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Abstract

We provide rigorous asymptotic models for the free boundary Darcy and Forch-

heimer problem under the assumption of weak nonlinear interaction, in a regime

in which the steepness parameter of the interface is considered to be very small.

The models we derive capture the nonlinear interaction of the original free

boundary Darcy and Forchheimer problem up to quadratic terms. Further-

more, we provide models that consider both the two-dimensional and three-

dimensional cases, with and without bottom topography.

Keywords: Muskat problem, Darcy law, Forchheimer flow, moving interfaces,

free-boundary problems.

1. Introduction

Flow in porous media is important in many different applications ranging from

oil production to catalytic converters. The simplest equation modeling flow in

porous media is known as Darcy’s law and reads

µ

κ
u = −∇p− ρGe2, (1)

where u, p, ρ and µ are the velocity, pressure, density and dynamic viscosity

of the fluid, respectively. The constant κ describes a property of the porous
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media and its known as the permeability. Ge2 stands for the acceleration due

to gravity in the direction (0, 1)ᵀ. Darcy law is valid for slow and viscous flows,5

and it was first derived experimentally by Henry Darcy in 1856 and then de-

rived theoretically from the Navier-Stokes equations via homogenization (cf.

[36]). Darcy law is widely used in applications. In particular, the free bound-

ary Darcy flow, also known as the Muskat problem (cf. [27, 37, 28]), appears

as a model of geothermal reservoirs [6], aquifers or oil wells [29]. Remarkably,10

the Muskat problem is mathematically analogous to the Hele-Shaw cell problem

(see [22, 33, 10, 9]) that studies the movement of a fluid trapped between two

parallel vertical plates, which are separated by a very narrow distance. Despite

the Muskat problem has a long history in the physical literature, the rigorous

mathematical analysis of the equation (1) with free boundary is relatively recent15

(we refer the interested reader to [12, 11, 19, 8, 13] and the references therein).

When the Reynolds number of the flow becomes larger, inertial terms should

be added into the conservation of momentum equation. For these high velocity

flows, Forchheimer [18] noted that

βρ|u|u+
µ

κ
u = −∇p− ρGe2, (2)

is a more accurate conservation of momentum equation. Here β is known as the

Forchheimer coefficient and the term βρ|u|u amounts to inertial effects of the

flow.20

The scope of the present paper is to provide simplified models which approxi-

mate the evolution of the free boundary Darcy and free boundary Forchheimer

problems under an assumption of weak nonlinearity (see equations (38) and

(52) below). We choose to consider hence a configuration in which the interface25

is not very steep. More explicitly, if we denote by H and L respectively the

typical amplitude and wavelength of the interface and we consider the steepness

parameter σ = H/L, we suppose that 0 < σ � 1. Such configuration is rather

common in geophysical fluid dynamics and it has been widely used in order to

derive asymptotic expansions for the water wave problem (we refer the reader to30

the classical work of Stokes [35] and to the more recent works [1, 2, 3, 30, 31]).

In such a setting we derive asymptotic models for the free boundary Darcy and

the free boundary Forchhimer problems which capture the nonlinear interac-

tions of (1) and (2) up to quadratic terms.

35
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In the first part of the paper, as a starting point, we consider the free boundary

Darcy problem when the depth is infinite and the dimension of the interface is

one. We observe that these assumptions on the dimension of the interface and

the depth are not really necessary and will be removed below (see section 6).

Starting with the Darcy equation in a moving domain (we refer the reader to

the Cauchy problem (9) for a full presentation of the equations considered), we

nondimensionalize the equation of motion redefining appropriate dimensionless

unknowns and variables. Such nondimensionalization allows us to make appear

explicitly the steepness parameter σ = H/L in the equations of motion. We

can next reformulate the problem, which is defined at the moment on a time-

dependent domain Ω (t), on a fixed domain Ω; this is done through a diffeomorfic

change of variables. Similar ideas were used previously in the study of nonlinear

PDEs with moving domain. For instance, we refer to the works of Matsuno

[24, 26, 25], Granero & Shkoller [21], Cheng, Granero, Shkoller & Wilkening [7],

Coutand & Shkoller [15, 14] and Lannes [23] for the water waves and Rayleigh-

Taylor instability problem. At this point we suppose that the ensemble of the

unknowns of the problem, which we denote at the moment as U for the sake of

brevity, can be expressed a series of powers of σ, i.e.

U (x, t) =
∑

k>0

U (k) (x, t) σk. (3)

At this point we can simply drop every O
(
σ3
)

term in the sequence of systems

derived and what remains is the first- and second-order approximation of the

Muskat problem in terms of the steepness parameter σ. Next a technical result

is proved (see Lemma 3.1) which is inspired by the very recent work [7, Lemma

1] which allows us to express the approximation of the evolution of the Muskat40

problem as an evolution problem on the boundary. With this method we derive

equation (39). The first advantages of the technique introduced above is that it

only requires elementary mathematical tools. Another advantage is that it can

be easily adapted to also handle the case of Forchheimer flow.

45

Then we use the previous procedure to obtain a new asymptotic model for the

Forchheimer equation (2) with moving boundary when the depth is assumed

to be infinite and the dimension of the interface is one. In this way we derive

equation (60).

50

Finally, in Sections 6 and 7 we extend our results for the free boundary Darcy

3



problem and provide an asymptotic model for the free-surface Darcy flow in

two and three space dimensions (i.e. when the dimension of the interface is one

or two) and with or without flat bottom. Although the previous method can

be squezzed to handle bounded three dimensional fluid domains, we will use

a different technique. We take advantage of the irrotationality of the flow in

order to write the equations in terms of the velocity potential. Such potential

solves an elliptic equation (see (64)), hence it can be completely determined by

its trace on the interface, which is a function of the elevation h; in such a way

we manage to write the evolution of h as

∂th = N [h] ,

where N is a nonlinear function of h. Next we expand N in terms of the

steepness parameter and we obtain the asymptotic models (70) and (72). This

is a very versatile method that requires a solid knowledge of elliptic theory and

other mathematical tools such as the Dirichlet–Neumann operator (cf. [23, 4, 5,

Chapter 3]).55

The rigorous mathematical analysis of the derived asymptotic equation (39) for

the Muskat problem is performed in the forthcoming paper [20].

1.1. Plan of the paper

For the sake of clarity we first consider a fluid moving according to Darcy law

when the depth is infinite and the flow is two-dimensional (one-dimensional60

interface). Then, in section 2, we introduce the Eulerian form of the problem

along with its non-dimensionalization and its Arbitrary Lagrangian-Eulerian

formulation. Later on, in section 3, we obtain the first of our asymptotic models

for free boundary flow in porous media. Once we have introduced the main ideas

of the paper in the simpler setting of Darcy law, we turn our attention to the65

more nonlinear Forchheimer flow in section 4. In this section we introduce the

Eulerian formulation, the non-dimensionalization and the Arbitrary Lagrangian-

Eulerian set of equations for Forchheimer flow. In Section 5 we derive our

asymptotic model for the Forchheimer flow. Finally, in Sections 6 and 7 we

provide a multidimensional asymptotic model for the Darcy flow with finite70

depth and a (possibly) flat bottom when the flow is three dimensional (two

dimensional interface).
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1.2. Notations and conventions

1.2.1. Matrix indexing

Let A be a matrix, and b be a column vector. Then, we write Aij for the

component of A, located on row i and column j; consequently, using the Einstein

summation convention, we write

(Ab)k = Aki b
i and (AT b)k = Aikb

i.

