Editedby
Paola Cerchiello - Arianna Agosto
Silvia Osmetti - Alessandro Spelta

Proceedings of the
Statistics and Data
Science Conference




Copertina: Cristina Bernasconi, Milano

Copyright © 2023 EGEA S.p.A.

Via Salasco, 5 - 20136 Milano

Tel. 02/5836.5751 - Fax 02/5836.5753
egea.edizioni@unibocconi.it - www.egeaeditore.it

Quest’opera ¢ rilasciata nei termini della Creative Commons Attribution 4.0 International Licence
(CC BY-NC-SA 4.0), eccetto dove diversamente indicato, che impone l'attribuzione della paternita
dell'opera e ne esclude l'utilizzo a scopi commerciali. Sono consentite le opere derivate purché si
applichi una licenza identica all'originale. Il testo completo ¢ disponibile alla pagina web https:/
creativecommons.org/licenses/by-nc-sa/4.0/deed.it.

Date le caratteristiche di Internet, 'Editore non e responsabile per eventuali variazioni di indirizzi e
contenuti dei siti Internet menzionati.

Pavia University Press
info@paviauniversitypress.it — www.paviauniversitypress.it

Prima edizione: maggio 2023
ISBN volume 978-88-6952-170-6



Preface

The development of large-scale data analysis and statistical learning methods for
data science is gaining more and more interest, not only among statisticians, but also
among computer scientists, mathematicians, computational physicists, economists,
and, in general, all experts in different fields of knowledge who are interested in
extracting insight from data.

Cross-fertilization between the different scientific communities is becoming crucial
for progressing and developing new methods and tools in data science.

In this respect, the Statistics & Data Science group of the Italian Statistical Society
has organized an international conference held in Pavia on the 27 and 28 of April
2023, attended by over 70 researchers from different scientific fields.

A collection of the presented papers is available in the present Proceedings showing
a huge variety of approaches, methods, and data-driven problems, always tackled
according to a rigorous and robust scientific paradigm.

The Statistics & Data Science group
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Streamlined Variational Inference for Modeling
Italian Educational Data

Gioia Di Credico, Claudia Di Caterina, Francesco Santelli

Abstract The streamlined version of the mean field variational Bayes (MFVB) al-
gorithm for linear mixed models with crossed random effects allows simplifying
calculations but may require one group’s dimension to be moderate.Data collect-
ing high school students’ first term evaluations and INVALSI scores for Italian and
Maths subjects perfectly comply with this setting: students are a vast random sample
of those who enrolled at the university in 2019/20, while the number of tests is lim-
ited to 6. Three different MFVB product restrictions with incremental complexity
are evaluated. All of them are convenient with respect to classic MCMC solutions
from both a computational and a memory storage viewpoint. Results and interpre-
tation of model coefficients are in line with the literature on educational data.

Key words: Crossed random effects, INVALSI, Mean field variational Bayes.

1 Introduction

Linear mixed-effects models are commonly used to analyze data with a continuous
Gaussian outcome and multiple levels of variability arising from a grouped data
structure. In order to account for the variability introduced by the nested or crossed
structure of the observations, it may be convenient to include random effects treated
as random variables in the model.

In the following, we focus on a crossed-data application where two levels of vari-
ability exist. Crossed designs imply that each combination of the group levels is rep-
resented in the data [1]. Our data refer to a random sample of students who enrolled
in a Bachelor program at an Italian university in the academic year 2019/2020. Out-
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103 Gioia Di Credico, Claudia Di Caterina, Francesco Santelli

comes consist of students’ evaluations during their 10th and 13th high school grades.
Here, students and the type of tests define our two-group crossed-data design. As the
groups size increases, model estimation gets slower and may even become unfeasi-
ble. Streamlined variational inference has recently been applied to overcome these
estimation difficulties in random-effects models, e.g. by [3] for the nested group
structure and by [4] for the crossed one. The key idea relies on the sparseness of the
matrix to be inverted, which enables a quicker computation and less storage capac-
ity. Nested data imply a so-called arrowhead block structure for this matrix [5], and
non-zero sub-blocks can be easily identified to simplify the calculation of its inverse.
In the crossed-data case studied here the matrix is less sparse, however, consider-
ing the most accurate restriction, the streamlined approach offers advantages when
one group is moderate in size. Our motivating data exhibit such a feature: the num-
ber of students involved is very large (around 7000), while the tests whose mark is
recorded on each student are limited to 6.

