friried applied
e sciences

Article

High-Expansion Foam: A Risk Control Option to Increase
Passenger Ship Safety during Flooding

Dracos Vassalos 1*, Donald Paterson 1, Francesco Mauro

and Adam Janicek 3

check for
updates

Citation: Vassalos, D.; Paterson, D.;
Mauro, F; Atzampos, G.; Assinder, P.;
Janicek, A. High-Expansion Foam: A
Risk Control Option to Increase
Passenger Ship Safety during
Flooding. Appl. Sci. 2022, 12, 4949.
https://doi.org/10.3390/
app12104949

Academic Editor: Koji Murai

Received: 28 March 2022
Accepted: 12 May 2022
Published: 13 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

10, George Atzampos 2, Peter Assinder 3

Maritime Safety Research Centre (MSRC), Department of Naval Architecture, Ocean and Marine Engineering,
University of Strathclyde, Glasgow G4 0LZ, UK; d.paterson@strath.ac.uk (D.P.);
francesco.mauro@strath.ac.uk (FM.)

Royal Caribbean Group, 20100 Turku, Finland; gatzampos@rccl.com

3 Minova, Addlestone KT15 2NX, UK; peter.assinder@minovaglobal.com (P.A.);

adam janicek@minovaglobal.com (A.].)

Correspondence: d.vassalos@strath.ac.uk

Featured Application: The present study highlights the possible benefits for passenger ship
safety by installing passive and active risk control options realised with high-expansion foam.
The application of foams with proper permeability characteristics may improve the survivability
of a passenger ship after an accident, as highlighted in the provided test cases performed with
standard and advanced damage stability calculations.

Abstract: In naval architecture, the standard way adopted to reduce the risk of potential loss of
life for passenger ships after an accident is via regulations. In case of flooding, this explicitly
implies the introduction of fixed watertight bulkheads, permanently modifying the internal ship’s
layout. Damage stability regulations constantly aim at higher safety standards; therefore, the layout
reconfiguration of an existing vessel may be essential to meet new requirements, leading to higher
costs for retrofitting. Furthermore, increasing fragmentation of the internal layout has a physical limit,
neglecting the possibility to elevate standards above a particular upper limit. In this view, innovative
solutions give the chance to exceed such a limit. The present work describes the advantages of high-
expansion foam application for passive and active protection from flooding events. The possibility
to have a material granting sufficient water tightness allows installing fixed or deployable barriers
that increase the safety level of the ship. Here, besides the description of the foam characteristics,
the application on a reference passenger ship highlights the advantages of passive and active foam
barriers to limit flooding and drastically reduce the risk of loss of lives. The changes in the limiting
stability margins required by regulations and the analysis of dynamic flooding simulations for
specific damage cases demonstrate the benefits of foam installation onboard passenger ships as a risk
control option.

Keywords: ship safety; damage stability; risk control; high-expansion foam

1. Introduction

Survivability of passenger ships after an accident is a parameter that needs to be
assessed during the ship design process to evaluate the potential risk of loss of life associated
with the accident itself [1-3]. This has become (and will always be) even more relevant
due to the incremental growth of passengers in new cruise ship designs [4]. According
to the statistics of casualties involving cargo and passenger ships in the last 10 years [4],
the following ranking can be provided: 27% loss of control, 26% collisions, 15% contacts,
13% groundings/stranding, 12% damage, 5% fire, 1% flooding, and 1% capsize. The
majority of the casualties are related to collisions and groundings/contacts, which are
damage types that intrinsically implicate flooding and the potential sinking or capsizing
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of the vessel [5]. To this end, regulations impose restricting requirements for the damage
stability of passenger ships [6,7]. The normative request of incrementally higher standards
for damage stability impacts the internal layout of a new passenger ship design [8]. The
standard answer of naval architects concerning the request of increasing survivability after
an accident corresponds to an increased subdivision of internal spaces [9-11]. However,
reacting to more restrictive safety requirements through a fractal fragmentation of the
internal ship volume also has a physical limit for new designs [12], decreasing the ship
earning potential (more weight and less usable space) without further increasing its safety.
Moreover, a substantial reconfiguration of internal spaces may be technically impossible or
too expensive for the refitting of existing ships for fulfilling new safety requirements [13].

An efficient and cost-effective way to boost the safety of passenger ships should aim at
overtaking the actual plateau of the safety level reached by modern designs, looking more
into residual risk mitigation rather than total risk prevention. Mitigation of the residual risk
implies the adoption of technological innovation where solutions are likely to be found in
the shorter-term and, more than likely, be cost-effective. On the other hand, for the specific
cases of damage stability, residual risk mitigation requires a thorough understanding of the
loss modalities of a ship due to flooding, thus the availability of appropriate methods, tools,
and techniques capable of meaningfully addressing the physical phenomena involved
in the flooding process [14,15]. In this sense, the application of risk mitigation systems
based on detailed analyses of the flooding process designed jointly with the application of
materials granting sufficient water tightness and mechanical properties could drastically
increase the safety level of a passenger ship after a flooding accident [16,17].

An effective result of this radical change in the approach to flooding risk management
for passenger ships is provided by the AREST (Adaptive REconfigurable Safety Technology)
systems, related to a University of Strathclyde Patent (patent no. PCT/GB 2017/050681),
combining accurate flooding vulnerability analysis with the use of high-expansion foams to
restore or limit the loss of buoyancy due to flooding. Such a system is composed of passive
solutions, active solutions, or a combination of both of them. Traditionally, mitigation
measures address only one of the following options for risk reduction: limiting flooding
occurrence, increasing the residual stability or limiting /preventing flooding progression.
Ship reinforcement [18] is a design measure that aims at reducing the potential dimen-
sion of a breach, thus limiting the flooding occurrence. Permeability reduction aims at
increasing vessel residual stability by using different strategies, such as counter ballasting,
application of foams, systems employing C02-based fire systems to activate air-bags inside
damaged compartments, etc. [19]. The fragmentation of flooding progression is achieved
by increasing the number of watertight doors [20] or changing the internal layout of the
ship [21]. The AREST system could in principle address all the above-mentioned options.

In the present work, after an introduction to the methods adopted for the damage
stability assessment of a passenger ship and the description of passive and active AREST
systems, the main characteristics of the high-expansion foam will be described, highlighting
its suitability for deployment as flooding countermeasures. The adoption of such coun-
termeasures will be demonstrated on a reference large cruise ship, showing the global
safety increase granted by the adoption of passive systems, together with the advantages
provided by active countermeasures in specific critical flooding scenarios.