1.2.2. Derivatives75

We write

∂jf =
∂f

∂xj
, ∂tf =

∂f

∂t

for the space derivative in the j−th direction and for a time derivative, respec-

tively. When two spatial variables are considered, we write

∇⊥ = (−∂2, ∂1) .

1.2.3. Fourier series and singular integral operators

Let f(x1) denote a L2 function on S1 (identified with the interval [−π, π] with

periodic boundary conditions. Then it has the following Fourier representation

f(x1) =
∞∑

k=−∞
f̂(k) eikx1 for all x1 ∈ S1, where

f̂(k) =
1

2π

∫

S1
f(x1) e−ikx1dx1.

Using the Fourier representation, we define the Hilbert transform H and the

Calderon operator Λ, respectively, as

Ĥf(k) = −isgn(k)f̂(k) , Λ̂f(k) = |k|f̂(k) . (4)

2. Two dimensional Darcy flow

2.1. The fluid domain

The time-dependent two-dimensional infinitely deep fluid domain and free bound-

ary are defined as

Ω(t) =
{

(x1, x2) ∈ R2
∣∣∣−Lπ < x1 < Lπ,−∞ < x2 < h(x1, t) , t ∈ [0, T ]

}
, (5)

Γ(t) =
{

(x1, h(x1, t)) ∈ R2
∣∣∣−Lπ < x1 < Lπ , t ∈ [0, T ]

}
(6)
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h(x, t)
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p, u, ρ, µ

Figure 1: The fluid-air interface h(x, t).

with periodic boundary conditions in the horizontal variable x1. We note that L

is related to the typical wavelength of the wave. We define the reference domain

Ω and reference interface Γ as

Ω = S1 × (−∞, 0) , Γ = S1 × {0} . (7)

We let N = e2 denote the outward unit normal to Ω at Γ, and we let τ(x1, t)

and n(x1, t) denote, respectively, the unit tangent and (outward) normal vectors

to Γ(t)

τ =
(1, ∂1h)√
1 + (∂1h)2

, n =
(−∂1h, 1)√
1 + (∂1h)2

.

The induced metric for Γ(t) is given by

g = 1 + (∂1h)2 . (8)

2.2. The equations in the Eulerian formulation

Slow, viscous flow in two-dimensional porous media can be modelled with the

following set of equations (known also as the one-phase Muskat problem):

µ

κ
u+∇p = −ρGe2, in Ω(t)× [0, T ] , (9a)

∇ · u = 0, in Ω(t)× [0, T ] , (9b)

p = −γKΓ(t) on Γ(t)× [0, T ], (9c)

∂th = u · (−∂xh, 1) on Γ(t)× [0, T ], (9d)

where u (units of length/time) and p (units of mass/time2) are the velocity

and pressure of the fluid. The constants µ (units of mass/(length · time)) and ρ

(units of mass/length2) denote the dynamic viscosity and density of the fluid.

The constants κ (units of length) and G (units of length/time2) denote the
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permeability of the porous media and the gravity, respectively. Moreover,γ is

the surface tension coefficient (units of mass · length/time2) at the interface,

while KΓ(t) denotes the curvature of the interface

KΓ(t) =
∂2

1h(
1 + (∂1h)

2
)3/2

.

The system (9) is supplemented with an initial condition for h:

h(0, x) = h0(x) (10)

Instead of using the formulation in terms of the Eulerian velocity and pressure,

(9) can be formulated in terms of the stream function and the tangential velocity

(see [7] for the analog situation for water waves). Indeed, define the tangential

velocity (or vorticity strength)

ω = −u · τ on Γ(t) ,

and

∇⊥ψ = u in Ω(t) .

Then, we observe that

ω = −∇⊥ψ · τ = ∇ψ · n on Γ(t),

∂th = ∇⊥ψ · n = ∇ψ · τ = ∂1

(
ψ|Γ(t)

)
on Γ(t),

We also compute that,

µ

κ

√
gω = −µ

κ
u · √gτ

= ∇p
∣∣∣∣
Γ(t)

· √gτ + ρG∂1h

= ∂1

(
p|Γ(t)

)
+ ρG∂1h

= ∂1

(
−γ ∂2

1h

(1 + (∂1h)2)
3/2

)
+ ρG∂1h

Then, we have that (9) is equivalent to

∆ψ = 0, in Ω(t)× [0, T ] , (11a)

∇ψ · n =
κ

µ
√
g

(
∂1

(
−γ ∂2

1h

(1 + (∂1h)2)
3/2

)
+ ρG∂1h

)
, on Γ(t)× [0, T ] , (11b)

∂th = ∂1ψ
(
x1, h (x1, t) , t

)
on Γ(t)× [0, T ], (11c)
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2.3. Nondimensional Eulerian formulation80

We denote by H and L the typical amplitude and wavelength of the interfaces

in a porous medium. We change to dimensionless variables (denoted with ·̃)

x = L x̃, t =
µL

ρκG
t̃, (12)

and unknowns

h(x1, t) = H h̃(x̃1, t̃), ψ(x1, x2, t) =
LκρG

µ

H

L
ψ̃(x̃1, x̃2, t̃). (13)

Then,

∂jx1
h(x1, t) =

H

Lj
∂jx̃1

h̃(x̃1, t̃), j ∈ N,

∇xψ(x1, x2, t) =
κρG

µ

H

L
∇x̃ψ̃(x̃1, x̃2, t̃)

∆x̃ψ̃ = 0, in Ω̃(t)× [0, T ] ,

∇x̃1
ψ̃ ·
(
−H
L
∂x̃1

h̃, 1

)
= ∂x̃1

(
− γ
ρGL2

∂2
x̃1
h̃

(
1+(H

L ∂x̃1 h̃)
2
)3/2

)
+ ∂x̃1

h̃, on Γ̃(t)× [0, T ] ,

∂t̃h̃ = ∂x̃1
ψ̃

(
x̃1,

H

L
h̃(x̃1, t̃), t̃

)
on Γ̃(t)× [0, T ],

with the non-dimensionalized fluid domain

Ω̃(t) =

{
(x̃1, x̃2)

∣∣∣∣ −π < x̃1 < π ,−∞ < x̃2 <
H

L
h̃(x̃1, t) , t ∈ [0, T ]