2 Methods

For each ith student, we assume the scores ;7 on test i’ follows a linear mixed model
with two crossed random effects:

yir|B.uiwy, 02 P N( Xy B+ Zypwi + Zlyuly, 02), i=1,....m, (1)
w| D NO, ), uXENGOX), P =1,...m,
where X is the n;y X p design matrix, Z;» and Z ;l.,, respectively of dimension
n;z % q and n;; X ¢', are the random effects matrices, (3 is the p-vector of fixed-effect
coefficients, u; and u;/, respectively g x 1 and ¢’ x 1, are the vectors of random
effects, X and X’ are their ¢ x g and ¢’ x ¢’ respective covariance matrices and 6>
is the error variance.
The joint a priori density of the p fixed effects is 3 ~ N, (ug, ¥ g). For the error
variance o2 and the random effects covariance matrices X and X', we consider the
following family of marginally non-informative prior distributions [2]:

02lage ~ Inverse-y*(Vy2,1/ag), ag ~ Inverse-x>(1, 1/(v62s§2)),
Y| A sy ~ Inverse-G-Wishart(Gpyy, Vs + 2 — 2, Ag),
X'|A sy ~ Inverse-G-Wishart(Gru, Vs +2¢' —2, A ), 2)

A ~ Inverse-G-Wishart(Gaiag, 1,AAy. ), Ay = {v;(szzﬂl,szzﬁz)}*l,

~1
A sy ~ Inverse-G-Wishart(Gaiag, 1,Aa ), Aay, = {VE/ (szzljl,szzcz)}

In our application, the first group of random effects w; (i = 1,...,m = 7005) cor-
responds to students enrolled at an Italian university in 2019/2020, and the second
group u), (i' = 1,...,m' = 6) corresponds to scores from assessments of Italian and
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Math skills. Specifically, for each student, a written and oral score was recorded at
the end of the first term and one written standardized INVALSI score (see Section
3) was recorded at the end of the final term. Each combination student/test, corre-
sponding to the pair (i,i’), is observed n;; = n = 2 times, namely in the 10th and
13th grades of high school. The design matrix X;7 has p = 32 columns, including
the intercept. Moreover, g = ¢’ = 2 because we consider both random intercepts and
random slopes for the two groups, meaning

!
Zip=Zj =1 xl,ii’f]j:l,z’

where x1 ;7; = 1,2 is the year indicator encoding the two high school grades. Ac-
cording to (1) and this set-up, the two scores of the ith student on the i'th test are

modeled to be
2ind 2 2
yl‘i’jlﬁ7u0i7uli»”6ﬂ:”/11/70 N'N(ﬁoJrMol‘JrMoﬂJr(ﬁl+M1i+u1i’)x1,iﬂj+z Bixy i j,0°)
k=1

for j=1,2. The formula above shows that this modelling strategy allows for a differ-
ent intercept and slope for every student/test combination. Heterogeneities among
intercepts and slopes are defined by appropriate entries of 3 and 3.

We consider three product restrictions on the mean field approximation of the
joint conditional density function of all parameters in (1) with covariance priors (2)
([4], Sect. 3):

q(B)g(u)g(u') q(c?, X, X'), restriction I,
q(B,u.u', 0%, X, 5" ={ q(B,u)q(u)g(c? X, %), restriction I, 3)
q(B,u,u)g(c*, X, %", restriction I1L.

Product restriction I has the simplest streamlined implementation and scales well
to very large problems, but may produce small posterior variances as it sets all pos-
terior correlations between 3, w and ' to zero. Conversely, product restriction III
allows for a full joint posterior covariance matrix of (3, u,u’), leading to higher in-
ferential accuracy but challenging computing that can be streamlined for limited .
A compromise is given by product restriction II, which includes posterior correla-
tions between 3 and u, for u larger than w. For all the product restrictions, the prior
distributions specification 2 leads to a fully factorization of the g-densities related
to the covariance matrix and auxiliary variables [4].

The g-density parameters can be obtained using a coordinate ascent iterative
algorithm. However, if applied naively, the potentially prohibitively large matrix
X 4(B.u.u) Tequires storage and inversion. Product restrictions I, IT and III lead to
streamlined mean field variational Bayes (MFVB) algorithms with varying degrees
of storage and computational overhead (see [4], Sect. 4).
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3 Italian students’ proficiency data

Data drawn from the Italian ‘Anagrafe Nazionale della Formazione Superiore’ has
been processed according to the research project ‘From high school to the job mar-
ket: analysis of the university careers and the university North-South mobility’ car-
ried out by the University of Palermo (head of the research program), the Italian
‘Ministero Universita e Ricerca’, and INVALSI. The dataset is known as MOBYSU.
In the Italian School System, the scholastic assessment is in charge of the Italian
national institute for the evaluation of the school system” (INVALSI), which uses a
set of standardized tests to evaluate the proficiency of students attending different
schools at different years. Several domains are tested, and the main domains are
Mathematical skills, English language, Italian language, and Science.

