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Abstract
Collapse models constitute an alternative to quantum mechanics that solve the well-know
quantum measurement problem. In this framework, a novel approach to include dissipation in
collapse models has been recently proposed, and awaits experimental scrutiny. Our work
establishes experimental bounds on the so-constructed linear-friction dissipative Diósi-Penrose
(dDP) and Continuous Spontaneous localisation (dCSL) models by exploiting experiments in the
field of levitated optomechanics. Our results in the dDP case exclude collapse temperatures below
10−13 K and 6× 10−12 K respectively for values of the localisation length smaller than 10−6m and
10−8m. In the dCSL case the entire parameter space is excluded for values of the temperature lower
than 6× 10−9 K.

1. Introduction

Models of spontaneous wavefunction collapse, or simply collapse models [1–3], represent a well established
paradigm in the realm of quantum foundations, and constitute a strong figure of merit for the study of the
macroscopic limits of quantum mechanics. Indeed, their investigation finds motivation in the lack of
observed quantum superpositions at the macroscopic scale: while quantum mechanics has proven highly
successful in describing microscopic phenomena, it has yet to explain why macroscopic objects do not
exhibit quantum superpositions although the theory predicts them. The key idea of collapse models is that
quantum mechanics must be modified to explain the quantum-to-classical transition at macroscopic scales.
Thus, they add suitably constructed phenomenological terms to the standard Schrödinger equation. Their
action can be seen as that of a noise field that leads to the collapse of the wavefunction. Depending on the
specific collapse model, the origin of such a field can be either of unknown origin or be related to the
gravitational field. These models introduce additional free parameters that control the collapse mechanism,
and their validity is subject to experimental verification. Although interferometric experiments, where a
superposition is directly probed, face increasing challenges that grow with the system size,
non-interferometric ones play a crucial role in testing collapse models [4–15]. Such experiments focus on
monitoring quantities like position or energy, and are relatively easier to perform. They are able to provide
strong bounds in the parameter space of specific collapse models. For an overview on the state-of-the-art in
theory and experiments, the reader can refer to [3].

The two most studied collapse models are the Diósi-Penrose (DP) model [16, 17] and the Continuous
Spontaneous Localisation (CSL) model [18, 19]. The latter is parametrised by a collapse rate λ and a
localisation length rC. Conversely, the former model, which is related to gravity, is characterised only by a
localisation length R0 as the collapse rate is fixed by the gravitation constant G. An acknowledged challenge
within collapse models is the energy divergence due to the collapse mechanism. Although the rate of energy
increase is extremely small, e.g. for the CSL this is of the order of 10−15 K yr−1 for a free nucleon with
λ= 10−16 s−1 at rC = 10−7m [1], and the interaction with the external noise field is expected to violate
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energy conservation solely for the system, one does not expect that the noise field will convey energy
indefinitely to the system. To address this concern, dissipative extensions of collapse models were proposed as
a solution [20, 21], implying the existence of a fundamental and universal damping mechanism which can be
probed by mechanical systems with very low dissipation [12, 22, 23].

Recently, a new approach to the introduction of dissipation in collapse model has been proposed [24].
The latter is based on a different mechanism with respect to that previously proposed, namely the
linear-friction of the current of the many-body system. Such an approach has not been tested yet. The
present work falls within this context.

We derive the first experimental bounds on linear-friction dissipative DP (dDP) and CSL (dCSL) models
from levitated optomechanics characterised by ultralow damping [12, 23, 25]. In particular, for the dDP
model, values of the temperature Tβ of the collapse field lower than 10−13 K and 6× 10−12 K are excluded
respectively for values of the localisation length smaller than 10−6m and 10−8m. On the other hand, for the
dCSL model, the entire parameter space is excluded for Tβ lower than 6× 10−9 K. Finally, we compare the
approach recently proposed in [24] with those previously suggested in [20, 21], and conclude that they can
be in principle experimentally distinguished.

