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Abstract

We provide rigorous asymptotic models r t' . ..ee boundary Darcy and Forch-
heimer problem under the assumptic ~ of we *k nonlinear interaction, in a regime
in which the steepness parameter of th~ 1. ~rtace is considered to be very small.
The models we derive capture .. -~~n.mear interaction of the original free
boundary Darcy and Forchheimer pi..“lem up to quadratic terms. Further-
more, we provide models tF . ~onsider both the two-dimensional and three-

dimensional cases, with ar { withot 5 bottom topography.

Keywords: Muskat preolem, L. - cy law, Forchheimer flow, moving interfaces,

free-boundary probler s.

1. Introduction

Flow in porov ; me .a is important in many different applications ranging from
oil producti m to . ~talytic converters. The simplest equation modeling flow in

porous m' dia "5 known as Darcy’s law and reads
%u = —Vp— pGe, (1)

where  ». and p are the velocity, pressure, density and dynamic viscosity

¢ the f id, respectively. The constant x describes a property of the porous
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media and its known as the permeability. Gey stands for the acce rat’ m due
to gravity in the direction (0,1)T. Darcy law is valid for slow and “scou. Tows,
and it was first derived experimentally by Henry Darcy in 1877 and .. °n de-
rived theoretically from the Navier-Stokes equations via he.nog’ miz. ion (cf.
[36]). Darcy law is widely used in applications. In particular, v. ~ free bound-
ary Darcy flow, also known as the Muskat problem (cf. (27, 37 28]), appears
as a model of geothermal reservoirs [6], aquifers or oil wi'ls [29] Remarkably,
the Muskat problem is mathematically analogous to t'.e tele-Shaw cell problem
(see [22, 33, 10, 9]) that studies the movement of a "' tra )ped between two
parallel vertical plates, which are separated by a ve. - na...w distance. Despite
the Muskat problem has a long history in the nhysical ‘terature, the rigorous
mathematical analysis of the equation (1) wit! free . ~ .dary is relatively recent

(we refer the interested reader to [12, 11, 19, 8, 1o, ~nd the references therein).

When the Reynolds number of the flor “~comes larger, inertial terms should
be added into the conservation of momen 1 a equation. For these high velocity
flows, Forchheimer [18] noted that

u
Bplulu = Vp—pGes, (2)

is a more accurate conservation of momentum equation. Here /3 is known as the
Forchheimer coefficient anc the v.*m Sp|ulu amounts to inertial effects of the

flow.

The scope of the pres. ~t ,ape is to provide simplified models which approxi-
mate the evolution Lf the ti. boundary Darcy and free boundary Forchheimer
problems under ‘ a as. ‘mption of weak nonlinearity (see equations (38) and
(52) below). W' . nose to consider hence a configuration in which the interface
is not very s* ep. More explicitly, if we denote by H and L respectively the
typical amr .itude « 1 wavelength of the interface and we consider the steepness
paramete o = H/", we suppose that 0 < o < 1. Such configuration is rather
common in g. *»! ysical fluid dynamics and it has been widely used in order to
derivi asymp otic expansions for the water wave problem (we refer the reader to
the cl sical v ork of Stokes [35] and to the more recent works [1, 2, 3, 30, 31]).
I' such =~ setting we derive asymptotic models for the free boundary Darcy and
t e free oundary Forchhimer problems which capture the nonlinear interac-

tions <. (1) and (2) up to quadratic terms.
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In the first part of the paper, as a starting point, we consider the fr ~ be mdary
Darcy problem when the depth is infinite and the dimension of t. ~ inte. “ce is
one. We observe that these assumptions on the dimension of t' = ‘nter.. ~e and
the depth are not really necessary and will be removed belc & (s ¢ su cion 6).
Starting with the Darcy equation in a moving domain (we rete. *he reader to
the Cauchy problem (9) for a full presentation of the equ «&ions « nsidered), we
nondimensionalize the equation of motion redefining appi “oriate dimensionless
unknowns and variables. Such nondimensionalizatior alows us to make appear
explicitly the steepness parameter o = H/L in the o~ .atio s of motion. We
can next reformulate the problem, which is define.. ~t ti.. moment on a time-
dependent domain € (t), on a fixed domain €; this is donc through a diffeomorfic
change of variables. Similar ideas were used p ~viou. '~ ".1 the study of nonlinear
PDEs with moving domain. For instance, we re..” to the works of Matsuno
[24, 26, 25], Granero & Shkoller [21], Cheng, “‘ranero, Shkoller & Wilkening [7],
Coutand & Shkoller [15, 14] and Lanne 2! for vae water waves and Rayleigh-
Taylor instability problem. At this poinv w : suppose that the ensemble of the
unknowns of the problem, which we ¢ ote . the moment as U for the sake of

brevity, can be expressed a series of po\ers of o, i.e.

U, t) = P (1) oF. (3)

k>0

At this point we can simp., drop e ery O (03) term in the sequence of systems
derived and what reme as js the drst- and second-order approximation of the
Muskat problem in te. ms f the steepness parameter o. Next a technical result
is proved (see Lemr a 3.1) \." .ch is inspired by the very recent work [7, Lemma
1] which allows uc to « mress the approximation of the evolution of the Muskat
problem as an e _"tion problem on the boundary. With this method we derive
equation (39) The first advantages of the technique introduced above is that it
only requirr s elen.. ~tary mathematical tools. Another advantage is that it can

be easily .dap ed t» also handle the case of Forchheimer flow.