}
,

Γ̃(t) =

{(
x̃1,

H

L
h̃(x̃1, t)

)
, t ∈ [0, T ]

}

Based on our nondimensionalization of the equations, we find two dimensionless

quantities of interest:

σ =
H

L
, ν =

γ

L2ρG
. (14)

The Bond number ν is a parameter that measures the ratio between the gravi-

tational forces L2ρG and the capillarity forces γ and the steepness parameter σ

measures the ratio between the amplitude and the wavelength of the wave.
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Dropping the tildes for the sake of clarity, we have the following dimensionless

form of the Muskat problem

∆ψ = 0, in Ω(t)× [0, T ] , (15a)

∇ψ · (−σ∂1h, 1) = ∂1


−ν ∂2

1h(
1 + (σ∂1h)

2
)3/2


+ ∂1h, on Γ(t)× [0, T ] , (15b)

∂th = ∂1ψ (x1, σh(x1, t), t) on Γ(t)× [0, T ], (15c)

2.4. The equations in the Arbitrary Lagrangian-Eulerian formulation

We define the time-dependent diffeomorphism

Ψ : Ω → Ω (t)

(x1, x2) 7→ Ψ(x1, x2, t) = (x1, x2 + σh(x1, t)).
(16)

This diffeomorphism maps the reference domain Ω onto the moving domain

Ω(t). We have hence

∇Ψ =
(

1 0
σ∂1h(x1, t) 1

)
, A = (∇Ψ)−1 =

(
1 0

−σ∂1h(x1, t) 1

)
. (17)

With such back-to-label map defined we can now define the following new un-

knowns;

$ = ω ◦Ψ, ϕ = ψ ◦Ψ, (18)

which are now defined on the fixed domain Ω× R+.85

Let us now remark that given any f ∈ C1 (Ω (t)) the function f ◦ Ψ ∈ C1 (Ω),

and moreover

∂j [f (Ψ)] = ∂kf (Ψ) ∂jΨk =⇒ ∇ [f ◦Ψ] = ∇Ψᵀ ∇f ◦Ψ,

from which we deduce that

∇f ◦Ψ = Aᵀ ∇ [f ◦Ψ] =⇒ ∂if ◦Ψ = Aki ∂k [f ◦Ψ] . (19)

Similarly, we observe that

div v ◦Ψ = Akj ∂k(v · ej)

9



It is now easy to deduce the equation satisfied by ϕ = ψ ◦Ψ in Ω× R, in fact

0 = ∆ψ (Ψ)

= div ∇ψ (Ψ)

= Aij∂i
(
Akj ∂kϕ

)

= ∂i
(
AijA

k
j ∂kϕ

)
.

(20)

In these new variables, and using
√
gni = A2

i = AjiN
j , (11) reads

∂i
(
AijA

k
j ∂kϕ

)
= 0, in Ω× [0, T ] , (21a)

Akj ∂kϕ AijN
i = ∂1


−ν ∂2

1h(
1 + (σ∂1h)

2
)3/2


+ ∂1h, on Γ× [0, T ] , (21b)

∂th = ∂1ϕ on Γ× [0, T ]. (21c)

3. The asymptotic model fortwo dimensional Darcy flow

A straightforward computation shows, with the help of (17);

∂i
(
AijA

k
j ∂kϕ

)
= ∆ϕ− σ

(
∂2

1h ∂2ϕ+ 2∂1h ∂12ϕ
)

+ σ2(∂1h)2∂2
2ϕ.

Similarly, using the relation (19), we can compute

∇ψ (Ψ) · √gn = Akj ∂kϕ AijN
i,

=
(
−σ∂1h∂1ϕ+ (1 + σ2(∂1h)2)∂2ϕ

)

Expanding (21), we find that

∆ϕ = σ
(
∂2

1h ∂2ϕ+ 2∂1h ∂12ϕ
)
− σ2(∂1h)2∂2

2ϕ in Ω× [0, T ] ,

∂2ϕ = σ∂1h∂1ϕ− σ2(∂1h)2∂2ϕ

− ∂1


ν ∂2

1h(
1 + (σ∂1h)

2
)3/2


+ ∂1h, on Γ× [0, T ] ,

∂th = ∂1ϕ on Γ× [0, T ],

Further computing the surface tension term we obtain that

∂1

(
ν

∂2
1h

(1 + (σ∂1h)2)
3/2

)
= ν

∂3
1h

(1 + (σ∂1h)2)
3/2
− 3

νσ2∂2
1h

(1 + (σ∂1h)2)
5/2

∂1h∂
2
1h.

10



As a consequence, we have to study the following system:

∆ϕ = σ
(
∂2

1h ∂2ϕ+ 2∂1h ∂12ϕ
)
− σ2(∂1h)2∂2

2ϕ in Ω× [0, T ] , (22a)

∂2ϕ = σ∂1h∂1ϕ− σ2(∂1h)2∂2ϕ−
ν ∂3

1h(
1 + (σ∂1h)

2
)3/2

+ 3
νσ2(∂2

1h)2∂1h(
1 + (σ∂1h)

2
)5/2

+ ∂1h, on Γ× [0, T ] , (22b)

∂th = ∂1ϕ on Γ× [0, T ], (22c)

We introduce the following ansatz

h(x1, t) =

∞∑

n=0

σnh(n)(x1, t), ϕ(x1, x2, t) =

∞∑

n=0

σnϕ(n)(x1, x2, t). (23)

Moreover since

1

(1 + x2)
3/2

= 1 +O
(
x2
)
,

1

(1 + x2)
5/2

= 1 +O
(
x2
)
,

we can rewrite (22b) as

∂2ϕ = ∂1

(
h− ν∂2

1h
)

+ σ ∂1h∂1ϕ+O
(
σ2
)
.

We observe that (22) can be written as

∆ϕ = σ
(
∂2

1h ∂2ϕ+ 2∂1h ∂12ϕ
)

+O
(
σ2
)

in Ω× [0, T ] ,

∂2ϕ = ∂1

(
h− ν∂2

1h
)

+ σ ∂1h∂1ϕ+O
(
σ2
)
, on Γ× [0, T ] ,

∂th = ∂1ϕ on Γ× [0, T ],

where O(σ2) denotes terms of order σ2 and higher. We are interested in finding

an asymptotic model of the free boundary Darcy flow with an error O(σ2). As

a consequence, we can neglect terms of O(σ2) in (22). Thus, up to O(σ2), (22)

is equivalent to

∆ϕ = σ
(
∂2

1h ∂2ϕ+ 2∂1h ∂12ϕ
)

in Ω× [0, T ] , (24a)

∂2ϕ = ∂1

(
h− ν∂2

1h
)

+ σ ∂1h∂1ϕ, on Γ× [0, T ] , (24b)

∂th = ∂1ϕ on Γ× [0, T ], (24c)