2. Damage Stability Assessment of a Passenger Ship

One of the essential issues necessary to identify the mitigation measures for the
residual risk of ship loss due to flooding is the evaluation of the survivability of the ship
after an accident. The behaviour of a damaged ship after an accident is for sure a relevant
attribute for passenger ship design, requiring the adoption of time domain tools capable to
handle vessel dynamics coupled with flooding of water [22,23]. However, it is a common
designer practice to treat this issue with a simplified regulation-compliant approach based
on static calculations only [6,7].
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In any case, the framework for the determination of passenger ships’ survivability after
flooding necessitates the definition of breaches dimensions and locations for different kinds
of damage types. To this end, two different paths may be pursued to identify distributions
of damage characteristics, depending on the desired level of accuracy and the availability
of adequate tools and datasets, namely:

1. Probabilistic method: the distributions for damage characteristics are derived from statis-
tics of accidents, dividing the damages between collisions [24], side groundings [25]
and bottom groundings [26].

2. Direct method: damage characteristics distributions derive from scenario-based simu-
lations, implying the hindcast analysis of traffic routes in a given area [27,28] and the
execution of crash analyses to determine the damage dimensions [29].

Regardless of the selection of one of the two methods to derive the damage character-
istics distributions, it is necessary to determine the relevant cases needed to assess ships’
survivability. The measure of survivability is given by an index A defined as follows by the
actual regulatory framework [7]:

3 3
A=) ) wpdAy ©)
k=1j=1

where k indicates the damage type (collision, side, and bottom groundings), j indicates
the calculation draught (light service, partial or deepest subdivision droughts), wj; are the
weights between the calculation conditions [30], and Ajy are the partial indices evaluated on
specific combinations of damage types and draughts. The partial Aj indices of Equation (1)
have the following formulation:

Nc
Aj =Y PiSijk ()
i=1

where i distinguishes each of the N, groups of compartments identifying a unique dam-
age case. The so-called p-factors p;j are associated with the occurrence of the specific
damage case [31] and the s-factors s;j;,,; are linked to the probability to survive at the
damage. Traditional methods derive p-factors from analytical integration for collision
damages only [32]. Modern methodologies prefer the adoption of a more flexible non-zonal
approach [26], covering collisions and bottom/side groundings, evaluating Aj with a
randomised quasi-Monte Carlo process [33].

The evaluation of p-factors is directly associated with the sampling process of damage
distribution characteristics [31,33], thus adopting a probabilistic or a direct approach for the
damage distribution is changing the final p-values but not the calculation process itself. On
the contrary, the determination of s-factors is strongly influenced by the method adopted
to perform damage stability calculation; i.e., through a static or a dynamic assessment.

2.1. Static Assessment

The assessment of s-factor through static calculations is based on empirical formula-
tions derived from the static residual GZ curve for all the intermediate and final stages of
flooding associated with a damage case. According to SOLAS [7], the s; contributing to
Ajy calculation should be determined from:

Sijk = 1<}f1<1}\f]1mgﬁ (Sintijkhrs finalijksMijk> 3)
where s;,;; are the survivability factors for all the Nstqqe intermediate flooding stages until
the final equilibrium stage, sfy, is the survivability in the final equilibrium stage, and
sy is the survivability to external heeling moments in the final equilibrium stage. These
quantities can be calculated as follows for passenger ships:
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where GZ,x is the maximum of the residual righting lever curve for each damage case
and loading condition. GZ;,x must fall within the positive interval Range between the
equilibrium angle ¢, and ¢,, the minimum between the capsize and the unprotected
opening immersion angle. TRange and TGZ ., assume different values for cases involving
flooding of car deck in Ro-pax ships (0.20 m for TGZ,;ay, 20° for TRange) and not (0.12 m
for TGZyax, 16° for TRange). A is the ship displacement and My, is the external moment,
which is the maximum between moments due to wind, movement of passengers and
launch of survival crafts. The s-factor formulations in Equations (4)—(6) are all with values
in [0, 1], thus the s-factors represent a probability to survive a specific event in a specific
flooding condition. Figure 1 shows an example of a residual GZ curve with the associated
parameters relevant for stability assessment.

(6)

SMijk = min(

A
GZ

(P,

Range
Figure 1. Residual GZ curve for static damage stability calculations.

From these calculations, three case categories can be identified, according to the
s-factor value:

1. sjjx =0: cases where the vessel can be considered statically capsized or with insufficient
residual stability margin.

2. 0<sjj < 1: cases where there could be a reduced reserve of stability that may lead to
capsizing in case a wave environment is faced.

3. sjjx = 1: cases where the vessel can be considered safe and potentially have a sufficient
reserve of stability to face waves.

The resulting s values combined with the associated p lead to the determination of
the attained survivability index A, which is expected to be compared with the required
subdivision index R defined by SOLAS [7], ensuring that Ay > 0.9R. A index is not the
only metric suitable to measure survivability, and alternative parameters can be preferred,
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as probability of loss of lives (PLL) and GM margin. From an operator’s perspective,
the former is the most important and familiar measurement with direct impact on the
operability of their vessels. However, from a static assessment, other information can
be derived, concerning the vulnerability of the ship. Such indications are relevant to
identifying critical zones, requiring attention by the designer.

Static Risk Profile

The static survivability assessment is performed on the damage cases derived from the
sampling of marginal distributions, grouped in unique damage scenarios with associated
p-factors, and determining the associated survivability through Equations (4)-(6). As
already mentioned, each damage case has an occurrence p;j and a probability to survive
that damage case defined by s;i. These two factors can be representative of risk. The
factor Pijk 1- Sijk) can be used to give a rough estimate of the capsize risk associated with
a particular damage case. Figure 2 gives an example for two different passenger ships
(one cruise ship and one Ro-pax), considering the collision damage cases resulting from
three repetitions of 10° breaches. The Figure shows the damages as they are located along
the ship length, reporting the non-dimensional location of the damage centre Xp/Ls. The
diagram highlights the areas having higher risk of capsize due to flooding, thus the area
where designers should focus to improve ship safety. The static risk profile gives useful
information to compare potential risk of different ships or design solutions; however, it
is not enough to have an effective and realistic vision of the flooding process in the most
critical cases.