Then we use “he previous procedure to obtain a new asymptotic model for the
Forch. ~imer ' quation (2) with moving boundary when the depth is assumed
tr oe infimte and the dimension of the interface is one. In this way we derive

¢ wation 60).

Fi iany, in Sections 6 and 7 we extend our results for the free boundary Darcy
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problem and provide an asymptotic model for the free-surface D rcy iow in
two and three space dimensions (i.e. when the dimension of the i, ~rfacc ‘< one
or two) and with or without flat bottom. Although the previ- - mev. ~d can
be squezzed to handle bounded three dimensional fluid dor .ains we will use
a different technique. We take advantage of the irrotationality ~f the flow in
order to write the equations in terms of the velocity pot mtial. “uch potential
solves an elliptic equation (see (64)), hence it can be com, letely - etermined by
its trace on the interface, which is a function of the .evation h; in such a way

we manage to write the evolution of h as
Oth = N [h],

where N is a nonlinear function of h. Nex., ve eapand N in terms of the
steepness parameter and we obtain the as~=*~**~ Lodels (70) and (72). This
is a very versatile method that requires a soli. "nowledge of elliptic theory and
other mathematical tools such as the D. sciw. = Meumann operator (cf. [23, 4, 5,
Chapter 3]).

The rigorous mathematical analysis 0. ti. decived asymptotic equation (39) for

the Muskat problem is performe* *~ the “orthcoming paper [20].

1.1. Plan of the paper

For the sake of clarity we “.rst con ider a fluid moving according to Darcy law
when the depth is infinite a. 1 t} e flow is two-dimensional (one-dimensional
interface). Then, in se tior 2, we introduce the Eulerian form of the problem
along with its non-din.. sion.iization and its Arbitrary Lagrangian-Eulerian
formulation. Later 'n, in section 3, we obtain the first of our asymptotic models
for free boundary tlow in | “rous media. Once we have introduced the main ideas
of the paper ir the simpler setting of Darcy law, we turn our attention to the
more nonlinea. % chheimer flow in section 4. In this section we introduce the
Eulerian fc mulation, the non-dimensionalization and the Arbitrary Lagrangian-
Eulerian . ~t f ec iations for Forchheimer flow. In Section 5 we derive our
asymp*_..c mo! L for the Forchheimer flow. Finally, in Sections 6 and 7 we
provi e a mu tidimensional asymptotic model for the Darcy flow with finite
depth « 4 -~ (possibly) flat bottom when the flow is three dimensional (two

¢ anensic 1al interface).
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1.2. Notations and conventions

1.2.1. Matriz indezing
Let A be a matrix, and b be a column vector. Then, we - 1. A% wor the
component of A, located on row i and column j; consequently, sip | the finstein

summation convention, we write
(Ab)* = AFb' and (ATb)* = ALb'.

1.2.2. Derivatives
We write

0 7]
0f =g =5

for the space derivative in the j—th direction «. 1 fo1 a time derivative, respec-

1

tively. When two spatial variables are con~~-- . write

Vi=( 2 2.

1.2.3. Fourier series and singular 4 .. ~val ¢ ~erators
Let f(x1) denote a L? function on S' (‘den.ified with the interval [—m, 7] with

periodic boundary conditions. The > 1t nas the following Fourier representation

1) = S F(k) etk®1 for all 21 € S*, where
flx)= > f(k)

k=—o0

(k) - %/Sl f(zy) e”*ordy .

Using the Fourier rep. < ntat on, we define the Hilbert transform H and the

Calderon operator , respecu.vely, as

—

U f(k) = —isgn(k) f(k), Af(k) = |k|f (k). (4)

2. Two di nensic ~al Darcy flow

2.1. The ju .7« do’ wain

The t".ne-dey ~ndent two-dimensional infinitely deep fluid domain and free bound-

ary ai > define ; as
Q) = ((.Z'l,.’l,'g) € R? ’—L?T < < Lm,—00 < @9 < h(zq,t), t € [O,T]}, (5)

T, - {(ml,h(xl,t)) c R? ‘—Lw <z <Lm, te [O,T]} (6)




h(z,t)

_ Dy, 5
fluid

Figure 1: The fluid-air interface h( :,t).

with periodic boundary conditions in the horizontal va. able 1. We note that L
is related to the typical wavelength of the wave. Ve defir 2 the reference domain

) and reference interface I' as
Q=S x(~0,0), I =s'x{0}. (7)

We let N = ez denote the outward univ nor na to Q at I', and we let 7(x1,1t)
and n(z1,t) denote, respectively, the it ta ~gent and (outward) normal vectors
to T'(¢)

(1,81h) . (—81/1,1)

V1+ (01h)% 1+ (01h)2

The induced metric for T'(*) is give 1 by
g =1+ (01h)*. (8)

2.2. The equations n the 7 rian formulation

Slow, viscous flov in . "o-dimensional porous media can be modelled with the

following set of _., "ations (known also as the one-phase Muskat problem):

Z't + Vp = —pGes, in Q(t) x[0,7], (9a)
V-u=0, in Q(t) x[0,7], (9b)
p=—7Kr@) on I'(t) x [0, 77, (9¢)

Oh =u- (—05h,1) on I'(¢) x [0,T7, (9d)

v aere u (units of length/time) and p (units of mass/time?) are the velocity
¢ d press 1re of the fluid. The constants p (units of mass/(length-time)) and p
(uniw. ot mass/length?) denote the dynamic viscosity and density of the fluid.