2. The model

Here, we briefly present the universal dissipative mechanism for collapse models of many-body systems,
which was introduced in [24]. We start from the following master equation

d

dt
ρ̂t =− i

h̄

[
Ĥ, ρ̂t

]
+Dρ̂t, (1)

where Ĥ is the Hamiltonian of the system and

Dρ̂t =
1

h̄2

ˆ
d3x

ˆ
d3yD(x− y)

(
L̂(x) ρ̂tL̂

† (y)− 1

2

{
L̂† (x) L̂(y) , ρ̂t

})
. (2)

The dissipation is introduced in the model by considering the following Lindblad operator L̂(x)

L̂(x) = µ̂(x)− i
h̄β

4
∇xĴ(x) , (3)

where β is a free parameter driving the dissipation mechanism. A similar method has been considered for a
gravity-related model in [26]. When β is set to zero, one obtains the standard (non-dissipative) collapse
master equation. The mass density µ̂(x) and the current Ĵ(x) in the second-quantization framework
respectively read as

µ̂(x) =mψ̂† (x) ψ̂ (x) , (4a)

Ĵ(x) =−i
h̄

2

(
ψ̂† (x)∇xψ̂ (x)−∇xψ̂

† (x) ψ̂ (x)
)
, (4b)

with ψ̂(x) being the (fermionic) annihilation field operator. In the following sections we will work in the
first-quantization. Thus, for a system of N point-like particles of massm, the mass density and the current
can be expressed as

µ̂(x) =m
N∑

j=1

δ
(
x− x̂j

)
, Ĵ(x) =

1

2

N∑
j=1

{
p̂j, δ

(
x− x̂j

)}
, (5)

where x̂j and p̂j are respectively the position and momentum operator of the jth particle.

The form of the kernel D(x− y) = (2π)−3
´
d3kDkeik(x−y) in equation (2) depends on the specific

collapse model. Here we consider the dissipative Diósi-Penrose (dDP) [16, 17] and the dissipative
Continuous Spontaneous localisation (dCSL) [18, 19] models, which correspond respectively to

Dk = exp
(
−σ2k2

)
×

{
h̄2γ (CSL) ,

4πh̄G/k2 (DP) ,
(6)

where k= |k|. Here, the k−2 term in the second expression comes from the Fourier transform of the
Newtonian potential V(x− y) =−G/|x− y|. In the DP model the decoherence rate is set by the Newton
constant G and σ = R0 is a free parameter representing the spatial cut-off due to the regularization
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procedure. The CSL model can be described in terms of two free parameters being γ = (
√
4πσ)3λ/m2

0 and
σ = rC, which are respectively the collapse rate and localisation length of the model (m0 is a reference mass
chosen as that of a nucleon).

In the upcoming sections, we will delve into the dissipative dynamics of the center of mass of a
one-dimensional mechanical oscillator. Specifically, we will analyze the dynamics of the center of mass of a
rigid body composed of N particles. After having suitably linearised the dynamics, we derive the modified
Langevin equations describing the dynamics of the mechanical oscillator.

3. Dissipative dynamics of the center of mass of aN-particle system

We compute the dynamics of the center of mass of a rigid system made of N particles. For convenience, we
rewrite equation (2) in the Fourier representation

Dρ̂t =
1

h̄2

ˆ
d3k

(2π)3
Dk

(
L̂kρ̂tL̂

†
k−

1

2

{
L̂†kL̂k, ρ̂t

})
, (7)

where now the Lindblad operators become

L̂k = µ̂k+
h̄β

4
kĴk, (8)

and the Fourier representation of the mass density and of the current is

µ̂k =m
N∑

j=1

eikx̂j , Ĵk =
1

2

N∑
j=1

{
p̂j,e

ikx̂j
}
. (9)

In general the position and momentum operators in equation (9) can be written as

x̂j = x̂+ x
(0)
j +∆x̂j, p̂j =

m

M
p̂+ p(0)j +∆p̂j, (10)

where x̂ and p̂ are the position and momentum operators of the center of mass, x(0)j and p(0)j are the classical
equilibrium position and momentum of the j-th particle with respect to the center of mass, and∆x̂j and∆p̂j
are the relative fluctuations, andM is the total mass of the system. Under the assumption of a rigid body, the
relative fluctuations are negligible, namely∆x̂j =∆p̂j = 0. By substituting equation (10) into equation (9)
and by assuming that the spread of the wavefunction of the center of mass is much smaller than σ, we can
Taylor expand the mass density and the current for small fluctuations of x̂, finding

µ̂k ≃ µk+ ikµkx̂, (11a)

Ĵk ≃ Jk+
µk
M
p̂+ ikJkx̂+

ik

2M
µk {p̂, x̂} , (11b)

where µk =m
∑N

j=0 e
ikx(0)j and Jk =

∑N
j=0p

(0)
j eikx

(0)
j are respectively the classical mass density and current of

the system in the Fourier representation. We notice that for a rigid body p(0)j = 0 thus Jk = 0.
For the sake of simplicity, we reduce the problem in one dimension, namely x̂= (x̂,0,0) and p̂= (p̂,0,0).

