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Abstract. In this paper, we give an alternative proof for the asymptotic stability of solitons for nonlinear
Schrödinger equations with internal modes. The novel idea is to use “refined profiles” developed by the
authors for the analysis of small bound states. By this new strategy, we able to avoid the normal forms.
Further, we can track the functions appearing in the Fermi Golden Rule hypothesis.

1. Introduction

In this paper, we revisit a theorem on the asymptotic stability of ground states of
the nonlinear Schrödinger equations (NLS), see [2,8,9], giving a novel and much
simplified proof, thanks to notion of “Refined Profile”, which allows to avoid the
normal form arguments in the older papers.
To set up the problem, we consider the scalar NLS,

i∂t u = −�u + g(|u|2)u with u(t, x) : R1+3 → C, (1.1)

where g ∈ C∞(R,R) with g(0) = 0 satisfies the growth condition:

∀n = 0, . . . , 4, ∃Cn > 0, |g(n)(s)| ≤ Cns2−n . (1.2)

NLS (1.1) under these conditions is locallywell-posed in H1(R3,C), see e.g. Theorem
5.5 of [24].
We will assume the existence of ground states. In particular, we assume existence

of an open interval O ⊂ (0,∞) and of a map

ω 	→ ϕω ∈ C∞(O, H1
rad ∩ L∞(R3,C)) , H1

rad(R
3,C)

:= {u ∈ H1(R3,C) | u(x) ≡ u(|x |)}, (1.3)

where ϕω a ground state, i.e. it satisfies

−�ϕω + ωϕω + g(ϕ2
ω)ϕω = 0 and ϕω(x) > 0 for all x ∈ R

3. (1.4)

For a very general existence result, see [4].
We fix ω∗ ∈ O and assume the following two hypotheses:
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(H1) Lω∗,+ has exactly one negative eigenvalue and ker Lω∗,+
∣
∣
L2
rad
= {0}, where

Lω,+ := −�+ ω + g(ϕ2
ω)+ 2g′(ϕ2

ω)ϕ2
ω;

(H2) d
dω

∣
∣
ω=ω∗ ‖ϕω‖2L2(R3)

> 0.

Remark 1.1. By (H1), we have kerLω∗,+ = {∂xl ϕ | l = 1, 2, 3}, see [7,36].
Remark 1.2. Both conditions (H1) and (H2) hold for ω near ω∗. In the following, we
will restrict O so that for all ω ∈ O, assumption (H1) and (H2) hold.

The second condition in (H1) is the so-called nondegeneracy condition, for sufficient
conditions that insure it, see [1,25] and reference therein. The first condition in (H1)
holds when ϕω is obtained by variational arguments, see Proposition B.1 of [19].

The condition (H1) and the Vakhitov–Kolokolov condition (H2) are standard suffi-
cient conditions to ensure the orbital stability of eiωtϕω for ω = ω∗.

Proposition 1.3. (Orbital stability) There exist ε0 > 0 and C > 0 s.t. if ‖u(0) −
ϕω‖H1 < ε0, then

sup
t∈R

inf
θ∈R,y∈R3

‖u(t)− eiθϕω(· − y)‖H1 ≤ C‖u(0)− ϕω‖H1 , (1.5)

where u(t) is the solution of (1.1).

Proof. See Theorem 3.4 of [20]. �
Remark 1.4. The number of negative eigenvalues of Lω∗,+ is called Morse index. In
Remark 1 [2], it is stated that Orbital Stability follows from (H1) and (H2) without
assuming Morse index 1, by quoting [19] which claims that Morse index 1 follows
from the second condition of (H1), (H2) and Theorem 3 [20]. However, Theorem 3
[20] is proved assuming that Morse index is 1. So for Orbital Stability it seems that
we need the hypotheses as we state them here. We are not aware of any example of
positive bound states with Morse index more than 2, satisfying the second condition
in (H1) and (H2). However, for NLS with potential and for systems of NLS there are
such examples, see [26]. Also, there exists a positive bound state with Morse index 2
(although it is not clear if this bound state satisfies (H2)), see [18].

The aimof this paper is to prove a stronger stability property, the asymptotic stability,
which states that all solutions near the ground state ϕω converge to ϕω+ for some
ω+ near ω∗ modulo scattering waves. Postponing assumptions (H3)–(H7), the main
theorem of this paper is as follows, already known under slightly stronger assumption:

Theorem 1.5. Assume (H1)–(H7) hold, where (H3)–(H7) are given below. Then, there
exist ε0 > 0 and C > 0 s.t. for all u0 ∈ H1 satisfying ‖u0 − ϕω∗‖H1 < ε0, there exist
C1(R) functions θ, ω, y, v and there are η+ ∈ H1(R3), v+ ∈ R

3 and ω+ ∈ O s.t.

lim
t→∞‖u(t)− eiθ(t)e

i
2 v(t)·xϕω(t)(· − y(t))− eit�η+‖H1 = 0, (1.6)

lim
t→∞ |ω(t)− ω+| = lim

t→∞ |v(t)− v+| = 0, (1.7)
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where u(t) is the solution of (1.1) satisfying u(0) = u0, and

‖η+‖H1 + |v+| + |ω+ − ω∗| ≤ C‖u0 − ϕω∗‖H1 . (1.8)

The key novelty here is the fact that we avoid the normal forms in the context of
the Fermi Golden Rule (FGR). This is a significant advance because the FGR is a
key mechanism in radiation induced dissipation. Classical oscillating mechanisms,
like the oscillations of a soliton trapped by a potential, which in certain asymptotic
regimes are known to last for long times, see for example [22], are not expected to
last forever. Similar oscillatory motions, in correspondence to critical points of the
function ω → ‖ϕω‖L2 , which appear naturally in the case a saturated versions of
the L2 critical pure power focusing NLS, see [5,27], analyzed rigorously in [13],
are not expected to hold forever. Other related examples of complicated oscillatory
patterns, lasting over long times are the complicated patterns near branchings of the
mapsω → ϕω considered in [28], which again are expected to be transient. In analogy
to the role of the FGR in the stabilization phenomena observed in [6,8,9,32–35] and
many other papers, some of whom referenced in the survey [15], what breaks the
oscillations should be an exchange of energy between discrete and continuous modes
of the solutions. In particular, in each of [5,22,27,28] the linearization Hω has a pair
of eigenvalues very close to the origin. The nonlinear interaction of the corresponding
discretemodeswith the continuousmodes, should be responsible for transient nature of
thepatterns observed.The longevity of these patterns is connectedwith the smallness of
the eigenvalues of the pair, because the nonlinear interaction, which leads to radiation
induced dissipation on discrete modes, is related to the fact that multiples of the
eigenvalues are in the continuous spectrum, see the definition of resonantmulti-indexes
under (1.17). In the present paper we avoid the issue of small eigenvalues, see that
in (H5) we are assuming λ j (ω) > 0 and in particular min j λ j (ω∗) > 0, but we
expect that the main novel idea of this paper, and of the previous papers [14,16],
might have some relevance also in the case of small eigenvalues. This is because, in
the presence of small eigenvalues, the problem of simplifying as much as possible the
search for optimal coordinate systems, where it might be easier to see the radiation
induced dissipation, becomes essential, in view of the large number of steps required
in normal forms arguments. Now it turns out that with a well-chosen “Refined Profile”,
the resulting coordinates are automatically optimal. This is similar to, and in fact was
inspired by, what happens in the study of the log log blow up in the L2 critical NLS, see
[29–31], where the choice of an appropriate deformation of the ground states, yields
automatically to a system where the dissipation mechanism is directly available. The
advantage of the Refined Profile, that is of an appropriate deformation of the ground
states which incorporates all the discrete coordinates, is that here as well as in [14,16],
it can be defined by an elementary argument. Obviously, the method will have to
be tested to study the transient nature of the patterns in [13,22,27,28], and in other
analogous contexts, and in general to get truly novel results.
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1.1. Linearized operator and assumption (H3)–(H6)

We use the Pauli matrices

σ1 =
(
0 1
1 0

)

, σ2 =
(
0 −i
i 0

)

, σ3 =
(
1 0
0 −1

)

. (1.9)

For given function ψ , we define

H[ω,ψ] : =
(

−�+ ω + g(|ψ |2)+ g′(|ψ |2)|ψ |2 g′(|ψ |2)ψ2

−g′(|ψ |2)ψ2 �− ω − g(|ψ |2)− g′(|ψ |2)|ψ |2
)

,

(1.10)

and for ω ∈ O, we consider the “linearized operator”

Hω := H[ω, ϕω]. (1.11)

Remark 1.6. Setting u = eiωt (ϕω + r) and substituting this into (1.1), we obtain

i∂t r = −�r + ωr + g(ϕ2
ω)r + g′(ϕ2

ω)ϕ2
ωr + g′(ϕ2

ω)ϕ2
ωr + O(r2).