T’ e constants k (units of length) and G (units of length/time?) denote the




permeability of the porous media and the gravity, respectively. M reor er,y is
the surface tension coefficient (units of mass - length/time?) at be in. ~face,

while Kr) denotes the curvature of the interface
9?h
’Cr(t) = 9 3/2 .
(1 + ((91 h) )

The system (9) is supplemented with an initial condition . » h:
B0, ) = ho(x) (10)

Instead of using the formulation in terms of the Eule.. n velocity and pressure,

(9) can be formulated in terms of the stream fun. “ion anc the tangential velocity
\

(see [7] for the analog situation for water wave.® Inuced, define the tangential

velocity (or vorticity strength)
w=—-u--m [(t),

and
Vi = u Gt).

Then, we observe that
w=—-"Y.7=V¢-non I'(t),
Oh=V*ry n=VN)-7=0 (Ylry) on T(t),
We also compute that.
lL — ./, .
; Jgw = Hu Nl
. \/§T + pG@lh

I(t)
=01 (plr)) + pGOLh

=0 —7612—h + pGO1h
\ A @) T

Then we ha -~ that (9) is equivalent to

- Vp

Ay 7, in Q(¢t) x [0,T], (11la)
K Oh on
oth = 01 (z1, h (21, 1) ,t) on I'(t) x [0,T], (1lc)
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2.3. Nondimensional Eulerian formulation

We denote by H and L the typical amplitude and wavelength of v. ~ inte. “aces

in a porous medium. We change to dimensionless variables (dr..w.>d wia ?)

- uwlL o -
=T t=-—1t, 12
z z, e (12)
and unknowns
- LkpG 1 ~
h(1’17t) =H h(wlat)7 1/)($1,$2,t) Mp ? - 171’2715) (13)

Then,

0, h(w1,t) = E%;r,) jEN,

kpG H ~
vzllj(mhx%t) = pT - V:zl/)\ T2, L)
Azip =

in Q) x [0,7],
o2

i - ~

— /1+(Hlﬁ)3/2> + ajlh, on F(t) X [O,T]
o

3h Oz » \W xl,t) t)

with the non-dimension- lized .. “i*. domain

on I(t) x [0,7],

Q(t) {(wl ) | < 1<7T,foo<§:2<%i~1(5cl,t), t€[07T]}
ﬂn—{@“h

Ln(«.t)) ,te [O,T]}

Based on our +ond mensionalization of the equations, we find two dimensionless
quantities ¢~ interc *

v

== = . 14
T L2pG (14)

The 1 ond nw \ber v is a parameter that measures the ratio between the gravi-

tati~nai [ s L?2pG and the capillarity forces v and the steepness parameter o

1 1easure: the ratio between the amplitude and the wavelength of the wave




Dropping the tildes for the sake of clarity, we have the following d’ nen-.onless

form of the Muskat problem

Ay =0, in Q( x [0, 7. (15a)
Ofh .
V- (—ocd1h,1) =01 | —v 5z |+ Orh, or () > [0,T], (15b)
(1 + (U@lh)Q)
6th = 811/1 (.’El,Uh(Il,t),t) on r(t) X [O,T], (15C)

2.4. The equations in the Arbitrary Lagrangian-E. ~rian * mulation

We define the time-dependent diffeomorphism

v: Q — Q)
(16)
(z1,22) +— V(x1,29,¢, = (1,22 + oh(x1,1)).

This diffeomorphism maps the referen 2 w. ‘2  onto the moving domain
Q(t). We have hence

. 1 0 _ -1 _ 1 0
V\Ij - ( Ualh(l‘l,t) ]. )’ A_ k7\11) - ( 70’81h($1,t) ]. ) (17)

With such back-to-label map defined v > can now define the following new un-

knowns;
w=10\, p=1oV, (18)

s which are now define. ~n .he f <ed domain Q x RT.

Let us now rema « tu.“ given any f € C! (Q(t)) the function fo ¥ € C!(Q),

and moreover

O0; [f (U)) = A f (V) 0;Ty = V(fo¥]=VIT Vfol,
from whi " w . dec ace that

Vfol = AT V[foV] = Dif oW = AFoy, [f o V. (19)
Si~ Tarly, we observe that

divvoW = A?Ok(v -ej)




It is now easy to deduce the equation satisfied by ¢ =1 oW in Q> R, i fact

0= Ay (D)
=div V¢ (¥
e &
= Aj0; (Aj akgo)
i gk
In these new variables, and using ,/gn; = A? = A{Nj 11) . s
9; (AL A% Op) =0, in Qx[0,7T], (21a)
. o 0%h
AjOkp AGN' =01 | —v 573 | M h, on I'x[0,7], (21Db)
(1 + (o(’?lh)Q)
Oh = 01 on I'x[0,T]. (21c)
3. The asymptotic model fortwo di ne isional Darcy flow
A straightforward computation shows w’ *h vhe help of (17);
GZ- (A;A?ak(p) = AQD — 0 (01 f?g(p T 261h 81290) + 0'2(81}7/)28330.
Similarly, using the relation \*™' we can compute
VY (0) - fgre - A%0 o ALINY,
— (—othdrg + (1 + 2 (@10))02¢)
Expanding (21), we find the
Ap =0 (07h o+ 201h D12p) — 0% (1h)*D3¢  in Qx[0,T],
Oap = ¢ Whi 1 — a*(01h)*Dap
2
h
| o1 3 | + o, on T x[0,7],
\ (1 + (0’81h)2>
Oth=¢ ¢ on I'x]0,7],
F urther computing the surface tension term we obtain that
/ 2 3 292
ol Ot 3/2) _ ., Oh P ath Py
. (14 (c01h)?) (14 (601h)?) (14 (c01h)?)