Moreover, by assuming small k (i.e. |k| ≪ 1/σ) we neglect all the terms of order higher than O(k2) and
substitute the latter expressions for the mass density and the current in equation (7). In such a way, we obtain
the following master equation for the motion of the center of mass in the linear limit

d

dt
ρ̂cm =− i

h̄

[
Ĥ, ρ̂cm

]
+ η

(
L̂ρ̂cmL̂

† − 1

2

{
L̂†L̂, ρ̂cm

})
, (12)

where L̂= x̂+ iαp̂ with α= Γ/2ηh̄ and where

Γ =
h̄2βη

2M
, η =

1

h̄2

ˆ
d3k

(2π)3
k2xDk|µk|2, (13)

are respectively the dissipation and the diffusion rates with k= (kx,ky,kz). For the purpose of this work, we
can consider the case of a system being a continuous and homogeneous sphere of radius r. For such a case,
we have

µ(x) =
3M

4π r3
θ (r− |x|) , (14)

3
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where θ is the Heaviside function. Then, η takes the following form

ηDP =
GM2R0

h̄
√
πr6

[
−3r2 + 2R2

0 + e−(r
2/R2

0)
(
r2 − 2R2

0

)
+
√
πr3 erf(r/R0)

]
, (15)

for the dDP model and

ηCSL = λ
3e−(r

2/r2C)M2r2C
m2

0r
6

[
r2 + 2r2C + er

2/r2C
(
r2 − 2r2C

)]
, (16)

for the dCSL model.

4. Application to Langevin equations of a mechanical oscillator

In the present section, we explore the dissipative dynamics of the center of mass of a one-dimensional
mechanical oscillator in order to set experimental bounds on dDP and dCSL free parameters. To include the
effects of dissipation in the Langevin equations for the mechanical oscillator [27], we use the following
unitary stochastic unravelling [22, 28] of equation (12)

d|ψt⟩=
[
− i

h̄
Ĥdt+ L̂dB̂†

t − L̂† dB̂t −
η

2
L̂†L̂dt

]
|ψt⟩, (17)

where B̂t is called quantum noise and is equipped with the following statistical features: E[dB̂t] = 0,
E[dB̂t dB̂

†
t ] = ηdt and E[dB̂†

t dB̂
†
t ] = E[dB̂t dB̂t] = E[dB̂†

t dB̂t] = 0. From equation (17), one can build the
Langevin equation for a generic operator Ô via

d

dt
Ô=

i

h̄

[
Ĥ, Ô

]
+ η

(
L̂†ÔL̂− 1

2

{
L̂†L̂, Ô

})
+ b̂†t

[
Ô, L̂

]
+ b̂t

[
L̂†, Ô

]
, (18)

where b̂t = dB̂t/dt.
Finally, by using equation (18) with Ô= x̂, p̂ and Ĥ= p̂2/2M+Mω0x̂2/2, we find the following modified

Langevin equations for a one-dimensional mechanical oscillator of massM and frequency ω0

dx̂

dt
=

p̂

M
− Γ

2
x̂− h̄αŵx, (19a)

dp̂

dt
=−Mω2

0 x̂−
(
Γ

2
+ γm

)
p̂+ ξ− h̄ŵp, (19b)

where x̂ is the position operator for the center of mass of the oscillator, p̂ is the corresponding momentum.
The parameter γm is the dissipation rate due to the environment and ξ his stochastic effect. We define the
noises ŵx = b̂†t + b̂t and ŵp = i(b̂†t − b̂t). We notice that the addition of a collapse-induced dissipative
mechanism has changed both the equation for the position and for the momentum. Notably, this raptures
the proportionality between the velocity dx̂/dt and the momentum p̂. However, from the experimental
perspective, the relevant quantity to consider is the second derivative of the position operator, which reads

