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Abstract—Single-shot K-Edge Subtraction X-ray Computed
Tomography (CT) with a multi-threshold photon-counting de-
tector is an interesting approach to favour low-dose analyses
of a known contrast agent with promising applications in vivo.
To assess the minimum detectable concentration of the contrast
agent and to favour possible radiation dose reduction and/or
faster acquisition time, a significant role is played by the tomo-
graphic reconstruction algorithm. By considering experimental
images, this work evaluates three CT reconstruction methods
and different acquisition statistics via a no-reference assessment
of contrast-to-noise ratio and spatial resolution. The results
support that, although computationally expensive, a SART-TV
reconstruction approach yields adequate results even when a
limited number of projections is available.

Keywords—spectral imaging, photon counting detector, com-
puted tomography, iterative reconstruction.

I. INTRODUCTION

Within the field of X-ray spectral imaging [1], K-Edge
Subtraction (KES) considers the sharp rise of the absorption
coefficient at the K-edge of a specific element such as e.g. an
injected contrast agent. This imaging technique requires the
acquisition of two digital images at different energies at either
side of the K-edge of the element to be detected and it can
be applied to Computed Tomography (CT). The logarithmic
subtraction of these “low” and “high” energy images enhances
the presence of the element whereas the other structures have
negligible (or negative) contrast, thus favoring further image
segmentation and analysis.

KES imaging with conventional polychromatic sources is
of great interest and it would be desirable to obtain the
energy images in a single shot by separating the spectrum
in (at least) two parts, i.e. below and above the K-edge of an
element. An X-ray Photon Counting Detector (XPCD) is the
most promising tool for single-shot KES imaging [2], since it
is equipped with a real time multi-threshold discrimination
system and it is therefore capable to acquire perfectly co-
registered data over multiple energy bins in a single scan.

This work considers different reconstruction methods for
X-ray KES CT images of Ba solutions. Experimental images
acquired with the Pixie-III detector [3]–[6] are analyzed. This
work aims at evaluating different KES CT reconstruction
algorithms by proposing a simple no-reference quality eval-
uation method based on an assessment of contrast-to-noise

ratio and spatial resolution directly from the reconstructed
images. The ultimate goals of this work are: i) to investigate if
refined iterative reconstruction algorithms for KES-CT allow
to detect subtle concentrations of a contrast agent thanks to
a better noise compensation and ii) to speculate about the
reconstruction algorithm that, among the considered ones,
better tolerates a projection decimation since this generally
favors a radiation dose reduction and/or faster acquisition
times.

II. MATERIALS AND METHODS

A. Sample preparation

A test object composed of polypropylene 350 µl small tubes
filled with different dilutions of BaCl2 (Carlo Erba Reagents
— 122 mg/ml) and de-ionized water was prepared. Fig. 1
depicts a sketch of this test object together with its setup with
respect to the beam and the detector.

X-ray beam

X-ray detector

axial CT slice

1

2

34

5 1) BaCl2 61 mg/ml

2) BaCl2 31 mg/ml

3) BaCl2 15 mg/ml

4) BaCl2 8 mg/ml

5) H2O

Fig. 1: Sketch of KES CT imaging setup (top panel) and the
considered test object composed of different pipettes filled with a
Ba solution with the order and composition as it results from an
axial CT slice (bottom panel).



Fig. 2: CT axial slice (512×512 pixels) reconstructed with FDK of the considered test object: a) low-energy image; (b) high-energy image;
c) resulting KES image where only the Ba content within the small tubes results highlighted. Resulting isotropic voxel size is 50×50×50
µm3. The same window/level gray-value settings are used for the three images. The highlighted ROIs are used for quantitative analysis.
[Scale bar = 5 mm]

B. CT acquisition

A micro-focus Hamamatsu X-ray source (tube voltage: 20
to 90 kV, tube current: 0 to 200 µA, maximum output: 8 W,
focal spot size: 5 µm) and a CdTe Pixirad-1/Pixie-III detector
(sensitive area: 31.7×25.0 mm2 organized as a 512×402 pixels
on a square matrix at 62 µm pitch) were used. The detector
was configured in Neighbor Pixel Inhibit - Pixel Summing
Mode (NPISUM) [5]. This mode is specifically designed to
favor energy resolution [6].

Thanks to its two programmable energy thresholds Elow and
Ehigh, the detector outputs in a single exposure two images,
hereafter referred as to “low” (in the energy range [Elow,Ehigh])
and “high” (in the range [Ehigh,+∞]). Fig. 2 reports a sample
slice of these “low”, “high” and KES datasets.

For this work the following acquisition settings were used:
X-ray tube voltage = 50 kV, current = 160 µA, 1mm Al filter,
exposure time = 1 s, detector energy thresholds Elow = 28.0
keV, Ehigh = 38.0 keV. These settings result from the optimiza-
tion reported in [7]. The cone-beam CT geometry setttings are:
distance source-to-object DSO = 200 mm, distance source-to-
detector DSD = 250 mm, 720 projections over 360 degrees in
“step and go” mode. Projection averaging over 10 images was
applied. The nominal voxel size of the reconstructed 512×512
axial slices is 50×50×50 µm3.

C. Image pre-processing

In addition to conventional flat-fielding, a custom automatic
detection and removal non-linear filter was used to compensate
for a few observed defective pixels. This filter considers a 5×5
neighborhood and its median gray value m. If the absolute
difference between the gray-level of the central pixel and
m is above a user-specified fixed threshold δ, the value of
the central pixel is then replaced. The replaced value is not
m but it is the median of the set composed by the pixels
that satisfy the previous condition, i.e. having the absolute
difference between their gray level and m below the threshold.