10




As a consequence, we have to study the following system:
Ap =0 (7h oo+ 201h D12p) — 0% (D1h)*D5¢  in Qx [0.T],  (22a)
v O3h
3/2
(1 + (0'81 h)2)

82(,0 = Ualhalgo — 0'2((91h)282g0 -

vo?(02h)201h
5/2
<1 + (a@lh)Q)
Oth = O on T < [0,7], (22¢)

+3

+1h, o Tx[0T], (22b)

We introduce the following ansatz

h(zq,t) = Z o"h™ (x4, 1), o(z1,x2,1t) = F , oo™ (21,20, 1). (23)

n=0 vo—V
Moreover since

_
(14 a2)%?

1

= 1+O(x2) ) '1—1—1‘2)5/2

:1+O(ac2),

we can rewrite (22b) as
Oyp = 01 (h — Vafh) + 0 01hdrp+ O (02) .

We observe that (22) can e writte 1 as

Ap=o0 (8fh a4 201 812g0) +0 (02) in Qx][0,7],
dop =01 (h - ve h) - o d1hdyp + O (02) , on T x[0,7],
Oth = 01« on T x0,7],

where O(0?) d not s terms of order o2 and higher. We are interested in finding
an asymptotic ~c tel of the free boundary Darcy flow with an error O(c0?). As
a conseque ice, we G.a neglect terms of O(0?) in (22). Thus, up to O(c?), (22)

is equivas "t *O

\p=0 (afh Oop + 201 R 812@) in Qx][0,7T], (24a)
29 =01 (h—vOih) + 0 d1hdip, on T x[0,T], (24b)
Oth = 01 on T x[0,7], (24c)

In o1, a function satisfying the ansatz (23) could be a solution of (24), we have

th «t each term in the asymptotic expansion has to be defined as the solution of

11




n—1 n—1
Ap™ =" 7hD 0,017 4+ 23 " 01h D150 on © (0,4 (25a)

Jj=0 Jj=0

n—1
dop™ = 0y (h<n> - uafhw) +Y_0hY 91" on T [0, 7, (25D)
j=0

h™ = 8,0 on T x [0, 7). (25¢)

The initial data can be assigned as

RO (z1,0) = h(zy,0), (26a)
AR (21,0) =0VE > . (26D)

In particular, the terms A, U) for j =0 21 Lo.ve
Ap® =0, 0on Qx[0,™ (27a)
920 — 3, (h<°> —1%0 ) on T x [0,7], (27b)
:h O =000 ¢ (0,7, (27¢)

and

ApM = 2p 08,00 " 220 19910 on  Q x[0,T] (284a)
BapD) = 9, (h( ) /812%(1)) +0h @96 on T x [0, 7], (28b)
Gth(l) = 81( ) on X [O,T] (28C)

We observe that the solvawlity conditions are satisfied for both elliptic problems.

Then, the exp’ cit s »lution to (27) can be computed using Lemma AppendixA.1

1
O t) =)

E ((=vi®K? 4+ ik)hO (k1)) e+ (20)
kEZ

Then
ik

P.SO(O)(that) = Z |k‘|

kEZ
_ (fya;?’h(“) + alh@))

((—yi3k3 + ik)l?@(k,t)) eivk

= —vA3h® — AR,

12
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Then, we have that h(®) solves the following linear problem

Oh ) = AR — AR, (30)
We split (1) = cp(l) + <p( ) where
AP =0on  Qx[0,T] (31a)
BrpD) = 8, (h<1> . yafh@) on T x[u7I (31b)
and
ARV = 92000y 1201808150 o1 Q x [0,T) (32a)
Ol = 9,0 on T x 0,1, (32b)

We recall the following Lemma,

Lemma 3.1 ([7]). Let h:S' = R and ~ - Q — w denote 2r-periodic functions
of x1, such that

_ § T ikz E zkx +|m|x-
h(xl)_ hke 1: SO X1 734, Pkm Hml 27
keZ,k#0 k,m€eZ

where Ty —> ﬁk,m(xg) is a polynomial junction. If X is the unique solution to
AX = 0:[2(01h) (019)+( 4Ah)p] n Q, and 8.X = (01h)(D1p) on S', (33)
then

(01 X)(21,0) = - ,f[(aln,:‘ 19@)]
()
(=1)! P, (0) Jike
Z wen(k)|m|(6? — k2 hk zz I |k| J+1 ko (34)
k . ,m€EZ
where ]3[(372 ) denc s 8%]3“”(:1:2) evaluated at xo = 0. Moreover, if ¢ is har-

monic in ) s¢ tha! p(x1,12) = > Pre*@rtlklez thep
keZ

¢ X = —A[hd1¢] + 01(hAp) = 01 ([h, H]O1p) on S, (35)
w sielh, g f = hHf — H(hf) denotes the commutator.

L hen, we have that

otV = oy (B9, M1 ) = 0, ([h<°>,%] (—z/A3h(0) - AW)) .

