trying to translate some key concepts, such as
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those of adaptability and flexibility, commonly used by clinicians to define mental health,
into quantifiable measures able to characterize normal brain functioning and differentiate
physiological from pathological conditions [7,8]. Concerning ADHD, the application of
quantitative analysis of EEG, particularly by means of measures of functional connectivity,
has recently reopened the debate on the usefulness of EEG for the identification of a reliable
biomarker [9–18].

Sleep EEG connectivity is much less studied in this field, even if the association be-
tween sleep disorders and ADHD is well-known in clinical practice and currently reported
in the literature [19].

Studies discussed in the literature suggest that the borders between cortical and sleep
maturation are blurred in ADHD and that further investigations are needed to better
understand the relationship between sleep and neuropsychiatric symptoms.

In cognitive neuroscience, spindle activity, the physiological electroencephalographic
hallmarks of non-REM (NREM) sleep microstructure, have been most studied as particu-
larly involved in synaptic remodeling. Sleep spindles are defined as trains of distinct waves
with frequencies of 11–16 Hz (most commonly 12–14 Hz) and a duration of >0.5 s [20].
Known to be involved in important sleep-dependent cognitive processes, such as memory
consolidation, sleep spindles have been studied as an indicator of cognitive and emotional-
behavioral development in children [21–23].

Alterations in spindling profile have been linked to different neuropsychiatric
disorders, suggesting that spindle hyper- and hypofunction can both contribute to the
generation of clinical symptoms and, in some cases, could also play a decisive role
in the etiology of the disease [24–29]. Moreover, to date, there is a growing body of
literature on the description of sleep-dependent mechanisms of brain plasticity and the
identification of possible relationships with cortical maturation and neurodevelopmental
disorders [30]. Nevertheless, knowledge about the role of specific aspects of sleep
microstructures in ADHD is still lacking, as sleep in ADHD has been mainly studied in
terms of quality and continuity.

Aiming to fill this gap, we conceived a preliminary study on sleep EEG sensor-space
connectivity in children with ADHD, focusing on spindle activity.

2. Materials and Methods
2.1. Subjects

The study included eight (six males, two females) children with ADHD and nine
(six males, three females) healthy children ranging in age from 7 to 11 years (9 ± 1.67 years
for ADHD, 8 ± 1.22 years for healthy children). All healthy and ADHD children were
recruited among children admitted to the Neuropsychiatric Department of the Institute
for Maternal and Child Health “Burlo Garofolo” (Trieste, Italy). The diagnosis of ADHD
was made according to DSM-5 criteria [1]. None of the patients was pharmacologically
treated at the time of the EEG examination. Healthy subjects, now referred to as controls,
were admitted to the hospital for a suspected neuropsychiatric symptom later excluded by
the negativity of the clinical examination and laboratory investigations; inclusion criteria
for controls were normal psychomotor development, normal neurological examination,
and normal EEG. The parent’s/legal guardian’s written informed consent was obtained for
each participant.

2.2. EEG Recordings and Pre-Processing

The EEG was recorded by means of nineteen surface electrodes placed according to
the 10–20 International System. The signals were acquired using a computerized system
(Micromed S.p.A., Mogliano Veneto, Italy) with the earlobe reference. EEG signals were
acquired at a sampling frequency of 512 Hz, and during acquisition, the impedances were
kept below 5 kΩ.

Subsequently, EEG signals were digitally filtered with the second-order Butterworth
band-pass filter within the 0.5–45 Hz frequency range. EEG was recorded in the early
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afternoon after sleep deprivation. The day before, the children were asked to go to sleep
later than usual (after midnight) and wake up early (5:00–6:00 a.m.). Acquisition started at
about 01:30 p.m. and lasted about 60 min. All children fell asleep during the EEG recording.
Only the 2nd stage NREM sleep phase was included in the analysis. In particular, EEG
recordings were visually inspected by two of the trained authors (M.C. and C.Z.) to identify
the 2nd stage NREM sleep phase and the start and end points of each spindle free of
artifact. To confirm the identification of spindle parameters, the inspection of EEG was
performed twice and separately by each of the mentioned authors. Sleep phases were
identified according to AASM criteria [20].