Since complex conjugation is not C-linear, it is natural to consider the above matrix
form of the linearized operator when considering the spectrum.

Under the assumptions (H1) and (H2), the generalized kernel Ng(Hω):= ∪∞j=1
kerH j

ω becomes

Ng(Hω) = span{iσ3φω, ∂ωφω, ∂xl φω, iσ3xlφω, l = 1, 2, 3}, where φω =
(

ϕω

ϕω

)

.

(1.12)

Remark 1.7. The inclusion ⊇ always holds while ⊆ follows from (H1) and (H2), see
[36].

Under the assumption of (H1) and (H2) (and the fact that ϕω is positive), one
can show σ(Hω) ⊂ R (otherwise the bound state will be unstable contradicting
Proposition 1.3) and σess(Hω) = (−∞,−ω] ∪ [ω,∞), where σ(Hω) and σess(Hω)

are the spectrum and essential spectrum, respectively. We assume:

(H3) ±ω∗ are not eigenvalues nor resonance of Hω∗ ;
(H4) Hω∗ has no eigenvalues in (−∞,−ω∗) ∪ (ω∗,∞) (no embedded eigenvalues).

Remark 1.8. Assumption (H3) is generically true, while we expect assumption (H4)
always to be true. That is, we conjecture the absence of embedded eigenvalues with
positiveKrein signature. Notice that theKrein signature of such embedded eigenvalues
has to be positive when ϕω is a ground state.
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The spectrum of Hω is symmetric with respect to the imaginary axis. It is known
that there are finitely many eigenvalues with finite total multiplicity, Proposition 2.2
of [17]. Thus, considering the Riesz projection, we see that the projections to the
finite dimensional subspaces of discrete components are smooth in ω. We assume the
following:

(H5) There exist N ∈ N0 and λ j (·) ∈ C∞(O,R+) and ξ j [·] ∈ C∞(O, L2(R)) for
j = 1, . . . , N s.t. σd(Hω) = {0} ∪ {±λ j (ω), j = 1, . . . , N } and Hωξ j [ω] =
λ j (ω)ξ j [ω].

Remark 1.9. Assumption (H5) is satisfied when g is analytic.

We write

ξ j [ω] =
(

ξ j+[ω]
ξ j−[ω]

)

. (1.13)

From the anticommutative relation σ1Hω = −Hωσ1, one can see σ1ξ j [ω] is the
eigenvector of the eigenvalue −λ j (ω). It is possible to take all the ξ j±[ω] to be R-
valued and moreover normalize so that, for δ jk is the Kronecker’s delta,

(σ3ξ j [ω], ξ j [ω]) = δ jk . (1.14)

Remark 1.10. The above equality is always true for j �= k, while for j = k it reflects
the nontrivial, but easy to prove, fact that each eigenvalue λ j (ω) has positive Krein
signature (this is a consequence of the fact that ϕω is a ground state).

By standard argument, we know that ϕω and ξ j [ω] decay exponentially, see [21]. Thus,
we can show that for all ω ∈ O we have φω, ξ j [ω] ∈ �, where for sufficiently large
σ > 0, � is defined by

� := {u ∈ L2(R3,C2) | ‖u‖� <∞}, ‖u‖� := ‖ 〈x〉σ u‖H2 . (1.15)

The map ω 	→ ξ j [ω] is C∞ in � and the same holds for ϕω too.
In the following, given x ∈ K

M for K = N0,R,C and M ∈ N with x =
(x1, . . . , xM ), we set ‖x‖ := ∑M

n=1 |xn|. To state further assumptions on the discrete
spectrum, we introduce further notation. For m ∈ N

2N
0 , we write m = (m+, m−),

where m± ∈ N
N
0 . We also set m = (m−, m+), e j = (δ1 j , . . . , δN j ) ∈ N

N
0 , e j+ =

(e j , 0), e j− = e j+ and

λ(ω, m) =
N

∑

j=1
λ j (ω)

(

m+, j − m−, j
)

. (1.16)

For m, m′ ∈ N
2N
0 , we define

m′ � m ⇔ m′+, j + m′−, j ≤ m+, j + m−, j , for all j = 1, . . . , N ,

m′ ≺ m ⇔ m′ � m and ‖m′‖ < ‖m‖. (1.17)

5
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We define the resonant resp. minimal resonant indices as

Rω = {m ∈ N
2N
0 | |λ(ω, m)| > ω}

resp. Rmin,ω = {m ∈ Rω | � ∃m′ ∈ Rω s.t. m′ ≺ m}.

Further, the set of indices which we will ignore is

Iω := {m ∈ N
2N
0 | ∃m′ ∈ Rmin,ω s.t. m′ ≺ m}.

We assume the following, on the discrete spectrum.

(H6) We assume that for m+ ∈ N
N
0 with ‖m+‖ ≥ 2, λ(ω∗, (m+, 0)) �= λ j (ω∗) for

j = 1, . . . , N and

∀m ∈ N
2N
0 \Iω∗ , |λ(ω∗, m)| �= ω∗.

Remark 1.11. A sufficient condition for (H6) is that

2 ≤ ‖m+‖ ≤ ω∗
(

min
j

λ j (ω∗)
)−1

⇒ λ(ω∗, (m+, 0)) �= λ1(ω∗), . . . , λN (ω∗), ω∗.

Under (H6), restrictingO if necessary,Rmin,ω and Iω do not depend onω ∈ O. Thus,
we write them Rmin and I, respectively. We enumerate the set {λ(ω∗, m)| m ∈ Rmin}
as {±rk | k = 1, . . . , M} where rk > 0 and set

Rmin,k = {m ∈ Rmin | λ(ω∗, m) = rk}, (1.18)

and writeRmin,k = {m(k, n) | n = 1, . . . , Mk}. The set of nonresonant indices defined
by

NR := N
2N
0 \(Rmin ∪ I).

Notice that we have N2N
0 \I = Rmin ∪ NR. We further set

�0 := {m ∈ NR\{0} | λ(ω∗, m) = 0} and � j := {m ∈ NR | λ(ω∗, m) = λ j (ω∗)}.

Finally, for z = (z1, . . . , zN ) ∈ C
N , we write

zm = zm+zm− , m = (m+, m−) ∈ N
2N
0 , where zm± =

N
∏

j=1
z

m j±
j .

1.2. Refined profile and Fermi Golden Rule assumption (H7)

For a C1 function in z let DFw = Dz F(z)w = d
dε

∣
∣
ε=0 F(z + εw). Let also

∇x = (∂x1, ∂x2 , ∂3).
We now introduce the notion of refined profile.

6
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Proposition 1.12. There exist ϕ[ω, z], θ̃ (ω, z), ω̃(ω, z), ỹ(ω, z), ṽ(ω, z) and z̃(ω, z)
smoothly defined in the neighborhood of (ω∗, 0) ∈ O × C

N , such that ϕ[ω, 0] = ϕω

and for ϕ = ϕ[ω, z],

R[ω, z] := −�ϕ + g(|ϕ|2)ϕ + θ̃ϕ − iω̃∂ωϕ + ĩy · ∇xϕ + 1

2
ṽ · xϕ − iDzϕ̃z,

(1.19)

can be expanded as

R[ω, z] =
∑

m∈Rmin

zmGm +R1[ω, z] with Gm ∈ � and (1.20)

‖R1‖� � (|ω − ω∗| + ‖z‖)
∑

m∈Rmin

|zm|. (1.21)

Furthermore, R[ω, z] satisfies the following orthogonality conditions, for 〈 f, g〉 :=
� ∫

f gdx,

〈R[ω, z], iϕ[ω, z]〉 = 〈R[ω, z], ∂ωϕ[ω, z]〉 = 〈R[ω, z], ∂xl ϕ[ω, z]〉

= 〈R[ω, z], ixlϕ[ω, z]〉
= 〈R[ω, z], ∂z j Aϕ[ω, z]〉 ≡ 0, for all l = 1, 2, 3, j = 1, . . . , N , andA = R, I,

(1.22)

where z j R = �z j and z j I = �z j .