L5x10° * sample 1° sample2e sample 3 4.0x10° e sample 1° sample2e sample 3
.5x10” .0x10”
. 3.0x10°
1.0x10” i g
oo . . 2 . K
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e ° B . e L .
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5.0x10° & ° ool e o
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oo ° ..O. L] .9 ™ 00 COO ...
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Figure 2. Static risk profile for a cruise ship (left) and a Ro-pax (right).

2.2. Dynamic Assessment

Static assessment is a simplified approach dealing with calm water cases only; how-
ever, a detailed knowledge of the possible risk of capsize due to flooding needs to consider
a direct evaluation of the flooding process, including adverse sea conditions. The assess-
ment of damage stability with direct calculations requires the modelling of complicated
phenomena, related to the coupling between ship motions and the dynamic process of
floodwater and its interaction with the ship and the wave environment. The modelling can
be performed with different simplification levels, leading to different confidence for the
obtained results.

A good compromise between accuracy and calculation effort is reached by the adoption
of time domain simulations based on rigid body dynamics. Equations describing damaged
ship behaviour are derived from fundamental motion principles: the law of conservation of
linear and angular momentum. This law, normally applied to rigid bodies, is also extended
to the internal fluid mass, resolved in a body-fixed system of reference. This leads to the
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definition of six scalar equations for linear and angular motions. As an example, the three
equations of angular motions have the following vector form:

— — — - = —
(I's + I’w)~%w’ + My,- {r’w X C%U/Gs] + My, [(w’ X le) X Ulw] +

— — — — =
+My- |:7’/w X %Ulw +w' x (U/Gs + U,w>:|:| + @)
— —

— — — —
—0—%Mw- [r’w X (U’GS +U/w) + (%I’w)-w’ + w! x [(I’S + I’w)-w’} = M,

where I and I, are the ship and internal fluid mass moments of inertia; w is the rotational
velocity vector, My, is the internal fluid mass and ry, and vy, are the position and velocity
vectors of the internal fluid mass centre. v is the ship velocity vectors and Mg; are the
external moments acting on the ship. A more detailed explanation of all relevant terms and
of the complete model in six degrees of freedom is given in [34]. The right-hand side of
Equation (7) and the respective force vector of the rectilinear motions represent the external
forces and moment acting on the vessel with respect of its centre of mass. The sloshing
motions of the floodwater can be modelled as a lumped mass [35], while water ingress,
the flooding progression and accumulation follow a simplified model based on Bernoulli
equation. All these methods are implemented in software PROTEUS3, used for this study,
which was tested and validated at the University of Strathclyde against numerous model
experiments and benchmark tests on various vessel types [34].

As mentioned, time domain simulations imply the modelling of the water ingress-
regress from the breach. Therefore, breach dimensions influence the flow rate enter-
ing/leaving the ship. For such a reason, different breaches leading to the same set of
damaged compartments lead to different flooding simulations. This imply avoiding the
grouping process performed in the static assessment to determine the p-factors. Thus, for a
full dynamic assessment, the number of breaches N}, corresponds to the number of cases
N.. Consequently, the “dynamic p-factor” is a constant equal to 1/N}, and Equation (2) for a
fully dynamic assessment becomes:

1 N
Aj = N, Z; Sijk (8)
1=

Even though the nature of dynamic p-factor is different from the static case, the
sampling process of damage characteristics remains the same, with the addition of the
environmental characteristics. In fact, dealing with simulations in worldwide open sea
conditions, a significant wave height Hs should be sampled for all breaches from a dedicated
marginal distribution [36]. Such H; is used to model an irregular sea state by means of a
wave spectrum (usually Pierson Moskowitz or JONSWAP type). Here, dealing with time
domain simulations, it is necessary to take into account the stochastic nature of an irregular
sea environment. It is then necessary to perform multiple repetitions N, of the same sea
state (see Figure 3). Therefore, the survivability factor should not be determined as the
survivability of a single simulation, but as the average of multiple realisation N, with the
same sea state, resulting in:

N, . . .
’ I, =1 if the ship survived
Sijk = ﬁrh 1 I where{ P )

I, = 0 if the ship capsized
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N, =10,7,,. = 30 min \,\ 60 H=35m, T =11.5¢ s,=0.1
. g 30
Survival case hC)
) - OF
—— Capsize case 30 |

Figure 3. Example of ten realisations of the same damage in irregular waves for a cruise ship.

The function I in Equation (9) is not only influenced by the number of repetitions of
each dynamic simulation, but also by the exposure time in the wave environment; thus,
by the maximum simulation time f,,,, used for the simulations. Here, simulations were
carried out setting t,;4, to 30 min as it is usual for probabilistic assessment of passenger
ship survivability. However, not all capsize cases have the same nature and this should be
investigated in detail.

Ship Loss Modalities

The identification of a capsize event and the evaluation of the time prior to this event
after a damage is of utmost importance for the evacuation analysis of a vessel. In fact, in
case a damage could potentially lead to the sinking of the vessel, it should be possible to
evacuate passengers and crew in less than half an hour. However, capsizing may have
different nature depending on the interaction between floodwater and vessel motions and
this is usually identified with the flooding state they relate to. When the flooding process is
studied, the following states can be identified after an accident:

1. Transient: is the first part of the flooding process. The water rapidly inrushes trough
the breach, causing a rapid and large inclination into or away from the breach side.
The oscillation occurs in a time interval generally shorter than the vessel natural
roll period.

2. Progressive: in this stage, the water propagates though unprotected flooding paths
within the ship, slowly diminishing stability until the vessel sinks, capsizes or reaches
a stationary condition. This phase may take from minutes to hours.

3. Stationary: in this phase, there is no more significant water ingress/egress and the
average ship motions are almost constant or with amplitude oscillation due to external
loads only.

In case the capsize occurs during the transient phase, the consequences, in terms of
loss of lives, are extreme, the phenomenon being too fast to start the evacuation process.
When an accident occurs in calm water, then the detection of a capsize is only governed by
floodwater progression. In all cases, it is possible to determine the time to capsize (TTC),
which is an important parameter to establish the safety level of a vessel with dynamic
simulations. The identification of loss modalities for a ship allows determining which are
the damage cases that need more attention for the implementation of risk control options.

