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A B S T R A C T

To mitigate the harmful effects of the COVID-19 pandemic, world countries have resorted – though with
different timing and intensities – to a range of interventions. These interventions and their relaxation
have shaped the epidemic into a multi-phase form, namely an early invasion phase often followed by a
lockdown phase, whose unlocking triggered a second epidemic wave, and so on. In this article, we provide
a kinematic description of an epidemic whose time course is subdivided by mitigation interventions into a
sequence of phases, on the assumption that interventions are effective enough to prevent the susceptible
proportion to largely depart from 100% (or from any other relevant level). By applying this hypothesis to
a general SIR epidemic model with age-since-infection and piece-wise constant contact and recovery rates, we
supply a unified treatment of this multi-phase epidemic showing how the different phases unfold over time.
Subsequently, by exploiting a wide class of infectiousness and recovery kernels allowing reducibility (either
to ordinary or delayed differential equations), we investigate in depth a low-dimensional case allowing a non-
trivial full analytical treatment also of the transient dynamics connecting the different phases of the epidemic.
Finally, we illustrate our theoretical results by a fit to the overall Italian COVID-19 epidemic since March 2020
till February 2021 i.e., before the mass vaccination campaign. This show the abilities of the proposed model
in effectively describing the entire course of an observed multi-phasic epidemic with a minimal set of data
and parameters, and in providing useful insight on a number of aspects including e.g., the inertial phenomena
surrounding the switch between different phases.
1. Introduction

Since its detection in the city of Wuhan, China, by end December
2019, the novel SARS-CoV-2 coronavirus has rapidly spread worldwide
with a dramatic direct disease burden (WHO situation reports 1–209
and Weekly epidemiological updates, [1]), and a dramatic impact on
the economy, health and the society as a whole. During the first COVID-
19 pandemic wave, an increasing number of countries worldwide have
opted, following China, for massive social distancing measures — what
is now universally identified as lockdown, integrated with a range of
supplementary measures such as tracing and isolation of confirmed
cases. The aim of lockdown is essentially that of abruptly bringing
the basic reproduction number of the infection, 0, below threshold,
therefore stopping sustained transmission. If this actually occurs, and
the measures are not prematurely interrupted, the epidemic will be
brought on a suppression path (Ferguson et al. [2]). The China initial
experience, especially the one of the Hubei province, has shown that
a combination of severity and appropriate duration of intervention
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can achieve high degrees of suppression even for epidemics that have
reached a non-negligible scale. A somewhat different story occurred
in Western Europe, where in many cases the lockdown was declared
with substantial delays, with the aggravating circumstance that its
implementation was done through several steps instead than abruptly,
therefore yielding much larger epidemics than in China (see [1]).
For example in Italy, whose Northern regions (especially Lombardia)
experienced one of the most dramatic local epidemic worldwide, full
lockdown was achieved by a long number of subsequent decrees of the
Prime Minister covering a span of more than twenty days. These delays
not only caused the epidemic to overwhelm available public health re-
sources, with huge human costs, but also made eventually unavoidable
to unlock long before the achievement of adequate suppression levels,
due to the dramatically growing economic loss. Common to several
European countries, the subsequent unlocking phase have shown pro-
longed honey-moon epochs of low epidemic activity, possibly resulting
from a combination of reasons such as e.g., an enduring the mainte-
nance of prudent behavior, temperature effects and school holidays.
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However, the unavoidable restart of epidemic activity again found
the country unprepared, generating a massive second wave [1]. The
ensuing mitigation interventions, milder than the generalized lockdown
adopted during the spring wave possibly on trust of the announced start
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In these circumstances, the analysis of a multi-phasic epidemic
yields to a linear problem which can be analyzed by the tools of age-
structured populations mathematics ([23–25] and references therein).
Our principal aim here will be to provide a unified framework to
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of the vaccination campaigns, were partly successful i.e., the epidemic
curve was just brought to stationarity with the current reproduction in-
dex 𝑡 in the region of one at the national level, until the new variants
of concern initiated their replacement of the original ones [1], giving
rise to a third wave [3], and forcing new restrictions, including regional
lockdown. A number of key questions were continuously debated by
the public during each pandemic wave about the effects of the enacted
interventions such as e.g., (i) when the effects of social distancing
measures will be detectable in the data, or when the epidemic peak of
that particular phase will be achieved, (ii) which the further epidemic
growth will be, in terms of hospitalizations, and deaths, after the
measures implementation, etc.

Previous questions have represented major concerns throughout the
COVID-19 pandemic and were responsible of widespread anxiety in the
public opinion. They therefore call for general answers, even more so
in the current moment when a third wave has started and it is clear
that the benefits of vaccination – at current rates of administration –
will take time to manifest. And, obviously, in view of future pandemics
as they are not anymore classifiable as rare events. The COVID-19
andemic has called for an unprecedented interest of modelers for
pidemic dynamics both per-se, to investigate the direct epidemiological
onsequences of the pandemic and related mitigation measures, and
lso to investigate its broader implications on society. This has led to
n endless number of papers and preprints of which we quote here
nly a few focusing on COVID-19 epidemiological modeling [2,4–21].
ost of the cited investigations have resorted to simulation. However,

ven under fairly general conditions, many of these phenomena can be
nvestigated in a fully analytical manner, therefore providing a range
f further robust insights about epidemic control.

Therefore, motivated by the main feature of the COVID-19 epidemic
.e., being characterized by a sequence of phases driven by the intensity
nd duration of the undertaken mitigation measures, in this paper
e attempt to analyze, in an analytical manner, the dynamics of a
eneric multi-phasic epidemic, much in the same way as we observed
or COVID-19 prior the current mass vaccination campaign started to
eploy its main effects. These phases include an early invasion phase,
he subsequent mitigation interventions (e.g., generalized lockdown),
he unlocking/releasing phase, the second wave phase, the further mit-
gating interventions etc. To make the problem tractable, we assumed
hat the interventions considered are sufficiently long-lasting and ef-
ective so to prevent that the susceptible proportion of the population
xcessively departed from its initial value (presumably around 100%
or COVID-19) or from any other reference value. This hypothesis can
e always made valid by considering suitable observation windows.
esides the rapid control achieved in China already by February 2020
t very low attack rates, in Italy a nation-wide large-scale serological
urvey conducted during after the first wave (June–July 2020) showed
hat — with the exception of Lombardy which had entire areas ravaged
y the epidemic (eventually bringing attack rates around 7.5%), the
ational average was only slightly in excess of 2%, with most regions
nly mildly attacked [22]. And still at the onset of the third wave
end February 2021) the overall nation-wide proportions of confirmed
nfections was in the range of 5%. This is strongly suggestive of the
act that the potential impact on the course of the epidemics, due
o the depletion of the susceptible population, would always be sec-
ndary with respect to the impact due to the undertaken mitigation
easures. More in general we expect this to be largely true in all

ountries and subnational settings where social distancing arrived at a
ufficiently earlier stage of the epidemic so to halt it before it depleted
he susceptible proportion. Note additionally that this approach is valid
or any combination of epidemic phases where interventions are able
o approximately ‘‘freeze’’ the susceptible fraction around some given
evel.
ulti-phase epidemics while keeping our results as more analytical as
ossible. Our approach will be kinematic in the sense that will look
t how the different epidemic phases unfold over time reshaping the
pidemic, without minding at whether, for example, a certain value of
he current reproduction number 𝑅𝑡 achieved during e.g., a lockdown
hase, was the mere outcome of government-enforced restrictions or
as also reflecting the beneficial (or harmful) effect of virtuous (re-

istant) behavior spread in the population, as would instead be the
pproach of behavioral epidemiologists [26,27]. Consistently, we will
imply consider a SIR epidemic model including class age i.e., age since
nfection, in the infective compartment and piece-wise constant trans-
ission and recovery rates over time reflecting different intervention

epochs. The reason why we use such a simple model (e.g., without
including more compartments as symptomatic cases, hospitalization,
deaths etc as a faithful description of COVID-19 would require), is that
this simple model provides the backbone description of a general multi-
phasic epidemic. This backbone can be easily refined by adding further
compartments representing delayed events following infection [28].

Despite its simplicity, our SIR model is general in that we consider
both a latency delay and general forms for the infectiousness and
recovery processes. By the proposed model, we first provide a general
characterization of a multi-phasic epidemic. Second, by adopting a
wide class of generation time and recovery kernels allowing reducibility
to ordinary or delayed differential equations [29], we were able to
provide a detailed investigation of a non-trivial low-dimensional case
allowing a full analytical treatment of the transient dynamics of a
multi-phase epidemic. Finally, we complemented our theoretical results
by a number of illustrations, using realistic parameter constellations
drawn from available estimates of COVID parameters. In particular,
we fitted the model to the overall Italian COVID-19 epidemic since
March 2020 until late February 2021. This illustrates the abilities of
the proposed model in effectively explaining the entire course of the
epidemic, including the effects of interventions, using a minimal set
of data and parameters, and in providing useful insight on a number
of aspects including e.g., the demographic inertia occurring during the
switch between different epidemic phases.

The article is organized as follows. Section 2 develops our model for
a multi-phasic epidemic. Section 3 reports the main theoretical results.
Section 4 presents the proposed class of reducible kernels and reports a
number of sub-cases and illustrations. Section 5 reports the application
to Italian data. Concluding remarks follow.

2. A backbone model for a multi-phase epidemic

The model we present here is a SIR epidemic model structured by
age since infection or class age. The evolution of the epidemics over
time is subdivided into phases, each one characterized by a certain
intervention intensity.

2.1. Model specification

Our model is based on the state variable

𝑌 (𝑥, 𝑡), 𝑥 ∈ [0, 𝑥+],

here 𝑥 denotes class age, representing the (improper) age-density
f the number of infected individuals. In particular, 𝑥+ denotes the
aximal age since infection and may be finite or infinite. Our main as-

umption is that interventions are early and effective enough to prevent
large depletion of the susceptible population during the overall epi-

emic course i.e., the susceptible fraction does not significantly departs
rom 1. Note that this hypothesis can actually be applied at any level
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𝑆 of the susceptible proportion, provided subsequent interventions are
effective enough to ‘‘freeze’’ the susceptible population thereafter.

In this manner, the model equations read
( )

N
t

𝑈

d

labeled by 𝑖 = 1, 𝑖 = 2, 𝑖 = 3), but the analysis can continue to include
successive phases.

We first note that under our hypotheses each phase of the epidemics
(𝑖 = 1, 2, 3) is characterized by a phase-specific reproduction number
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕
𝜕𝑡

+ 𝜕
𝜕𝑥

𝑌 (𝑥, 𝑡) = −𝛾(𝑥, 𝑡)𝑌 (𝑥, 𝑡),

𝑌 (0, 𝑡) = ∫

𝑥+

0
𝛽(𝑥, 𝑡)𝑌 (𝑥, 𝑡)𝑑𝑥,

𝑌 (𝑥, 0) = 𝑌 0(𝑥).