In order a function satisfying the ansatz (23) could be a solution of (24), we have

that each term in the asymptotic expansion has to be defined as the solution of

11



∆ϕ(n) =
n−1∑

j=0

∂2
1h

(j)∂2ϕ
(n−1−j) + 2

n−1∑

j=0

∂1h
(j)∂12ϕ

(n−1−j) on Ω× [0, T ], (25a)

∂2ϕ
(n) = ∂1

(
h(n) − ν∂2

1h
(n)
)

+
n−1∑

j=0

∂1h
(j) ∂1ϕ

(n−1−j) on Γ× [0, T ], (25b)

∂th
(n) = ∂1ϕ

(n) on Γ× [0, T ]. (25c)

The initial data can be assigned as

h(0)(x1, 0) = h(x1, 0), (26a)

h(k)(x1, 0) = 0 ∀ k ≥ 1. (26b)

In particular, the terms h(j), ϕ(j) for j = 0 and 1 solve

∆ϕ(0) = 0, on Ω× [0, T ] (27a)

∂2ϕ
(0) = ∂1

(
h(0) − ν∂2

1h
(0)
)

on Γ× [0, T ], (27b)

∂th
(0) = ∂1ϕ

(0) on Γ× [0, T ], (27c)

and

∆ϕ(1) = ∂2
1h

(0)∂2ϕ
(0) + 2∂1h

(0)∂12ϕ
(0) on Ω× [0, T ] (28a)

∂2ϕ
(1) = ∂1

(
h(1) − ν∂2

1h
(1)
)

+∂1h
(0)∂1ϕ

(0) on Γ× [0, T ], (28b)

∂th
(1) = ∂1ϕ

(1) on Γ× [0, T ]. (28c)

We observe that the solvability conditions are satisfied for both elliptic problems.

Then, the explicit solution to (27) can be computed using Lemma AppendixA.1

ϕ(0)(x1, x2, t) =
∑

k∈Z

1

|k|
(

(−νi3k3 + ik)ĥ(0)(k, t)
)
eix1k+|k|x2 . (29)

Then

∂1ϕ
(0)(x1, 0, t) =

∑

k∈Z

ik

|k|
(

(−νi3k3 + ik)ĥ(0)(k, t)
)
eix1k

= −H
(
−ν∂3

1h
(0) + ∂1h

(0)
)

= −νΛ3h(0) − Λh(0).

12



Then, we have that h(0) solves the following linear problem

∂th
(0) = −νΛ3h(0) − Λh(0). (30)

We split ϕ(1) = ϕ
(1)
a + ϕ

(1)
b , where

∆ϕ(1)
a = 0 on Ω× [0, T ] (31a)

∂2ϕ
(1)
a = ∂1

(
h(1) − ν∂2

1h
(1)
)

on Γ× [0, T ], (31b)

and

∆ϕ
(1)
b = ∂2

1h
(0)∂2ϕ

(0) + 2∂1h
(0)∂12ϕ

(0) on Ω× [0, T ] (32a)

∂2ϕ
(1)
b = ∂1h

(0)∂1ϕ
(0) on Γ× [0, T ]. (32b)

We recall the following Lemma,

Lemma 3.1 ([7]). Let h : S1 → R and ϕ : Ω→ R denote 2π-periodic functions

of x1, such that

h(x1) =
∑

k∈Z,k 6=0

ĥke
ikx1 , ϕ(x1, x2) =

∑

k,m∈Z
P̂k,m(x2)eikx1+|m|x2 ,

where x2 7→ P̂k,m(x2) is a polynomial function. If X is the unique solution to

∆X = ∂2

[
2(∂1h)(∂1ϕ)+(∂2

1h)ϕ
]

in Ω , and ∂2X = (∂1h)(∂1ϕ) on S1 , (33)

then

(∂1X)(x1, 0) = −H
[
(∂1h)(∂1ϕ)

]

−
∑

k,`,m∈Z
isgn(k)|m|(`2 − k2)ĥk−`

∞∑

j=0

(−1)jP̂
(j)
`,m(0)

(|m|+ |k|)j+1
eikx1 , (34)

where P̂
(j)
`,m(0) denotes ∂j2P̂`,m(x2) evaluated at x2 = 0. Moreover, if ϕ is har-

monic in Ω so that ϕ(x1, x2) =
∑
k∈Z

ϕ̂ke
ikx1+|k|x2 , then

∂1X = −Λ[h∂1ϕ] + ∂1(hΛϕ) = ∂1

(
[h,H]∂1ϕ

)
on S1 , (35)

where [h,H]f = hHf −H(hf) denotes the commutator.90

Then, we have that

∂1ϕ
(1)
b = ∂1

(
[h(0),H]∂1ϕ

(0)
)

= ∂1

(
[h(0),H]

(
−νΛ3h(0) − Λh(0)

))
.
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Thus, we have that

∂th
(1) = −νΛ3h(1) − Λh(1) + ∂1

(
[h(0),H]

(
−νΛ3h(0) − Λh(0)

))
. (36)

We define

f = h(0) + σh(1). (37)

Then, we have that

∂tf = −νΛ3f − Λf + σ∂1

(
[f,H]

(
−νΛ3f − Λf

))
+O

(
σ2
)
. (38)

Consequently, in the renormalized variables f = σf ,

∂tf = −νΛ3f − Λf + ∂1

(
[f,H]

(
−νΛ3f − Λf

))
. (39)

is the desired asymptotic model for the Darcy flow.

Remark 3.2. Some equivalent ways of writing (39) are

∂tf = −νΛ3f − Λf + ν
(
Λ
(
fΛ3f

)
− ∂1

(
f∂3

1f
))

+ ∂1 (f∂1f) + Λ (fΛf) (40)

= −νΛ3f − Λf + ν
(
[Λ, f ]Λ3f − ∂1f∂

3
1f
)

+ (∂1f)
2

+ [Λ, f ]Λf (41)

4. Forchheimer flow

4.1. The equations in the Eulerian formulation

In this section we consider the fluid domain as described in 2.1. When the

Reynolds number of the two-dimensional flow in porous media becomes larger,

a correction term has to be added to (9). Then, one obtaints the so-called

Forchheimer equation:

βρ|u|u+
µ

κ
u+∇p = −ρGe2, in Ω(t)× [0, T ] , (42a)

∇ · u = 0, in Ω(t)× [0, T ] , (42b)

p = −γKΓ(t) on Γ(t)× [0, T ], (42c)

∂th = u · (−∂xh, 1) on Γ(t)× [0, T ], (42d)

where the additional Forchheimer term

βρ|u|u

accounts for high velocity inertial effects, see [32]. The scalar β denotes the

Forchheimer coefficient (units of length−1). Again, the system (42) is supple-95

mented with the initial condition (10) for h.