In order to make the analysis of spindle dynamics easier and more reliable, we de-
veloped by means of PSD a semi-automatic method able to identify the three epochs only
requiring the visual identification of the spindle. In particular, for each spindle, epochs
lasting 1 s were selected as follows: first, the maximum power peak in the sigma band
(11–15 Hz) of the Fz channel was calculated and defined as the center of the during (E2)
spindle epoch; the EEG was then cut 0.5 s before and after the maximum power peak in
order to obtain the spindle epoch (E2). Next, the times corresponding to when the power
reached 95% of the maximum power peak before and after the spindle were determined.
Based on these times, one-second epochs were extracted to yield the epochs before (E1) and
after (E3) the spindle.

In order to control the non-overlapping of the epochs between two consecutive spin-
dles, the epochs have been visually inspected. The number of spindles in each subject
varied from 6 to 10. For each subject, every single spindle was considered as a trial of the
same stochastic process. In order to account for sample size bias and to obtain a more
robust and reliable estimate, the bootstrap method [31,32] was then applied to each epoch
to obtain 100 new sequences for each subject (Total of 100 × 18 subjects × 3 epochs). The
steps of data processing are summarized in Figure 1. The first step was the aggregation
of EEG data in matrices, then used as a variable for the evaluation of Multivariate autore-
gressive models (MVAR) [33]. The matrices are directly used to evaluate the MVAR model;
since EEG signals could be nonstationary [34,35], the Adaptive MVAR (see Figure S1 of the
Supplementary Materials for more details) of SIFT Matlab toolbox was applied [36,37].

2.3. Generalized Partial Direct Coherence (gPDC)

The coefficients of the models were used to calculate the Generalized Partial Direct
Coherence (gPDC) values. PDC between channel i and channel j is a frequency-domain
approach that describes the directional flow of information from channel j to i at a frequency
f, normalized by the total outflow information from j to the other channels [38]. Previous
studies have confirmed its higher specificity and its tolerability to low signal-to-noise ratio
(SNR) than other connectivity measures [39]; a significant strength of the PDC technique
is that it gives information about the direction of the connections. The gPDC is a type of
frequency domain representation of Granger causality via PDC that improves variance
stabilization. The main advantage of gPDC is its hugely reduced variability for short
time series [40]. We used the gPDC method to show the degree of directional linear
interdependence between pairs of EEG channels during E1, E2 and E3 epochs.

The gPDC has been performed on the full set of spindles separately for each epoch
of a single subject, using an appropriate routine from SIFT Matlab toolbox [36,37] in order
to represent the full set of simultaneously observed time series (Figure 2). The gPDC
matrices were analyzed in six EEG frequency bands: delta (0.5–4 Hz), theta (4.5–8 Hz),
alpha (8.5–13 Hz), beta (13.5–30 Hz), sigma (11–15 Hz) and gamma (30.5–45 Hz) bands.
In each subject, we calculated the mean gPDC for each epoch (E1, E2 and E3). Based
on gPDC, for each frequency band, in each epoch, we obtained a weighted connectivity
matrix both for each original and bootstrapped sequence. The weighted matrices of
bootstrapped sequences were used to evaluate the distribution of the connectivity values
for each band in each group without distinction among epochs. Therefore, we obtained
six distributions for each group, which were used to calculate the thresholds. The
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thresholds were chosen as the fiftieth percentile of their respective distributions (see
Figure S2 of the Supplementary Materials).
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responding to power amplitude. The black ellipse highlights the frequency band (11–15 Hz) related 
to the spindle, in which a peak of power value is present. 
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Figure 1. The top panel represents the EEG of a spindle in the Fz channel. Red vertical lines identify
the interval of the E1 pre-spindle epoch, green vertical lines the E2 spindle epoch and blue lines
the E3 post-spindle epoch. The bottom panel shows the power of the same EEG signal with colors
corresponding to power amplitude. The black ellipse highlights the frequency band (11–15 Hz)
related to the spindle, in which a peak of power value is present.
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Binary connectivity matrices were obtained by applying the thresholds to each gPDC
matrix of epochs and bands of the original subjects (for more details see Supplementary
Materials). By means of the BCT Matlab toolbox [41], we used the binary graph matrices to
calculate for each band and epoch the in (Kiin) and out (Kiout) node degrees, the cluster
values of single channels (Ci), the mean cluster (C) value and the shortest path length (L).