We set

Gm =
(

Gm

Gm

)

, (1.23)

and the wave operator W by

W = lim
t→∞ eitHω∗ e−itσ3(−�+ω∗). (1.24)

For the existence and boundedness, as well as its adjoint W ∗ and inverse see [10,17].
We state now our final assumption, the Fermi Golden Rule (FGR).

(H7) For each k = 1, . . . , M , F(

W ∗Gm(k,1)
)

+, . . . ,F(

W ∗Gm(k,Mk )

)

+ are linearly

independent as a function on the sphere |ξ |2 = rk −ω∗. Here, F f is the Fourier
transform of f and (F)+ is the upper component of the C2-valued function F .

Remark 1.13. If Mk = 1, (H7) states that there exists some ξ with |ξ |2 = rk such that
Ĝm(ξ) �= 0. In generic situations, when is the case λ j (ω∗) areZ–linearly independent
and each eigenspace ofHω is spanned by a finite subgroup of rotations of one element,
(H7) is generic. The Gm are obtained by an elementary recursive linear procedure,
much simpler than the analogous one in [2,8,9], which involves various nonlinear
normal forms transformations. The theory in this paper should make much more
feasible the task of checking numerically the FGR hypothesis for specific examples.

7
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2. Proof of Proposition 1.12

In this section, we provide the proof of Proposition 1.12.

Proof of Proposition 1.12. We seek for ϕ, θ̃ , ω̃, ỹ, ṽ and z̃ having the following ex-
pansions:

ϕ[ω, z] =
∑

z∈NR

zmϕm[ω],where ϕ0[ω] = ϕω,

and ϕe j±[ω] = ξ j±[ω] for j = 1, . . . , N , (2.1)

and

θ̃ (ω, z) = ω +
∑

m∈�0

zmθ̃m(ω)+ θ̃R(ω, z), ω̃(ω, z) = ω̃R(ω, z), (2.2)

ỹl(ω, z) = ỹlR(ω, z), ṽl(ω, z) =
∑

m∈�0

zmṽlm(ω)+ ṽlR(ω, z), l = 1, 2, 3, (2.3)

z̃ j (ω, z) = −iλ j z j − i
∑

m∈� j , ‖m‖≥2
zmλ̃ jm(ω)+ z̃ jR(ω, z), j = 1, . . . , N , (2.4)

with λ̃ je j+(ω) = λ j (ω) and

|θ̃R| + |ω̃R| + ‖̃yR‖ + ‖̃vR‖ + ‖̃zR‖ �
∑

m∈Rmin

|zm|. (2.5)

Our task is to determine ϕm, θ̃m, θ̃R, ω̃R, ỹR, ṽm, ṽR, z̃m and z̃R so thatR given by
(1.19) satisfies (1.20)–(1.22).
The proof consists of two steps. In the 1st, we substitute (2.1)–(2.4) into the r.h.s. of

(1.19) and solve the equation for each coefficients of zm for m ∈ NR. This determines
ϕm, θ̃m, ṽm, and z̃m. Furthermore, since we have erased all coefficients of zm with
m ∈ NR, the r.h.s. of (1.19), which we will denote R̃ (see (2.26) below), will satisfy
the error estimate (1.21) after subtracting the zm terms with m ∈ Rmin. Next, in the
2nd step, we choose θ̃R, ω̃R, ỹR, ṽR and z̃R so that (1.22) is satisfied. In the 2nd
step we are basically taking a projection of R̃ to satisfy the orthogonality conditions
(1.22).

1st step

We substitute (2.1), (2.2), (2.3) and (2.4) into the r.h.s. of (1.19).
Expanding−�ϕ+g(|ϕ|2)ϕ and omitting the dependence onω in the r.h.s.’s, except

for the ground state ϕω, we have,

−�ϕ[ω, z] =
∑

m∈NR

zm(−�ϕm), (2.6)

g(|ϕ[ω, z]|2)ϕ[ω, z] =
∑

m∈NR

zmg(ϕ2
ω)ϕm +

∑

m∈NR\{0}
zm

×
(

g′(ϕ2
ω)ϕ2

ω(ϕm + ϕm)+ gm

)

+ I, (2.7)

8
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where

gm = g′(ϕ2ω)
∑

m1+m2=m
m1,m2 �=0

⎛

⎜
⎜
⎜
⎜
⎝

ϕm1ϕm2ϕω + ϕm1ϕm2ϕω + ϕ
m1ϕm2ϕω +

∑

m11+m12=m1

m11,m12 �=0

ϕm11ϕm12ϕm2

⎞

⎟
⎟
⎟
⎟
⎠

+
∞
∑

n=2

1

n! g
(n)(ϕω)

∑

m1+···+mn+1=m
m1,...,mn �=0

n
∏

j=1

⎛

⎜
⎜
⎜
⎜
⎝

ϕωϕm j + ϕωϕ
m j +

∑

m j1+m j2=m j

m j1,m j2 �=0

ϕm j1ϕm j2

⎞

⎟
⎟
⎟
⎟
⎠

ϕmn+1 .

(2.8)

and I = I [ω, m] is a collection of remainders.

Remark 2.1. In (2.9), (2.10) and (2.11) below, we use I with the same meaning.

Notice that in the 1st sum in the second line of (2.8), for n > ‖m‖, the set of
m1, . . . , mn+1 satisfying the condition of the 2nd sum is empty. Thus, the 1st sum is
just a finite sum and not an infinite series. Furthermore, notice that all terms appearing
in (2.8) consist of ϕn with ‖n‖ < ‖m‖. In this sense, gm is a “known” term.
We next expand the terms θ̃ϕ and 1

2 ṽl xlϕ for l = 1, 2, 3.

θ̃ (ω, z)ϕ[ω, z] =
∑

m∈�0

zmθ̃mϕω +
∑

m∈NR

zmωϕm +
∑

m∈NR

∑

m1+m2=m
m1,m2 �=0

zmθ̃m1ϕm2 + I,

(2.9)
1

2
ṽl (ω, z)xlϕ[ω, z] =

∑

m∈�0

zm 1

2
ṽlmxlϕω +

∑

m∈NR

∑

m1+m2=m
m1,m2 �=0

zm 1

2
ṽl,m1 xlϕm2 + I.

(2.10)

The 3rd term in r.h.s. of (2.9) and the 2nd term in r.h.s. of (2.10) are known terms.
Expanding −iDzϕ̃z, we have

− iDzϕ̃z = −
∑

m∈NR

zm
N

∑

k=1

⎛

⎜
⎝

∑

m1+m2=m+ek+
m1

k+λk,m2ϕm1 −
∑

m1+m2=m+ek−
m1

k−λk,m2ϕm1

⎞

⎟
⎠+ I

= −
∑

m∈NR

zmλ(ω, m)ϕm −
N

∑

k=1

⎛

⎜
⎝

∑

m∈NR\{ek+}
zmλk,mξ j+ −

∑

m∈NR\{ek−}
zmλk,mξ j−

⎞

⎟
⎠

−
∑

m∈NR

zm
N

∑

k=1

⎛

⎜
⎜
⎜
⎜
⎝

∑

m1+m2=m+ek+
2≤‖m1‖<‖m‖

m1
k+λk,m2ϕm1 −

∑

m1+m2=m+ek−
2≤‖m1‖<‖m‖

m1
k−λk,m2ϕm1

⎞

⎟
⎟
⎟
⎟
⎠

+ I.

(2.11)

The last line (except I ) are known terms.

9
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We collect all known terms in what we denote Km. That is,

Km[ω] =gm +
∑

m1+m2=m
m1,m2 �=0

(

θ̃m1ϕm2 + 1

2
ṽl,m1xlϕm2

)

−
N

∑

k=1

⎛

⎜
⎜
⎜
⎝

∑

m1+m2=m+ek+
2≤‖m1‖<‖m‖

m1
k+λk,m2ϕm1 −

∑

m1+m2=m+ek−
2≤‖m1‖<‖m‖

m1
k−λk,m2ϕm1

⎞

⎟
⎟
⎟
⎠

.