3. Solutions for Damage Stability Protection Using Foam: AREST System

As highlighted in the previous sections, the safety of a passenger ship after flooding is
related not only to its hull shape, but also (and probably even stronger) to its internal layout.
However, the internal layout of a passenger ship needs to address specific necessities for
passenger leisure, together with safety requirements concerning other sources of risk of loss
of lives, such as fire. Adding further constraints to the internal layout to mitigate flooding
could compromise the earning potential of the ship. Therefore, it is necessary to look
at possible solutions aimed to increase safety during a possible accident during the ship
operation, thus increasing ship resilience to a failure event. The AREST system developed
at the University of Strathclyde in collaboration with foam company MINOVA and design
office Sea Transport Solutions is a step in this direction, with a set of available solutions cost-
effectively reducing flooding risk. As a suitable risk control option against flooding should
address critical cases leading to capsize during the transient and the progressive flooding
stages, suitable solutions have to be found against both possibilities. Here, the focus is on
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two protection systems specifically addressing the transient and progressive flooding case,
using high expansion foam with adequate permeability and adhesion characteristics, fit for
the whole life-cycle of any vessel. High expansion foam is not the only suitable option for a
permanent foam installation, where other materials, such as polyurethane or fibre glass, in
the form of foam core composite sandwich panel or foam-filled lattice composite panel, can
be employed. However, having a single material for all of the possible AREST system is an
advantage if the material has the required mechanical characteristics.

3.1. Permanent Foam Installation: AREST P1

This is a passive flooding protection system involving the installation of permanent
foam in void spaces to provide additional reserve buoyancy when these spaces are directly
damaged or indirectly flooded following an incident, thus increasing the ship’s initial stabil-
ity and restoration forces. Such installations act similar to buoyancy tanks, with the added
benefit of being impermeable, thus providing buoyancy within the immediate damaged
area. This kind of improvement in initial stability and additional reserve of stability aims
at reducing the risk of transient capsize cases, which are also directly associated to an
inadequate initial reserve of stability during the initial stages of flooding. To be effective
upon installation, the foam should adhere to the vessel steel structure, prohibiting build-
up of moisture between the foam and ship structure whilst offering effective insulation.
Moreover, in any foam installation, particularly near passenger spaces, appropriate fire
protection measures need to be ascertained to contain and control any potential fire risk
that may ensue from the foam itself. This is an essential part of the derricking his novel
technology, as part of the approval process by class and administration. Figure 4 shows a
possible site for foam application in available void spaces on the lower decks of a passenger
ship. With AREST P1 acting directly on the instantaneous initial stability and on the stability
reserve, this system is appropriate to reduce risk of transient capsize in critical damage
cases. On the other hand, this system is not designed to arrest flooding progression along
the ship internal layout. Therefore, an alternative/complementary solution is necessary to
limit progressive flooding.

Permanent foam installation

2707270020070 2827 27770002 00 207720722855

] DI LDK

? ﬁO‘L‘#J?S_LK_L 2 P = ~ ‘:‘_ { (b)

i Fixed foam installations

Existing ship structure

] 728

L1 ro"E’“

"3|-2
66

Permanent foam installation

(a) (c)

Figure 4. AREST P1 system; (a) permanent foam installation sites (blue) in a double hull. (b) Existing
ship structures in the installation site. (¢) Void spaces filled with foam.
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3.2. Deployable Watertight Barriers: AREST A2

During the flooding process of a complex environment, the internal geometry of a
ship and the progressive flooding paths can be divided in major progressive floodwater
paths. Minor paths represent small corridors and spaces connected within each other in a
specific zone, thus pathways that allow local flooding of the ship. Main paths are mainly
large corridors connecting two contiguous zones of the ship, thus arteries that may rapidly
spread floodwater along the ship (see Figure 5a). In order to most effectively deal with
progressive flooding in ships, it is best to focus on blocking the major arteries.

=

Figure 5. AREST A2 system; (a) main (red) and minor (blue) flooding path on a cruise ship deck zone.
(b) Vertically deployable shutters. (c) Horizontally deployable shutters.

To this end, deployable barriers are a suitable solution that may contain flooding
without modifying the internal layout of the vessel. AREST deployable barriers comprise
two lightweight shutters made of GRP or steel laths (normally A-class fire-rated), distanced
30 cm apart. Shutters can be deployed also in case of fire casualties or drills. In case
of flooding, the cavity between shutters is filled with expanding foam delivered from
a compressed foam canister. The shutters are mechanically operated to be deployed
vertically (see Figure 5b) or horizontally (see Figure 5c) to suit local structural details and
arrangements. The barrier can also span distances up to 30 m, with intermediate supports
and can be deployed within minutes to curtail and control previously identified critical
floodwater pathways.

In this respect, from the results of time domain flooding simulations, an effective
damage control plan could be set up and suitably executed with the aid, for example, of
a suitable decision support system. This allows isolating the damage area following any
foreseeable critical flooding event for which progressive flooding is responsible for loss.
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Such an approach implies the execution of evacuation analyses for selected critical cases to
identify that deployable barriers do not interfere with the evacuation process. This offers a
distinct advantage over existing damage control plans, which rely entirely on fixed design
measures, having limited flexibility and effectiveness with probable critical loss scenarios.

3.3. Foam Characteristics

The above-described passive and active solutions for marginal risk reduction imply
the adoption of a material with specific characteristics. The adoption of foams in ship
industry is usually focused on fire doors [37,38] or noise reduction [39]. Here the focus of
the AREST system is primary on flooding; thus, additional characteristics for the foam are
required. As development of the AREST systems were subjected to the process of novel
technology qualification, as indicated earlier, a HAZID process was conducted, resulting in
specific requests for the foam characteristics concerning permeability, adhesion, cohesion,
compression, degradation over the ship life-cycle and, most importantly, protection against
fire hazards from external sources and the foam itself.

3.3.1. Permeability

In order to determine the permeability of foam utilised within the previously described
risk control options, it was deemed necessary to conduct a water absorption test on the
proposed foam technology. By doing so, the mass of water absorbed by the foam can be
quantified as a function of time and varying external water pressure. From these results, a
determination can be made regarding an appropriate foam permeability value, with due
consideration given to the anticipated exposure time of the foam to water and the pressures
under which this might occur. To this end, two water absorption tests were conducted, the
first under atmospheric pressure conditions and the second with incremental overpressure.

The first water absorption test was conducted at atmospheric pressure, with a foam
specimen of 100 x 200 x 300 mm anchored fully immersed in water for a period of 28 days.
The specimen was removed from the water and weighed at several intermediate stages
to compare the wetted mass with its dry weight, thus determining the water absorbed
as a function of the time exposure. Table 1 reports the results of the test at atmospheric
pressure, highlighting that the foam water absorption ranges from 2% in weight after one
day up to 2.7% after 28 days of exposure. From the observed data, it is evident that the rate
of water absorption decreases with time, reaching an asymptotic value around about 3%
conditioned on 28 days of exposure at atmospheric pressure.