Our data regard the cohort of pupils that finished high school, achieved the
Diploma in 2018/19, and then enrolled at university in 2019/20. Such students are
more than 240000. To be included, students must have never failed a scholastic year,
and must attend high school for the first time in the Italian school system. The re-
sponse variable refers to students marks: four recorded at the end of the first term
(Italian and Math, written and oral) and two throughout the INVALSI test (Ital-
ian and Math, written), during their 10th and 13th high school grades. Predictors
involved in the analysis are listed in Tab.1. They include information on the socio-
economic background, parental occupation and demographics.

Table 1 Model predictors, their description and reference categories.

Variable Description Reference
Gender Male, Female Female

Age Reception (one year ahead), Regular Regular
Nation Foreigner, Italian Ttalian
Student escs (EscsStud) student socio-economic level

School escs (EscsSch) school socio-economic level

School type (SchTy) 13 categories Classical Lyceum
Work Mother (Work.M) 5 categories Unemployed
Work Father (Work.F) 5 categories Unemployed
Year School year

NUTS2 classification (NUTS2) 5 areas Center
School Private, Public Public

4 Analysis and results

First term and INVALSI scores were centered to the national means and INVALSI
were also scaled to standardize them to a common range and adapt to the prior
distributions setting. Furthermore, we excluded students with missing information
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so that valid and complete data refer to 21228 students. The final model is fitted on
a random sample of 33% of the units, corresponding to 7005 total pupils.

As hyperparameters, we set pug = 0, Xg = 10071, Voo = 1, Ve = Vs = 2,
So2 = 8% = 5%, = S5 = S5, = 10°. For each product restriction, we run the
MFVB algorithm for 100 iterations. Computational times were about 8 minutes for
the MFVB with product restriction I, 11 and 21 times longer for the MFVB with
product restriction II and III. The model 1 with prior distributions as in 2 was also
simulated through MCMC in Stan. In particular, 4 chains of 2000 iterations each
(1000 warm-up; 1000 sampling) were simulated. In the following, MCMC inference
is based on the sampling step draws. The running time for the MCMC setup was of
19 hours.

As expected, variational inference on the random effects and error variance com-
ponents are relatively affected by the MFVB product restriction used, giving very
similar results (Tab. 2). Differences between MFVB and MCMC on the tests ran-
dom effects variability are likely due to a slow convergence of the MCMC chains,
advised by a low effective sample size on the X parameters. The product restriction
impact is evident on the estimated variability of the fixed effects. While approximate
posterior means of the fixed effects are the same across product restrictions, the least
accurate (I) strongly underestimates the variability, while restrictions II and III lead
to very similar results on all the coefficients, except for the year variable (see Fig. 1).
On average, fixed marginal effects suggest that male students and those from islands
and Southern Italy regions perform worse, while the Northeast is the area with best
proficiency. The socio-economic status dimension has a significant positive effect,
as expected, both at the individual and school levels. Lyceums record the best scores
on average, with Scientific lyceum overperforming all the others. When parents are
less involved in demanding jobs, students usually perform better. No clear effects
are found for Italian nationality and students one year ahead. In both random inter-
cept and slope, the variability carried by the student group is slightly larger than the
item group one.

Table 2 Random effects standard deviation estimates (approximate posterior mean). Square root
of diagonal entries of 3' (3) are denoted by 6; (6) and 6, (63). Correlation between random
intercept and slope is denoted by p (p’).

/ A

61 6 p 6] 65 p 6
MFVB I 0.677 0.114 0.252 0.540 0.087 -0.578 0931
MFVB II 0.678 0.114 0.251 0.540 0.087 -0.578 0.931
MFVB III 0.678 0.114 0.251 0.591 0.095 -0.523 0931

MCMC 0.679 0.114 0.251 0.883 0.189 -0.201 0.931
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5 Conclusions

The work analysed Italian students’ proficiency data using the streamlined MFVB
algorithm based on three product restrictions. The code is not optimized and com-
putational times are reported for comparative purposes only. Even so, the MFVB
algorithms are much faster than standard MCMC solutions. Comparing the three
MFVB product retrictions, the second appears to be an excellent compromise bal-
ancing estimation speed and results accuracy.
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