(2.12)

Collecting the coefficients of zm, for all m ∈ NR we impose

0 =
(

−�+ ω + g(ϕ2
ω)+ g′(ϕ2

ω)ϕ2
ω

)

ϕm + g′(ϕ2
ω)ϕ2

ωϕm − λ(ω, m)ϕm

+ θ̃mϕω + 1

2
ṽm · xϕω −

N
∑

k=1

(

λk,mξk+ − λk,mξk−
)+ Km, (2.13)

where θ̃m = 0 and ṽm = 0 for m �∈ �0, λ j,m = 0 for m �∈ � j ∩ {‖m‖ ≥ 2}, the
terms with g′ are absent when m = 0 and the 1st (resp. 2nd) term in

∑N
k=1 is absent

when m = e j+ (e j−).
We first check that the root cases m = 0 and e j± are satisfied for our initial choice

given in (2.1).

Claim 2.2. ϕm = ϕω ∈ C∞(O, �) solves (2.13) for the case m = 0.

Proof. In this case (2.13) is reduced to (1.4). �

Claim 2.3. Setting λ je j (ω) = λ j (ω), ϕe j± = ξ j±[ω] ∈ C∞(O, �) solves (2.13) for
m = e j±.

Proof. In this case, the 2nd line of (2.13) vanishes and combining (2.13) for m = e j+
and m = e j−, we obtain

(Hω − λ j (ω)
)

ξ j [ω] = 0, which is the definition of ξ j [ω].
�

In the following, we assume that we have determined Km, that is, we have deter-
mined ϕn, θ̃n, ṽn and λk,n for all n with ‖n‖ < ‖m‖. We start from the case m ∈ �0.

Claim 2.4. Let m ∈ �0. Then, we can choose θ̃m, θ̃m, ṽm and ṽm so that we can solve
(2.13) with m and m for ϕm[ω] and ϕm[ω]. Furthermore, ϕm[ω] and ϕm[ω] are in
C∞(O, �), restricting O if necessary.

Proof. In this case, we can rewrite (2.13) as

0 =
(

−�+ ω + g(ϕ2
ω)+ g′(ϕ2

ω)ϕ2
ω

)

ϕm + g′(ϕ2
ω)ϕ2

ωϕm + θ̃mϕω

+ 1

2
ṽm · xϕω − λ(ω, m)ϕm + Km.

10
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Since m ∈ �0, adding and subtracting the above equations for m and m, we have

0 = Lω,+ϕm+ − λ(ω, m)ϕm− + θ̃m+ϕω + 1

2
ṽm+ · xϕω + Km+, (2.14)

0 = Lω,−ϕm− − λ(ω, m)ϕm+ + θ̃m−ϕω + 1

2
ṽm− · xϕω + Km−, (2.15)

where Lω,− = −� + ω + g(ϕ2
ω) and xm± = xm ± xm for x = ϕ, θ̃ , ṽ and K . To

solve (2.14) and (2.15), since ker Lω,+ = span{∂xl ϕω | l = 1, 2, 3} from (H1) and
since, from the fact that ϕω is positive, Lω,− = span{ϕω}, we set θ̃m+ = 0, ṽm− = 0
and choose θ̃m− and ṽlm+ to satisfy

1

2
ṽlm+

〈

xlϕω, ∂xl ϕω

〉+ 〈

Km+, ∂xl ϕω

〉− λ(ω, m)
〈

ϕm−, ∂xl ϕω

〉 = 0, (2.16)

θ̃m− 〈ϕω, ϕω〉 + 〈Km−, ϕω〉 − λ(ω, m) 〈ϕm+, ϕω〉 = 0. (2.17)

From
〈

xlϕω, ∂xl ϕω

〉 = − 1
2‖ϕω‖2L2 , we can always solve (2.16) and (2.17) w.r.t. ṽlm+

and θ̃m− for given ϕm±. �
Remark 2.5. Whenm = m, (2.15) is trivial.Notice that in this casewehaveλ(ω, m) =
0.

Substituting ṽlm+ and θ̃m− given in (2.16) and (2.17), into (2.14) and (2.15), we
obtain

((
Lω+ 0
0 Lω−

)

− λ(ω, m)P0[ω]σ1
) (

ϕm+
ϕm−

)

= −P0[ω]
(

Km+
Km−

)

, (2.18)

where P0[ω] is the orthogonal projection L2(R3)→ ker(Lω+)⊥⊕ker(Lω−)⊥. Since
diag(Lω+ Lω−) is invertible on RanP0[ω] and λ(ω, m) is small if ω is near ω∗, we
can take the inverse of the operator in the l.h.s. of (2.18). Thus, we have solved (2.13)
for m ∈ �0.

We next consider the case m ∈ � j . For k s.t. m ∈ �k set

λkm =
〈

K̃m, ξk
〉

,where K̃m[ω] :=
(

Km[ω]
Km[ω]

)

. (2.19)

Claim 2.6. For m ∈ � j . we can solve (2.13) for ϕm[ω] and ϕm[ω]. Furthermore,
ϕm[ω] and ϕm[ω] are in C∞(O, �), restricting O if necessary.

Proof. Combining (2.13) for m and m, we have

0 = (Hω − λ(ω, m)) φm −
∑

k:m∈�k

λk,mξk + σ3 K̃m, where φm :=
(

ϕm

ϕm

)

. (2.20)

Substituting (2.19), we have

0 = (Hω − λ(ω, m)) φm + Pj [ω]σ3 K̃m, where Pj+[ω]
:= 1−

∑

k:m∈�k

(·, σ3ξk[ω])ξk[ω]. (2.21)

11
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Notice that by (1.14), Pj+[ω] is a projection and one can check [Hω, Pj+[ω]] = 0
and RanPj+ = {σ3ξk[ω] |k s.t. m ∈ �k}⊥. Therefore, we have

Ran(Hω∗ − λ j (ω∗)) = Ker
(H∗ω∗ − λ j (ω∗)

)⊥ = RanPj+[ω∗],
where we have used the fact that Ran

(Hω∗ − λ j (ω∗)
)

is closed, H∗ω = σ3Hωσ3 and
kerHω∗ = {ξk[ω] |k s.t. m ∈ �k}. Therefore, the inverse of

(Hω∗ − λ j (ω∗)
)∣
∣

Pj+[ω∗]
exists. Now, set U j [ω] by

U j [ω] :=
(

Pj+[ω]Pj+[ω∗] +
(

1− Pj+[ω]
)

(

1− Pj+[ω∗]
)) (

1− (

Pj+[ω] − Pj+[ω∗]
)2

)−1/2
, (2.22)

then, we have U j [ω∗] = 1 and Pj+[ω] = U j [ω]Pj+[ω∗]U j [ω]−1 (see 1.6.7 of [23]).
Applying U [ω]−1 to (2.21), we have

(Hω∗ − λ j (ω∗)+ V [ω])
(

U [ω]−1φm

)

+ Pj+[ω∗]U [ω]−1σ3 K̃m = 0, (2.23)

where

V [ω] = Pj+[ω∗]
((

U [ω]−1 − 1
) (Hω − λ j (ω, m)

)

+ (Hω −Hω∗ − λ j (ω, m)+ λ j (ω+)
))

Pj+[ω∗].
Thus, we have

φm = −U [ω]
∞
∑

n=0

(

−(Hω∗ − λ j (ω∗))−1V [ω]
)n

Pj+[ω∗]U [ω]−1σ3 K̃m. (2.24)

Notice that since V [ω∗] = 0, the series converges near ω = ω∗. The smoothness of
φm w.r.t. ω follows from the above expression. �
Claim 2.7. Let m ∈ NR\{0} with m �∈ �0, m �∈ � j and m �∈ � j . Then, there exist
ϕm[ω] and ϕm[ω] satisfying (2.13) and C∞(O, �), restricting O if necessary.