(1)

where

• 𝛾(𝑥, 𝑡) = the removal rate of infected individuals aged 𝑥 at time
𝑡, that is, the overall rate at which infected individuals aged 𝑥
are removed by any cause as, e.g., recovery or death (during
an uncontrolled epidemic) or by screening, tracing, isolation,
hospitalization etc (in the presence of interventions).

• 𝛽(𝑥, 𝑡) = the transmission rate of infected individuals aged 𝑥 at time
𝑡, representing the number of secondary infections caused by
a single infected aged 𝑥 per unit of time in the hypothetical
situation of no removal.

ote that, thanks to the stated hypotheses, the incidence of new infec-
ions

(𝑡) = ∫

𝑥+

0
𝛽(𝑥, 𝑡)𝑌 (𝑥, 𝑡)𝑑𝑥

epends linearly on the infected density 𝑌 (𝑥, 𝑡). Both rates 𝛽(𝑡, 𝑥), 𝛾(𝑥, 𝑡)
are taken as functions of time as well, to reflect the possibility of
interventions (e.g., social distancing, testing, isolating), or the removal
of such measures. To mimic the various phases of the epidemic ex-
perienced by most European countries we will represent these rates
as piecewise function of time. Just for illustration, to represent a 3-
phase epidemic, as it might be the case for an epidemic with an initial
outbreak phase, a lockdown phase, and a subsequent release phase, we
will take

𝛾(𝑥, 𝑡) = [0,𝑡𝐿)(𝑡) 𝛾1(𝑥) + [𝑡𝐿 ,𝑡𝑅)(𝑡) 𝛾2(𝑥) + [𝑡𝑅 ,+∞)(𝑡) 𝛾3(𝑥) (2)

and

𝛽(𝑥, 𝑡) = 𝑐(𝑡)𝛽0(𝑥) =
[

[0,𝑡𝐿)(𝑡) 𝑐1 + [𝑡𝐿 ,𝑡𝑅)(𝑡) 𝑐2 + [𝑡𝑅 ,+∞)(𝑡) 𝑐3
]

𝛽0(𝑥), (3)

where [𝑎,𝑏)(𝑡) represents the characteristic function of the interval [𝑎, 𝑏),
while 𝑡𝐿 and 𝑡𝑅, 0 < 𝑡𝐿 < 𝑡𝑅, are the lockdown and unlocking
times respectively. Of course, it is possible to consider any number
of epidemic phases. Specification (2) models interventions aiming to
affect the age-density of removal in the broad sense defined above. In
(3), factor 𝑐(𝑡) denotes the number of adequate contacts per person and
per unit time, while 𝛽0(𝑥) tunes the (average) intrinsic infectiousness
of an infected individual aged 𝑥 (i.e, the probability that an infected
individual aged 𝑥 infects a susceptible during an adequate contact), pos-
sibly related to her/his viral load. Our formulation therefore assumes
that intervention strategies may act either on the number of adequate
contacts (as is the case for social distancing) or the scale of transmission
(e.g., by using masks), but not on the shape of the distribution of
infectiousness by age since infection. Note moreover that the previous
form describes abrupt switches between phases, reflecting an ideal
world where compliant agents suddenly adjust their behavior upon
governmental intervention. However, extension to smooth transitions
over time is possible. Overall, the proposed model represents a non-
autonomous, infinite-dimensional, dynamical system with piecewise
constant switching parameters (see for instance [30,31]).

2.2. Stepwise solution of the model

Within the previous framework, the model can be solved in a
stepwise manner, phase by phase. For the sake of simplicity we limit
the discussion to three ‘‘representative’’ phases, namely an invasion
(or outbreak) phase, a lockdown phase and a release one (respectively
iven by

𝑖
0 = 𝑐𝑖 ∫

𝑥+

0
𝛽0(𝑥)𝛤𝑖(𝑥)𝑑𝑥, (𝑖 = 1, 2, 3)

here

𝑖(𝑥) = 𝑒− ∫ 𝑥
0 𝛾𝑖(𝑠)𝑑𝑠, 𝑥 ∈ [0, 𝑥+],

s the phase-specific survival-to-removal probabilities, defining the prob-
bility that a newly infected individual is still infective by age 𝑥
onditional on the interventions undertaken during any given phase.
oncerning the reproduction numbers, we will make the assumptions
consistent with the experience of countries which resorted to lock-
own) 1

0 > 1, 2
0 < 1, 3

0 > 1 (but other hypotheses can obviously
e made). For each phase (𝑖 = 1, 2, 3) we have the Lotka–Von Foerster
roblem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

( 𝜕
𝜕𝑡

+ 𝜕
𝜕𝑥

)

𝑌𝑖(𝑥, 𝑡) = −𝛾𝑖(𝑥)𝑌𝑖(𝑥, 𝑡),

𝑌𝑖(0, 𝑡) = 𝑐𝑖 ∫

𝑥+

0
𝛽0(𝑥)𝑌𝑖(𝑥, 𝑡)𝑑𝑥,

𝑌𝑖(𝑥, 0) = 𝑌 0
𝑖 (𝑥),

(4)

where the initial age distribution of the next phase is the terminal
distribution of the previous one

𝑌 0
1 (𝑥) = 𝑌 0(𝑥),

𝑌 0
2 (𝑥) = 𝑌1(𝑡𝐿, 𝑥),

𝑌 0
3 (𝑥) = 𝑌2(𝑡𝑅 − 𝑡𝐿, 𝑥),

and the solution to (1) reads

𝑌 (𝑡, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑌1(𝑥, 𝑡) for 𝑡 ∈ [0, 𝑡𝐿],

𝑌2(𝑥, 𝑡 − 𝑡𝐿) for 𝑡 ∈ [𝑡𝐿, 𝑡𝑅],

𝑌3(𝑥, 𝑡 − 𝑡𝑅) for 𝑡 ∈ [𝑡𝑅,∞].

By integration along characteristic lines (see for instance [24]),
ach system (4) can be transformed into an integral equation in the
hase-specific incidence 𝑈𝑖(𝑡) (𝑖 = 1, 2, 3)

𝑖(𝑡) = 𝑐𝑖 ∫

𝑥+

0
𝛽0(𝑥)𝑌𝑖(𝑥, 𝑡)𝑑𝑥.

amely we obtain the phase-specific renewal equation

𝑖(𝑡) = 𝑖
0

(

𝐺𝑖(𝑡) + ∫

𝑡

0
𝐾𝑖(𝑥)𝑈𝑖(𝑡 − 𝑥)𝑑𝑥

)

, (5)

here

𝑖(𝑥) =
𝛽0(𝑥)𝛤𝑖(𝑥)

∫

∞

0
𝛽0(𝑥)𝛤𝑖(𝑥)𝑑𝑥

s a normalized kernel representing the generation time density, and

𝑖(𝑡) = ∫

∞

𝑡
𝐾𝑖(𝑥)

𝑌 0
𝑖 (𝑥 − 𝑡)
𝛤𝑖(𝑥 − 𝑡)

𝑑𝑥,

where all the function involved are extended as zero over the interval
of definition [0, 𝑥+].

Once Eq. (5) is solved, the solution to (4) is then given by

𝑌𝑖(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑌 0
𝑖 (𝑥 − 𝑡)

𝛤𝑖(𝑥)
𝛤𝑖(𝑥 − 𝑡)

for 𝑡 ≤ 𝑥

𝑈𝑖(𝑡 − 𝑥)𝛤𝑖(𝑥) for 𝑡 > 𝑥.
(6)

ote that in the case of a finite maximum age 𝑥+ < +∞ we eventually
ave (for 𝑡 > 𝑥+)

𝑖(𝑥, 𝑡) = 𝑈𝑖(𝑡 − 𝑥)𝛤𝑖(𝑥).
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On the other hand, if the maximum age is not finite, which is an hy-
pothesis common in epidemiological modeling where generation time
densities are typically represented by infinitely-supported parametric
distributions (as e.g., Gamma or Weibull), the age-density of infectives
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Precisely, we have [see (6)]

lim
𝑡→∞

𝑒−𝛼
∗
𝑖 𝑡 𝑌𝑖(𝑥, 𝑡) = 𝑈∗

𝑖 𝛤𝑖(𝛼∗𝑖 ) 𝑌
∗
𝑖 (𝑥) (12)
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𝑌𝑖(𝑥, 𝑡) will continue to include, at any time, its initial distribution even
if at a steadily declining ‘‘weight’’.

2.3. Analysis of single phases

Our analysis of the epidemic dynamics during each phase will
be based on the renewal equation (5) that is well known in de-
mography and epidemiology. The basic theory (briefly outlined in
Appendix A) states that the behavior of 𝑈𝑖(𝑡) is related to the roots of
he corresponding characteristic equation
𝑖
0𝐾𝑖(𝜆) = 1. (7)

nder generic hypotheses on kernel 𝐾𝑖(𝑥) that we assume are satisfied,
his equation has one dominant real root 𝛼∗𝑖 and the other roots can be
rdered in a sequence {𝛼𝑗𝑖 } such that

𝛼𝑗+1𝑖 ≤ ℜ𝛼𝑗𝑖 < 𝛼∗𝑖 (𝑗 = 1, 2, …), (8)

nd the solution for the incidence during the phase 𝑖 has the asymptotic
xpansion

𝑖(𝑡) = 𝑈∗
𝑖 𝑒

𝛼∗𝑖 𝑡 +
∞
∑

𝑗=1
𝑈 𝑗
𝑖 𝑒

𝛼𝑗𝑖 𝑡.

here the constants of the expansion respectively obey

∗
𝑖 =

𝐺𝑖(𝛼∗𝑖 )

∫

∞

0
𝑥𝐾𝑖(𝑥)𝑒

−𝛼∗𝑖 𝑥𝑑𝑥
. (9)

and

𝑈 𝑗
𝑖 =

𝐺𝑖(𝛼
𝑗
𝑖 )

∫

∞

0
𝑥𝐾𝑖(𝑥)𝑒

−𝛼𝑗𝑖 𝑥𝑑𝑥
.

Since (8) holds, we have

lim
𝑡→∞

𝑒−𝛼
∗
𝑖 𝑡 𝑈𝑖(𝑡) = 𝑈∗

𝑖 . (10)

On the further assumption that the temporal duration of each phase
is sufficient to allow the emergence of long-term behavior, the ultimate
behavior of the incidence during the 𝑖th phase is therefore exponential

𝑈𝑖(𝑡) ≈ 𝑈∗
𝑖 𝑒

𝛼∗𝑖 𝑡,

at a Lotka’s intrinsic rate 𝛼∗𝑖 and scale constant 𝑈∗
𝑖 , also termed the

stable equivalent in demographic jargon (see [23]). The requirement
that intervention phases are sufficiently long is by no means unrealistic:
during invasion phases convergence to the exponential epidemic path
is usually very fast, while for e.g., a lockdown phase aiming to bring
reproduction below threshold, it would purely be irrational to stop the
intervention before the epidemic has entered its exponentially declining
path.