13
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Thus, we have that
O = —vARD — AR+ 0y (1O, 1] (—vA*R O — ARO)) (36)

We define
f=09 4 ond). (37)

Then, we have that
of=-vANf—Af+o0n ([f. 1] (—vA’f - nf)) =0 (c?). (38)
Consequently, in the renormalized variables f = ¢ *.
Onf = —VASf — Af+ 01 ([ M) -vASf - Af)). (39)
is the desired asymptotic model for the Darcy fio. -
Remark 3.2. Some equivalent ways of writw. > (39) are

Of=—vNf—ANf+v(A(fAf) =00 (fRF)) + 00 (fOLf) + A(FAS) (40)
= A f — Af+v ([N fIASS -0 o )+ (0uf) + A, fIAS (41)

4. Forchheimer flow

4.1. The equations in the F .ei. . formulation

In this section we conside. the fli .d domain as described in 2.1. When the
Reynolds number of thr two-din. asional flow in porous media becomes larger,
a correction term ha. to e a.ded to (9). Then, one obtaints the so-called

Forchheimer equati- n:

Bplulu + %u . Vp = —pGes, in Q(t) x[0,7], (42a)
V-u=0, in Q(t) x[0,7], (42b)

p=—7Kr@ on I'(t) x [0, 77, (42¢)

Oth =u - (=0,h,1) on I'(¢) x [0,T7, (42d)

where the ad litional Forchheimer term

Bplulu

¢ ~counts ‘or high velocity inertial effects, see [32]. The scalar 8 denotes the
Foru...ommer coefficient (units of length™!). Again, the system (42) is supple-
w nted with the initial condition (10) for A.

14




As before, we use a formulation based on the stream function, v, ¢ ~d t".e tan-

gential velocity, w. In particular,
M X
—gw=—=u-\/gT
K V9 K V9

-\/9T + pGOLh — Bplulu - \/gT
I'(t)

=0 (p|I‘(t)) + pGorh
O%h .
o (”wmw> 9GOl i
1

Then, using
VIVl Vi) = (VY| Ay

+ Wﬁ {2311/) 02l T, \dﬂ/))Z 3%’(/) + (821/})2 851/)}

we deduce that (42) is equivalent to
Eay = - Bp|Vyl Ay
=0 (g [2000 200010+ @107 00+ (Or0* 03] )
i Q) x [0,7], (43a)

K o’ h
VY n=— |0 | ———— —— GOLh
P-n M\/g( 1( ) L)2)5/2>+P 1 )

*KTWIW'M T

on T'(t) x[0,7], (43b)
8th = 811/1((1;1, h(ll ‘L\,, t)
on I'(t) x [0,T], (43c)

4.2. Nondi nension.’ Eulerian formulation

We use t! ~ se ae n ndimensional scaling introduced in Section 2.3 which we re-
call her~ “or tu. -~ ke of clarity; we denote by H and L the typical amplitude and
wave! :ngth o the interfaces in a porous medium and consider the dimensionless
variabi. ~ (de .oted with *) defined in (12) and (13). Let us denote as

= (V. V3)

= | V] Ay + ﬁ (2010 020 D120 + (910)? O} + (02)° 0‘;%4) - (1)
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With such notation we can compactly re-write (43a) as

7
Ai/} = —Bp E(V, V),
from where, using the dimensionless variables and unknowns ~bho e detined, we
deduce that
G

1

1k
(fipG

Aifl/] ('%)E) )

(2Y=2 (90695 @0).

As a consequence, we obtain the nondimensional form ¢” (43a)

2 (3,7) = (W”QG> (L) = (Vi (5.8) . V20 (2.0))

Performing similar computations as in Sectio. 2.3, we can finally write the

\H m\t

= (Vo (z,1), V2

nondimensional form of the Forchheime. mo .

- (BRPGN VHY (o - - s
Aiw=< U V() 8 x0T,

\"y
~ H_ - E ~
Vi, —=0z,h,1) =0z, | —>am= L — Oz, h
,lp < L ) ( pGL (1‘| (%8@1h)2) / ) +
L RAL, 2 ~ ~ H_ - ~
Y ?I{ Pl2 §|V¢|VJ’¢ : (17 Lafnh) ; on F(t) X [O7T]a
h -~ 0z b (551, Igﬁ(fchf),f) on T(t) x[0,7T].

Defining the dimer 1onless c. astants

_H _ 7 \ o Br?e’G
T L v L2pG’ T
and droppirg the “ilde notation we deduce the system
A = Ao E(Vy, V), in Q(t) x[0,T], (45a)
9?h
V’l/) (—0’81/ 1) =0, | —v L + O1h

(1 n (aalh)Q)?’/2
—Xo|V|VEe - (1,00,,h), on TI(t)x[0,T], (45b)
Oth = 019 (z1,0h(z1,1),1) on I'(t) x[0,T]. (45c)
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5. The asymptotic model for Forchheimer flow

In this section we want to reduce the System (45) to a fixed bou. ary and
provide an asymptotic development in terms of thesteepness 1 iwrar »*er ¢ anal-
ogously to what was done in Section 2.4. Since the change o1 =r ables and the
computation we do in this section are rather similar to t’ .. ones L.rformed in
detail in Section 2.4 we will often avoid to provide a cor putatio and refer to
Section 2.4 instead.

Let us consider the C! diffeomorphism W as in (16) w! ich » .ay. - a moving domain
Q (t) onto the reference domain € and let us defne 4 = (V¥)~" as in (17).
Analogously as what was defined in (18) we define @ a. 1 ¢ as the back-to-label
map of the vorticity and stream function respec. ~ely. V/e remark that, in this
setting, the only new term appearing in the sys. m (45) is E (V’L/), V21/)).
Using (19) we deduce that

Afpp > 4 e )

V) oW =
(V) (A’gaw —001h01p + Oz

from which we can easily obtain the 1 uc ~ing identity

(V) o ¥| = \/|V<p|2 — 20 Wh 01902 + 02 (alh)2 (81<p)2.