14



As before, we use a formulation based on the stream function, ψ, and the tan-

gential velocity, ω. In particular,

µ

κ

√
gω = −µ

κ
u · √gτ

= ∇p
∣∣∣∣
Γ(t)

· √gτ + ρG∂1h− βρ|u|u ·
√
gτ

= ∂1

(
p|Γ(t)

)
+ ρG∂1h

= ∂1

(
−γ ∂2

1h

(1 + (∂1h)2)
3/2

)
+ ρG∂1h− βρ|u|u ·

√
gτ.

Then, using

∇⊥ ·
(
|∇⊥ψ|∇⊥ψ

)
= |∇ψ|∆ψ

+
1

|∇ψ|
[
2∂1ψ ∂2ψ ∂12ψ + (∂1ψ)

2
∂2

1ψ + (∂2ψ)
2
∂2

2ψ
]

we deduce that (42) is equivalent to

µ

κ
∆ψ = − βρ |∇ψ|∆ψ

− βρ
(

1

|∇ψ|
[
2∂1ψ ∂2ψ ∂12ψ + (∂1ψ)

2
∂2

1ψ + (∂2ψ)
2
∂2

2ψ
])

,

in Ω(t)× [0, T ] , (43a)

∇ψ · n =
κ

µ
√
g

(
∂1

(
−γ ∂2

1h

(1 + (∂1h)2)
3/2

)
+ ρG∂1h

)

−κβρ
µ
|∇ψ|∇⊥ψ · τ ,

on Γ(t)× [0, T ] , (43b)

∂th = ∂1ψ(x1, h(x1, t), t)

on Γ(t)× [0, T ], (43c)

4.2. Nondimensional Eulerian formulation

We use the same nondimensional scaling introduced in Section 2.3 which we re-

call here for the sake of clarity; we denote by H and L the typical amplitude and

wavelength of the interfaces in a porous medium and consider the dimensionless

variables (denoted with ·̃) defined in (12) and (13). Let us denote as

Ξ
(
∇ψ,∇2ψ

)

=

(
|∇ψ|∆ψ +

1

|∇ψ|
[
2∂1ψ ∂2ψ ∂12ψ + (∂1ψ)

2
∂2

1ψ + (∂2ψ)
2
∂2

2ψ
])

. (44)
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With such notation we can compactly re-write (43a) as

µ

κ
∆ψ = −βρ Ξ

(
∇ψ,∇2ψ

)
,

from where, using the dimensionless variables and unknowns above defined, we

deduce that

µ

κ
∆xψ (x, t) =

µ

κ

1

L

κρG

µ

H

L
∆x̃ψ̃

(
x̃, t̃
)
,

Ξ
(
∇xψ (x, t) ,∇2

xψ (x, t)
)

=
1

L

(
κρG

µ

)2(
H

L

)2

Ξ
(
∇x̃ψ̃

(
x̃, t̃
)
,∇2

x̃ψ̃
(
x̃, t̃
))
.

As a consequence, we obtain the nondimensional form of (43a)

∆x̃ψ̃
(
x̃, t̃
)

=

(
βκ2ρ2G

µ2

)(
H

L

)
Ξ
(
∇x̃ψ̃

(
x̃, t̃
)
,∇2

x̃ψ̃
(
x̃, t̃
))
.

Performing similar computations as in Section 2.3, we can finally write the

nondimensional form of the Forchheimer model

∆x̃ψ̃ =

(
βκ2ρ2G

µ2

)(
H

L

)
Ξ
(
∇x̃ψ̃,∇2

x̃ψ̃
)

in Ω̃(t)× [0, T ] ,

∇x̃1
ψ̃ ·
(
−H
L
∂x̃1

h̃, 1

)
= ∂x̃1

(
− γ
ρGL2

∂2
x̃1
h̃

(
1+(H

L ∂x̃1
h̃)

2
)3/2

)
+ ∂x̃1

h̃

− H

L

κ2βρ2G

µ2
|∇ψ̃|∇⊥ψ̃ ·

(
1,
H

L
∂x̃1

h̃

)
, on Γ̃(t)× [0, T ] ,

∂t̃h̃ = ∂x̃1 ψ̃

(
x̃1,

H

L
h̃(x̃1, t̃), t̃

)
on Γ̃(t)× [0, T ].

Defining the dimensionless constants

σ =
H

L
, ν =

γ

L2ρG
, λ =

βκ2ρ2G

µ2
,

and dropping the tilde notation we deduce the system

∆ψ = λσ Ξ
(
∇ψ,∇2ψ

)
, in Ω(t)× [0, T ] , (45a)

∇ψ · (−σ∂1h, 1) = ∂1


−ν ∂2

1h(
1 + (σ∂1h)

2
)3/2


+ ∂1h

− λσ|∇ψ|∇⊥ψ · (1, σ∂x1
h) , on Γ(t)× [0, T ] , (45b)

∂th = ∂1ψ (x1, σh(x1, t), t) on Γ(t)× [0, T ]. (45c)
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5. The asymptotic model for Forchheimer flow

In this section we want to reduce the System (45) to a fixed boundary and

provide an asymptotic development in terms of thesteepness parameter σ anal-100

ogously to what was done in Section 2.4. Since the change of variables and the

computation we do in this section are rather similar to the ones performed in

detail in Section 2.4 we will often avoid to provide a computation and refer to

Section 2.4 instead.

Let us consider the C1 diffeomorphism Ψ as in (16) which maps a moving domain105

Ω (t) onto the reference domain Ω and let us define A = (∇Ψ)
−1

as in (17).

Analogously as what was defined in (18) we define $ and ϕ as the back-to-label

map of the vorticity and stream function respectively. We remark that, in this

setting, the only new term appearing in the system (45) is Ξ
(
∇ψ,∇2ψ

)
.

Using (19) we deduce that

(∇ψ) ◦Ψ =

(
Ak1∂kϕ

Ak2∂kϕ

)
=

(
∂1ϕ

−σ∂1h∂1ϕ+ ∂2ϕ

)
,

from which we can easily obtain the following identity

|(∇ψ) ◦Ψ| =
√
|∇ϕ|2 − 2σ∂1h ∂1ϕ∂2ϕ+ σ2 (∂1h)

2
(∂1ϕ)

2
.

Since
√

1 + x = 1 + x
2 +O

(
x2
)

we immediately deduce that

|(∇ψ) ◦Ψ| = |∇ϕ|
(

1− σ∂1h
∂1ϕ∂2ϕ

|∇ϕ|2
+O

(
σ2
)
)
.

In the same way as above, using the fact that 1√
1+x

= 1− x
2 +O

(
x2
)

we deduce

1

|(∇ψ) ◦Ψ| =
1

|∇ϕ|

(
1 + σ∂1h

∂1ϕ∂2ϕ

|∇ϕ|2

)
+O

(
σ2
)

Using the above observations, we can compute the leading asymptotic term of110

σλ Ξ
(
∇ψ,∇2ψ

)
:

σλ Ξ
(
∇ψ,∇2ψ

)
= σλ

(
|∇ϕ|∆ϕ+

2∂1ϕ ∂2ϕ ∂12ϕ+(∂1ϕ)2∂2
1ϕ+(∂2ϕ)2∂2

2ϕ
|∇ϕ|

)
+O

(
σ2
)
,

= σλ Ξ
(
∇ϕ,∇2ϕ

)
+O

(
σ2
)
.