The asymptotic behavior of incidence, as stated in (10), in turn
implies the emergence of the stable age distribution (i.e., a stable age
profile) of the infected population:

𝑌 ∗
𝑖 (𝑥) =

𝑒−𝛼
∗
𝑖 𝑥𝛤𝑖(𝑥)

∫

∞

0
𝑒−𝛼

∗
𝑖 𝑥𝛤𝑖(𝑥)𝑑𝑥

, 𝑥 ∈ [0, 𝑥+], (11)

where, if 𝑥+ < +∞, in the denominator we intend that the function 𝛤𝑖
is extended as 0 for 𝑥 > 𝑥+ (indeed, the stable distribution arises if the
function 𝛤𝑖(𝑥) is Laplace transformable at 𝛼∗𝑖 ).

Actually, based on (10), the solution of (4) [see (6)] will approach
the asymptotic form

𝑌∞
𝑖 (𝑥, 𝑡) ≈ 𝑈∗

𝑖 𝛤𝑖(𝛼∗𝑖 ) 𝑒
𝛼∗𝑖 𝑡 𝑌 ∗

𝑖 (𝑥).
where the convergence occurs pointwise in 𝑥.

2.4. Components of the stable equivalents

We briefly comment about the components of the stable equiv-
alent 𝑈∗

1 of COVID-19 dynamics during the exponential phase. The
denominator in (9) reads

∫

∞

0
𝑥𝐾𝑖(𝑥)𝑒

−𝛼∗𝑖 𝑥𝑑𝑥 =
𝜇𝑖
𝑖

0

.

where

𝜇𝑖 = 𝑖
0 ∫

∞

0
𝑥𝐾𝑖(𝑥)𝑒

−𝛼∗𝑖 𝑥𝑑𝑥

= ∫

∞

0
𝑥

𝛽0(𝑥)𝛤𝑖(𝑥)𝑒
−𝛼∗𝑖 𝑥

∫ ∞
0 𝛽0(𝑠)𝛤𝑖(𝑠)𝑒

−𝛼∗𝑖 𝑠𝑑𝑠
𝑑𝑥 = ∫

∞

0
𝑥

𝛽0(𝑥)𝑌 ∗
𝑖 (𝑥)

∫ ∞
0 𝛽0(𝑠)𝑌 ∗

𝑖 (𝑠)𝑑𝑠
𝑑𝑥

is the average age at which infected individual produce their secondary
cases, at the stable age distribution prevailing during invasion. There-
fore, the stable equivalent can be represented as

𝑈∗
𝑖 =

𝑖
0𝐺𝑖(𝛼∗𝑖 )
𝜇𝑖

, (13)

Notably, at the numerator of the expression we have the product

𝑖
0𝐺𝑖(𝛼∗𝑖 ) = 𝑖

0 ∫

∞

0
𝑒−𝛼

∗
𝑖 𝑡
∫

∞

𝑡
𝐾𝑖(𝑥)

𝑌 0
𝑖 (𝑥 − 𝑡)
𝛤𝑖(𝑥 − 𝑡)

𝑑𝑥𝑑𝑡 = ∫

∞

0
𝛱𝑖(𝑥)𝑌 0

𝑖 (𝑥)𝑑𝑥. (14)

here

𝑖(𝑥) = 𝑐𝑖 ∫

∞

𝑥
𝑒−𝛼

∗
𝑖 (𝑠−𝑥)𝛽0(𝑠)

𝛤𝑖(𝑠)
𝛤𝑖(𝑥)

𝑑𝑠 (15)

represents, still resorting to demographic jargon, Fisher’s reproductive
value of an infected aged 𝑥 [23]. Therefore, the numerator in (13),
which scales the magnitude of the epidemic, also has a noteworthy
demographic interpretation, i.e., it represents the total reproductive value
i.e., the infection potential embedded in the initial age distribution of
infected individuals.

3. The dynamics of the different phases

This section summarizes the main model results in distinct subsec-
tions focusing on the distinct phases (𝑖 = 1, 2, 3) of the epidemic using
qs. (5). During each phase, the infected distribution evolves toward
ts asymptotic stable age distribution and provides the new initial age
istribution for the subsequent phase. Thus each phase is ultimately
epresented by the dominant real root 𝛼∗𝑖 of the characteristic equation

(7) and by the stable equivalent 𝑈∗
𝑖 .

We discuss in greater detail the invasion phase (𝑖 = 1), where no
intervention is in place, and the subsequent social distancing phase
(𝑖 = 2). Finally we briefly extend the results to the release phase (𝑖 = 3).

3.1. The outbreak phase

We first consider the initial phase of the epidemic, that is the
solution of (1) in the interval [0, 𝑡𝐿] where no control measures are in
place yet. This is governed by the solution of (4) for 𝑖 = 1 with 1

0 > 1,
so that the dominant real root 𝛼∗1 is strictly positive. Thus, whatever
be the initial distribution 𝑌 0(𝑥), the infected population will reach its
table age distribution [(11)]

∗
1 (𝑥) =

𝑒−𝛼
∗
1𝑥𝛤1(𝑥)

𝛤1(𝛼∗1 )
, 𝑥 ∈ [0, 𝑥+],

ote that, since 𝛼∗1 > 0, the function 𝛤1(𝑥), being bounded, is Laplace
ransformable at 𝛼∗1 .
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As known from classical mathematical demography, the stable age
distribution (SAD), which here represents the relative distribution of
the infected by (class) age, is time invariant due to the fact that the
absolute numbers of infective individuals in each age group grow at
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the same rate 𝛼∗1 over time. In particular, the normalizing term of the
SAD, given by the reciprocal of the Laplace transform of the survival
to removal function 𝛤1(𝛼∗1 ) has a clear epidemiological meaning. It
ndeed represents the long-term per-capita birth rate of new infective
ndividuals – generically defined as the ratio between the rate of new
irths, i.e., the incidence 𝑈𝑖(𝑡), and the overall size of the infected

population 𝐼(𝑡) – in the asymptotic regime of exponential growth of
incidence defined in (10).

In case the age profile of the initial datum corresponds to the SAD
(11), namely if

𝑌 0(𝑥) = 𝐼(0) 𝑌 ∗
1 (𝑥), (16)

where 𝐼(0) is the number of infected individuals at the beginning of the
epidemic, then

𝐺1(𝑡) =
𝐼(0)

𝛤1(𝛼∗1 )
𝑒𝛼

∗
1 𝑡
∫

∞

𝑡
𝐾1(𝑥)𝑒

−𝛼∗1𝑥𝑑𝑥

and the solution to (5) is exactly (see Appendix A)

𝑈1(𝑡) =
𝐼(0)

𝛤1(𝛼∗1 )
𝑒𝛼

∗
1 𝑡. (17)

rom (17), the corresponding solution to (4) reads

1(𝑥, 𝑡) = 𝐼(0) 𝑒𝛼
∗
1 𝑡 𝑌 ∗

1 (𝑥),

.e., the age-distribution is stable at all times. The latter developments
tate that if the infective population lies on its SAD already at the
nitial phase of the epidemic, then the dynamics of incidence is simply
iven by the exponential propagation at the intrinsic rate 𝛼∗1 of the total
nitial infective population 𝐼(0) through its stable (per-capita) birth rate
∕𝛤1(𝛼∗1 ).

Concerning the behavior of the total number of infected during the
utbreak phase

1(𝑡) = ∫

𝑥+

0
𝑌1(𝑥, 𝑡)𝑑𝑥,

rom (6) and (12) we see that it splits into two terms

𝐼1(𝑡) = ∫

∞

𝑡
𝑌 0(𝑥 − 𝑡)

𝛤1(𝑥)
𝛤1(𝑥 − 𝑡)

𝑑𝑥 + ∫

𝑡

0
𝑈1(𝑡 − 𝑥)𝛤1(𝑥)𝑑𝑥

= 𝐼01 (𝑡) + 𝐼+1 (𝑡)

with

lim
𝑡→∞

𝐼01 (𝑡) = 0, lim
𝑡→∞

𝑒−𝛼
∗
1 𝑡 𝐼+1 (𝑡) = 𝑈∗

1 𝛤1(𝛼∗1 ). (18)

Thus, the first term is a transient one accounting for the initial group
of infected people, while the second term accounts for the epidemic
dynamics resulting from new cases generated for 𝑡 > 0 which for large
times converges to its stable form. Precisely, the initial group 𝐼01 (𝑡)
decays at a rate related to the removal probability 𝛤1(𝑥). In fact, if
𝑥+ < +∞ we simply have

𝐼01 (𝑡) = 0 for 𝑡 > 𝑥+,

otherwise, if 𝑥+ = +∞, for any 0 < 𝜔 < −𝜎𝛤1 , where 𝜎𝛤1 is the abscissa
of convergence of the Laplace transform of 𝛤1(𝑥), we have

lim
𝑡→∞

𝑒𝜔𝑡𝐼01 (𝑡) = lim
𝑡→∞∫

∞

0
𝑌 0(𝑥)

𝑒𝜔(𝑥+𝑡)𝛤1(𝑥 + 𝑡)
𝑒𝜔𝑥𝛤1(𝑥)

𝑑𝑥 = 0. (19)

Note that the ultimate behavior of the total number of infected during
the first phase

𝐼+1 (𝑡) ≈ 𝑈∗
1 𝛤1(𝛼∗1 ) 𝑒

𝛼∗1 𝑡 (20)

differs from incidence only in the scale constant, which is now given
by 𝑈∗

1 𝛤1(𝛼∗1 ). The latter represents the stable equivalent of the total
Finally, as regards the lapse of time necessary for observing the
emergence of the asymptotic behavior of the solution, we can estimate
the approximate minimum time for a tolerance 𝜖 as [see (A.4)]

𝑇𝜖 =
ln(|𝑈∗

1 |) − ln(𝜖)

𝛼∗1 −ℜ𝛼11
.

.2. The lockdown phase

Let us now consider the implications of a sufficiently long lasting
itigation phase starting at the time 𝑡𝐿, when the reproduction number

s abruptly set at 2
0 < 1. Since in this case we have 𝛼∗2 < 0, if social

istancing is maintained for a sufficiently long time, the epidemic will
ventually set on an exponentially declining path that we will term
suppression path. The suppression path would eventually bring to

pidemic extinction if the lockdown phase would continue rather than
eing halted by unlocking. However, before setting on the suppres-
ion path, the lockdown dynamics will be somewhat articulated as it
ill have to connect the pattern of fast exponential epidemic growth

nherited from the first phase with its regime phase of exponential
ecline. This suggests a transient phase resulting from the abrupt switch
etween dynamic regimes, which will be dominated by the inertia
nherited from the fast growth of the first phase, and might result in
n epidemic peak, after which epidemic decline will start. During this
hase the age distribution of infective individuals will continuously
djust, and will eventually converge to its new stable limiting form
∗
2 (𝑥) that will promote the exponential decline of the suppression
hase. In what follows, we discuss the second-phase dynamics by
istinguishing between the limit case of epidemic annihilation (2

0 = 0)
rom the standard case of (eventual) elimination 0 < 2

0 < 1.