d2x̂

dt2
=−Ω2

0x̂− (Γ+ γm)
dx̂

dt
+ N̂ , (20)

where Ω2
0 = ω2

0 +
Γ
2 (

Γ
2 + γm) and N̂ =−(Γ2 + γm)h̄αŵx +

ξ
M − h̄ŵp

M − h̄α dŵx
dt . Thus, we have that Γ+ γm is

the total dissipation rate of the center of mass. This means that the effect of the inclusion of collapse-induced
dissipation is to change the total dissipation rate of the mechanical oscillator by a quantity Γ.

Following the same procedure as that presented in [22], one can derive the corresponding steady-state
density noise spectrum [28, 29]. By starting from equation (20), one obtains

S(ω)=

h̄ωγm

M coth
(

h̄ω
2kBT

)
+ η

[
Γ2(2γm+Γ)2

16η2 + Γ2ω2

4η2 + h̄2

M2

]
(
ω2
0 +

Γ
2

(
Γ
2 + γm

)
−ω2

)2
+ω2 (Γ+ γm)

2
, (21)

where the first term quantifies for the environmental effects, while the second accounts for the
collapse-induced ones. Fundamentally, the Lorentzian profile of S(ω) has a width half-height being equal to
Γ+ γm.

4
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Figure 1. Experimental bounds for the dDP model. Blue, orange and green shaded areas represent the excluded values of the
collapse parameters, respectively, from the experiments of Pontin et al, Vinante et al and Dania et al. The black point represents
the proposal by Diósi of R0 = 10−15 m and Tβ ∼ 3K being the CMB temperature.

5. Experimental bounds

Now we are able to set experimental bounds on dDP and dCSL free parameters. We focus on levitated
optomechanics, which provides promising platforms for testing fundamental physics and quantum
mechanics [30–32]. In particular, experiments with low dissipation are of our interest. We notice that it is
challenging to establish bounds on the parameter Γ from equation (21) since it appears in different
contributions to S(ω). In contrast, the task becomes straightforward when examining equation (20). Indeed,
owning the fact that the total dissipation rate in equation (20) is Γ+ γm, we know that experimentally
measured dissipative rate γexp will provide an estimation of the upper bound for Γ. Such an estimation is
conservative since the value of γm is fully neglected. Then, by using the expression for Γ in equation (13) and
defining Tβ = 1/kBβ as the temperature of the collapse field, we find

γexp ⩾ Γ =
h̄2η

2M

1

kBTβ
, (22)

where kB is the Boltzmann constant. Since for the dDP model, ηDP in equation (15) is a function of R0 only,
we can bound the possible values of Tβ as a function of R0. Conversely, for the dCSL model ηCSL in
equation (16) is a function of two free parameters (λ and rC). Thus, we study how the bounds on λ with
respect to rC change when varying the values of Tβ . Specifically, one has

Tβ ⩾ h̄2ηDP
2MkBγexp

, λ⩽ 2MkBTβγexp
h̄2η̄CSL

, (23)

where η̄CSL = ηCSL/λ. To be quantitative, we use the experimental data from three recent experiments in
levitated optomechanics, which are those of Pontin et al [12], Vinante et al [33] and Dania et al [25]. The
first and last experiment use linear Paul traps to levitate a silica nanoparticles of mass and linewidth
respectively beingM= 9.6× 10−17 kg, γexp = 2π× 48µHz andM= 4.3× 10−17 kg, γexp = 2π× 80 nHz.
Conversely, Vinante uses a lavitated micromagnet of massM= 6.1× 10−10 kg from which one infers a
linewidth γexp = 2π× 9µHz at zero pressure. The experiments of Pontin and Vinante were already used to
set bounds on an earlier dissipative version of the DP and CSL model, while that of Dania has not yet been
exploited for collapse model testing. We show the experimental bounds on the dDP and dCSL respectively in
figures 1 and 2. Here, the blue, orange and green shaded areas correspond to the excluded values of the
collapse parameters by the experiments of Pontin et al, Vinante et al and Dania et al.