2.4. Statistics

In order to evaluate statistical differences between ADHD and controls, the Wilcoxon
rank sum test for independent samples was applied to all the parameters (connection
number, Kiin, Kiout, C, Ci and L); meanwhile, the comparison between pairs of epochs was
evaluated by applying the Wilcoxon sign rank test for dependent samples on connection
number, C and L parameters. Differences with a p-value < 0.05 were defined as significant,
and in the case of the analysis among epochs, the Bonferroni correction for multiple
comparisons was applied.

3. Results
3.1. Number of Connections

Considering the three epochs, E1, E2 and E3, the gamma band shows a greater number
of connections (NC) compared to all other bands, mostly in the control group (Figure 3).
The NC increases during the spindle epoch with a similar inter-epochs dynamic in the
two groups for all the bands, except for the delta and gamma bands: in the delta band, the
number reduces in both groups; in the gamma band, it reduces only in the control group.
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and in Controls. The symbol * highlights significant statistical differences between the two groups;
horizontal lines indicate differences among epochs within each group.

The NC in all three epochs was statistically different between the two groups in the
delta and gamma band: it was higher in the delta band in the ADHD group and lower in
the gamma band. In theta band, the difference was significant only in E2 (values in ADHD
greater than in the controls). Since the main differences between groups were present in
the delta and gamma bands, the graph analysis was focused on these two bands other than
on the sigma band (the spindle band).
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3.2. Nodes Degrees and Principal Component Analysis

The Principal Component Analysis (PCA) method was applied to Kiin and Kiout
values obtained by averaging them among channels in the gamma band for each subject
and epoch in order to evaluate the possibility of distinguishing the two groups by only
using six variables. Finally, Fischer’s linear discriminant rule was used to find the line that
divided the two groups based on the first two components.

The analysis of nodes’ degree and, in particular, the relation between “in-degree” Kiin
and “out-degree” Kiout showed different behaviors during spindle in the three bands
(Figure 4). The relation between Kiin and Kiout of each channel showed an inversion of
the values between the two groups, passing from low frequency (delta) to high frequency
(gamma) bands. In low frequencies, the values were lower in the controls than in ADHD,
while in high frequencies, values in the controls were higher than in ADHD. In the sigma
band, the values between the two groups were less segregated. The dynamic modifications
across epochs showed a quite similar distribution of Kiin and Kiout within each group in
delta and gamma bands.
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Figure 4. Representations of “in-degree” (Kiin) values plotted versus Kiout in low (delta), middle
(sigma) and high (gamma) frequency bands for the three epochs: on the left, the pre-spindle epoch
(E1), at the center the spindle epoch (E2), on the right the post-spindle epoch (E3). Red triangles
represent channels in the Controls group; blue circles represent channels in the ADHD group.

However, in these bands, the distributions of Kiin and Kiout tend to cluster in quite
separate “clouds”. This segregation is more evident in the gamma band.

In the sigma band, the number of Kiin and Kiout during the E2 epoch slightly increases,
but the distribution of Kiin and Kiout shows less differentiation. Concerning differences
in the Kiin and Kiout values of single channels, we did not identify specific topographic
patterns in any band.

PCA was performed on the mean values of Kiin and Kiout. These means were obtained
by averaging the values of all channels and epochs for each subject and for each band. The



Entropy 2023, 25, 1244 7 of 14

findings revealed that only in the gamma band the first two PCA components were able to
clearly distinguish the two groups (Figure 5).
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3.3. Clustering Coefficient and Path Length

Clustering coefficient (C) and Path Length (L) values showed different dynamics de-
pending on the frequency band, even if with a similar inter-epochs trend in the two groups
(Figure 6a).

Entropy 2023, 25, x FOR PEER REVIEW 8 of 15 
 

 

3.3. Clustering Coefficient and Path Length  
Clustering coefficient (C) and Path Length (L) values showed different dynamics de-

pending on the frequency band, even if with a similar inter-epochs trend in the two groups 
(Figure 6a).  