D. Reconstruction algorithms

In this work the following reconstruction algorithms were
considered: FDK, OS-SART, and SART-TV. The implemen-
tation available in the open-source software TIGRE was used
[8]. Default parameters were considered for each algorithm
except for the filtering of the FDK where “shepp-logan” was
applied and for the λ parameter of SART-TV (λ = 500
was set). For the SART-based algorithms 200 iterations were
applied. To simulate different acquisition statistics, projections
were decimated in order to have three input datasets composed
of 720, 360, and 180 projections, respectively. For each
considered algorithm, a post-reconstruction ring-removal filter
was applied directly to the reconstructed slices [9].

E. Quantitative analysis

The reconstructed images were quantitatively compared in
terms of spatial resolution ∆x and contrast-to-noise ratio
CNR by considering the central slice of the reconstructed
volume. The circular edge method with a logistic curve-fitting
technique [10] was used to asses the spatial resolution as Full
Width Half Maximum (FWHM) of the first derivative of the
edge spread function. The circular edge reported in blue in Fig,
2 was considered. The Regions-of-Interests (ROIs) reported in
red as well as reference ROI0 highlighted in green in Fig, 2
were used to compute the mean µ and standard deviation σ of
the gray levels. Then CNR for each ROI i-th was determined
as:

CNRi =
|µi − µ0|√
(σ2

i + σ2
0)/2

. (1)

A simple quality characteristic Q defined as:

Q =
CNR1

∆x
(2)

is here proposed to combine CNR and spatial resolution
information in a single metric.



TABLE I: Results of the quantitative analysis of CNR

Algorithm CNR1 CNR2 CNR3 CNR4

FDK | 720 2.48 1.14 0.43 0.06
FDK | 360 1.66 0.76 0.29 0.03
FDK | 180 1.15 0.51 0.19 0.02
OS-SART | 720 1.19 0.54 0.24 0.05
OS-SART | 360 1.27 0.55 0.22 0.02
OS-SART | 180 1.59 0.71 0.26 0.01
SART-TV | 720 5.81 2.64 1.01 0.11
SART-TV | 360 6.18 3.04 1.10 0.12
SART-TV | 180 6.78 3.06 1.14 0.16

III. RESULTS AND DISCUSSION

Table I reports the quantitative results of the assessment of
CNR for each considered Ba dilutions. It can be noticed that
although the pipette filled with the minimum concentration of
Ba results hard to detect for all the considered algorithms, an
interesting difference is observed for the pipette filled with
15 mg/ml of BaCl2. The images reconstructed with SART-
TV present a value for CNR3 above 1 for each considered
projection decimation. It is worthy to note also that CNR val-
ues for the FDK images decrease when reducing the number
of available projections. This is not true for the SART-based
algorithms where a better noise handling with a consequently
smoothing effect results in increasing CNR values for ROI1
and ROI2. These results support that SART-TV allow to detect
a subtle concentrations of the contrast agent thanks to its better
noise compensation even when a limited number of projections
is available.

Because higher values for CNR might be related to a
worsening of the spatial resolution, the previous observation
needs to take into account the quantitative results for ∆x
and Q reported in Table II. It can be observed that for FDK
the value of Q increases coherently when more projections
are available. This observation does not hold for OS-SART.
Interestingly, the highest value of Q for OS-SART is recorded
for the case considering 360 projections, thus suggesting that
720 projections are not necessary for the reconstruction of
a 512×512 image with this algorithm. While the assessed
spatial resolution for FDK is superior to the one for the SART-
TV case, the assessed ∆x values for SART-TV might be
acceptable for an experimental voxel size of 50×50×50 µm3.

The computed quality measurements still support the use
of FDK when a high number of projections are collected,
especially for applications in which spatial resolution has to
be privileged. However, the loss in ∆x for SART-TV might be
tolerated for practical applications where the detectability of
subtle concentrations has to be favored. Moreover, although
a more refined and detailed investigation is required, the λ
parameter of SART-TV seems to act as a trade-off between
these two aspects, thus allowing an application-dependent fine
tuning of the final quality of the reconstructed images. This
option is not available for the FDK algorithm.

Computational requirements are of course different for the

TABLE II: Results of the quantitative analysis of ∆x and Q

Algorithm ∆x [mm] Q [mm−1]
FDK | 720 0.091 27.1
FDK | 360 0.089 18.7
FDK | 180 0.096 12.1
OS-SART | 720 0.077 15.4
OS-SART | 360 0.075 16.9
OS-SART | 180 0.134 11.9
SART-TV | 720 0.106 54.8
SART-TV | 360 0.126 49.0
SART-TV | 180 0.169 39.9

three considered algorithms, being FDK the fastest recon-
struction approach and SART-TV the most computationally
intense. Refined investigations are required to optimize the
number of iterations required by the SART-based techniques.
It is reasonable to assume that 200 iterations as considered in
this work are more than abundant for the vast majority of the
applications. A convergence analysis is required to optimize
the computational aspects of a SART-based reconstruction
workflow.
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Fig. 3: A representative axial slice for each of the considered reconstruction algorithm and for the three different angular sampling (i.e.
number of projections). From top to bottom: FDK, OS-SART, and SART-TV. From left to right: 720, 360, and 180 projections.
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