In figure 1 we show the excluded values of Tβ for the dDP model when varying R0. For comparison, we
also report (black dot) the values of Diósi proposal of R0 = 10−15mmatched with Tβ ∼ 3K being the
temperature of the cosmic microwave background (CMB). This choice is based on the hypothesis of a
cosmological origin of the collapse mechanism, and thus one would expect a value of Tβ of this order of
magnitude. We notice that below Tβ ∼ 10−13 K and Tβ ∼ 6× 10−12 K all the values of R0 respectively
smaller than 10−6m and 10−8m are excluded, this includes the mesoscopic regime where one would expect
a collapse.

In figure 2 we show the bounds on the dCSL parameters λ and rC for four values of Tβ = 1K, 10−3 K,
10−5 K and 10−7 K. The gray region is excluded theoretically as it would not guarantee an effective collapse

5



New J. Phys. 26 (2024) 043006 G Di Bartolomeo and M Carlesso

Figure 2. Experimental bounds for the dCSL model. Blue, orange and green shaded areas represent the excluded values of the
collapse parameters, respectively, from the experiments of Pontin et al, Vinante et al and Dania et al. Each panel considers different
values of Tβ , left-to-right, top-to-bottom, these are 1 K, 10−4 K, 10−6 K and 10−9 K. The grey area is excluded for theoretical
reasons [34]. The grey bar is the Adler proposal of the CSL parameters [35] and the black point is the GRW proposal [36].

of macroscopic quantum superpositions [34]. The grey bar, which is the Adler proposal [35] for the CSL
parameters, is excluded for each value of Tβ reported, while the GRW proposal [36] is excluded for
Tβ = 10−5 K and below. We notice that all the parameter space is excluded for temperatures lower than
6× 10−9 K .

6. Comparison with the previous dissipative model

Here we compare the linear friction (LF) dissipative model, introduced in [24] and shown in equation (1),
with the previously proposed dissipative collapse models [20, 21]. The latter have a mathematical structure
similar to the collisional dynamics of a test particle interacting with a low-density gas in the weak coupling
regime [37]. Thus, for simplicity, we refer to these as collisional dynamics (CD) models. For such a
comparison, we compute the asymptotic temperature of the center of mass of the mechanical oscillator,
which in both frameworks can be derived from their respective master equations. Indeed, given an arbitrary
operator Ô, one can compute the evolution of its expectation value as d

dt ⟨Ô⟩t = Tr(Ô d
dt ρ̂cm). The equation

with Ô= Ĥ is not in a closed form, however we can write the system of three differential equations for
Ô= V̂, K̂ and {x̂, p̂}, where K̂= p̂2/2M and V̂=Mω2

0 x̂
2/2. Under the assumption of a reaching a stable

condition at the thermal equilibrium, we can set all the derivatives to zero and find the asymptotic values of
⟨K̂⟩∞ and ⟨V̂⟩∞, from which we obtain ⟨Ĥ⟩∞ = ⟨K̂⟩∞ + ⟨V̂⟩∞. Then, we define the temperature of the
system by exploiting the equipartition theorem for single harmonic oscillator ⟨Ĥ⟩∞ = kBT.

In the LF framework, we have

d⟨V̂⟩t
dt

=−Γ⟨V̂⟩t +
ω2
0

2
⟨{x̂, p̂}⟩t +

Γ2Mω2
0

8η
,

d⟨K̂⟩t
dt

=−Γ⟨K̂⟩t −
ω2
0

2
⟨{x̂, p̂}⟩t +

h̄2η

2M
,

d⟨{x̂, p̂}⟩t
dt

=−Γ⟨{x̂, p̂}⟩t + 4⟨K̂⟩t − 4⟨V̂⟩t, (24)

which correspond to

T= Tβ +
h̄2ω2

0

16k2BTβ
, (25)

both for the dDP and the dCSL model. We notice that equation (25) does not depend on the free parameters
of the model except for the dissipation parameter β = (kBTβ)

−1. When Tβ is high, the asymptotic
temperature T coincides with the collapse temperature Tβ . Indeed, in the limit of Tβ →∞ (β→ 0,
i.e. Γ→ 0), the last term of the first expression in equation (24) can be neglected and the only important
collapse term is the last one in the second expression. In such a way one recovers the predictions of the
standard collapse model without dissipation, for which one has T=∞. Also in the limit of Tβ → 0, the
asymptotic temperature T goes to infinity. Indeed, in such a limit, is the last term in the second expression of
equation (24) that can be neglected, and the last term in the first expression becomes the relevant one. The
latter leads to an infinite increase to the mean potential energy, and thus to ⟨Ĥ⟩∞ =∞.