.2.1. Epidemic annihilation
In this case, setting 2

0 = 0, we have 𝑈2(𝑡) ≡ 0 and

2(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑌 0
2 (𝑥 − 𝑡)

𝛤2(𝑥)
𝛤2(𝑥 − 𝑡)

for 𝑡 ≤ 𝑥

0 for 𝑡 > 𝑥.
(21)

Thus, for the prevalence of infected we have only the transient compo-
nent 𝐼02 (𝑡) that either is identically 0 for 𝑡 > 𝑥+ (if 𝑥+ < +∞) or goes
extinct at any rate 𝜔 such that 0 < 𝜔 < −𝜎𝛤2 [see the analogous (19)].

3.2.2. The case 0 < 2
0 < 1

If 0 < 2
0 < 1, then there is also the component 𝐼+2 (𝑡) and we have

lim
𝑡→∞

𝑒−𝛼
∗
2 𝑡𝑌2(𝑡, 𝑥) = 𝑈∗

2 𝑒
−𝛼∗2𝑥𝛤2(𝑥) (22)

pointwise in 𝑥. Note that, in the case 𝑥+ < +∞, we certainly have

𝐼+2 (𝑡) ≈ 𝑈∗
2 𝛤2(𝛼∗2 )𝑒

𝛼∗2 𝑡, (23)

ut, if 𝑥+ = +∞, since 𝛼∗2 < 0, the limit on the right hand side of (22) is
ntegrable if and only if 𝛼∗2 > 𝜎𝛤2 . In this case (23) holds true [compare
ith (20)]. However if 𝛼∗2 < 𝜎𝛤2 we instead have

lim
𝑡→∞

𝑒𝜔𝑡𝐼+2 (𝑡) = lim
𝑡→∞∫

𝑡

0
𝑈2(𝑡 − 𝑥)𝑒𝜔(𝑡−𝑥)𝑒𝜔𝑥𝛤2(𝑥)𝑑𝑥

≤ lim
𝑡→∞∫

𝑡

0
𝑈2(𝑡 − 𝑥)𝑒−𝛼

∗
2 (𝑡−𝑥)𝑒𝜔𝑥𝛤2(𝑥)𝑑𝑥 = 𝑈∗

2 𝛤2(−𝜔)

or any 𝜔 such that 0 < 𝜔 < −𝛼∗2 < −𝜎𝛤2 , i.e., 𝐼+2 (𝑡) decays at the rate
𝜔.
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3.2.3. Stable equivalents of a lockdown phase
Much information on epidemic trend during the lockdown phase

is provided by the two parameters governing the resulting long-term
declining exponential path, namely the intrinsic rate 𝛼∗ and the stable
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2
equivalent, where the latter tunes the scale of the epidemic curve over
the suppression path. We assume that at the lockdown time 𝑡𝐿, the
epidemic has reached its stable form (12), so that the initial datum at
𝑡𝐿 is

𝑌 0
2 (𝑥) = 𝑈∗

1 𝛤1(𝛼∗1 ) 𝑒
𝛼∗1 𝑡𝐿 𝑌 ∗

1 (𝑥) = 𝑈∗
1 𝑒𝛼

∗
1 (𝑡𝐿−𝑥)𝛤1(𝑥),

implying a total number of infected individuals

𝐼2(0) = 𝑈∗
1 𝛤1(𝛼∗1 ) 𝑒

𝛼∗1 𝑡𝐿 .

Here 𝑈∗
1 is in general given by (13) while, if the initial population of

infectious individuals at the beginning of the epidemic was distributed
according to the stable distribution of the first phase, then [see (17)]

𝑈∗
1 =

𝐼(0)
𝛤1(𝛼∗1 )

.

The stable equivalent of the incidence function for the lockdown
phase is [see (13) and (14)]

𝑈∗
2 =

𝐼(0) 𝑒𝛼
∗
1 𝑡𝐿

𝜇2 ∫

∞

0
𝛱2(𝑥) 𝑌 ∗

1 (𝑥)𝑑𝑥,

n the particular case of 𝛤1(𝑥) ≡ 𝛤2(𝑥), i.e. if the lockdown measures
nly involve the lowering of the contact rate from its free-epidemic
evel 𝑐1 to 𝑐2 < 𝑐1, the latter quantity reads

∗
2 =

𝑈∗
1 𝑒

𝛼∗1 𝑡𝐿 (1
0 −2

0)

𝜇2(𝛼∗1 − 𝛼∗2 )
1
0

.

The previous quantity encapsulates the inertial effects arising from the
transition between two regimes of stable growth, namely an initial
regime of exponential epidemic growth and the subsequent suppression
regime characterized by asymptotic exponential decline.

3.3. The release of social distancing

For simplicity we assume that the release of social distancing mea-
sures starts when the stable age distribution of the suppression phase
was fully established so that we have to consider the incidence equation

𝑈3(𝑡) = 3
0

(

𝐺3(𝑡) + ∫

𝑡

0
𝐾3(𝑥)𝑈3(𝑡 − 𝑥)𝑑𝑥

)

with the initial datum

𝑌 0
3 (𝑥) = 𝑈∗

2 𝑒𝛼
∗
2 (𝑡𝑅−𝑡𝐿)𝑒−𝛼

∗
2𝑥𝛤2(𝑥).

The analysis proceeds in the same way as the first two phases ending in
a long-term regime of exponential growth (3

0 > 1) or decay (3
0 < 1).

In particular the corresponding stable equivalent

𝑈∗
3 =

3
0𝐺3(𝛼∗3 )
𝜇3

.

ill embed the inertial effects due to the aging experienced by the age
istribution of infection inherited from the suppression dynamics of the
ockdown phase, on the unlocking dynamics.

. Illustrations and simulations

To better appreciate the general discussion above, it is worth to
onsider specific parametrizations allowing a more detailed description
f the epidemic phases as well as comparisons with data. Moreover, by
parametrized description of the process, we can exploit Erlang kernels
llowing the reduction of infinite-dimension systems to systems of
rdinary differential equations (ODEs) or to mixed systems of delayed
nd ordinary differential equations (DDE–ODE since now on). This is
classical reduction procedure for integral equations of Volterra type,
4.1. Reducible kernels

Our general model depends on two key age-specific epidemiological
functions i.e., the (phase-specific) survival-to-infection function 𝛤𝑖(𝑥),

hich tunes the age distribution of removal, and the infection repro-
uction kernel 𝐾𝑖(𝑥), which is the normalized product of the infectivity
ernel 𝛽0(𝑥) and 𝛤𝑖(𝑥), tuning the generation time (age-) distribution.

wide class of reducible problems appears if both distributions are
ranslated Erlang densities, that is Gamma densities with integer index,
.e.,

(i) the infectivity kernel 𝛽0(𝑥) is a (non-proper) translated Erlang
density of order 𝑛 and rate 𝜑:

𝛽0(𝑥) = 𝛽0
𝜑𝑛(𝑥 − 𝜏)𝑛−1𝑒−𝜑(𝑥−𝜏)

(𝑛 − 1)!
[𝜏,+∞)(𝑥); (24)

(ii) the removal rate 𝛾𝑖(𝑥) is taken as

𝛾𝑖(𝑥) =
𝛾𝑚𝑖 (𝑥 − 𝜏)𝑚−1

(𝑚 − 1)!
𝑚−1
∑

𝑗=0

𝛾𝑗𝑖 (𝑥 − 𝜏)𝑗

𝑗!

[𝜏,+∞)(𝑥), (25)

corresponding to the survival function of a translated Erlang
density of order 𝑚 and rate 𝛾𝑖, that is:

𝛤𝑖(𝑥) = [0,𝜏)(𝑥) +
𝑚−1
∑

𝑗=0

𝛾𝑗𝑖 (𝑥 − 𝜏)𝑗𝑒−𝛾𝑖(𝑥−𝜏)

𝑗!
[𝜏,+∞)(𝑥), (26)

Under previous specifications, the phase-specific reproduction numbers
are given by

𝑖
0 =

𝑐𝑖𝛽0𝜑𝑛

𝜃𝑛𝑖

𝑚−1
∑

𝑗=0

(

𝑛 + 𝑗 − 1
𝑗

)(

𝛾𝑖
𝜃𝑖

)𝑗

where

𝜃𝑖 = 𝜑 + 𝛾𝑖.

Typical shapes of both 𝛽0(𝑥) and 𝛾𝑖(𝑥) functions, for different values of
the Erlang index parameter, are reported in Fig. 1

Formulations (24) and (25) assume a latently infective phase hav-
ing fixed duration 𝜏, 𝜏 ≥ 0) during which infected individuals are
not yet infective and cannot be removed. In relation to COVID-19
data, we remark that although the Gamma kernels best fitting ob-
served data of serial intervals (taken as surrogates of generation times)
were obviously characterized by non-integer indices [2,32], therefore
implying non-reducible kernels, nonetheless integer-indexed Gamma
(i.e., Erlang-type) distributions can usefully bound observed distribu-
tions.

As we now show by means of examples, if duration 𝜏 is strictly
ositive, the linear chain trick will lead to a mixed DDE–ODE system
hich, in the limit case 𝜏 = 0, will collapse into a pure ODE system.