Significant differences for C and L values between the two groups in all three epochs 
were found in the delta and gamma bands, while in the sigma band, the differences, alt-
hough present, were not significant. In particular, C values were higher in ADHD than in 
the controls in the three epochs of the delta and sigma bands, while in the gamma band, 
the highest values were observed in the controls. On the other hand, L values showed an 
opposite behavior in all the epochs and bands. Furthermore, C values showed significant 
differences among epochs only for ADHD between E1 and E2 in the delta band and be-
tween E2 and E3 in the gamma band. In the sigma band, both C and L values showed 
significant differences between E2 and the other two epochs for both ADHD and controls, 
with the highest C values and lowest L values in E2 in both groups.  

The results of the analysis carried out on single channels cluster Ci (Figure 6b) high-
lighted many significant differences between the two groups in all three epochs in the 
delta and gamma bands; in the sigma band, few differences were found only during E2. 
In the gamma band, cluster values of controls were greater than ADHD in almost all chan-
nels, while in delta and sigma bands, values were higher in ADHD. 

 
Figure 6. (a) Mean values of C and L parameters, for each epoch, in delta, sigma and gamma bands. 
Red triangles represent the Control group, and blue circles the ADHD group. Vertical bars on the 
markers show the standard deviation of the values. The symbol * represents the significant differ-
ence between the two groups; black lines above (Controls significances) or below (ADHD signifi-
cances) the markers show statistical significances between epochs in the two groups (b). Significant 
differences of single node clustering coefficient (Ci) between the two groups in all three epochs (pre-
spindle E1, spindle E2 and post-spindle E3) in Delta, Sigma and Gamma bands. Fulfilled circles 
represent the channels with p < 0.05. Blue circles mean ADHD values greater than Controls, and red 
color vice versa. 

4. Discussion 
The main results of this study can be summarized as follows: (1) sleep EEG functional 

connectivity, analyzed as related to spindle activity, shows significant differences in chil-
dren with ADHD; (2) differences in connectivity parameters depend on frequency bands; 
in particular, the gamma band mostly distinguish children with ADHD from children 

Figure 6. (a) Mean values of C and L parameters, for each epoch, in delta, sigma and gamma bands. Red
triangles represent the Control group, and blue circles the ADHD group. Vertical bars on the markers
show the standard deviation of the values. The symbol * represents the significant difference between
the two groups; black lines above (Controls significances) or below (ADHD significances) the markers
show statistical significances between epochs in the two groups (b). Significant differences of single
node clustering coefficient (Ci) between the two groups in all three epochs (pre-spindle E1, spindle E2
and post-spindle E3) in Delta, Sigma and Gamma bands. Fulfilled circles represent the channels with
p < 0.05. Blue circles mean ADHD values greater than Controls, and red color vice versa.
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Significant differences for C and L values between the two groups in all three epochs
were found in the delta and gamma bands, while in the sigma band, the differences,
although present, were not significant. In particular, C values were higher in ADHD than
in the controls in the three epochs of the delta and sigma bands, while in the gamma band,
the highest values were observed in the controls. On the other hand, L values showed an
opposite behavior in all the epochs and bands. Furthermore, C values showed significant
differences among epochs only for ADHD between E1 and E2 in the delta band and between
E2 and E3 in the gamma band. In the sigma band, both C and L values showed significant
differences between E2 and the other two epochs for both ADHD and controls, with the
highest C values and lowest L values in E2 in both groups.

The results of the analysis carried out on single channels cluster Ci (Figure 6b) high-
lighted many significant differences between the two groups in all three epochs in the delta
and gamma bands; in the sigma band, few differences were found only during E2. In the
gamma band, cluster values of controls were greater than ADHD in almost all channels,
while in delta and sigma bands, values were higher in ADHD.

4. Discussion

The main results of this study can be summarized as follows: (1) sleep EEG func-
tional connectivity, analyzed as related to spindle activity, shows significant differences
in children with ADHD; (2) differences in connectivity parameters depend on frequency
bands; in particular, the gamma band mostly distinguish children with ADHD from
children with typical neurodevelopment. These findings are discussed in detail in the
following subchapters.

4.1. Neurophysiological Characteristics and Functional Connectivity—Sleep EEG in ADHD

Previous studies that analyzed connectivity in ADHD were carried out in a resting state
or after a specific task [42–45], while there is a lack of studies on connectivity during sleep.

The results of our study show that connectivity parameters, such as the number of
connections (NC), clustering coefficient (C) and path length (L), calculated in different
epochs of N2 sleep, highlight dynamic modifications related to spindle activity and allow to
identify the three phases (before, during and after the spindle activity) and to differentiate
ADHD from controls.