6
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Table 1. Comparison between the parameters of the linear friction and collisional dynamics dissipative models. Here σ = R0, rC for DP
and CSL respectively, γ = (

√
4πσ)3λ/m2

0 and χ = h̄2/8m0σ2kBTχ. µ̂k and Ĵk are defined in equation (9).

Linear friction (LF) model Collisional dynamics (CD) model

L̂k = µ̂k+
h̄β
4 k̂Jk

ˆ̃Lk =m
∑N

j=1 e
ikx̂je−2σ2[(1+χ)kp̂j+2k2p̂2j ]

Dk = exp(−σ2k2)×

{
h̄2γ (CSL)

4πh̄G/k2 (DP)
D̃k = exp

(
−σ2k2(1+χ)2

)
×

{
h̄2γ (CSL)

4πh̄G/k2 (DP)

Γ = h̄2η
2MkBTβ

Γ̃ = h̄2η̃
2MkBTχ

(
1+ h̄2

8m0σ2kBTχ

)
η = 1

h̄2

´
d3k

(2π)3
k2xDk|µk|2 η̃ = 1

h̄2

´
d3k

(2π)3
k2xD̃k|µk|2

T= Tβ +
h̄2ω2

0

16k2BTβ
T̃=

Tχ

1+ h̄2

8m0σ
2kBTχ

+
h̄2ω2

0

16k2BTχ

(
1+ h̄2

8m0σ2kBTχ

)
+ h̄6η̃2

128M2k4BT
3
χ

(
1+ h̄2

8m0σ2kBTχ

)3

In the CD framework, one has

d⟨V̂⟩t
dt

=
ω2
0

2
⟨{x̂, p̂}⟩t +

Γ̃2Mω2
0

8η̃
,

d⟨K̂⟩t
dt

=−2Γ̃⟨K̂⟩t −
ω2
0

2
⟨{x̂, p̂}⟩t +

h̄2η̃

2M
,

d⟨{x̂, p̂}⟩t
dt

=−Γ̃⟨{x̂, p̂}⟩t + 4⟨K̂⟩t − 4⟨V̂⟩t, (26)

whose corresponding asymptotic temperature reads

T̃=
Γ̃Mω2

0

8η̃kB
+

h̄2η̃

2MΓ̃kB
+

Γ̃3M

16η̃kB
. (27)

The latter depends on two parameters η̃ and Γ̃ that play the role, respectively, of η and Γ in the LF framework
[22]. To be specific, we have Γ̃ = 4η̃σ2χ(1+χ)m0/M with σ = R0 or rC and where χ = h̄2/8m0σ

2kBTχ is
the dissipation parameter of the CD model and Tχ is the associated temperature of the collapse field
(analogous to Tβ in the LF framework). The coefficient η̃ takes the following form

η̃DP =
√
π erf

(
r

R̃0

)
+

GM2R0√
πr3

[
R1

r

(
e
− r2

R21 − 3

)
+ 2

R3
1

r3

(
1− e

− r2

R21

)]
, (28)

for the CD-dDP model with R1 = R0(1+χ), and

η̃CSL =
3λM2r3C
RCm2

0r
4

[
1− 2

(
RC

r

)2

+ e
− r2

R2C

(
1+ 2

R2
C

r2

)]
, (29)

for the CD-dCSL model with RC = rC(1+χ). Notably, in the CD framework, T̃ depends on all the free
parameters of the CD model. In the limit Tχ →∞ (χ→ 0), one recovers the standard collapse model with
T̃=∞. In the opposite limit, for Tχ → 0 (i.e. Γ̃→∞), the last term of the first expression of equation (26)
is the relevant one, while the last of the second expression can be neglected. Then, following the same
reasoning as in the LF framework, one has T̃=∞. Table 1 presents a direct comparison between the
parameters of the two models.