4.2. Reduction to a 2-dimensional DDE-ODE system

To illustrate how the chosen kernels allow reduction (for each
phase), we discuss the case 𝑛 = 2, 𝑚 = 1 yielding

𝐾𝑖(𝑥) = [𝜏,+∞)(𝑥) 𝜃2𝑖 (𝑥 − 𝜏) 𝑒−𝜃𝑖(𝑥−𝜏),

𝛾𝑖(𝑥) = 𝛾𝑖 [𝜏,+∞)(𝑥),

𝑖
0 =

𝑐𝑖𝛽0𝜑2

𝜃2𝑖
,

(27)
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Fig. 1. Instances of the basic age-phase specific parameters. Left panel: specific infectivity rate 𝛽0(𝑥), parametrized according to (24) for 𝜏 = 5 day, 𝛽0 = 1 day, 𝜑 = 0.3 day−1 and
𝑛 = 2, 3, 4; note that increasing the order parameter 𝑛 delays the growth of the function. Right panel: removal rate 𝛾𝑖(𝑥), parametrized according to (25), for 𝜏 = 5 day, 𝛾𝑖 = 0.3 day−1

nd 𝑚 = 1, 2, 3, 4; the shape of the rate is increasing after the end of the latency phase and converges for large ages to the constant level 𝛾𝑖; also in this case, increasing the index
mooths the function and delays its growth.

y considering the basic variables

𝑈𝑖(𝑡) = 𝑖
∞
𝐾𝑖(𝑥)𝑦𝑖(𝑥, 𝑡)𝑑𝑥,

and 𝐼𝑖(𝑡) (note that, since 𝜏 = 0, it holds 𝐼𝑖(𝑡) = 𝐼#𝑖 (𝑡), landing on an SIR
structure) satisfies the additional equation
0 ∫0
∞ (28) 𝑑 𝐼𝑖(𝑡) = 𝑈𝑖(𝑡) − 𝛾𝑖𝐼𝑖(𝑡). (32)
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𝐽𝑖(𝑡) = ∫𝜏
𝑒−𝜃𝑖(𝑥−𝜏)𝑦𝑖(𝑥, 𝑡)𝑑𝑥,

here 𝑦𝑖(𝑥, 𝑡) is the scaled variable

𝑖(𝑥, 𝑡) =
𝑌𝑖(𝑥, 𝑡)
𝛤𝑖(𝑥)

, (29)

e obtain (see details in Appendix B) the following DDE–ODE system
aving as state variables the epidemic incidence 𝑈𝑖(𝑡) and the auxiliary
ariable 𝐽𝑖(𝑡):
𝑑
𝑑𝑡

𝑈𝑖(𝑡) = −𝜃𝑖 𝑈𝑖(𝑡) +𝑖
0𝜃

2
𝑖 𝐽𝑖(𝑡)

𝑑
𝑑𝑡

𝐽𝑖(𝑡) = 𝑈𝑖(𝑡 − 𝜏) − 𝜃𝑖𝐽𝑖(𝑡)
(30)

Note that the variable 𝐽𝑖(𝑡), that appears upon differentiation of 𝑈𝑖(𝑡),
ontributes to determine the behavior of 𝑈𝑖(𝑡) that in turn contains
ll the relevant information. The variable 𝐽𝑖(𝑡) is an auxiliary quantity
epresenting the hypothetical incidence of new cases of infection that
ould appear if the normalized infection kernel 𝐾𝑖 would have the
iminished index 𝑛 − 1 instead of 𝑛. This confers to the resulting
DE–ODE system, the classical structure of reduced problems [29].

Once 𝑈𝑖(𝑡) is known, using 𝑌𝑖(𝑥, 𝑡) from formula (6), other relevant
epidemiological quantities can be computed such as

𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑜𝑓𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ∶ 𝐼𝑖(𝑡) = ∫

∞

0
𝑌𝑖(𝑥, 𝑡)𝑑𝑥,

𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑜𝑓𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ∶ 𝐼#𝑖 (𝑡) = ∫

∞

𝜏
𝑌𝑖(𝑥, 𝑡)𝑑𝑥,

𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑜𝑓𝑒𝑥𝑝𝑜𝑠𝑒𝑑𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝐸𝑖(𝑡) = ∫

𝜏

0
𝑌𝑖(𝑥, 𝑡)𝑑𝑥.

For these variables we can also state additional equations that can be
added to system (30). Indeed, proceeding as before we obtain
𝑑
𝑑𝑡

𝐼#𝑖 (𝑡) = 𝑈𝑖(𝑡 − 𝜏) − 𝛾𝑖𝐼
#
𝑖 (𝑡),

𝑑
𝑑𝑡

𝐸𝑖(𝑡) = 𝑈𝑖(𝑡) − 𝑈𝑖(𝑡 − 𝜏),

𝑑
𝑑𝑡

𝐼𝑖(𝑡) = 𝑈𝑖(𝑡) − 𝛾𝑖𝐼
#
𝑖 (𝑡).

The previous equations explicitly show the underlying SEIR struc-
ture implicit in the present reduced model, which can indeed be
described as a SEIR model with fixed-duration latency time 𝜏.

If in particular 𝜏 = 0, the delayed system (30) reduces to the
2-dimensional ODE system
𝑑
𝑑𝑡

𝑈𝑖(𝑡) = −𝜃𝑖 𝑈𝑖(𝑡) +𝑖
0𝜃

2
𝑖 𝐽𝑖(𝑡)

𝑑
𝑑𝑡

𝐽𝑖(𝑡) = 𝑈𝑖(𝑡) − 𝜃𝑖𝐽𝑖(𝑡).
(31)
𝑑𝑡
n this case, the model solution can be calculated explicitly through the
oots of the characteristic equation [compare with (7)]

𝜆 + 𝜃𝑖
)2 = 𝑖

0𝜃
2
𝑖 ,

ielding

∗
𝑖 = 𝜃𝑖

(

√

𝑖
0 − 1

)

, 𝛼1𝑖 = −𝜃𝑖

(

√

𝑖
0 + 1

)

and, for each phase

𝑈𝑖(𝑡) = 𝐴+
𝑖 𝑒

𝛼∗𝑖 𝑡 + 𝐴−
𝑖 𝑒

𝛼1𝑖 𝑡

𝐽𝑖(𝑡) =
1

√

𝑖
0𝜃𝑖

(

𝐴+
𝑖 𝑒

𝛼∗𝑖 𝑡 − 𝐴−
𝑖 𝑒

𝛼1𝑖 𝑡
)

here

±
𝑖 = 1

2

(

𝑈𝑖(0) ± 𝐽𝑖(0)
√

𝑖
0 𝜃𝑖

)

.

From these, we finally calculate 𝐼𝑖(𝑡) through (32). Note that if the
initial distribution is assumed to be the stable one (16), then for the
first phase we have

𝑈1(𝑡) = 𝐼(0)(𝛼∗1 + 𝛾1)𝑒
𝛼∗1 𝑡,

𝐽1(𝑡) =
𝐼(0)(𝛼∗1 + 𝛾1)

𝛼∗1 + 𝜃1
𝑒𝛼

∗
1 𝑡,

𝐼1(𝑡) = 𝐼(0)𝑒𝛼
∗
1 𝑡.

ext, for the second phase (the ‘‘‘lockdown’’’) we have (note this holds
or any subsequent phase)

2(𝑡) = 𝐼02 (𝑡) + 𝐼+2 (𝑡) (33)

here

𝐼02 (𝑡) = 𝐼(0)𝑒𝛼
∗
1 𝑡𝐿𝑒−𝛾2𝑡

𝐼+2 (𝑡) =
(

𝐵0𝑒−𝛾2𝑡 + 𝐵+𝑒𝛼
∗
2 𝑡 + 𝐵−𝑒𝛼

1
2 𝑡
)

ith

𝐵0 =
2

0𝜃
2
2

1
0𝜃

2
1

(1
0𝜃

2
1 − 𝜙2)

(𝜙2 −2
0𝜃

2
2 )
𝐼(0)𝑒𝛼

∗
1 𝑡𝐿 ,

𝐵± = 1
2

√

2
0𝜃2

1
0𝜃

2
1

(
√

1
0𝜃1 − 𝜙)(

√

1
0𝜃1 ±

√

2
0𝜃2)

(
√

2
0𝜃2 ∓ 𝜙)

𝐼(0)𝑒𝛼
∗
1 𝑡𝐿 ,
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Fig. 2. Illustration of the transition (initiated at the lockdown time 𝑡𝐿 = 30 day) from the outbreak phase to the lockdown phase, through the solution of the ODE model (31).
arameter values are: 𝜏 = 0 day, 1

0 = 2, 𝑡𝐿 = 30 day, 2
0 = 0.7, 𝜙 = 0.2 day−1, 𝛾1 = 0.1 day−1, 𝛾2 = 0.1 day−1. Left panel: plot of the two components 𝑈 (𝑡), 𝐽 (𝑡) of the solution to

ystem (31), together with the prevalence function 𝐼(𝑡); note that the incidence is discontinuous at 𝑡𝐿. Right panel: plot of the prevalence 𝐼(𝑡); for the second phase 𝐼2(𝑡) is split
nto its two components 𝐼0

2 (𝑡) and 𝐼+
2 (𝑡) as in (33); the parameter choice implies 𝛼∗

2 + 𝛾2 > 0 so that 𝐼+
2 (𝑡) eventually behaves as 𝐵+𝑒𝛼∗2 (𝑡−𝑡𝐿 ); the two components 𝐼0

2 (𝑡) and 𝐼+
2 (𝑡) are

lotted together with 𝐼2(𝑡) and 𝐵+𝑒𝛼∗2 (𝑡−𝑡𝐿 ).
Fig. 3. Further analysis of the transition of the prevalence function 𝐼(𝑡) from the outbreak phase to the lockdown phase based on the DDE system (30). Baseline parameter values
re: 𝜏 = 2 day and 1

0 = 3 day−1, 𝛾1 = 0.09 day−1, 𝛾2 = 0.09 day−1. Left panel: comparison of trends of prevalence 𝐼(𝑡) for different values of 2
0. Right panel: comparison between

the stable distribution 𝑌 ∗
1 (𝑥) emerging in the first phase and the corresponding distributions 𝑌 ∗

2 (𝑥) emerging in the lockdown phase for the different values of 2
0.

and, in particular,

𝐵0 + 𝐵+ + 𝐵− = 0.

at any time 𝑡 > 𝑡𝐿 does not differ significantly from the sum of the
initial infective population present at the beginning of the lockdown
The first term in (33) is due to the prevalence of infected individuals at
phase 𝐼02 , plus their new infective cases (given by −𝑈0

2 ∕(𝛼
∗
2 + 𝛾2) as

p

a

8

the beginning of the second phase, which decays at a rate 𝛾2 (compare
with (18)). The second term accounts for transmission events occurred
during the lockdown phase. In this case, since 𝛼∗2 < 0, the asymptotic
behavior of 𝐼+2 (𝑡) depends on 𝛼∗2 + 𝛾2. Indeed we have

If 𝛼∗2 + 𝛾2 > 0 then 𝐼+2 (𝑡) ≈ 𝐵+ 𝑒𝛼
∗
2 𝑡

If 𝛼∗2 + 𝛾2 < 0 then 𝐼+2 (𝑡) ≈ 𝐵0 𝑒−𝛾2𝑡

Some interesting demographic remarks can be made about the dy-
namics of the infective population 𝐼2(𝑡) during the lockdown phase (see
(33)) depending on the sign of 𝛼∗2 + 𝛾2. On the one hand, for 𝛼∗2 + 𝛾2 > 0
it is immediate to see that 𝐼2(𝑡) asymptotically behaves as 𝑈2(𝑡)∕(𝛼∗2+𝛾2)
where (𝛼∗2 + 𝛾2) has a clear demographic meaning i.e., it represents the
instantaneous per-capita birth rate of the infective population. That
is to say, the infective population asymptotically evolves in a stable
regime of exponential decline (given that 𝛼∗2 < 0 as resulting from
the hypothesis 2

0 < 1) where each infective individual produces on
average (𝛼∗2 + 𝛾2) new births (i.e., secondary cases) per unit of time.