Table 1. Foam water absorption as a function of time at atmospheric pressure.

Exposure Time (Days) Water Absorption (%)
1 21
2 21
3 22
14 25
28 27

Having to deal with flooding of internal spaces of a ship, it is also necessary to check
the behaviour of permeability with pressure values greater than atmospheric by means
of an additional water absorption test, varying the level of overpressure on a fixed time
interval. For this test, a cubic foam specimen of 100 x 100 x 100 mm was used. Foam
sample specimens were fully immersed in water within a pressure vessel, see Figure 6.
Compressed air was then injected into the vessel in a controlled manner, generating water
overpressures acting on the foam of 0.5, 1, and 1.5 bars, with watertight integrity typically
rated up to 1.5 bar (15 m water head). The test was carried out for a time interval of 3 h,
being an appropriate time scale compliant with Safe Return to Port regulations. Table 2
reports the results, where an increase in foam permeability can be observed at water
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pressures ranging up to 0.5 bar, moving from 1% to 2% permeability. Interestingly, at
pressures beyond this point, it was found that the foam permeability was insensitive to
increasing pressure, remaining at a constant value of approximately 2%.

Air Gap Over Pressure

Pressure Vessel

Immersed Foam Block

(b) ()

Figure 6. Overpressure water absorption test. (a) Test settings, (b) foam specimen, (c) pressure vessel.

Table 2. Foam water absorption as a function of overpressure during 3 h of exposure.

Overpressure (Bar) Water Absorption (%)
0.0 1.0
0.5 2.0
1.0 2.0
1.5 2.0

With respect to the above-mentioned results outlined within the foregoing, it is impor-
tant to consider the effects of scale and their impact on the permeability value calculated.
The sample sizes used within the experiments are of the order of 0.001 m? in comparison
to the static foam installations, which are of the order of 200-300 m? in size. This is im-
portant, as the manner in which the foam absorbs water is such that smaller sample sizes
will demonstrate higher permeability than large ones. Consequently, the experiments are
inherently conservative due to the scale at which they are conducted. This means that
the wetted volume of foam relative to the specimen size will decrease with increasing
foam volume.

This effect is further described in Figure 7, where an example of the general rela-
tionship between the sample size and the value of permeability determined is illustrated.
Furthermore, the experiments conducted have assumed the entirety of the foam surface
area to be in contact with water, thus increasing water uptake. However, in practice, it is
more than likely that only a portion of the foam surface will be in contact with water and,
thus, the water absorption in reality will be much less. For such reasons, it can be assumed
that a permeability of the foam of 5% can be used for calculation purposes, allowing for a
3% safety margin on the experimental value.
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Figure 7. Effect of specimen size on permeability determination.

3.3.2. Adhesion and Cohesion

From the HAZID process the following adhesion and cohesion requirements were
identified for the AREST risk control options:

e  AREST P1: installations must remain in place during their service life and following
a flooding incident, where they must withstand buoyant forces. Foam must possess
sufficient cohesion to ensure the installation does not break apart when acted upon by
buoyant forces.

e  AREST A2: foam must have sufficient adhesion in order to create a watertight seal
within the shutter arrangement. No critical cohesion requirements were identified.

Given the above, we determined the adhesive and cohesive properties of the foam
by conducting a “pull-off” test. This works by measuring the force required in order
to separate the foam from a given bonded surface (adhesion) or alternatively the force
necessary to separate the foam body itself (cohesion).

Adhesion is a property that varies depending on the nature of the bonding surface
and increases when moving from smoother to coarser surfaces. However, in this case steel
was considered appropriate given that the targeted spaces for such installations (voids)
have predominantly steel surfaces. The pull-off test, also referred to as a stud-pull test,
works by firstly applying a layer of foam to a steel plate and allowing it to cure. Following
this process, an adhesive connection is made between a metal stud and the foam surface,
using an epoxy resin of a stronger bond than that expected by foam adhesion. An incision
is then made in the foam around the perimeter of the stud, such that foam adhesion to
the plate is the only force resisting separation. An apparatus is then used in order to pull
the stud /foam assembly from the steel plate and the force required to do so is recorded,
thus providing a measure of foam adhesion. Figure 8 reports the pull test diagram and the
different phases of the test.
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Figure 8. Pull off test; (a) test diagram. (b) Stud fixed to foam/plate assembly (left); foam separated
from steel plate (right).

The foam cohesive properties were also measured in a similar way (same process,
without the steel plate). From the test result, the foam has an adhesion to steel of 0.13 MPa
and a cohesion at the foam surface of 0.19 MPa. As a result, and given the contact area of
the foam installation to the surrounding ship structure, it is highly unlikely that the foam
body would break free from its bonds even when fully immersed.

3.3.3. Compressibility

The last critical system property that will be elaborate upon within this section relates
to the behaviour of the foam under compression. This is a property of varying significance
across each risk control option but, in general, the foam requires sufficient compressive
strength with which to resist expected water pressures whilst at the same time being
sufficiently elastic in order to absorb vibrations and sustain hydro-elastic effects.

In determining the foam compressive strength characteristics, two experiments were
conducted on a foam specimen of 100 x 100 x 50 mm in size. In each case, the foam
samples were placed within a compression-testing machine where they underwent 10%
and 50% deformation, respectively. Figure 9 shows the tests for both deformations.

Figure 9. Compression-cycle press/hold/release; (a) 10% deformation, (b) 50% deformation.
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Figure 10 shows the results of this process, where the foam stress—strain curve is
presented. Here, the foam displays linear elasticity under compressive pressure up to
about 0.22 MPa (22 m water head), in which the foam cell walls compress and bend. Past
this point, the foam cell walls begin to buckle, fracture, and yield, resulting in permanent
deformation (plastic behaviour). This represents significant compressive strength and far
exceeds expected water pressure heads, which are of the order of 10 m. Furthermore, though
the degree of deformation that takes place within the elastic region is slight, <5%, this is
more than enough to absorb any vibrations and hydro-elastic loads that may be expected.
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Figure 10. Foam stress—strain curve under compression.