Supposing now that ϕ and h admit the asymptotic expansions provided in (23),

we can deduce the equations satisfied by the leading order terms ϕ(0), ϕ(1), h(0)

and h(1) ;
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∆ϕ(0) = 0 on Ω× [0, T ], (46a)

∂2ϕ
(0) = ∂1

(
h(0) − ν∂2

1h
(0)
)

on Γ× [0, T ], (46b)

∂th
(0) = ∂1ϕ

(0) on Γ× [0, T ], (46c)

and

∆ϕ(1) = ∂2
1h

(0)∂2ϕ
(0) + 2∂1h

(0)∂12ϕ
(0)+λ |∇ϕ|(0)

∆ϕ(0) (47a)

+
λ∣∣∇ϕ(0)
∣∣
[
2∂1ϕ

(0) ∂2ϕ
(0) ∂2

12ϕ
(0)

+ ∂2
1ϕ

(0)
(
∂1ϕ

(0)
)2

+ ∂2
2ϕ

(0)
(
∂2ϕ

(0)
)2
]

on Ω× [0, T ]

∂2ϕ
(1) = ∂1

(
h(1) − ν∂2

1h
(1)
)

+∂1h
(0)∂1ϕ

(0) + λ|∇ϕ(0)|∂2ϕ
(0) on Γ× [0, T ]

(47b)

∂th
(1) = ∂1ϕ

(1) on Γ× [0, T ]. (47c)

Then, we can compute ϕ(0) in terms of h(0), which is the solution of the equation

∂th
(0) = −νΛ3h(0) − Λh(0).

As in the Darcy flow case we can decompose ϕ(1) = ϕ
(1)
a + ϕ

(1)
b + ϕ

(1)
c which

solve
∆ϕ(1)

a = 0 on Ω× [0, T ]

∂2ϕ
(1)
a = ∂1

(
h(1) − ν∂2

1h
(1)
)

on Γ× [0, T ],

∆ϕ
(1)
b = ∂2

1h
(0)∂2ϕ

(0) + 2∂1h
(0)∂12ϕ

(0) on Ω× [0, T ]

∂2ϕ
(1)
b = ∂1h

(0)∂1ϕ
(0) on Γ× [0, T ],

∆ϕ(1)
c =

λ∣∣∇ϕ(0)
∣∣
[
2∂1ϕ

(0) ∂2ϕ
(0) ∂2

12ϕ
(0) + ∂2

1ϕ
(0)
(
∂1ϕ

(0)
)2

+ ∂2
2ϕ

(0)
(
∂2ϕ

(0)
)2
]

= λ Ξ
(
∇ϕ(0),∇2ϕ(0)

)
on Ω× [0, T ]

∂2ϕ
(1)
c = λ|∇ϕ(0)|∂2ϕ

(0) on Γ× [0, T ].

We note that

I =

∫

Ω

1

|∇ϕ(0)|
[
2∂1ϕ

(0) ∂2ϕ
(0) ∂2

12ϕ
(0) + ∂2

1ϕ
(0)
(
∂1ϕ

(0)
)2

+ ∂2
2ϕ

(0)
(
∂2ϕ

(0)
)2]

dx1dx2

=

∫

Ω

∇ ·
(
|∇ϕ(0)|∇ϕ(0)

)
dx1dx2

=

∫

Γ

|∇ϕ(0)|∂2ϕ
(0)dx1,
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where we have used that ϕ(0) is harmonic and the divergence theorem. As a115

consequence, the compatibility conditions are satisfied and the previous elliptic

problems have unique solutions.

Define f as in (37). We introduce the following auxiliary function

ϕaux
1 = ϕ(0) + σϕ(1)

a .

We observe that ϕaux solves the problem

∆ϕaux
1 = 0 on Ω× [0, T ], (48a)

∂2ϕ
aux
1 = ∂1

(
f − ν∂2

1f
)

on Γ× [0, T ]. (48b)

We also define

∆ϕaux
2

=
λ

|∇ϕaux
1 |

[
2∂1ϕ

aux
1 ∂2ϕ

aux
1 ∂2

12ϕ
aux
1 + ∂2

1ϕ
aux
1 (∂1ϕ

aux
1 )

2
+ ∂2

2ϕ
aux
1 (∂2ϕ

aux
1 )

2

]

= λ Ξ
(
∇ϕaux

1 ,∇2ϕaux
1

)
on Ω× [0, T ],

(49a)

∂2ϕ
aux
2 = λ|∇ϕaux

1 |∂2ϕ
aux
1 on Γ× [0, T ]. (49b)

With this definition, and using

ϕaux
1 − ϕ(0) = O(σ), =⇒ Ξ

(
∇ϕaux

1 ,∇2ϕaux
1

)
− Ξ

(
∇ϕ(0),∇2ϕ(0)

)
= O (σ)

we find that

∆
(
ϕaux

2 − ϕ(1)
c

)
= O(σ) on Ω× [0, T ], (50a)

∂2

(
ϕaux

2 − ϕ(1)
c

)
= O(σ) on Γ× [0, T ], (50b)

and, as a consequence,

σϕ(1)
c = σϕaux

2 +O(σ2).

Thus, we find the following equation

∂tf = ∂1ϕ
(0)(x1, 0) + σ∂1ϕ

(1)
a (x1, 0) + σ∂1ϕ

(1)
b (x1, 0) + σ∂1ϕ

(1)
c (x1, 0)

= −νΛ3f − Λf + σ∂1

(
[h(0),H]

(
−νΛ3h(0) − Λh(0)

))
+ σ∂1ϕ

aux
2 (x1, 0) +O(σ2)

= −νΛ3f − Λf + σ∂1

(
[f,H]

(
−νΛ3f − Λf

))
+ σ∂1ϕ

aux
2 (x1, 0) +O(σ2).

(51)
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Finally, if we truncate at order O(σ2) we find the asymptotic model

∂tf = −νΛ3f − Λf + σ∂1

(
[f,H]

(
−νΛ3f − Λf

))
+ σ∂1ϕ

aux
2 (x1, 0), (52)

where ϕaux
2 solves (49). In the renormalized variables f = σf , we find the

following system as a model of free boundary flow in the Forchheimer regime

∂tf = −νΛ3f − Λf + ∂1

(
[f,H]

(
−νΛ3f − Λf

))
+ ∂1Φ(x1, 0) (53a)

∆Φ =
λ

|∇Υ|

[
2∂1Υ ∂2Υ ∂2

12Υ + ∂2
1Υ (∂1Υ)

2
+ ∂2

2Υ (∂2Υ)
2

]
on Ω× [0, T ],

(53b)

∂2Φ = λ|∇Υ|∂2Υ on Γ× [0, T ] (53c)

∆Υ = 0 on Ω× [0, T ], (53d)

∂2Υ = ∂1

(
f − ν∂2

1f
)

on Γ× [0, T ]. (53e)

Our aim is now to express the equation (53a) in terms of f only, i.e. we want

to identify a nonlinear operator T such that

∂1Φ(x1, 0, t) = T [f ] (x1, 0, t) .