On the other hand, for 𝛼∗2 + 𝛾2 < 0, 𝐼2(𝑡) asymptotically behaves
as 𝑒−𝛾2𝑡(𝐼02 − 𝑈0

2 ∕(𝛼
∗
2 + 𝛾2)). The interpretation for this case is that for

𝛼∗2+𝛾2 < 0 the infection reproductivity 2
0 is brought by the lockdown to

such a low level that – essentially – the infective population generated
in this case the per-capita birth rate is exactly given by −(𝛼∗2 + 𝛾2))
that decay over time at the removal/mortality rate 𝛾2. In other words,
in this case subsequent new infections generated at any time 𝑡 > 𝑡𝐿
are so few that they are hardly distinguishable from the case of a
population lacking reproductive power (i.e., having 0 = 0), despite we
specifically assumed 2

0 > 0. The separation between these two cases
occur for 𝛼∗2 + 𝛾2 = 0, to which it corresponds a reproduction number
given by

2,∗
0 =

𝜑2

(𝜑 + 𝛾2)2
(34)

The latter expression is informative about the role played by the two
functions shaping the generation time kernel during the second phase,
𝐾2(𝑥). If 𝜑 = 0 i.e., if the transmission rate 𝛽0(𝑥) is just an increasing
ower function, then 2,∗

0 = 0. On the other hand, if 𝜑 > 0 then 2,∗
0 > 0

i.e., it becomes a non trivial threshold. This peculiar situation is due to
the fact that in our formulation declining infectivity (occurring at the
rate 𝜑 > 0) and removal (occurring at the rate 𝛾2 > 0) act as additive
nd independent causes of infection removal.
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Fig. 4. Dependence of the model solution on the latency delay 𝜏. Left panel: demonstrative solution curves (outbreak and lockdown phases), for different values of 𝜏; baseline
parameters are: 1

0 = 2, 2
0 = 0.7, 𝜙 = 0.2 day−1, 𝛾1 = 0.1 day−1, 𝛾2 = 0.1 day−1, 𝑡𝐿 = 30 day. Right panel: characteristic roots of Eq. (35) for 𝜏 ∈ [0, 2.5]; baseline parameters as in left

panel; the leading root 𝛼∗
1 (𝜏) is positive and decreases as 𝜏 varies from 0 to 2.5 day; the root 𝛼1

1 (𝜏) is real and decreasing for 𝜏 ∈ [0, 0.94], then it splits into two complex conjugate
roots; a third real root 𝛼2

1 (𝜏) comes from the left, meets 𝛼1
1 (𝜏) at 𝜏 ≈ 0.94 and disappears.

.3. Numerical illustrations

Fig. 2 illustrates, for the ODE system (31), the behavior of the main

ariables 𝑈 (𝑡), 𝐽 (𝑡), 𝐼(𝑡) when the change from phase 1 (invasion) to

T
e
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phase 2 (lockdown) occurs. The left panel shows the discontinuity of
the incidence function 𝑈 (𝑡) at the switching time 𝑡𝐿, resulting from the
massive abrupt change in infection reproduction ratios (from 1

0 = 2.0
to 2

0 = 0.7). On the right panel we analyze the prevalence 𝐼(𝑡) and
he two separated terms 𝐼02 (𝑡) and 𝐼+2 (𝑡) for the lockdown phase. We

reported only a case with 𝛼∗2 + 𝛾2 > 0, the other case with 𝛼∗2 + 𝛾2 < 0
being very similar.

The left panel of Fig. 3 illustrates the transition pattern of the preva-
lence function 𝐼(𝑡) for the DDE system (30) considering different values
of the reproduction number 2

0 relative to the lockdown phase. This
nicely shows the intrinsic demographic inertia of the infective population.
We termed this type of inertia as ‘‘demographic inertia’’ because it
exactly represents the type of inertia that arises in an age-structured
population as a consequence of the switch between two stable dynamic
regimes characterized by their SAD’s. This notion was popularized in
classical mathematical demography by Nathan Keyfitz’s through the
parameter he called population momentum [23]. In our model this inertia
is marked at relatively high values of 2

0 (say, in the range 0.85 <
2

0 < 1.0), where prevalence may continue to grow for weeks after
the lockdown implementation. This demographic inertia represents the
key component of COVID-19 inertia following mitigation interventions,
which can be further increased by the characteristic delays arising for
COVID-19 (e.g., those due to diagnosis and cases confirmation). At
lower values of 2

0 this inertia is obviously mitigated. The right panel of
the same figure compares the stable age distributions 𝑌 ∗

1 (𝑥) emerging
during the invasion phase to those relative to the second phase (still
considering different values of 2

0). The difference between these stable
age distributions are the ultimate responsible of the transient phase
leading from the stable asymptotic behavior during phase 1 to that
of phase 2. Notably, during the first phase the stable age distribution
is a piecewise-declining exponential function reflecting only epidemic
growth (at rate 𝛼∗1 > 0) at ages 𝑥 < 𝜏 (where no removal is in place)
and the additional effect of removal at ages larger than 𝜏, when also
removal starts occurring. On the other hand, during the second phase,
the stable distribution is increasing at ages 𝑥 < 𝜏, reflecting the aging of
the infective population, which is asymptotically declining at the rate
𝛼∗2 < 0.

Concerning the dependence of the DDE system (30) on the latency
delay 𝜏, the left panel of Fig. 4 compares the model solution for infected
prevalence 𝐼(𝑡) for 𝜏 = 0 (the unlagged case) with those resulting from
different positive values of 𝜏 > 0. In the latter case, the characteristic
equation is transcendental and reads
(

𝜆 + 𝜃𝑖
)2 = 𝑖

0𝜃
2
𝑖 𝑒

−𝜆𝜏 . (35)
Fig. 5. Halving time 𝐻 for the lockdown phase versus the reproduction number 2
0,

with 𝜙 = 0.1 day−1 and for different combinations of 𝜏 and 𝛾2.

hus, we may have infinitely many roots, though we are mainly inter-
sted in the leading root which is real. In the right panel of Fig. 4 we
lot the first roots of (35) as a function of 𝜏.

Finally, Fig. 5 reports the halving time of the various epidemic
urves in the stable regime of the lockdown phase versus the repro-
uction number 2

0, for different combinations of values of the latency
delay 𝜏 and of the removal rate 𝛾2. Note that, given the value of 2

0,
an increase of 𝜏 produces an increase of the halving time while an
increase of the removal rate 𝛾2 has the opposite effect. Interestingly, the
shape of the relationship in Fig. 5 indicates that the greatest part of the
decline in the halving time of the suppression path – which is the most
straightforward measure of the speed at which the community controls
the epidemic – is achieved for 2

0 values up to say 0.7. Beyond that
point, further substantial achievements in decreasing the halving time
would require further substantial decreases in 2

0. This would in turn
require a dramatic strengthening of the social distancing conditions,
possibly causing an explosion in the epidemic social and economic
costs. This effect should primarily be a consequence of the specific
steepness of the involved curve whose shape depends on the generation
time kernel adopted. Indeed, in the case 𝜏 = 0 the halving time is given
by

𝐻 =
log 2

𝜃2

(

1 −
√

2
0

) .
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Fig. 6. Data set for daily reported cases, smoothed by a 7 days moving average. Left panel: the number of daily reported cases showing the onset of the epidemics starting with
February 24 (day n=0) and the subsequent phase of lockdown, officially starting on March 25 (n=30) and ending on May 5 (n=71), followed by new distancing measures on
October 15 (day n=234). Right panel: same data in semi-log scale showing linear traits corresponding to the exponential behavior of the epidemics.

From the latter standpoint, Fig. 5, even if not including social costs,
is illustrative of the main societal tradeoff of a generalized lockdown.
On one hand, brute-force epidemic suppression requires to bring 2

However, by the start of holidays (August 2020), the Government
publicly encouraged people to avoid international travels and to spend
vacations in Italy, contributing to spread optimism and confidence
0

trongly below one (perhaps below the threshold 2,∗ stated in (34)). that the epidemic was over, possibly bringing a decline in individuals’

w
S
e
i
w
b
t
a
s

W

i

10
0
his would require a dramatic haltening of socio-economic activity,
ith large temporary costs, but at the advantage of getting rid of the
pidemic much faster. On the other hand, the attempt to keep the
aximum feasible of socio-economic activities opened i.e., bringing 2

0
ust slightly below (or about) 1, allows the epidemic to continue for
long time, with a persistently large and slowly declining incidence and
prevalence.

5. Application to COVID-19 in Italy

Though our model was mainly theoretical and aiming to investigate
the basic mechanisms of a multi-phasic epidemic, it is nonetheless
interesting to try to fit the model to COVID-19 data in order to highlight
the potential and limits of such a simple tool with real data. Before
passing to results we report a short summary of the Italian epidemic as
observed so far.

The Italian COVID-19 epidemics has been officially documented
since February 24, 2020, with the first 229 cases reported by the
devoted Governmental unit Protezione civile. Since then, data have
been updated daily on a dedicated site (https://github.com/pcm-dpc/
COVID-19) providing information on some main stock/flows (con-
firmed cases, hospitalized cases, ICU occupancy, deaths and tests) at
a regional level. However, more detailed data such as those on contact
tracing and symptom onset used to compute the weekly figures of the
reproduction number 𝑅𝑡 by more sophisticated methods were not made
available until very late. This makes it of interest an analysis as the
present one also for comparing with Governmental estimates.

After a number of purely local measures, such as the creation
of hotspots in most affected Northern Italy areas since February 20,
the full national lockdown was completed on March 25, when only
essential activities and services were allowed to be continued. This was
preceded by a number of earlier Government measures including the
national closure of all schools grades and universities since March 4,
2020, and continued on March 11 by the first nation-wide closure of
non-fundamental economic activities. Pairwise, though the lockdown
was declared officially over by May 5th, some measures were contin-
ued till July 3 in the light of the still critical situation of hospitals,
thereby maintaining some degrees of social distancing and individual
protection.
attentions. This decline, documented by the press in an endless list of
episodes and partly captured by google mobility data, led to a growing
pool of new infections clusters that were the premise for the second
ave once workplaces and schools re-opened since the beginning of
eptember. The subsequent collapse of the tracing system and the
nsuing acceleration of the epidemic, brought to further social distanc-
ng measures since the second half of October 2020. These measures
ere, as a rule, aimed to avoid further generalized global lockdown
y local-level targeted interventions informed by local figures such as
he current reproduction number 𝑡, the incidence of confirmed cases,
nd the hospital pressure. Such interventions were able to downturn the
econd wave and to bring the 𝑡 in the region of 1 during January and

February 2021, but proved insufficient when the alpha ‘‘UK’’ variant
became predominant initiating a third epidemic wave [3].