Proof. In this case, (2.13) can be rewritten as

(Hω − λ(ω, m)) φm + σ3 K̃m = 0. (2.25)

Since Hω − λ(ω, m) has a bounded inverse for ω sufficiently near ω∗, we can solve
the above w.r.t. φm = t (ϕm ϕm). �
2nd step

For the last step, for ϕ = ϕ[ω, z] we consider
R̃ := −�ϕ + g(|ϕ|2)ϕ

+
⎛

⎝ω +
∑

m∈�0

zmθ̃m

⎞

⎠ ϕ + 1

2

∑

m∈�0

zmṽm · xϕ − i
N

∑

j=1
Dz j ϕ

⎛

⎝−i
∑

m∈� j

zmλ̃ j,m

⎞

⎠ .

(2.26)

12
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Since all the coefficients of zm with m ∈ NR in the r.h.s. of (2.26) are 0, we have
‖R̃‖�s �s

∑

m∈Rmin
|zm|. From (1.19) and (2.2)–(2.4) we have

R = R̃+ θ̃Rϕ + ω̃Ri∂ωϕ − i
3

∑

l=1
ỹlR∂xl ϕ +

1

2
ṽR · xϕ − iDzϕ̃zR.

To make R satisfy (1.22), θ̃R, ω̃R, ỹR, ṽR and z̃R need to satisfy the following
equation:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈R̃, iϕ
〉

〈R̃, ∂ωϕ
〉

〈R̃, ∂x1ϕ
〉

...
〈R̃, ixlϕ

〉

〈R̃, ∂z1R ϕ
〉

...
〈R̃, ∂zN I ϕ

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+A[ω, z]

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ̃R
ω̃R
ỹ1R
...

ṽ3R
z̃1RR

...

z̃N IR

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, (2.27)

for an appropriate matrix A[ω, z] obtained substituting the orthogonality condition.
From (H2) it is well known and elementary to see thatA[ω, z] is invertible forω = ω∗
and z = 0. Thus, if |ω − ω∗| + ‖z‖ is sufficiently small, we can solve the above
equation andR will satisfy (1.22). Finally, the estimate (2.4) follows from (2.27) and
‖R̃‖�s �s

∑

m∈Rmin
|zm|.

Remark 2.8. The proof of Proposition 1.12 is rather involved because we are trying
to construct ϕ[ω, z] in a neighborhood of ω∗. However, for the Fermi Golden Rule
assumption (H7), it suffices to know Gm, which can be constructed in much simple
manner because we only have to consider ω = ω∗. Indeed, in step 1, Claim 2.4, we
have

ṽlm+ = 4‖ϕω∗‖−2L2

〈

Km+[ω∗], ∂xl ϕω∗
〉

,

θ̃m− = −‖ϕω∗‖−2L2

〈

Km−[ω∗], ϕω∗
〉

,

and

ϕm± = −L−1ω∗±P0±[ω∗]σ3Km±[ω∗],
where P0± are the orthogonal projection on Ker(Lω±). Similarly, in Claim 2.6, we
have λkm given by (2.19) and

φm[ω∗] = (Hω∗ − λ j (ω∗))−1Pj [ω∗]K̃m[ω∗],
and in Claim 2.7, φm = −(Hω∗ − λ(ω∗, m))−1σ3 K̃m[ω∗]. Thus, we can inductively
define G̃m in a very explicit manner using the above formulas by the r.h.s. of (2.12)

13
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with ω = ω∗ and m ∈ Rmin. Finally, since the higher order correction of ϕ[ω, z] only
affects R̃1, we can take a projection of G̃m as step 2, but ϕ replaced by ϕω∗ to obtain
Gm.

3. Modulation

For (θ, y, v) ∈ R
1+3+3, we define the Galilean transformations (with gauge rota-

tion) by
(

Gθ,y,vu
)

(t, x) := eiθ ei
1
2 v·(x−y)u(t, x − y).

It is well known that the NLS (1.1) in invariant under Galilean transformations.

Lemma 3.1. Suppose u satisfies

i∂t u = −�u + g(|u|2)u − r,

for somer = r(t, x). Then, for any (θ, y, v) ∈ R
1+3+3,v(t, x) :=

(

Gθ+ 1
4 |v|2t,y+vt,vu

)

(t, x) solves

i∂tv = −�v + g(|v|2)v − Gθ+ 1
4 |v|2t,y+vt,vr.

Proof. See, e.g. Chapter 5 of [24]. �
We extend the refined profile ϕ[ω, z] given in Proposition 1.12 by Galilean and

gauge symmetry,

ϕ[θ,�, y, v, z] := Gθ,y,vϕ[ω, z], where � = ω − ω∗ (3.1)

Wealso introduce thevariable� := (θ,�, y, v, z) andwriteϕ[�] := ϕ[θ,�, y, v, z].
Notice that we have ϕ[0] = ϕω∗ .
In the following, for a smooth function F of � (in particular ϕ), we write

DF[�]� := d

dε

∣
∣
∣
∣
ε=0

F[�+ ε�].

The 2nd derivative w.r.t. � will be expressed by D2F[�](�1, �2). We define Dy and
Dv similarly. Recall that we have already defined Dz.

Proposition 3.2. For ϕ = ϕ[�], we have

iDϕ�̃+R = (−�+ ω∗) ϕ + g(|ϕ|2)ϕ, (3.2)

where

�̃[�, v, z] =
(
1

4
|v|2 + θ̃[ω∗ +�, z] − ω∗, ω̃[ω∗ +�, z], v

+ỹ[ω∗ +�, z], ṽ[ω∗ +�, z], z̃[ω∗ +�, z]
)

(3.3)

14
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and

R = R[�] = R[θ, ω∗ +�, y, v, z] = Gθ,y,vR[ω∗ +�, z], (3.4)

for x[ω, z] given in Proposition 1.12 for x = θ̃ , ṽ, z̃ and R. Furthermore,

∀� ∈ R
1+1+3+3 × C

N we have 〈R[�], Dϕ[�]�〉 = 0. (3.5)

Proof. From Proposition 1.12, (3.1) and setting d
dt

∣
∣
t=0 x = x̃, for x = θ, ω, y, v and

z, we have

i∂t |t=0 ϕ = i∂t |t=θ=0,y=v=0 Gθ,y,vϕ[ω, z] = −θ̃ϕ + iω̃∂ωϕ − ĩy · ∇xϕ

− 1

2
x · ṽϕ + iDzϕ = −�ϕ + g(|ϕ|2)ϕ − R[0,�, 0, 0, z],

where ϕ = ϕ[0,�, 0, 0, z]. Thus, by Lemma 3.1, setting v = ϕ[θ + 1
4 |v|2t,�, y +

vt, v, z], we have
i∂t |t=0 v = −�ϕ[�] + g(|ϕ[�]|2)ϕ[�] −R[�],

and

i∂t |t=0 v = −
(

θ̃ + 1

4
|v|2

)

ϕ + iω̃∂ωϕ − i(̃y+ v) · ∇yϕ − 1

2
x · ṽϕ + iDzϕ

= iDϕ�̃− ω∗ϕ,

where �̃ is given in (3.3). Therefore we have (3.2).
Finally, (3.5) follows from (1.22), (3.1), (3.4) and

∂θ Gθ,y,v f = iGθ,y,v f, ∂yl Gθ,y,v f = −∂xl Gθ,y,v f, ∂vl Gθ,y,v f

= i
1

2
(xl − yl)Gθ,y,v f,

for l = 1, 2, 3. �
We set

H := H [�] := −�+ ω∗ + d

dε

∣
∣
∣
∣
ε=0

g(|ϕ[�] + ε · |2)(ϕ[�] + ε·)
= −�+ ω∗ + g(|ϕ[�]2|)+ g′(|ϕ[�]|2)|ϕ[�]|2 + g′(|ϕ[�]2|ϕ[�])2C, (3.6)

where, Cu = u. Notice that due to the complex conjugation C, H is not C-linear but
only R-linear. Furthermore, we can easily check 〈Hu, v〉 = 〈u, Hv〉. Differentiating
(3.2), we have

H Dϕ� = iD2ϕ(�̃,�)+ iDϕ(D�̃�)+ DR�. (3.7)

We define the “continuous space” around ϕ[�] by
Hc[�] := {u ∈ H1 | ∀� ∈ R

1+1+3+3 × C
N , 〈iu, Dϕ[�]�〉 = 0}.