Using Lemma AppendixA.1 we can compute the explicit value of Υ, which is

Υ =
∑

k∈Z

1

|k|
(

(−νi3k3 + ik)f̂(k, t)
)
eix1k+|k|x2 . (54)

We have that

(
Υ̂ (k, x2, t)

)
k

=

(
1

|k|
(

(−νi3k3 + ik)f̂(k, t)
)
e|k|x2

)

k

∈ `2 (Z) , ∀ x2 6 0,

and moreover Υ is real analytic in S1×(−∞, 0), with increasing analyticity strip

in the x1–direction as x2 → −∞. Let us denote now respectively

bλ = λdiv (|∇Υ| ∇Υ) , gλ = λ |∇Υ| ∂2Υ
∣∣∣
x2=0

, (55)

and define

B̂λ (k, t) =
1

2

∫ 0

−∞
b̂λ (k, y2) e|k|y2dy2. (56)

Whence applying again Lemma AppendixA.1, we deduce

∂1Φ (x1, 0, t) =
1√
2π

∑

k

isgn (k)
{
ĝλ (k, 0, t) + 2B̂ (k, t)

}
eikx1 ,

= −H
(
gλ|x2=0 +Bλ

)
(x1, t) .

(57)
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Thanks to the explicit formulation of Υ provided in (54) we have that

∂1Υ = −H∂2Υ. (58)

Due to the relation (58) we can deduce the following identities;

g|x2=0 = λ |∇Υ| ∂2Υ
∣∣∣
x2=0

,

= λ

√
(H∂2Υ)

2
+ (∂2Υ)

2
∂2Υ

∣∣∣∣
x2=0

.

But by definition ∂2Υ is the harmonic extension of ∂1

(
f − ν∂2

1f
)
, whence

g|x2=0 = λ

√
(H∂2Υ)

2
+ (∂2Υ)

2
∂2Υ

∣∣∣∣
x2=0

,

= λ

√
(H∂1 (f − ν∂2

1f))
2

+ (∂1 (f − ν∂2
1f))

2
∂1

(
f − ν∂2

1f
)
.

(59)

Using (57)

∂1Φ (x1, 0, t)

= −λ H
(√

(H∂1 (f − ν∂2
1f))

2
+ (∂1 (f − ν∂2

1f))
2
∂1

(
f − ν∂2

1f
))
−HBλ,

which finally provides the complete evolution equation for f ;

∂tf = −νΛ3f − Λf + ∂1

(
[f,H]

(
−νΛ3f − Λf

))

−λ H
(√

(H∂1 (f − ν∂2
1f))

2
+ (∂1 (f − ν∂2

1f))
2
∂1

(
f − ν∂2

1f
))
−HBλ, (60)

where Bλ and Υ are respectively defined in (56) and (54).

6. Three dimensional Darcy flow with bottom topography

6.1. The fluid domain120

The time-dependent three-dimensional finitely deep fluid domain, free surface

and bottom boundary are defined as

Ω(t) =
{

(x1, x2, x3) ∈ R3
∣∣∣ −Lπ < x1, x2 < Lπ ,−d < x3 < h(x1, x2, t) , t ∈ [0, T ]

}
,

(61)

Γ(t) =
{

(x1, x2, h(x1, x2, t)) ∈ R2
∣∣∣ −Lπ < x1, x2 < Lπ , t ∈ [0, T ]

}
(62)

Γbot =
{

(x1, x2,−d) ∈ R2
∣∣∣−Lπ < x1, x2 < Lπ , t ∈ [0, T ]

}
(63)

with periodic boundary conditions in the horizontal variables x1, x2.

21



6.2. The equations in the Eulerian formulation

In this section we consider the free boundary Darcy problem in three dimensions.

We assume that the domain is bounded from below by a flat bottom situated

at x3 = −d. The free boundary Darcy problem in such configuration reads as

follows:

µ

κ
u+∇p = −ρGe3, in Ω(t)× [0, T ] ,

∇ · u = 0, in Ω(t)× [0, T ] ,

p = −γKΓ(t) on Γ(t)× [0, T ],

∂th = u · ñ on Γ(t)× [0, T ],

u3 = 0, on Γbot × [0, T ],

where ñ is the non-unitary outward pointing normal vector.

Indeed in such configuration KΓ(t) is the mean curvature of the surface. Since

in out setting Γ (t) is given as a graph, the mean curvature assumes the explicit

form (cf. [34])

KΓ(t) =

(
1 + (∂1h)

2
)
∂2

2h+
(

1 + (∂2h)
2
)
∂2

1h− 2∂1h ∂2h ∂
2
12h

(
1 + (∂1h)

2
+ (∂2h)

2
)3/2

We observe that u = ∇Φ where the potential function is given by

Φ =
κ

µ
(−p−Gρx3) .

With this notation, the equation for the free surface becomes

∂th =
√

1 + (∂1h)2 + (∂2h)2 ∂nΦ|x3=h .

Also, using the divergence free condition for the velocity field, we have that Φ

solves the elliptic problem





∆Φ = 0, in Ω (t) ,

Φ =
γκ

µ
KΓ(t) −

κρ G

µ
h on Γ (t) ,

∂3Φ = 0, on Γbot,

(64)

This elliptic equation is uniquely solvable if the zero mean function h is suf-

ficiently regular (cf. [23, Chapter 2]). We can hence completely determine Φ
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from its trace, i.e. from h and its derivatives. Thus, the previous equation for

the free boundary can equivalently be restated as

∂th = G
(
γκ

µ
KΓ(t) −

κρ G

µ
h

)
,

where G is the Dirichlet–Neumann (DN) operator (cf. [23, Chapter 3]), i.e. the

operator that solves the elliptic problem for Φ, compute its normal gradient and125

takes the trace of this normal gradient up to the boundary.

6.3. Nondimensional Eulerian formulation

We can now nondimensionalize our equations following the very same procedure

explained in Section 2.3. We define the new variables

(x1, x2) = L(x̃1, x̃2), x3 = dx̃3, t =
µL

ρκG
t̃, (65)

and unknowns

h(x1, x2, t) = H h̃(x̃1, x̃2, t̃), Φ(x1, x2, x3, t) =
HκρG

µ
Φ̃(x̃1, x̃2, x̃3, t̃). (66)

We define the following non-dimensional parameters

δ =
d2

L2
, ε =

H

d
.

These dimensionless quantities are known in the literature as the shallowness

and amplitude parameters. We observe that

σ = ε
√
δ.