In order to fit reported data with the simplest versions of our model,
namely those analyzed in Section 4.2 using parametrization (27), we
made a few simplifying assumptions. First, we considered data at the
National level. This is not inappropriate for the phases after the first
one where epidemic circulation involved the entire country, possibly
it is not for the first phase where the epidemic was localized in a few
provinces of a few regions. Moreover, being our model highly stylized
with a minimal parametrization, it does not include further epidemio-
logical compartments (e.g., isolation, hospitalizations, ICU, and deaths)
which are necessary for realistic epidemic modeling. Therefore, we
simply used daily reported new cases to compute daily prevalences. The
time series 𝐷𝑛 of daily reported data was smoothed by a 7 days moving
average, in order to remove weekly oscillations due to the sudden fall in
the number of tests observed every week-end (Fig. 6). We deliberately
did not detrend data by using the time series of tests actually carried
out. Assuming, quite crudely, that newly confirmed cases are isolated
and therefore removed from the active infective population, newly
reported cases are considered as removed individuals 𝑅𝑖(𝑡), satisfying
the equation

𝑑
𝑑𝑡

𝑅𝑖(𝑡) = ∫

∞

0
𝛾𝑖(𝑥)𝑌𝑖(𝑥, 𝑡)𝑑𝑥 = 𝛾𝑖 ∫

∞

𝜏
𝑌𝑖(𝑥, 𝑡)𝑑𝑥 = 𝛾𝑖𝐼

#
𝑖 (𝑡).

e therefore can use the formula:

nfective prevalence = 1
𝛾𝑖

× daily new (confirmed) cases,

https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
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to the corresponding stable age distribution of the invasion phase.
Consequently, the initial growth of the epidemic curve is expected
to be exponential since initial time with rate 𝛼∗1 . This parameter was
estimated by a (least squares) exponential fit choosing the data window
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Fig. 7. Graphic comparison between the generation Gamma kernel estimated for Italy
n [32] vs two possible Erlang approximation with index 2 namely (i) the mean
reserving Erlang distribution used in our application in this section, (ii) the best fitting
rlang distribution computed by a least squares criterion.

here 𝛾𝑖 is the removal rate of the corresponding phase, getting a se-
uence 𝐼𝑛 to be fitted against the theoretical prevalence 𝐼#(𝑡) provided
y the model.

The generation time kernel 𝐾𝑖(𝑥) (27) was chosen based on available
stimates of the generation time distribution for COVID-19 in Italy [32].
n that study, data on observed serial intervals (i.e., the distance be-
ween symptoms in primary infectors and symptoms in their secondary
ases), were fitted by a 𝐺𝑎𝑚𝑚𝑎 kernel with shape parameter equal to
.87 and rate 0.28 day−1, yielding a mean generation time of 6.6 day. By
ticking on their estimated mean generation time, our stylized kernel
1(𝑥) in (27) provided an extremely good approximation of it (see
ig. 7), by simply taking (an analogous approach was used in [33])

1 = 0.30 day−1.

To fit our model throughout the various epidemic phases (Fig. 6,
eft panel), we checked in the data for evidence of the presence of
he key model feature, namely the emergence of epochs of stable
xponential behavior eventually resulting from the implementation (or
he relaxation) – for a sufficiently long period of time – of mitigation
nterventions. This is clear from the log-scale diagram in the right panel
f Fig. 6 where we could well identify at least four phases characterized
y an initial transient dynamics which eventually approaches an expo-
ential trend. These four phases are represented by (i) the initial phase
f epidemic growth (roughly days 0–19), (ii) the declining phase after
he peak induced buy the lockdown (roughly days 80–100), (iii) the
hase of exponential increase during the second wave (days 210–250),
iv) the phase of the exponential decline resulting from the measures
dopted to mitigate the second wave (days 275–290).

This shape in turn suggests a 2-stage fitting procedure, to be re-
eated for each phase transition, where: (i) in the first stage the
haracteristic root 𝛼∗𝑖 for the particular phase considered is estimated,
ii) in the second stage the remaining parameters (𝜏, 𝛾𝑖, 𝑡𝑖.) are adjusted
onditional on 𝛼∗𝑖 (actually 𝜏 is fitted only once because it is a biological
onstant pertaining to the infection and it will not plausibly change
hrough the different phases). In what follows, we detail the adopted
pproach for the first two phases and briefly summarize it for the
emaining ones.

.1. The outbreak phase

As discussed in Section 4.2, we assume that the epidemic was initi-
ted by an initial cohort of infective individuals distributed according
yielding the highest value of the determination coefficient 𝑅2. This
ielded

0 = 181 𝛼∗1 = 0.15 day−1,

ver the period from day 𝑛 = 0 to 𝑛 = 19, with 𝑅2 ≈ 0.99. The fact that
ncluding further data points beyond 𝑛 = 19 day always worsened the
it, may be interpreted as due to the onset of social distancing gradually
howing its effect soon after time 𝑛 = 19 day, that is since March 15.

.2. The lockdown phase

At a crude glance, the lockdown phase might seem to display its
ffects on the epidemic curve from day 𝑛 = 27 to 𝑛 = 170. However,
e eventually selected the period from 𝑛 = 80 to 𝑛 = 105, showing a
arkedly exponential pattern, to identify 𝛼∗2 , obtaining
∗
2 = −0.05 day−1 (𝑅2 ≈ 0.99)

djusting the remaining model parameters by a conditional fit we
btained

= 2 day, 𝛾1 = 𝛾2 = 0.09 day−1, 𝑡𝐿 = 22 day,

ielding in particular a latency delay of about two days. Thus we could
ompute

= 𝜃1 − 𝛾1 = 0.21 day−1, 𝜃2 = 0.30 day−1.

his in turn allowed to also estimate the reproduction number 1
0 of

he first phase

1
0 = 𝑒𝜏𝛼

∗
1

(

1 +
𝛼∗1
𝜃1

)2

≈ 3.06,

as well as that of the second phase:

2
0 = 𝑒𝜏𝛼

∗
2

(

1 +
𝛼∗2
𝜃2

)2

≈ 0.61.

The overall fit of the model (30) over the first two phases is shown
in the left panel of Fig. 8. Though the overall quality might seem
acceptable, there is a clear loss of fit around the transition time 𝑡𝐿. This
s the consequence of the abrupt change of the reproduction number
rom 1

0 to 2
0 causing a sharp discontinuity in the incidence 𝑈 (𝑡)

unction. A correction of the model to remove the lack of realism
f the hypothesis of abrupt transition, obtained through a continuous
xponential decline of 𝑅2

0 distributed over a time span of two weeks is
hown (8, right panel) to remarkably correct the lack of fit previously
ommented. In this experiment, we considered
2
0(𝑡) = 𝑅1

0𝑒
−𝛿(𝑡−𝑡𝐿) where 𝛿 = (1∕𝛥) ln(1

0∕
2
0)

nd run the modified model obtaining 𝑡𝐿 = 17.3 and 𝛥 = 10.5,
uggesting that the decline in the reproduction number 𝑅2

0 of the second
hase realistically occurs through a time span of about 10 days.

.3. Further phases

Concerning the subsequent phases, namely (i) the second wave
hase which started due to the relaxation of most measures adopted
uring the lockdown, (ii) the subsequent mitigation phase with the so-
alled ‘‘multicolor strategy’’ [3] based on locally targeted (typically: at
he regional level) measures in view of the documented seriousness of
he local situation, up to (iii) the current emergence of more transmis-
ible variants of the virus, we used the same procedure detailed above.
he results are reported in Table 1 and Fig. 9.
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Fig. 8. The transition from the outbreak phase to the lockdown phase fitted by the proposed model (30) (parameter estimates as described in Sections 5.1 and 5.2). Left panel:
bserved vs fitted prevalence 𝐼(𝑡) under our baseline assumption that transition between phases occurs instantaneously; in this case the predicted curve shows a cuspid at the
ransition time 𝑡𝐿, due to the discontinuity of the incidence function 𝑈 (𝑡). Right panel: fit obtained through a slight modification of the model allowing a smooth transition.
Fig. 9. Overall fit by the proposed model to the entire course of the COVID-19 epidemic in Italy (parameter estimates as described in the present Section 5).

The estimates of the phase-specific reproduction numbers 𝑖
0 are

ystematically close to the nation-wide figures of the current reproduc-
ion number  estimated weekly by the Governmental unit [3].

Table 1
Summary of model parameters resulting from the fitting procedure. Common
parameters to all phases are 𝜙 = 0.21, 𝜏 = 2, 𝛾 = 0.09.
𝑡
Fig. 9, provides a summary view of the explanatory power of the Phase 𝛼∗ 0 start end

t
‘
e
c
f
d
C
h

12
odel (30), by comparing its solution with the data over the entire
ourse of the epidemic observed in Italy so far. Note that we deliber-
tely avoided to include generalized smooth transitions between phase
pecific reproduction numbers just for purposed of obtaining better-
ooking fits. Note also that the poorer fit over the last two phases
s the consequence of their short duration compared to phases I–IV,
reventing the emergence of any meaningful stable exponential phase.

. Discussion

To sum up, the overall fit in Fig. 9 was very good almost everywhere
ut in the most recent phases, despite the little information used,
amely the data from the sole exponential windows in each phase. Es-
entially, prior to the recent period made complicated by the emergence
f the new variants, there are only two periods where some lack of fit
merges, namely a portion of the declining trend during the lockdown
hase and the first epoch of the re-opening phase. This mostly lies in
i) the minimalistic structure of our model which does not explicitly
nclude any compartment directly comparable with real data, (ii) the
tylized hypothesis by which switches from one phase to the successive
ne occur abruptly. Refined data explanations would require to add a
𝐼 (outbreak) 0.15 3.06 t=0 t=22
𝐼𝐼 (lockdown) −0.05 0.63 t=23 t=156
𝐼𝐼𝐼 (release) 0.09 2.01 t=157 t=250
𝐼𝑉 (re-lock) −0.035 0.73 t=251 t=289
𝑉1 (multi-color) – 0.8 t=290 t=351
𝑉2 (multi-color) – 1.05 t=352 –

number of further compartments to account for the delayed processes
of the disease pathways, testing, isolation, hospitalization etc, and to
amend our homogeneous mixing framework to include heterogeneities
in transmission and disease (over age and space) and testing.

This said, the fitted model is the simplest setup illustrating the
naturally embedded demographic inertia of COVID-19 dynamics despite
he lack of any delayed dimensions (such as ICU and deaths). Here, by
‘demographic inertia’’ we mean the natural tendency of a multi-phasic
pidemic to display its true phase-specific trends with a temporal delay
ompared to the moment when that particular phase was initiated,
or example due to the activation of a mitigation intervention. This
emographic inertia is to be distinguished from other components of
OVID-19 observed inertia that are due to the fact that its main public
ealth outcomes e.g., cases confirmations (not to say of hospitalizations
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and deaths) arise with substantial time-delays with respect to the time
when transmission occurred. This natural demographic inertia can be
macroscopic or negligible, other parameters being equal, depending on
the relative magnitude of the reproduction numbers 𝑖 ,𝑖+1 that are

representation to include a number of behavioral aspects. Behavioral
effects are numerous but – just for illustrative purposes – one of these is
surely understandable as a consequence of the inertia phenomenon that
we termed the post-lockdown honey-moon period. This prolonged pe-
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0 0
characteristic of two successive phases. This was illustrated in the left
panel of Fig. 3.