15
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Remark 3.3. The condition (3.5) can be rephrased as iR[�] ∈ Hc[�].
Remark 3.4. Notice that Hc is an R vector space and not a C vector space.

Lemma 3.5. (Modulation lemma) There exists δ > 0 s.t. if

inf
θ,y
‖u − ϕ[θ, 0, y, 0, 0]‖H1 < δ, (3.8)

then there exists �(u) = (θ(u), ω(u), y(u), v(u), z(u)) which depends on u smoothly,
such that we have

η(u) := u − ϕ[�(u)] ∈ Hc[�(u)]. (3.9)

Furthermore, we have

|�(u)| + ‖v(u)‖ + ‖z(u)‖ + ‖η(u)‖H1 � δ. (3.10)

Proof. Since this is standard, we skip it. �
From the orbital stability Proposition 1.3, for any solution u of (1.1) with ‖u(0)−

ϕω∗‖H1 sufficiently small, the assumption of Lemma 3.5 is satisfied for all t ≥ 0. Thus,
we apply Lemma 3.5 to e−iω∗t u(t) (which also satisfies (3.8)) and obtain x(t) :=
x(e−iω∗t u(t)) for all t ≥ 0, where x = �, θ,�, y, v, z and η. We will also use
ẋ := d

dt x(e−iω∗t u(t)) for x = �, θ,�, y, v, z.
We now substitute

u = eiω∗t (ϕ[�] + η) , (3.11)

into (1.1). Then, from (3.2), we have

i∂tη + iDϕ[�](�̇− �̃) = H [�]η + F +R[�], (3.12)

where

F = g(|ϕ + η|2)(ϕ + η)− g(|ϕ|2)ϕ − d

dε

∣
∣
∣
∣
ε=0

g(|ϕ + εη|2)(ϕ + εη). (3.13)

4. Proof of Theorem 1.5

We consider the Strichartz space

Stz(I ) := L∞(I, H1) ∩ L2(I, W 1,6).

The main estimate of this paper is given by the following Proposition.

Proposition 4.1. There exist ε0 > 0 and C0 > 0 s.t. if ε := ‖u(0) − ϕω∗‖H1 < ε0

and

‖η‖Stz(0,T ) +
∑

m∈Rmin

‖zm‖L2(0,T ) ≤ C0ε, (4.1)

for some T > 0, then we have (4.1) with C0 replaced by C0/2.

16
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Proof of Theorem 1.5. By Proposition 4.1, we have (4.1) with T = ∞. Then,
by standard argument one can show there exists η+ ∈ H1 s.t. limt→∞ ‖η(t) −
e−i(−�+ω∗)tη+‖H1 = 0. Thus, we have (1.6). �

Remark 4.2. Recall u is given by (3.11).

If we have (1.7), we will also have (1.8) by orbital stability. Thus, it remains to prove
(1.7). Let Q0(u) = 1

2‖u‖2L2 and Ql(u) = − 1
2

〈

i∂xl u, u
〉

for l = 1, 2, 3. Then, Ql is

constant under the flow of (1.1). Since ‖η(t)− eit�η+‖H1 → 0 as t →+∞, we have

Ql(u(t))− Ql(ϕ[�(t)])− Ql(η+)→ 0,

implying convergence of Ql(ϕ[�(t)]). Furthermore, by z → 0, we see that the
Ql(ϕ[0, ω(t), 0, v(t), 0]) converge. Since Q0(ϕ[0, ω(t), 0, v(t), 0]) = Q0(ϕω(t)),
we see that ω(t) must converge. Finally, since Ql(ϕ[0, ω(t), 0, v(t), 0])
= 1

2vl(t)Q0(ϕω(t)), we have the convergence of vl(t), which gives us the conclu-
sion.
The remainder of the paper is devoted to the proof of Proposition 4.1. Before going

into the details, we note that from Proposition 1.3 and (3.10), we have

‖�‖L∞ + ‖v‖L∞ + ‖z‖L∞ + ‖η‖L∞H1 � ε, (4.2)

and from (4.2) and (3.3), we have

‖�̃‖L∞ � ε. (4.3)

We give now estimates for the term F introduced in (3.13).

Lemma 4.3. We have

‖F‖L2W 1,6/5 � ε‖η‖Stz, (4.4)

‖F‖L1L6/5 � ‖η‖2Stz. (4.5)

Proof. We write g(|u|2)u = g̃(u) and we ignore in this proof complex conjugation,
which is irrelevant to the estimates. Notice that from g(0) = 0, we have g̃(0) =
g̃′(0) = g̃′′(0) = 0. Then, we have

F = g̃(η)+
∫ 1

0

∫ 1

0
(1− t)g̃

′′′
(sϕ + tη)ϕη2 dsdt.

Thus, from (1.2), we have

|F | � 〈η〉2 |η|3 + 〈η〉2 |ϕ||η|2.
|∇x F | � 〈η〉2 |η|2|∇xη| + 〈η〉 〈∇xη〉 |ϕ||η|2 + 〈η〉2 |∇xϕ||η|2 + 〈η〉2 |ϕ||η||∇xη|

(4.6)

17
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From Hölder and Sobolev inequalities, we have

‖ 〈η〉2 |η|3 + 〈η〉2 |η|2|∇xη|‖L2L6/5 �
〈‖η‖L∞H1

〉2 ‖η‖2L∞H1‖η‖L2W 1,6 (4.7)

Similarly, just replacing one η in the above inequality with ϕ or ∇xϕ, we have

‖ 〈η〉2 |ϕ||η|2 + 〈η〉2 |∇x ϕ||η|2 + 〈η〉2 |ϕ||η||∇x η|‖L2L6/5 � 〈‖η‖L∞H1
〉2 ‖η‖L∞H1‖η‖L2W1,6

(4.8)

For the remaining term,

‖ 〈η〉 〈∇xη〉 |ϕ||η|2‖L2L6/5 �
〈‖η‖L∞H1

〉 ‖η‖L∞H1‖η‖L∞W 1,6 (4.9)

Therefore, from (4.2), (4.7), (4.8) and (4.9), we have (4.4).
For (4.4), use (4.6) and we will have the conclusion. �

Taking the inner product 〈(3.12), Dϕ�〉 and using (3.7) and (3.9), we have

〈

iDϕ
(

�̇− �̃
)

, Dϕ�
〉 = −

〈

η, iD2ϕ(�̇− �̃,�)
〉

+ 〈η, DR�〉 + 〈F, Dϕ�〉 .

Thus, substituting � = (1, 0, 0, 0, 0), . . . , (0, 0, 0, 0, eN−) and using
(4.2), ‖DR�‖L∞�1 � ε and Lemma 4.3 , we obtain

‖�̇− �̃‖L2 � ε‖η‖Stz + ‖η‖2Stz. (4.10)

Also, by (4.6), taking the L∞ norm, we have

‖�̇− �̃‖L∞ � ε2. (4.11)

The estimate (4.11) combined with (4.3) implies

‖�̇‖L∞ � ε. (4.12)

4.1. Estimate of continuous variables

To use the properties and estimates of Hω∗ , we rewrite (3.12) as

i∂tζ + iDφ(�̇− �̃) = H[�]ζ + σ3(F+R), (4.13)

where

ζ =
(

η

η

)

, φ[�] =
(

ϕ[�]
ϕ[�]

)

, F =
(

F
F

)

, R =
(R
R

)

,

and H[�] := H[ω∗, ϕ[�]]. We set H̃c[�] := {w = t (u u) ∈ H1 | u ∈ Hc[�]}, P⊥∗
to be the projection on σd(Hω∗) given by Riesz projection and P∗ := 1− P⊥∗ .
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Lemma 4.4. There exists δ > 0 s.t. for (�, v, z) satisfying |� | + ‖v‖+‖z‖ < δ, the
projection P∗ restricted on H̃c[0,�, 0, v, z] is invertible. Furthermore, setting

R[�, v, z] := ( P∗|H̃c[0,�,0,v,z])
−1,

we have

‖R − 1‖�∗→� � |� | + ‖v‖ + ‖z‖, ‖∂x R‖�∗→� � 1, (4.14)

for x = ω, vl , z j A, l = 1, 2, 3, j = 1, . . . , N and A = R, I.