Since V1+2x=1+35+0 (”°> -ve immediately deduce that

01p0
[(Vyp) oWl = v o /1 - Uaﬂlef +0 (02)) )
\ Vel
In the same way as #bove, msir g the fact that Tlﬂ =1-5+0 (xQ) we deduce
1 1 61g062gp 9
. — 1+o001h +0 (o
KB ( voE ) T

Using the above oservations, we can compute the leading asymptotic term of

oA E (Vw \721/>:

0,)\ = ‘vq/}’v‘,b) — 0,)\ (‘VQP| A(P 4 201 D2 812W+(‘3v1§|)2812W+(3280)2a§‘P) + O (0_2) )

=0AE (V(p, V2<p) +0 (02) .

$ 1pposin ; now that ¢ and h admit the asymptotic expansions provided in (23),
we Ca.. deduce the equations satisfied by the leading order terms (@, (1) A0

ard nb)

17




Ap® =00n Qx[0,T], 146a)

80 = 0, (h<°> - uafh@)) on x0T (46b)
ah 0 = 0,0 on T x[0,7], (46¢)
and
Ap® = 92109, 4 29,109,004 X |V O A p) (47a)
n IWA(O)I [23M<0> Dyp®) 92,50

2 -2
+ 020 (31<P(0)) + 02 (8230(0)) ] on ) x[0,7]

Dot = 9y (h(l) — uafh(l)) +01h 08,00 L Ix 015,00 on T x [0,T]
(47b)
9:hW =91pM on T x[0,7). (47¢)

Then, we can compute ¢ in terms ¢ +.'?), which is the solution of the equation

ath(O) 7 _‘“AS, 0) _ Ah(O)
: ® _ M (1) M wh
As in the Darcy flow case we can decompose ¢'*) = ¢4~ + ¢, ' 4+ ¢¢~ which
solve
Ap) = an Q% [0,7]
Do) = 9 (hv - V@fh(l)) on T x[0,7T],
AV = 020 "9 50 420,00 0150 on Q% [0,T]
82@1()1‘ =2099,0® on T x[0,7],
AT 2 2
Apl) = 0 910 9,0 82,00 1 G2, (al¢(0)) +92p0 (@w(m) ]

- 5
= 2 (Ve \vV2<p(O)) on  Qx[0,7]

oo = A 70O 0@ on T x [0,T].

We nc .e that

i 2 2
I= /Q ril"\ {gaﬂp(m 0200 92,00 + 9200 (3y0(0) + 820(® (8,0(®)) ]dxldmz
- / v (\w<0>|w<°>)dxldx2
JQ

; JI V@920V day,
r

18
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where we have used that ¢(©) is harmonic and the divergence the vemr As a
consequence, the compatibility conditions are satisfied and the pi. -ious Miptic
problems have unique solutions.

Define f as in (37). We introduce the following auxiliary fur .tion
P1 = 0@ +apll.
We observe that ¢a.x solves the problem

Ap™ =0o0n Qx[0,T], (48a)
Qoo™ =0y (f —v0if) on I, 10,1 (48Db)

We also define

A3
)\ s X aux be X aux Y be X s X aux
= [Ty |2t et D23 - A2 (0 ) B2 (D05
1
=AE VO V™) on Qx [0,T],
(49a)
o8 = A|[V@I™ (0203 on 1+ A [ T (49Db)

With this definition, and usir~
e — o0 =0(0), = = (V™ V™) -2 (W(O’, VQ@‘O)) =0(o)
we find that
Mg = p0) = O0(e) o Q% [0,7], (50a)

% (g3 = ¢V) = O(@)on T x[0,7], (50b)

and, as a consey, * nce,
ool = 0™ + 0(o?)

Thus, we fin. the following equation

Of = 0199 ( 1,0) + 01 (21,0) + anél)(zl,o) +001pM (21,0)

— N[ — Af + 0B, ([h<0>, ] <—VA3h(O) - Ah<0>)) + 091 QE (21, 0) + O(0?)

=—1 A’ f —Af+ 00 ([f. H] (—vA’f — Af)) + 00195 (21,0) + O(c?).
(51)
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Finally, if we truncate at order O(0?) we find the asymptotic mod:
Of = —vA3f — Af + 00, (If, H] (—Z/A3f —Af)) + 0093 (1,0, (52)

where 5" solves (49). In the renormalized variables f = of we dnd the

following system as a model of free boundary flow in the F~~<hhe. ~er regime

Of = —vAf — Af + 01 (I, H] (~vA%f — Af)) + 81 ®( 1,0) (53a)
AD = \Vi)\ﬂ 201 Y 0%, + Y (1Y) + 927 \aﬂj“J' on Qx[0,7T],

(53b)

8,® = A|VY|8,Y on T x [0,7] (53c)

AY=0on Qx][0,7], (53d)

)

Y =0 (f—vdif) on T x[0,7]. (53e

Our aim is now to express the equatior [7?~) in terms of f only, i.e. we want

to identify a nonlinear operator T such t. »
81<1>(x1,0,t) = 7 L,n] (1‘170,t> .
Using Lemma AppendixA.l we can « mpute the explicit value of T, which is