3.3.4. Fire Performance

As polyurethane foam is an organic material, it is subject to thermal decomposition
when exposed directly to fire or elevated temperatures. For this reason, a range of fire
tests were conducted on the foam material to assess its fire performance and identify any
potential risk sources. The results of this process were then used to establish suitable RCOs,
such that any risk from the foam installation in relation to fire is suitably protected against.

As mentioned in previous sections, the areas targeted for foam application are enclosed
void spaces, which are a category of space that pose negligible risk as a source of fire.
Furthermore, introduction of foam material to the void works to displace oxygen from
within the space, thus further reducing the likelihood of fire originating from any foam-
protected void space. Consequently, foam installations do not pose any risk as a fire source
or space of origin, but instead, the risk stems from the possibility of fire erupting in adjacent
spaces. In such an event, it is possible that sufficient heat could be transferred into the
foamed void, such as to give rise to foam decomposition, which could in turn result in
gas overpressure within the void space. For this reason, the fire tests conducted on the
foam material focused on establishing under what conditions foam thermal decomposition
occurred, with specific attention given to the following parameters:

Temperature;

Exposure time;

Magnitude of decomposition;
Gas overpressure potential.

Two primary experiments were conducted in order to gain a greater understanding of
the foam thermal decomposition behaviour. Within the first, differential thermal analysis
(DTA) was conducted to determine the decomposition characteristics of the foam material
and under which conditions this occurred. Here, loss in foam mass by virtue of thermal
decomposition was measured with respect to temperature and exposure time using a
thermogravimetric analyser and a sample of the foam material.

The results of this analysis are summarised within Table 3 below, where it can be
observed that the foam sample is relatively stable up to temperatures within the range
180-200 °C, beyond which more extensive decomposition occurs. Below this temperature
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range, only minor decomposition of 4% in foam mass was observed over three hours.
Furthermore, limited sensitivity in the magnitude of decomposition with respect to time
can be observed at temperatures below 200 °C, with an additional decrease in foam mass
of only 3% recorded between 1 and 3 h of exposure time at 180 °C. It should also be noted
that the results of this analysis are inherently conservative as all sides of the foam material
were exposed to the temperature increments specified. However, in actuality, the degree of
the foam body exposed to increased temperatures by virtue of fire would likely be localised
in nature, thus leading to lower decomposition.

Table 3. Foam decomposition, temperature, and exposure time relationship.

Residual Foam Weight after Time (% Original Weight)

Temp. (°C)

Oh 1h 2h 3h
140 100% 100% 100% 99%
160 100% 97% 96% 96%
180 100% 95% 93% 91%
200 100% 95% 89% 82%
220 100% 79% 67% 63%
240 100% 66% 64% 63%

Perhaps what is most significant about these findings is the indication that if the
foamed void were equipped with suitable fire insulation, it could be ensured that decom-
position temperatures were not realised. To investigate this, A-class fire insulation material
from a well-known supplier was assessed in order to identify the specification that would
be required to avoid foam decomposition. With the knowledge that the proposed foam
technology undergoes thermal decomposition at temperatures above 160 °C, this can be
considered the limiting temperature of the unexposed surface of the insulated bulkhead in
determining the fire insulation requirements. Considering a maximum exposed surface
temperature of 945 °C, as per IMO conditions for fire insulation testing, the results of
this investigation are provided in Figure 11. Here, the temperature following 60 min at
the unexposed foam/rockwool interface is plotted relative to insulation thickness. The
findings indicate that a minimum insulation thickness of 60 mm is sufficient to avoid foam
decomposition, making this a highly effective RCO.
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Figure 11. Insulation thickness relative to unexposed bulkhead surface temperature.

Despite the above indicating that fire insulation could be effectively utilised as an
RCO to protect against foam decomposition, a secondary and highly novel experiment
was also conducted, looking into foam decomposition and gas overpressure relative to
temperature and time. The impetus for such an investigation was driven by a policy of
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due diligence and rather conservative conditions were addressed in its undertaking. The
experiment was conducted using a steel container of dimensions 500 x 150 x 150 mm,
which was filled with foam material and equipped with pressure sensors located on either
end of the apparatus. In addition, six thermocouples spaced equidistantly along the length
of the box were installed to monitor the temperature throughout the experiment and at
various depths within the foam body. See Figures 12 and 13 for details on the apparatus.

i =

)

e\

Figure 13. Apparatus as-built.

A contact heating plate was then applied to one end of the box and used to apply a
constant temperature load of 300 °C for a period of 180 min. No insulation was applied at
the foam/heating plate interface, thus making the test highly conservative as the foam was
exposed to temperatures approximately double those expected with insulation in place.
The results of the experiment are provided in Figures 14 and 15, shown below.
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Figure 15. Development of gas pressure.

The results reveal that foam decomposition occurs only within the immediately af-
fected area of the foam body, where temperatures exceed 160 °C. Otherwise, the spread of
heat deeper into the foam body was found to be slow and minimal due to the insulating
properties of the foam. In fact, at a distance of just 50 mm from the interface (TC_1), a
temperature of only 165 °C was measured after 60 min and with a local gas pressure of
1.26 bar (0.126 MPa). This indicates that, even in the absence of fire insulation, the degree
and rate of foam decomposition is minimal, and the resultant gas overpressure poses no
risk to the void structural integrity.

4. Application on a Reference Passenger Ship

This section provides an overview of the methodology adopted and supporting calcu-
lations in the assessment of the effectiveness of the proposed AREST P1 and A2 systems as
a means of passive and active damage stability protection through internal reconfiguration.
The application of the AREST system was studied on the reference cruise ship C1, with the
main particulars reported in Table 4 and the hull geometry shown in Figure 16.
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Table 4. General particulars for cruise ship C1.

Quantity Value Unit

Length overall 317.2 m
Length between perpendiculars 293.7 m
Subdivision length 316.2 m
Breadth moulded 36.8 m
Draught, subdivision 8.6 m
Draught, design 7.3 m

No. passengers 3148 persons

No. crew 1252 persons

Figure 16. Hull geometry for cruise ship C1 used for stability calculations.

The following process was developed to identify the location of passive and active
countermeasures to increase the ship’s safety, using both static and dynamic calculations.
The procedure can be summarised in the following steps:

1.  Static damage stability assessment for the ship as it is according to SOLAS [7] and
determination of GM margins for the ship as it is.

Reconfiguration of the internal layout with AREST P1 permanent foam installation.
Determination of GM margins for the reconfigured ship.

Dynamic assessment of the ship with AREST P1 configuration.