Proof. The proof is standard. �

We define G̃θ,y,v by G̃θ,y,vw = eiσ3θ eiσ3
1
2 v·(x−y)u(t, x − y) and consider

ζ̃ := P∗G̃−θ,−y,0ζ. (4.15)

By Lemma 4.4, we have

ζ = G̃θ,y,0R[�, v, z]̃ζ . (4.16)

One can also checkH[�̃] = Gθ,y,0H[0,�, 0, v, z]G−θ,−y,0 using (3.1). From (4.15),
(4.16) and Lemma 4.4, we have

‖η‖Stz ∼ ‖ζ‖Stz ∼ ‖̃ζ‖Stz. (4.17)

Substituting (4.16) into (4.13) and applying P∗G̃−θ,−y,0, we have

i∂t ζ̃ = Hω∗ ζ̃

+ P∗

(

σ3θ̇ ζ̃ + i
3

∑

l=1
ẏl∂xl ζ̃

)

+ P∗G̃−θ,−y,0σ3F+ P∗σ3R[0,�, 0, v, z] + Rζ̃ ,

(4.18)

where

Rζ̃ = −iP∗
⎛

⎝iσ3θ̇ (R − 1)̃ζ −
3

∑

l=1
ẏl∂xl ((R − 1)ζ )+ �̇ (∂� R)̃ζ + (Dv Rv̇) ζ̃ + (Dz Rż) ζ̃

⎞

⎠

− iP∗Dφ[0, �, 0, v, z](�̇− �̃)+ P∗
(H[0,�, 0, v, z] −Hω∗

)

Rζ̃ .

We now recall Beceanu’s Strichartz estimate [3].We denote byU(t, s) the evolution
operator associated to the equation

i∂tw = Hω∗w + P∗

(

σ3a0(t)w + i
3

∑

l=1
al(t)∂xl w

)

, w = P∗w.
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Proposition 4.5. There exists δ > 0 s.t. if ‖a j (t)‖L∞ < δ, then for u0 = P∗u0 and
F = P∗F , we have

‖U(t, 0)u0‖Stz � ‖u(0)‖H1 ,

‖
∫ ·

0
U(t, s)F(s) ds‖Stz � ‖F‖L2W 1,6/5 .

Proof. See, [3]. �

Using Strichartz estimates and Proposition 4.5, we now estimate ‖η‖Stz.
Lemma 4.6. Under the assumption of Proposition 4.1, we have

‖η‖Stz � ε +
∑

m∈Rmin

‖zm‖L2 . (4.19)

Proof. From (4.12), (4.17), (4.18) and Proposition 4.5 we have

‖η‖Stz � ε + ‖F‖L2W 1,6/5 + ‖R[0,�, 0, v, z]‖L2W 1,6/5 + ‖Rη̃‖L2W 1,6/5 .

Since ‖F‖L2W 1,6/5 ∼ ‖F‖L2W 1,6/5 , by Lemma 4.3, we have

‖F‖L2W 1,6/5 � ε‖η‖Stz.

Using (4.10), (4.12) and Lemma 4.4 we have

‖Rη̃‖L2W 1,6/5 � ε‖η‖Stz1 .

Thus, we obtain (4.19). �

In the rest of the paper we focus on the bound on
∑

m∈Rmin
‖zm‖L2 . To this effect,

for Gm is given in (1.23), we need the expansion

g = ζ̃ − Z with Z =
∑

m∈Rmin

zm Zm with (4.20)

Zm = −(Hω∗ − λ(ω∗, m)− i0)−1σ3Gm.

Then, for R1 = R[0,�, 0, v, z] −Gm, the vector valued function g solves

i∂t g = Hω∗g + P∗

(

σ3θ̇g + i
3

∑

l=1
ẏl∂xl g

)

+ P∗

(

σ3θ̇ Z + i
3

∑

l=1
ẏl∂xl Z

)

+ P∗G̃−θ,−y,0σ3F+ P∗σ3R1 + Rζ̃ −
∑

m∈Rmin

(

i∂t (zm)− λ(ω∗, m)zm)

Zm.

(4.21)

Before going into the estimates of g, we consider several preparatory lemmas.
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Lemma 4.7. Let m ∈ Rmin. We have

‖i∂t (zm)− λ(ω∗, m)zm‖L2 � ε(C0ε).

Proof. Setting λz := (λ1(ω∗)z1, . . . , λN (ω∗)zN ), we have

∂t (zm)+ iλ(ω∗, m)zm = Dz(zm) (ż− z̃)+ Dz(zm) (̃z+ iλz) . (4.22)

Since m ∈ Rmin implies ‖m‖ ≥ 2, from (4.10), we have

‖Dz(zm) (ż− z̃) ‖L2 � ε
(

ε‖η‖Stz + ‖η‖2Stz
)

. (4.23)

Next, from (2.4), we have

Dz(zm) (̃z+ iλz) =
N

∑

j=1
m j+zm−e j+

⎛

⎝i
∑

n∈� j , ‖n‖≥2
znλ̃ jm(ω)+ z̃ jR(ω, z)

⎞

⎠

+
N

∑

j=1
m j−zm−e j−

⎛

⎝i
∑

n∈� j , ‖n‖≥2
znλ̃ jn(ω)+ z̃ jR(ω, z)

⎞

⎠.

(4.24)

By (2.5), we have

N
∑

j=1
‖m j+zm−e j+

z̃ jR(ω, z)+ m j−zm−e j−
z̃ jR(ω, z)‖L2 � ε

∑

m∈Rmin

‖zm‖L2

(4.25)

We are left to estimate terms in the form m j+zm−e j++n or m j−zm−e j−+n with n ∈ � j

and ‖n‖ ≥ 2.We will only handle the former and the latter can be estimated by similar
argument. Since m ∈ Rmin, if m j+ �= 0, we have λ(ω∗, m) > ω∗ and m− = 0. From
assumption (H6), we have n− ≥ 1. Since

ω∗ < λ(ω∗, m) =
N

∑

k=1
λk(mk+ + δ jk + nk+ − nk−) <

N
∑

k=1
λk(mk+ + δ jk + nk+),

we have m′ � m − e j+ + (n+, 0) for some m′ ∈ Rmin. Thus, m − e j+ + n ∈ I.
Therefore,

N
∑

j=1
‖m j+zm−e j+ ∑

n∈� j , ‖n‖≥2
znλ̃ jm(ω)

+ m j−zm−e j− ∑

n∈� j , ‖n‖≥2
znλ̃ jn(ω)‖L2 � ε

∑

m∈Rmin

‖zm‖L2 . (4.26)

Form (4.22), (4.23), (4.24), (4.25) and (4.26), we have the conclusion. �
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Lemma 4.8. Let σ > 0 sufficiently large and |λ| > ω∗. Then, there exists δ > 0 s.t.
if ‖a j (t)‖L∞ < δ,

‖U(t, 0)(Hω∗ − λ− i0)−1G‖L2,−σ � 〈t〉−3/2 ‖G‖L2,σ , t ≥ 0,

‖
∫ ·

0
U(t, s)(Hω∗ − λ− i0)−1F ds‖L2L2,−σ � ‖F‖L2L2,σ .

Proof. See, e.g. Lemma 10.1 and 10.2 of [12]. �

We can now estimate g.

Lemma 4.9. We have

‖g‖L2L2,−σ � ε + ε(C0ε).

Proof. From (4.21), we have

‖g‖L2L2,−σ � ‖U(t, 0)̃ζ (0)‖Stz1 +
∑

m∈Rmin

|z(0)m|‖U(t, 0)Zm‖L2L2,−σ

+ ‖F‖Stz + ‖R1‖Stz + ‖Rζ̃‖Stz

+
∑

m∈Rmin

‖
∫ ·

0
U(·, s)z(s)m P∗

(

σ3θ̇ Zm + i
3

∑

l=1
ẏl∂xl Zm

)

‖L2L2,−σ

+
∑

m∈Rmin

‖
∫ ·

0
U(t, s)

(

i∂t (zm(s))− λ(ω∗, m)zm(s)
)

Zm‖L2L2,−σ , (4.27)

where we have used Stz ↪→ L2L2,−σ . The terms with Stz norms can be estimated
similarly as the proof of Lemma 4.6 with the bound ε(C0ε). The remaining terms can
be bounded using Lemmas 4.7 and 4.8. Thus, we have the conclusion. �

4.2. Fermi Golden Rule estimate

We are finally ready to estimate
∑

m∈Rmin
‖zm‖L2 .