1 - -
T=Y 5 (0 z'k)f(k,t)) giriktikloe, (54)
kEeZ l
We have that
~ / ~
_ ey Ikl 2
(T(k,xQ,t))k i L +zk)f(k,t))e )k e 2(Z), ¥ s <0,

and moreover T is real an.iytic in S x (=00, 0), with increasing analyticity strip

in the x1—dire ¢on as z9 — —o0. Let us denote now respectively

I\ — Ad. (|VT‘ VT) s g\ = A |VT‘ 82T —O’ (55)
and define o
N 1 ~
B,\ (k,t) = 5/ b,\ (k,yg) elk‘yzdyg. (56)
Whonce - - .ying again Lemma AppendixA.1, we deduce
P 1D (,0,0) = \/% S isen (k) {aa (h,0,0) + 2B (k) } e
Tk (57)

=—-H (g/\|$2=0 + B)\) (l‘l,t) .
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Thanks to the explicit formulation of T provided in (54) we have t at
YT =—-Ho,T. (58)
Due to the relation (58) we can deduce the following identiti s;

9lpy—o = A VY[ 0T

’
ZEQZO

= 0/ (M) + (0:7) 27|

lzo=0

But by definition 0> is the harmonic extension of ¢ iJ —1 )%f), whence

Ilyyo = A\/(HE?QT)? +(857)? DY

22=0 (59)
= W (HOL (f — V02 ) + (01 (f — wol ) 0n (f — w2
Using (57)

61<I> (1‘170,t)

=-AH (\/(7'131 (f =) + (¢ () -vd2f)" an(f - Vaff)> —HB,

which finally provides the complete ~olution equation for f;
Of =—vNf—Af+01(j, n, (A f = Af))

! (\/ (Hov (f —vd? ) (&.(f —vdR)’ u (f - ua%f)> ~HB,, (60)

where By and T are 1. mv ctive y defined in (56) and (54).

6. Three dimei.sion.” Darcy flow with bottom topography

6.1. The fluid dom uin

The time-ds pena. ~t three-dimensional finitely deep fluid domain, free surface

and bottc a be andary are defined as

Q) = [ixl,xz/ 3) ER3 ’ —Lr < xy,m9 < Lw,—d < x3 < h(z1,22,t), t € [O,T]}7
(61)

T0) = (@1, 20, har, 2, 1) € R? ‘ —Lr<azy,as<Lm, te [O,T]} (62)

I, — {\xl,xg,—d) € R? ‘—Lw <anas<Lm, te [o,T]} (63)

w’.h periodic boundary conditions in the horizontal variables x1, zs.
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6.2. The equations in the Eulerian formulation

In this section we consider the free boundary Darcy problem in threc Yimer. ‘ons.

We assume that the domain is bounded from below by a flat Lu.“om s..uated

at x3 = —d. The free boundary Darcy problem in such con’ curs Jon reads as
follows:
Hu—ﬁ— Vp = —pGes, in Q@ x[0,T,
K
V-u=0, in Q@ 10,7,
p=—7Kru) on 1) x 1, T,
Oh=u-1n on I'(.' x 0,77,
ug = 0, o T x [0,T7,

where n is the non-unitary outward point’ - ..oiwar vector.

Indeed in such configuration K is the mean ~rvature of the surface. Since
in out setting I' (¢) is given as a graph, t. e r sa.. curvature assumes the explicit
form (cf. [34])

(1 n (Glh)Q) a2h v (14 /th)Q) 82h — 201 h oh 925k

Kre = 3
. /2
(1+ @i + (82h)2>

We observe that u = V® ~ nhere th. potential function is given by
® = = (—p— Gpzs).
w

With this notation. che equ *.on for the free surface becomes

ah = T+ (01h)% + (Dh)2 D, .

Also, using ti. i ergence free condition for the velocity field, we have that ®

solves the ¢ .liptic p. blem

AP =0, in Q(¢),

K rkp G
- % Kra — '”H h onT(t), (64)
03P =0, on [y,

L his ellir tic equation is uniquely solvable if the zero mean function h is suf-

Sciently regular (cf. [23, Chapter 2]). We can hence completely determine ®
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from its trace, i.e. from h and its derivatives. Thus, the previous <ua‘.on for

the free boundary can equivalently be restated as
K kp G
Oth =G (7 Kra) — P h) )
0 I

where G is the Dirichlet-Neumann (DN) operator (cf. [23, Chap. ~ 3]), i.e. the

operator that solves the elliptic problem for ®, compute i s norm. ! gradient and

takes the trace of this normal gradient up to the boundai -

6.3. Nondimensional Eulerian formulation
We can now nondimensionalize our equations following . e very same procedure
explained in Section 2.3. We define the new vari.~les
_ . N nL -
T1,x2) = L(21,7T2), ©3 = dis. t=——1, 65
(21, 22) = L(21,42), =3 3 G (65)

and unknowns

HrkpG - ~
PG G (71, G, FnD). (66)

h($1,$2,t) =H ﬁ(jla'%%f)? ‘I)(»Tlalﬂz T7t) =

We define the following non-dimensio. a1 ~arameters

12 H
PR

These dimensionless quantities are known in the literature as the shallowness

5

and amplitude parameters We ob. arve that
o =eVe.