Identification of critical openings to place AREST A2 barriers and evaluation of new
GM margins with both AREST P1 and AREST A2 solutions.

The present study addresses the specific case of collision damages only; however, the
process can be applied for other damage types as side or bottom groundings.

G LN

4.1. Static Damage Stability Assessment for the Original Ship

The vessel was first subjected to damage stability assessment (using the process
described in Section 2 for collisions) under her present GM limit curve conditions, which
were proven to be optimal with the vessel, achieving an attained index of 0.830 with a
required index of 0.829, as shown in Table 5.

Table 5. Attained index calculations for cruise ship C1 with original layout.

Condition T (m) GM (m) Ay Wi AWy
Light service 8.00 2.57 0.846 0.2 0.1692
Partial subdivision 8.36 2.49 0.829 0.4 0.3315
Deepest subdivision 8.60 2.64 0.822 04 0.3289
Attained Index 0.830

Required Index 0.829

The vessel static risk profile is shown in Figure 17. This demonstrates vulnerability
around the fore and aft shoulders, which is typical of cruise vessels. This risk can be
attributed to a combination of both lack of reserve buoyancy and residual GM, in addition
to having an insufficient range to the immersion of unprotected openings.
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Figure 17. Static risk profile for cruise ship C1 with original layout.

The stability booklet for vessel C1 has in total eight relevant loading conditions.
Observation of the vessel GM limit curve highlights that GM margins in some 40% of
cases lie below 10 cm. By predicting an annual increase in vessel lightweight KG by 2 cm
(in line with previous growth trends), additional GM margins of approximately 35 cm
for all loading cases are required in order to remain compliant in 20-years’ time. This
was estimated using a constant lightweight value but having altered the vertical centre of
gravity by 40 cm for each statutory loading condition. Table 6 summarises the GM margins
evaluated for the original cruise ship layout.

Table 6. Loading conditions and GM margins for cruise ship C1 with the original layout.

D Condition T(m) GM@m) CMReq GMMargin  AGMyy,
(m) (m) (m)
LC1  100% Cons. Max. Draught 8.601 2.83 2.65 0.18 0.337
LC2 75% Bunkers and stores 8.370 2.64 2.50 0.14 0.339
LC3 50% Bunkers and stores 8.259 2.56 2.51 0.05 0.360
LC4 25% Bunkers and stores 8.195 2.56 2.53 0.03 0.358
LC5 Arrival condition 8.160 2.55 2.54 0.01 0.355
LC6 Ballast departure condition  8.565 2.94 2.62 0.32 0.337
LC7 Ballast arrival condition 8.123 2.66 2.55 0.11 0.356
LC8 Docking condition 8.304 2.68 2.51 0.17 0.347

4.2. Internal Layout Reconfiguration with AREST P1 System

The following provides a summary of all proposed permanent foam installation
locations as shown in Figure 18, determined according to the static risk profile of Figure 17.
In addition, a breakdown of all foam volumes and installation weights is provided within
Table 7. The locations of the foam installations were focused within areas found to possess
the highest flooding risks. The foam was also located predominantly around decks 1 and
2, which lie within the region of the damaged waterline and above, thus providing both
buoyancy and stability at equilibrium and as the vessel is heeled from this position.
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Figure 18. AREST P1 permanent foam installations for cruise ship C1.

Table 7. AREST P1 foam installation volumes and weights.

ID Foam Volume (m?) Additional Weight (ton)
F1 651 8.131
F2 112 1.400
E3 383 4.788
F4 237 2.963
F5 67 0.839
Fé6 93 1.163
F7 59 0.738
TOTAL 1601.5 20.019

4.3. Static Assessment and GM Margins for the Reconfigured Vessel (AREST P1)

Following remodelling of the vessel internal geometry with permanent foam modifi-
cations, the vessel damage stability performance was reassessed in order to ascertain the
new GM limiting values. This process is alternative to evaluate a new A index according to
the old limiting GM values and results in the determination of new margins for the vessel
loading conditions. Table 8 reports the updated results of static stability assessment. In such
a case, there is no need for a re-evaluation of the static risk profile. In fact, being the strategy
oriented to find the new limiting GM, the resulting s-factors are the minimum ones granting
to achieve the compliance with the required index criteria. Thus a new static risk profile
will highlight vulnerability in the same areas of the vessel in the original configuration.

Table 8. Attained index calculations for cruise ship C1 with AREST P1 reconfiguration.

Condition T (m) GM (m) Ay Wi AWy
Light service 8.00 2.40 0.840 0.2 0.1680
Partial subdivision 8.36 2.28 0.822 0.4 0.3286
Deepest subdivision 8.60 2.49 0.831 0.4 0.3323
Attained Index 0.829

Required Index 0.829

With the proposed modifications, GM margins increased between 16 and 21 cm, with
the resultant margins now ranging between 20 and 48 cm (see Table 9). Considering
the projected growth in vessel lightweight KG of 2 cm/year, 50% of statutory loading
conditions can now survive this growth without jeopardising compliance. Therefore, the
aforementioned design vulnerability could turn into a very effective passive flooding
protection system with permanent foam installation in high-risk void spaces.
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Table 9. Loading conditions and GM margins for cruise ship C1 with AREST P1 reconfiguration.

Existing AREST P1
ID GM (m) GM Req. (m) GM Margin (m) GM Regq. (m) GM Margin (m)
LC1 2.83 2.65 0.18 2.49 034
LC2 2.64 2.50 0.14 2.29 0.35
LC3 2.56 2.51 0.05 2.31 0.25
LC4 2.56 2.53 0.03 2.34 0.23
LC5 2.55 2.54 0.01 2.35 0.20
LCe6 2.94 2.62 0.32 2.46 0.48
LC7 266 2.55 0.11 2.36 0.30
LC8 2.68 2.51 0.17 2.30 0.38

4.4. Dynamic Assessment of the Ship with AREST P1 Configuration

Static assessment techniques cannot capture a number of key characteristics of the
flooding process. This includes, but is not limited to, the identification and distinction
of the aforementioned loss modalities (transient or progressive flooding capsize), the
impact of wave induced effects and the ability to measure time to capsize. Time domain
simulations allow vessel survivability to be viewed from different, more physics-based
and more detailed perspectives, enabling to identify aspects ignored within a conventional
static assessment. Therefore, it is useful to dynamically assess damage stability of the
initial and reconfigured ship to check whether the static improvements also maintain when
considering waves.