Lemma 4.10. We have

∑

m∈Rmin

‖z‖L2 ≤ 1

2
C0ε.
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Proof. We start by computing the time derivative of the localized action E(ϕ[�]) +
ω∗Q0(ϕ[�]).

d

dt
(E(ϕ)+ ω∗Q0(ϕ))

=
〈

(−�+ ω∗)ϕ + g(|ϕ|2)ϕ, Dϕ�̇
〉

= 〈

iDϕ�̃, Dϕ�̇
〉

= − 〈

iDϕ(�̇− �̃), Dϕ�̃
〉

= − 〈

Hη + F, Dϕ�̃
〉+ 〈

i∂tη, Dϕ�̃
〉

= −
〈

η, iD2ϕ(�̃, �̃)+ DR�̃
〉

− 〈

F, Dϕ�̃
〉+

〈

η, iD2ϕ(�̇, �̃)
〉

= − 〈

η, DR�̃
〉−

〈

η, iD2ϕ(�̇− �̃, �̃)
〉

− 〈

F, Dϕ�̃
〉

, (4.28)

where we have used (3.2) in the 1st line, 〈iw,w〉 = 0 in the 2nd line, (3.10) in the 3rd
line, (3.7) in the 4th line. From (4.5) and (4.10) we have

‖
〈

η, iD2ϕ(�̇− �̃, �̃)
〉

‖L1 + ‖ 〈

F, Dϕ�̃
〉 ‖L1 � ε (C0ε)

2 . (4.29)

For the 1st term of the last line of (4.28),

− 〈

η, DR�̃
〉 = 〈η, DzR(iλz)〉 − 〈

η, DR (

�̃− (0, 0, 0, 0,−iλz)
)〉

(4.30)

where λz = (λ1(ω∗)z1, . . . , λN (ω∗)zN ). Following the argument of Lemma 4.7, we
have

‖ 〈

η, DR (

�̃− (0, 0, 0, 0,−iλz)
)〉 ‖L1 � C2

0ε
3. (4.31)

For the 1st term in the r.h.s. of (4.30),

〈η, DzR (iλz)〉 =
〈

G−θ,−y,0η, i
∑

m∈Rmin

λ(ω∗, m)zmGm

〉

+
〈

G−θ,−y,0η, , i
∑

m∈Rmin

λ(ω∗, m)zm (

G0,0,vGm − Gm
)

〉

+ 〈η, DzR1 (iλz)〉 .

(4.32)

By (1.21) and (4.2), the terms in the 2nd line of (4.32) can be bounded by

∥
∥
∥
∥
∥
∥

〈

G−θ,−y,0η, , i
∑

m∈Rmin

λ(ω∗, m)zm (

G0,0,vGm − Gm
)

〉

+ 〈η, DzR1 (iλz)〉
∥
∥
∥
∥
∥
∥

L1

� ε(C0ε)
2.

(4.33)

For the 1st term in the r.h.s. of (4.32), since Rmin = {m, m | λ(ω∗, m) > ω∗}, setting
Rmin+ := {m ∈ Rmin, λ(ω∗, m) > ω∗},
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we have
〈

G−θ,−y,0η, i
∑

m∈Rmin

λ(ω∗, m)zmGm

〉

=
〈

G−θ,−y,0η,
∑

m∈Rmin+

(

iλ(ω∗, m)zmGm + iλ(ω∗, m)zmGm

)
〉

=
∑

m∈Rmin+

(〈

G−θ,−y,0η, iλ(ω∗, m)zmGm
〉+ 〈

G−θ,−y,0η, iλ(ω∗, m)zmGm
〉)

=
〈

G̃−θ,−y,0ζ,
∑

m∈Rmin+
iλ(ω∗, m)zmGm

〉

. (4.34)

By (4.20), the 1st term in the r.h.s. of (4.34) can be decomposed as

〈

G̃−θ,−y,0ζ,
∑

m∈Rmin+
iλ(ω∗, m)zmGm

〉

=
〈

Z + g + (R − 1)̃ζ ,
∑

m∈Rmin+
iλ(ω∗, m)zmGm

〉

.

(4.35)

By Lemmas 4.4 and 4.9 we have

‖
〈

g + (R − 1)̃ζ ,
∑

m∈Rmin+
iλ(ω∗, m)zmGm

〉

‖L1 � ε(1+ C0ε)C0ε. (4.36)

Recalling (1.18), the remaining term of r.h.s. of (4.35) can be decomposed as

〈

Z ,
∑

m∈Rmin+
iλ(ω∗, m)zmGm

〉

=
M

∑

k=1

∑

m1,m2∈Rmin,k

rk

〈

zm1
Zm1 , izm2

Gm2

〉

+
∑

m1∈Rmin,m2∈Rmin+
λ(ω∗,m1)�=λ(ω∗,m2)

〈

zm1
Zm1 , iλ(ω∗, m2)zm2

Gm2

〉

. (4.37)

Now, for m1 and m2 with λ(ω∗, m1) �= λ(ω∗, m2), we have

d

dt
zm1+m2 = i(λ(ω∗, m1)− λ(ω∗, m2))

(

zm1+m2 + rm1,m2

)

,

where

rm1,m2 =
1

i(λ(ω∗, m1)− λ(ω∗, m2))
D(zm1+m2

)(ż+ iλz).

Arguing as Lemma 4.7, we can show

‖rm1,m2‖L1 � ε(C0ε)
2. (4.38)
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Thus, for the 2nd term in the r.h.s. of (4.37),

〈

zm1
Zm1 , iλ(ω∗, m2)zm2

Gm2

〉

= d

dt
Am1,m2 − rm1,m2

〈

Zm1 , iλ(ω∗, m2)Gm2

〉

,

(4.39)

where

Am1,m2 =
1

i(λ(ω∗, m1)− λ(ω∗, m2))

〈

zm1
Zm1 , iλ(ω∗, m2)zm2

Gm2 [ω∗]
〉

. (4.40)

Finally, for the 1st term of r.h.s. of (4.37), by Plemelj formula we have

M
∑

k=1

∑

m1,m2∈Rmin,k

rk

〈

zm1
Zm1 , izm2

Gm2 [ω∗]
〉

= −
M

∑

k=1

π

2
√

rk − ω∗

∫

|ξ |2=rk−ω∗
|

∑

m∈Rmin,k

zmF(

W ∗Gm
)

+|2 dσ(ξ). (4.41)

Here, W ∗ is the adjoint of the wave operator W given by (1.24),F is the usual Fourier
transform and F+ = f1 for F = t ( f1 f2). Since, for each k, the r.h.s. of (4.41) is a
non-negative bilinear form of zm’s, by (H7), we have

N
∑

k=1

∫

|ξ |2=rk

|
∑

m∈Rmin,k

zmF(

W ∗Gm
)

+|2 dσ �
∑

m∈Rmin

|zm|2 (4.42)

Collecting all (4.28)–(4.42), we have

∑

m∈Rmin

‖zm‖2L2 � [E(ϕ)+ ω∗Q0 + A]T0 + ε(C0ε)
2 + ε(C0ε). (4.43)

By Orbital stability, Proposition 1.3, we see that the 1st term in r.h.s. of (4.43) can be
bounded by � ε2. So, we have

∑

m∈Rmin

‖zm‖2L2 ≤ C(ε2 + ε(C0ε)
2 + ε(C0ε)) (4.44)

Thus, taking C0 sufficiently large so that C(1 + C0) ≤ 1
100N C2

0 and ε0 sufficiently
small so that Cε0 ≤ 1

100N , we have

∑

m∈Rmin

‖zm‖2L2 ≤ 1

10N
(C0ε)

2. (4.45)

Therefore, we have the conclusion. �

Proof of Proposition 4.1. Taking C0 larger if necessary, from Lemmas 4.6 and 4.10 ,
we have (4.1) with C0 replaced by C0/2. �
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