The equations in non. ‘me .sior «l form read as follows

§ (07® + 02 ) + 950 =0, in Q(t) x [0,7],
P =vKkiy —h, onI'(t) x [0,T7,

dh =G (u;cg(t) - h) : on T'(#) x 0,77,

93P =0, on Doy x [0,77].

where the 7~ .d n mber was given in (14), the nondimensional fluid domain and

free s _iace are

Q(t) = {(i‘l,f‘g,fg) ER3 ’ T<x1,x2<7,—1<x3 <Eh($1,.’lﬁ2,f), te [O,T]},

(67)
10 = L &1, 80, eh(i1, 82,1)) € R \ <<, te 0T} (68)
Iy, {(:zl,g:«Q,—1) c R? ‘W <FLE <, e [O,T]} (69)
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and the non-dimensional curvature is given by

(1 n (U@lh)Q) 02h + (1 + (ath)Q) 82h — 20201k Doh O b

g(t) = )

(1 + (00ih)? + (ath)2)3/ ’

7. The asymptotic model for three dimensional Jarcy i ow in pres-

ence of a bottom topography

As we are interested in the weak nonlinearity limit (a 4 .ot ir the shallow water

limit), we fix now § =1 (so, o and ¢ are comparai.

In the previous section we have obtained a clos ~d to.. ~! .¢ion for the evolution of
h (albeit it is highly nontrivial and nonlinear) in te.. s of the Dirichlet-Neumann
operator. It is though possible to perform a '~velopment of the DN operator in
terms of the steepness parameter o (c¢f "4 17] and [23, Section 3.6.2]) around

the rest state. Let us define the linear oy, v cor

God (€) = |¢) “aw €] H(€),

then following [23] we know that
Gé = God —  (Go"God) + V- (hV9)) + 0O (o%)

and since

Kp7 = vAh+ 0 (0?),

we can drop the O/ J'2) conu. outions to deduce the following asymptotic model

Oth—vGoAh+ soh = —vo (Go (hGoAR) + V - (WWAR)) 40 (Go (hGoh) + V - (WVh)) .
(70)

So, in the enc malized variables f = oh, we find that

Of—vC Aftoe = v (Go (fGAS) +V - (fVAF))+(Go (fGof) + V- (fV])) .
(71)

P cmark (.1. In the case in which there is no bottom the first-order approxi-

iration o the DN operator is

Goo = Ag.
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Hence, in the case where the depth is infinite and the flow is three  -mer sional,

we recover the multi-dimensional asymptotic model

Of—vAAf+Af=—v(A(fAAS)+V - (fVA)) + (A(fA )+ V- (fV])).

(72)
This model is completely analogous to (39).
AppendixA. The explicit solution of an elliptic nr¢. '~
Lemma AppendixA.l. Let us consider the Poisscm « uati m
Au(zy,0) =b(21,22), (21,22) € ! x (—00,0),
Ou(z1,0)  =g(x1), . esh (A1)
u(ry,—0) =0, « E€S*,

where we assume that the forcing b € H*(Sz, nd g € H' () satisfy the compat-
ibility condition
/ b(x1,x2)dr1dxs = / g(z1)dz.
Q r

Then, the unique solution u of (A.1) s
! 1L k192 gy — g ()| elFle
u(thz):—mz T 5/ h(k,y2) e dy,—g (k)| e
k —0o0

-0
1 2 k —|kla
+er|/— Db(k,yz)el V2 dy, eIkl

172 ko) { kl(ya—w2) _ JKI( Hz)} ik
Jvy z3) To—1 d ikxy
+/0 2|k| € € Y2, € )

(A.2)

where the operato - . motes the Fourier transform in the variable xy.

Proof. Let us e ,p1, the Fourier transform to the equation (A.1), this transforms

the PDE (A..' ir che following series of second-order inhomogeneous costant
coeflicients ODE’s

— 2l e + 020 (kywo) = b(k,xa), (k,xp) € Z x (—00,0),
Tou (k.0)-= g (k), keZ, (A.3)
lﬁ(k,—c)):[)’ keZ.

T e gen-ric solution of (A.3) can be deduced using the variation of parameters

1 ethod, shence

xTro 7
4 Z) -0 (k) €|k\m2+cz (k) eﬂk\xz_/o % {e\k|(y2712) _ e\k|($2*y2)} dys.
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The boundary conditions determine the values of the C;’s

k)

1 /0.
Oz (k) = —m/ b(k,y2) eF¥2dys, C1 (k) =Co (b + e

We emphasize that Cs (k) is well-defined for each k # 0. We _ ~ .ce obtain the

expression (A.2); in particular we can write u = w4 + u_ wunere
0
u— (21, 22) = _4# > {1 [1/ b(k,ys) eF1v2dy, ”’/J eItz
21 L |k‘ 2 —o0 ‘

" b (ks 12) bl e ) ik
_ > 2= 2)( ikxy
/0 ) ‘k’| € Y2, € )

1 I . ke
ur (21,22) = ‘m;{w/_wbw,:w)e gy oIkl

(K k(s i
iy 2—22) ] ik
+/0 5 1k| Y2, ¢ €

Indeed |u_| < oo since it is defined via th. aegative exponential weights el*#2,
while we can reformulate u, as

ra

1 ! - )
= N b(k lkly2 q ikzy—|k|z2
uy (z1,22) N Ek {2|k JI (k,y2)e Yo p €

As yo < 9 < 0 we have *aat y, — 2 < 0 and the definition of uy involves

0

negative exponential weighu. Simi! orly, when £ = 0, the compatibility condition

for b and g ensures tha’ 4 is wel- defined concluding the proof. O
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