Therefore, looking at Fig. 9 we can say that: (i) the continued
growth in prevalence after the first lockdown declaration is largely
attributable to delayed patterns rather than to demographic inertia (as
can be understood from the model lack of fit at the switch between
the first two phases). The reason is that the lockdown brought the
reproduction number representative of the second phase down to a
quite low level. On the other hand, the continued decline in prevalence
for a very long time beyond the lockdown official end-date at May
5 (about time 𝑛 = 80 day) can be partly explained by demographic
inertia exactly due to the very low level of 𝑖

0 eventually achieved
during the lockdown phase. Borrowing from a language typical of
vaccination programs, the latter prolonged honey-moon period likely
surely contributed to the generation of an optimism wave in the public
opinion that eventually was responsible for the second pandemic wave.

7. Concluding remarks

Based on a simple hypothesis, namely that the depletion of the
susceptible population remains contained over time, in this manuscript
we have proposed a minimal SIR model for the overall dynamics of
an epidemic evolving in a multi-phasic form due to a sequence of
epochs of mitigation intervention and their relaxations, as has been
the case for the COVID-19 epidemic. Our model provides, first of all, a
unified representation of such multi-phasic epidemics, describing how
the different epidemic phases unfold over time as a consequence of the
interplay between the transmission process and intervention responses.
Second, by using a wide class of generation time kernels allowing
reducibility (either to ordinary or delayed differential equations), we
investigated in depth a low-dimensional case allowing a non-trivial
full analytical treatment also of the transient dynamics connecting the
different epidemic phases. The latter model provided an excellent fit to
the entire course of the epidemic observed in Italy since February 2020,
despite its parsimonious parametric structure, not including any dis-
ease compartments and using minimal data. Last, the proposed model
represents the simplest setup illustrating the intrinsic demographic
component of the inertia of COVID-19 dynamics. This demographic
inertia adds to the one due to the various delayed phenomena char-
acteristic of COVID-19 to determine the overall COVID-19 inertia. The
limitations of the proposed model lie in its parsimonious structure
and in its kinematic nature. As for the first drawback, this can be
easily overcome by simply adding disease-related and other relevant
compartments, as well as by introducing relevant heterogeneities, as
those due to chronological age such as, e.g., in the onset of symptoms
and serious disease. This however represents only a part of the story of
COVID-19 which is clearly more complicated than described by simple
models. For example, we described the incoming story of the second
COVID-19 wave, debuted in Italy since the start of September 2020,
in a short report (Iannelli et al. [34]) where we correctly predicted
that the observed epidemic was dramatically accelerating since the
beginning of October, with 𝑡 shifting upward, and would continue to
do so for a while, due to the overwhelming of the testing–tracing system
by epidemic growth. We also suggested that the subsequent epidemic
increase would have continued up to a maximum corresponding to the
reproduction number generated in the preceding weeks by the behavior
of risky groups, and would have halted or slowed down once the more
prudent population groups would be reached. This is suggestive of the
fact that, at a fine scale, the epidemic description requires to account
for a number of further dimensions. These include saturation effects, as
the finiteness of tracing resources, capable – if alone – to slow-down the
epidemic but only for a while, as well as to go beyond the kinematic
riod of low epidemic activity surely contributed to the generation of the
optimism wave in the Italian public that contributed to the drop of pru-
dent behaviors, and eventually accelerated the second pandemic wave.
This calls for behavioral epidemiology explanations [26,27]. Learning
from such aspects is of dramatic importance also in prospective terms,
namely the control of future pandemic events.
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Appendix A. Survey of results from the renewal equation theory

Here we recall some results from the theory of the renewal equation

𝑢(𝑡) = 𝐹 (𝑡) + ∫

𝑡

0
𝐾(𝑥)𝑢(𝑡 − 𝑥)𝑑𝑥, (A.1)

and nomenclature coming from the demographic theory of the stable
population. Under rather general assumption such as

• 𝐹 (𝑡) ≥ 0 (𝑡 ∈ [0,∞)) is continuous and absolutely Laplace
transformable,

• 𝐾(𝑥) ≥ 0 (𝑥 ∈ [0,∞)) is absolutely Laplace transformable,

q. (A.1) has a unique continuous non-negative solution 𝑢(𝑡) (𝑡 ∈
0,∞)) whose asymptotic behavior has been extensively discussed by
eller [35] and is related (under some general assumption that we
uppose fulfilled by the equation coming from our model) to the roots
f the characteristic equation

̂(𝜆) = 1.

here we use symbol 𝑓 to denote the Laplace transform of the function
.

Following Feller [35], it is known that this equation has one and
nly one leading root 𝛼∗, which is real, simple and strictly positive
negative) if the condition 𝐾(0) > 1 (respectively 𝐾(0) < 1) is satisfied.
recisely we have the sequence 𝛼∗,

{

𝛼𝑗
}𝑗=∞
𝑗=1 such that

𝛼𝑗+1 ≤ ℜ𝛼𝑗 < 𝛼∗ (𝑗 = 1, 2, …)

nd the solution has the asymptotic expansion

(𝑡) = 𝑢∗𝑒𝛼
∗𝑡 +

∞
∑

𝑗=1
𝑢𝑗𝑒𝛼

𝑗 𝑡. (A.2)

his means that, for any integer 𝑁 , 𝑢(𝑡) can be written as

(𝑡) =

(

𝑢∗𝑒𝛼
∗𝑡 +

𝑁
∑

𝑗=1
𝑢𝑗𝑒𝛼

𝑗 𝑡

)

(1 +𝛺(𝑡)),

ith

lim
→∞

𝛺(𝑡) = 0.

s for the coefficients 𝑢𝑗 we have

𝑗 =
𝐹 (𝛼𝑗 )

∫

∞

0
𝑥𝐾(𝑥)𝑒−𝛼

𝑗𝑥𝑑𝑥
.
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In the particular case of

𝐹 (𝑡) = 𝑐𝑒𝛼
∗𝑡
∫

∞

𝑡
𝐾(𝑥)𝑒−𝛼

∗𝑥𝑑𝑥,

A

i
w

t

A

When the initial distribution 𝑌 0(𝑥) is assumed to be the stable one (11)
then

𝑈1(𝑡) =
𝛼∗1 (𝛼

∗
1 + 𝛾1)

∗ 𝐼0𝑒
𝛼∗1 𝑡, 𝑡 ∈ [−𝜏, 0]

14
then the expansion (A.2) reduces to the first term

𝑢(𝑡) = 𝑢∗𝑒𝛼
∗𝑡, 𝑢∗ = 𝑐.

In any other case such a solution is reached asymptotically as we have

lim
𝑡→∞

𝑒−𝛼
∗𝑡𝑢(𝑡) = 𝑢∗. (A.3)

We can estimate the speed of this convergence by truncating the
asymptotic expansion (A.2) at the second term

𝑢(𝑡) ≈ 𝑢∗𝑒𝛼
∗𝑡 + 𝑢1 𝑒𝛼

1𝑡,

to have
|

|

|

𝑒−𝛼
∗𝑡𝑢(𝑡) − 𝑢∗||

|

≤ |

|

|

𝑢1||
|

𝑒(ℜ𝛼1−𝛼∗)𝑡

so that

𝑇𝜖 =
ln(|𝑢1|) − ln(𝜖)

𝛼∗ −ℜ𝛼1
. (A.4)

is an estimate of the minimum time required to get the limit (A.3)
reached within a tolerance 𝜖.

ppendix B. The linear chain-trick

Reduction of the main system (4) to a cascade of ODE–DDE equation
s allowed by the special form of the basic parameters (24), (25). Here
e illustrate the method through the special case (27).

The starting point are the variables (28) and (29). From (4) we see
hat the latter satisfy the reduced system

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

( 𝜕
𝜕𝑡

+ 𝜕
𝜕𝑥

)

𝑦𝑖(𝑥, 𝑡) = 0,

𝑦𝑖(0, 𝑡) = 𝑅𝑖
0 ∫

𝑥+

0
𝐾𝑖(𝑥)𝑦𝑖(𝑥, 𝑡)𝑑𝑥,

𝑦𝑖(𝑥, 0) =
𝑌 0
𝑖 (𝑥)
𝛤𝑖(𝑥)

.

(B.1)

then
𝑑
𝑑𝑡

𝑈𝑖(𝑡) = 𝑖
0 ∫

∞

𝜏
𝐾𝑖(𝑥)

𝜕𝑦𝑖
𝜕𝑡

(𝑥, 𝑡)𝑑𝑥 = −𝑖
0 ∫

∞

𝜏
𝐾𝑖(𝑥)

𝜕𝑦𝑖
𝜕𝑥

(𝑥, 𝑡)𝑑𝑥

and, integrating by parts, we have

𝑑
𝑑𝑡

𝑈𝑖(𝑡) = 𝑖
0𝜃

2
𝑖 ∫

∞

𝜏

(

1 − 𝜃𝑖(𝑥 − 𝜏)
)

𝑒−𝜃𝑖(𝑥−𝜏)𝑦𝑖(𝑥, 𝑡)𝑑𝑥 = 𝑖
0𝜃

2
𝑖 𝐽𝑖(𝑡) − 𝜃𝑖𝑈𝑖(𝑡).

nalogously

𝑑
𝑑𝑡

𝐽𝑖(𝑡) = 𝑦𝑖(𝜏, 𝑡) − 𝜃𝑖 ∫

∞

𝜏
𝑒−𝜃𝑖(𝑥−𝜏)𝑦𝑖(𝑥, 𝑡)𝑑𝑥 = 𝑈𝑖(𝑡 − 𝜏) − 𝜃𝑖𝐽𝑖(𝑡),

where we have used (6) to express 𝑦𝑖(𝜏, 𝑡), and 𝑈𝑖(𝑡) is extended to the
interval [−𝜏, 0] by

𝑈𝑖(𝑡) = 𝑦0𝑖 (−𝑡), 𝑡 ∈ [−𝜏, 0].

Thus we obtain system (30), endowed with the initial data

𝑈1(𝑡) = 𝑦01(−𝑡), 𝑡 ∈ [−𝜏, 0],

𝐽1(0) = ∫

∞

𝜏
𝑒−𝜃1(𝑥−𝜏)𝑦01(𝑥)𝑑𝑥,

𝑈2(𝑡) = 𝑈1(𝑡𝐿 + 𝑡) 𝑡 ∈ [−𝜏, 0],

𝐽2(0) = 𝐽1(𝑡𝐿),

𝑈3(𝑡) = 𝑈2(𝑡𝑅 − 𝑡𝐿 + 𝑡) 𝑡 ∈ [−𝜏, 0],

𝐽3(0) = 𝐽2(𝑡𝑅).
𝛼∗1 + 𝛾1(1 − 𝑒−𝛼1 𝜏 )

𝐽1(0) =
𝑒−𝛼

∗
1 𝜏

𝛼∗1 + 𝜃1
𝑈1(0).

The previous reduction procedure, can be applied to any choice of the
functions (24), (25), and leads to a cascade of equations where several
auxiliary variables are necessary in order to complete the chain.
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