On the basis of the aforementioned considerations, the vessel was assessed at a single
loading condition corresponding to the deepest subdivision draft and associated limiting
GM. The simulations were performed in irregular waves (JONSWAP spectrum) with a
fixed significant wave height of Hs = 4 m, representing the upper limit of the SOLAS wave
distribution (stress testing of the vessel). In total, 1500 collision damage simulations were
conducted with an exposure time of 30 min, with 10 repetitions per case.

The results produced for the vessel in the original configuration have highlighted
22 capsize cases (3 progressive flooding cases/19 transient capsize cases), which translates
to a survivability index of 0.987, applying Equation (8). The results of simulations with
AREST P1 demonstrated a reduction in capsize cases from 22 to 15; all the cases are
transient capsizes. Figure 19 shows the location of the residual loss scenarios for the two
configurations; the differences in the time to capsize for the same damage cases are reported
in Figure 20. Based on the updated results, the vessel survivability index for 30 min of
exposure time increased from 0.987 to 0.992.
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Figure 19. Residual loss scenarios. (a) Original layout, (b) AREST P1 reconfiguration.
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Figure 20. Time to capsize comparison on residual loss scenarios with and without AREST P1.

The results were scrutinised further in order to identify vulnerable design features
within the vessel design and, more specifically, the sources of this vulnerability to transient
cases. Through doing so, inadequate cross-flooding /equalization within machinery and
accommodation spaces was identified as a primary causal factor. The means of transverse
communication within these spaces are predominantly manhole-sized openings and narrow
corridors. An overview of the primary sources of cross-flooding restriction is provided in
Figure 21, where they are marked in blue.

Figure 21. Cross-flooding restriction sources. (a) Deck 1, (b) tank top deck.

4.5. AREST A2 System Implementation

The AREST A2 system is a protection aimed at limiting progressive flooding. However,
the provided example highlights that the AREST P1 system is sufficient to avoid progressive
flooding occurrences within the simulated collision cases. Nonetheless, this system can
also be used to protect critical openings and provide further increased GM margins.

This assessment was conducted with a specific focus on critical openings, which are
proposed to be protected by the AREST A2 system. As GM margins are determined on the
basis of statutory requirements, this assessment was conducted using hydrostatic damage
stability calculations. Unfortunately, this form of damage stability assessment cannot
model the effects of progressive flooding in the physical sense and instead the potential for
progressive flooding is captured through the modelling of unprotected openings. These
have the effect of truncating the damaged GZ curve, which in turn reduces the Range and
GZax values that may be used in the determination of the s-factor. As such, the modelling
of such an opening accounts for the risk of progressive flooding, albeit in an indirect sense.
Given this, the approach adopted was to calculate the degree in which the influence of each
unprotected opening affects the potential A-Index contribution belonging to each damage
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case and verifying this with the simulation results. By doing so, openings can be ranked
in order of criticality measured by lost index. This, in turn, can be used to inform which
opening deployable barriers would best protect from a risk reduction perspective.

A set of 15 openings was found to be critical. Having targeted the openings, the vessel
damage stability performance was re-evaluated, with these openings assumed watertight
and the existing passive foam solution in place. The results show that in protecting just the
four openings specified, the vessel GM margins can be increased by an additional 10 cm
across the entire draft range. This then yields a net benefit, in respect to both solutions,
of 30-56 cm, as summarised within Table 10. The same can be reported in form of the
percentage of GM, highlighting how the AREST systems increase the GM margins from 5
to 11% of GM compared to the original design.

Table 10. Loading conditions and GM margins for cruise ship C1 with AREST systems.

Existing AREST P1 AREST P1+A2

ID GM (m) GM Req. (m) GM Margin (m) GM Regq. (m) GM Margin (m) GM Regq. (m) GM Margin (m)

LC1 2.83 2.65 0.18 2.49 0.34 (+5.65% GM) 2.40 0.43 (+8.83% GM)
LC2 2.64 2.50 0.14 2.29 0.35 (+7.95% GM) 221 0.43 (+10.98% GM)
LC3 2.56 251 0.05 2.31 0.25 (+7.81% GM) 2.23 0.33 (+10.94% GM)
LC4 2.56 2.53 0.03 2.34 0.23 (+7.81%GM) 2.24 0.32 (+11.33% GM)
LC5 2.55 2.54 0.01 2.35 0.20 (+7.45% GM) 2.26 0.30 (+11.37% GM)
LC6 2.94 2.62 0.32 2.46 0.48 (+5.44% GM) 2.38 0.57 (+8.51% GM)
LC7 2.66 2.55 0.11 2.36 0.30 (+7.15% GM) 227 0.39 (+10.53% GM)
LC8 2.68 251 0.17 2.30 0.38 (+7.84% GM) 2.22 0.46 (+10.82% GM)

5. Conclusions

The present work provides an overview of the possible advantages in terms of safety
given by the installation of active and passive risk control options against flooding. Two
solutions based on the application of high expansion foam were described, being part of the
AREST system, a technology developed at the University of Strathclyde in collaboration
with worldwide industrial partners. The focus on both passive (AREST P1) and active
(AREST A2) countermeasures also concerns the mechanical properties of the foam, neces-
sary to grant adequate permeability, adhesion, and cohesion characteristics to be efficiently
employed onboard ships.

The application on a reference cruise ship highlights the potential benefits in terms of
increased stability margins provided by the system. These advantages can be evaluated
by means of conventional static calculations, easily implementable by naval architects,
providing results of clear interpretation by designers and cruise ship operators. However,
it was demonstrated that, by adopting more advanced and higher fidelity time domain
simulations in waves, more insight in the flooding process can be achieved, detecting
design weaknesses in the ship’s internal layout invisible to conventional calculations.

The proposed approach to investigate the application of the AREST risk control option
onboard passenger ships need to be further refined, studying a better synergy between
static and dynamic analyses, which, in the present work, remains fully dissociated. The
development of an integrated static-dynamic process will increase the advantages of using
a dynamic damaged ship simulation in the ship design. Furthermore, the applications of
deployable barriers, as in the case of the AREST A2 system, require a proper study of ship
evacuation, in such a way to prevent the interruption of principal escape routes crucial for
ship evacuation.

Nonetheless, the present work clearly indicates that the application of modern tech-
nologies employing foam materials, as the AREST system, is the right way to further
increase ship safety against flooding, without employing drastic changes in the internal
layout of the vessel, thus decreasing the earning capacity of the ship.
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