In figure 3 we compare LF-dDP and CD-dDP models, where the experimental values considered are the
mass and the radius of the nano-particle from Dania et al [25]. In panel (a) we show in black the plot of T as
a function of Tβ and in green the plots of T̃ as a function of Tχ for various values of R0. We notice that T and
T̃ coincide for R0 = 1m. As R0 decreases, the difference between T and T̃ increases.

More interestingly if we assume that both the models reach the same asymptotic temperature, namely
T= T̃, then we can link the two dissipation parameters Tβ and Tχ and display how they are related. Thus, in
panel (b) of figure 3 we show the plot of the function T(Tβ)− T̃(Tχ) = 0. The solid green line is for
R0 = 10−7m and the dash dotted one for R0 = 10−10m. In general the relation between Tβ and Tχ is
non-linear and it does not lead to a one-to-one relation. However, in some regimes, we have a linear
behaviour and we can compare the two collapse temperatures Tβ and Tχ directly. For example Tβ = 1K
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Figure 3. Comparison between the linear friction dDP and the collisional dynamics dDP models. In panel (a) the solid black
curve represents the asymptotic temperature T of the LF-dDP model as a function of the dissipation parameter Tβ , while the

green curves show the asymptotic temperature T̃ of the CD-dDP model as a function of the dissipation parameter Tχ for
different values of R0. For R0 = 1 m, T and T̃ coincide in the black curve. Panel (b) shows the contour plot of the function
T(Tβ)− T̃(Tχ) = 0 where the solid green line is for R0 = 10−7 m and the dash dotted green line is for R0 = 10−10 m.

Figure 4. Comparison between the linear friction dCSL and the collisional dynamics dCSL models. In panel (a) the solid black
curve represents the asymptotic temperature T of the LF-dCSL model as a function of the dissipation parameter Tβ , while the

green curves show the asymptotic temperature T̃ of the CD-dCSL model as a function of the dissipation parameter Tχ for
different values of rC. For rC = 1 m, T and T̃ coincide in the black curve. Panel (b) shows the contour plot of the function
T(Tβ)− T̃(Tχ) = 0 where the solid green line is for rC = 10−7 m and the dash dotted green line is for rC = 10−10 m. We fix
λ= 10−16 s−1.

corresponds to Tχ = 10−7 K for R0 = 10−7m (solid line) and to Tχ ∼ 10−10 K for R0 = 10−10m (dashed
line). We show the same analysis for LF-dCSL and CD-dCSL models in figure 4 where we used the same
colouring and dashing as in figure 3, and where we set λ= 10−16 s−1 corresponding to the GRW point at
rC = 10−7m. We notice that the LF-dCSL and CD-dCSL models lead two different predictions. This is
exemplified by the GRW point, which in the CD-dCSL model is excluded for collapse temperatures Tχ below
10−9 K (see [33]). On the other hand, focusing on the top right branch of the solid line in figure 4(b), the
value of Tχ = 10−9 K corresponds to Tβ = 10−2 K for which the GRW point is not excluded (cf figure 2).
This means that the two frameworks, LF and CD, can be in principle discriminates experimentally. A similar
example can be showcased in the comparison of the LF-dDP and CD-dDP models. Notably, the relation
between Tχ and Tβ for the dDP and dCSL models show the same behaviour (cf figures 3(b) and 4(b)).

7. Conclusions and outlook

A new mechanism to introduce dissipation in collapse models has been recently proposed. Conversely to a
previously proposed one (indicated as CDs dissipative model), this mechanism is based on the linear-friction
of the current being linear in the current of the many-body system (thus, named as LF dissipative model).
Due to this feature, the LF model has a more physical appeal than the CD model. In addition, LF is easier to
investigate, as evidenced in table 1, which enables a comparison of the parameters of the two models. LF
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model has not yet been tested, opens a promising avenue for new investigations in the collapse models
framework. We focus on establishing the first experimental bounds for LF dDP and dCSL models, using data
from levitated optomechanical experiments. The results reveal significant exclusions of the parameter space,
with collapse temperatures below Tβ ∼ 10−13 K and Tβ ∼ 6× 10−12 K for dDP model and all parameter
space for dCSL model is excluded for temperatures below Tβ ∼ 6× 10−9 K. Finally, we compare the two
models. We find the relations between the respective collapse temperature under the assumption that the
collapse process leads the system to thermalisation. We conclude that they can in principle be discriminated
experimentally.
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