In particular, in the sigma, theta, alpha and beta bands, the number of connections
increases during the spindle (Figure 2) and, in parallel, the C value increases and the L
value reduces. Moreover, only in the sigma band and partially in the alpha band (as was
expected since the alpha band is included in the sigma band), all three parameters are
significantly different during spindle activity (E2) with respect to activity before (E1) and
after (E3) spindle activity in both populations, being present in the delta and gamma band
only slightly changes during E2 (Figure 6a).

In delta and gamma bands, the values of the three parameters are significantly different
between the two groups in all three epochs. In particular, higher C values and lower L
values for ADHD were found in the delta band and higher C values and lower L values for
controls in the gamma band; the number of connections (NC) in controls showed lower
values in the delta band and higher values in the gamma band. Furthermore, in the gamma
band, the relation between Kiin and Kiout degrees (Figure 3) clearly shows that the mean
values for single channels among the ADHD subjects are well distinguished from those of
the controls in all three epochs. In the other two bands, these differences are less evident.
Hence, the results of PCA suggest that the gamma band seems to be the frequency band in
which the two groups could be distinguished by using either the NC, C and L parameters
or Kiin/Kiout values.

In in vivo studies, gamma oscillations are demonstrated to emerge from the coor-
dinated interactions of excitatory and inhibitory neurons [46]. Gamma band activity is
generally associated with cognitive processing and consciousness on awaking, and it is
considered to reflect the processing of memory in local cortical networks. During sleep,
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cortical high-frequency activity has been alleged to have an important role in the gen-
eration of spindles [47]. Gamma frequency-salient abnormalities between children with
ADHD and typically developing children have been recently reported in a study on NREM
stage 1 EEG functional connectivity [48]. It has been suggested that neural connectivity
disturbances may arise from alterations in the balance between glutamatergic excitatory
and GABA-ergic inhibitory signaling at the microcircuit level [18]. These alterations could
possibly reflect a lower effectiveness of the brain networks in spindle generation and
spindle role in cognitive functioning.

4.2. Dynamic Modifications of the Neural Network in ADHD and Controls across Frequency
Bands: Different Balances between Different Functions?

We found in the sigma band similar spindle-related connectivity dynamics in the
two groups, with an increase of NC during spindle and opposite trends of C and L values
(higher C values and lower L values in spindle epoch with respect to the other two epochs,
in a sort of low-high-low C trend and high-low-high L trend). It seems that, in both
groups, when the neuronal system generates the spindle, the network better segregates
(higher clustering coefficient) and integrates (shorter path length) information approaching
a so-called small-world functioning [49], and this seems more evident in the control group.

In the last years, in the field of connectomics, the concept of small-worldness has
gained growing interest; as one of the most influential findings about brain functioning,
it is considered that human brain networks exhibit prominent small-world organization.
Such a network architecture would facilitate efficient information segregation and inte-
gration at low wiring and energy costs, presumably resulting from the natural selection
under the pressure of a cost-efficiency balance, undergoing continuous changes during
normal development and exhibiting significant alterations in neurological and psychiatric
disorders [50].

Recently, this concept has been used to describe network organization of sleep EEG
activity: a trend has been reported on the functional connectivity during sleep to move
forward to an organization more similar to that of a small-world network, with different
small-world properties and different trends in the EEG frequency bands [51].

In ADHD, sleep difficulties have been mostly viewed as an epiphenomenon of an
underlying maturational disorder [52–56]. The role of sleep in ADHD has been mainly
studied in terms of quality and continuity of sleep [19,54–58].

Recently, the presence of small-world variations across different frequency bands has
been described with fMRI in resting state [59–61], findings still lacking from sleep EEG.

In our study, we found that compared to the sigma band, connectivity in the delta
band seems less modified by the spindle activity, maintaining quite constant values of C
and L, with a functioning approaching that of a small world in the control group. The
gamma band show opposite dynamic changes in the two groups: in the control group, the
network seems to move toward a small-world functioning (the values of C are the highest
compared to the other two bands, and the values of L are the lowest), while in ADHDs
there seems to be a weaker small-worldness (since the values of C are similar to those of
delta, but the values of L are slightly lower).