The equations in nondimensional form read as follows

δ
(
∂2

1Φ + ∂2
2Φ
)

+ ∂2
3Φ = 0, in Ω (t)× [0, T ] ,

Φ = νKσΓ(t) − h, on Γ (t)× [0, T ] ,

∂th = G
(
νKσΓ(t) − h

)
, on Γ (t)× [0, T ] ,

∂3Φ = 0, on Γbot × [0, T ] .

where the Bond number was given in (14), the nondimensional fluid domain and

free surface are

Ω(t) =
{

(x̃1, x̃2, x̃3) ∈ R3
∣∣∣ π < x1, x2 < π ,−1 < x3 < εh(x1, x2, t) , t ∈ [0, T ]

}
,

(67)

Γ(t) =
{

(x̃1, x̃2, εh(x̃1, x̃2, t)) ∈ R2
∣∣∣ π < x1, x2 < π , t ∈ [0, T ]

}
(68)

Γbot =
{

(x̃1, x̃2,−1) ∈ R2
∣∣∣π < x̃1, x̃2 < π , t ∈ [0, T ]

}
(69)
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and the non-dimensional curvature is given by

KσΓ(t) =

(
1 + (σ∂1h)

2
)
∂2

2h+
(

1 + (σ∂2h)
2
)
∂2

1h− 2σ2∂1h ∂2h ∂
2
12h

(
1 + (σ∂1h)

2
+ (σ∂2h)

2
)3/2

,

7. The asymptotic model for three dimensional Darcy flow in pres-

ence of a bottom topography130

As we are interested in the weak nonlinearity limit (and not in the shallow water

limit), we fix now δ = 1 (so, σ and ε are comparable).

In the previous section we have obtained a closed formulation for the evolution of

h (albeit it is highly nontrivial and nonlinear) in terms of the Dirichlet-Neumann

operator. It is though possible to perform a development of the DN operator in

terms of the steepness parameter σ (cf. [16, 17] and [23, Section 3.6.2]) around

the rest state. Let us define the linear operator

Ĝ0φ (ξ) = |ξ| tanh |ξ| φ̂ (ξ) ,

then following [23] we know that

Gφ = G0φ− σ
(
G0 (hG0φ) +∇ · (h∇φ)

)
+O

(
σ2
)
,

and since

Kν,σh(t) = ν∆h+O
(
σ2
)
,

we can drop the O
(
σ2
)

contributions to deduce the following asymptotic model

∂th−νG0∆h+G0h = −νσ
(
G0 (hG0∆h) +∇ · (h∇∆h)

)
+σ
(
G0 (hG0h) +∇ · (h∇h)

)
.

(70)

So, in the renormalized variables f = σh, we find that

∂tf−νG0∆f+G0f = −ν
(
G0 (fG0∆f) +∇ · (f∇∆f)

)
+
(
G0 (fG0f) +∇ · (f∇f)

)
.

(71)

Remark 7.1. In the case in which there is no bottom the first-order approxi-

mation of the DN operator is

G0φ = Λφ.
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Hence, in the case where the depth is infinite and the flow is three dimensional,

we recover the multi-dimensional asymptotic model

∂tf − νΛ∆f + Λf = −ν
(
Λ (fΛ∆f) +∇ · (f∇∆f)

)
+
(
Λ (fΛf) +∇ · (f∇f)

)
.

(72)

This model is completely analogous to (39).

AppendixA. The explicit solution of an elliptic problem135

Lemma AppendixA.1. Let us consider the Poisson equation




∆u (x1, x2) = b (x1, x2) , (x1, x2) ∈ S1 × (−∞, 0) ,

∂2u (x1, 0) = g (x1) , x1 ∈ S1,

u (x1,−∞) = 0, x1 ∈ S1,

(A.1)

where we assume that the forcing b ∈ H4(Ω) and g ∈ H1(Ω) satisfy the compat-

ibility condition ∫

Ω

b(x1, x2)dx1dx2 =

∫

Γ

g(x1)dx1.

Then, the unique solution u of (A.1) is

u (x1, x2) = − 1√
2π

∑

k

{
1

|k|

[
1

2

∫ 0

−∞
b̂ (k, y2) e|k|y2dy2−ĝ (k)

]
e|k|x2

+
1

2 |k|

∫ 0

−∞
b̂ (k, y2) e|k|y2dy2 e

−|k|x2

+

∫ x2

0

b̂ (k, y2)

2 |k|
[
e|k|(y2−x2) − e|k|(x2−y2)

]
dy2,

}
eikx1 ,

(A.2)

where the operator ·̂ denotes the Fourier transform in the variable x1.

Proof. Let us apply the Fourier transform to the equation (A.1), this transforms

the PDE (A.1) in the following series of second-order inhomogeneous costant

coefficients ODE’s




− k2û (k, x2) + ∂2
2 û (k, x2) = b̂ (k, x2) , (k, x2) ∈ Z× (−∞, 0) ,

∂2û (k, 0) = ĝ (k) , k ∈ Z,

û (k,−∞) = 0, k ∈ Z.

(A.3)

The generic solution of (A.3) can be deduced using the variation of parameters

method, whence

û (k, x2) = C1 (k) e|k|x2+C2 (k) e−|k|x2−
∫ x2

0

b̂ (k, ξ2)

2 |k|
[
e|k|(y2−x2) − e|k|(x2−y2)

]
dy2.
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The boundary conditions determine the values of the Ci’s

C2 (k) = − 1

2 |k|

∫ 0

−∞
b̂ (k, y2) e|k|y2dy2, C1 (k) = C2 (k) +

ĝ (k)

|k| .

We emphasize that C2 (k) is well-defined for each k 6= 0. We hence obtain the

expression (A.2); in particular we can write u = u+ + u− where

u− (x1, x2) = − 1√
2π

∑

k

{
1

|k|

[
1

2

∫ 0

−∞
b̂ (k, y2) e|k|y2dy2−ĝ (k)

]
e|k|x2

−
∫ x2

0

b̂ (k, y2)

2 |k| e|k|(x2−y2)dy2,

}
eikx1 ,

u+ (x1, x2) = − 1√
2π

∑

k

{
1

2 |k|

∫ 0

−∞
b̂ (k, y2) e|k|y2dy2 e

−|k|x2

+

∫ x2

0

b̂ (k, y2)

2 |k| e|k|(y2−x2)dy2,

}
eikx1 .

Indeed |u−| <∞ since it is defined via the negative exponential weights e|k|x2 ,

while we can reformulate u+ as

u+ (x1, x2) = − 1√
2π

∑

k

{
1

2 |k|

∫ x2

−∞
b̂ (k, y2) e|k|y2dy2

}
eikx1−|k|x2 .

As y2 ≤ x2 ≤ 0 we have that y2 − x2 ≤ 0 and the definition of u+ involves

negative exponential weights. Similarly, when k = 0, the compatibility condition

for b and g ensures that û is well-defined concluding the proof.
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