Globally considered, our findings seem to reveal simultaneous different dynamical
functioning of the neural network to the arrival of the spindle, depending on the frequency
band. This could represent another aspect of the continuous modulation across different
brain states of cortical connectivity during sleep, as hypothesized by Vecchio et al. [51].
Dynamic changes in functional connectivity across sleep phases are an expanding field of
research, and complex modulation of connectivity patterns with the deepening of NREM
sleep has been recently described [62].

According to Steriade et al., slow oscillations during sleep have the ability to trigger
and group faster cortical oscillations such as spindles and high-frequency activities in
the beta or gamma range [63]. It has been hypothesized that gamma oscillations might
be associated with phasic increases in neural activity during slow oscillations and could
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play a role in the offline processing of cortical networks [64]. Concerning low-frequency
activity, Cox et al. recently provided a comprehensive view of how human slow oscillatory
dynamics influence various measures of brain processing [65].

Concerning C differences in the topography of single electrodes, we found that in
ADHD, in the delta band, especially during the spindle epoch, C values of almost all the
electrodes were higher than in the control group, while in the gamma band, C values were
higher in the control group, in all the three epochs. No specific topographic pattern was
found in any band.

Spindles are hypothesized as originating from the thalamic reticular nucleus and
rhythmic oscillations within the thalamocortical circuits, but little is known about their
spatial properties and how they could influence functional connectivity of cortical and
subcortical activities and modify brain networks organization and functioning. Recent
works suggest that spindles are not homogenous, leaving unclear to what degree spindles
are global or local and if their properties are uniform or location-dependent [66]. It has
been proposed that the combination of local characteristics and global organization reflects
the dual properties of the thalamocortical generators and provides a flexible framework to
support the many functions ascribed to sleep in general and spindles specifically [66].

Mills et al. [67] emphasized the role of the thalamus as a mediating structure and sug-
gested that when functional connectivity is altered, this is likely related to altered communica-
tion between the thalamus and subcortical areas, as well as altered communication between
the thalamus and the cortex, thereby resulting in dysfunctional regulation of behavior.

Our results, showing different spindle-related sensor-space connectivity dynamics in
the two populations, in the delta but especially in the gamma band, raise questions about
the involvement of the thalamus in ADHD and the role of gamma activity during sleep
suggesting the presence in children with ADHD of an altered communication between the
thalamus and the cortex, maybe mediated by an imbalance in the way delta and gamma
activity interact.

As a preliminary study, we are aware of its limitations and careful in overgeneralizing
results. Mainly the low number of subjects and the non-consistent EEG connectivity
methodological framework across the literature [68,69] make us cautious in drawing
conclusions. Even though we tried to follow the recommendation and apply the surrogate
data methods based on phase randomization and bootstrap procedures [31–33,70], with
the purpose of automatic connectivity thresholds selection, the metrics for information
loss used in the procedure are not yet fully standardized [68]. In addition, due to the
nature of the experimental setup, the data were acquired on a clinically standard nineteen
channels EEG system. The analysis was performed on EEG sensor space due to the
limited number of channels and thus can be affected by the volume conduction as a result
of a linear mixture of source activities from all brain regions. Even though the study
on cortical source analysis of resting state EEG found that both approaches resulted in
concordant findings presenting similar trends of changes in resting EEG [71], it can still
lead to spurious correlations between the signals of short-distance electrodes in sensor
space connectivity analysis.

However, to the best of our knowledge, there are no previous studies on sleep spindle
connectivity in children, and the results of this study encourage us to further investigate
this field, looking for a possible biomarker of pathological brain functioning in ADHD.

In conclusion, connectivity methodologies focused on EEG microstructural elements
have not yet been widely addressed and could possibly be able to provide valuable insight
into this field.

The present preliminary study’s results encourage further investigation of sleep EEG
functional connectivity, particularly its dynamics related to spindle activity. If confirmed in
larger clinical studies, these results could support the usefulness of an easily achievable,
not invasive, and low expensive method to helping clinical diagnosis of ADHD. The
study suggests the coexistence of different spindle-related functional connectivity features
depending on frequency bands, raising questions about the involvement of the thalamus in
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ADHD and the role of gamma activity during sleep. Traditionally considered a hallmark of
the normal organization of brain functioning and development, sleep spindles could be
conceptualized and analyzed as a new window to study brain networks’ adaptability to
internal as well as external events.
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