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A R T I C L E I N F O

Keywords:
Type 2 diabetes
Machine learning
Artificial intelligence
Therapeutic inertia
Metformin monotherapy
Metformin failure
HbA1c

A B S T R A C T

Aims: This study aimed to identify and categorize the determinants influencing the intensification of therapy in
Type 2 Diabetes (T2D) patients with suboptimal blood glucose control despite metformin monotherapy.
Methods: Employing the Logic Learning Machine (LLM), an advanced artificial intelligence system, we scrutinized
electronic health records of 1.5 million patients treated in 271 diabetes clinics affiliated with the Italian Asso-
ciation of Medical Diabetologists from 2005 to 2019. Inclusion criteria comprised patients on metformin mon-
otherapy with two consecutive mean HbA1c levels exceeding 7.0%. The cohort was divided into “inertia-NO”
(20,067 patients with prompt intensification) and “inertia-YES” (13,029 patients without timely intensification).
Results: The LLM model demonstrated robust discriminatory ability among the two groups (ROC-AUC = 0.81,
accuracy = 0.71, precision = 0.80, recall = 0.71, F1 score = 0.75). The main novelty of our results is indeed the
identification of two main distinct subtypes of therapeutic inertia. The first exhibited a gradual but steady HbA1c
increase, while the second featured a moderate, non-uniform rise with substantial fluctuations.
Conclusions: Our analysis sheds light on the significant impact of HbA1c levels over time on therapeutic inertia in
patients with T2D, emphasizing the importance of early intervention in the presence of specific HbA1c patterns.
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1. Introduction

“Therapeutic inertia” (TI) occurs when a physician delays the initi-
ation or intensification of a medication in patients with uncontrolled risk
factors [1,2]. Over the past decade, TI has emerged as a prevailing issue
among patients with T2D [3]. Notably, it is not limited to insulin therapy
but can also affect the start or intensification of first- or second-line
therapies [4], negatively impacting glycemic control, quality of life,
healthcare costs and the development of both macrovascular and
microvascular complications [5]. The latter, in particular, are especially
linked to the degree of glycemic control and the duration of T2D [6];
therefore, current guidelines recommend achieving glucose targets early
to mitigate long-term risks [7].

Conversely, timely and effective significantly reduces cardiovascular
and all-cause mortality rates [7], prevents vision loss and delays the
progression of diabetes-related retinopathy [8].

Metformin and dietary changes are generally regarded as first-line
treatments for T2D however; lack of glycemic control [i.e., HbA1c
levels over 7.0 % (53 mmol/mol)] during metformin treatment should
prompt intensification with second-line therapy [9]. Nevertheless, on
average, patients on metformin monotherapy with suboptimal control
receive intensification with a second-line therapy after 2.9 years [10]
and only 40 % of patients with T2D meet their individualized HbA1c
goals [11], leading to a significant increase in cardiovascular events
[12]. TI results frommultiple factors including, among others, physician
hesitation, patient fear, poor adherence to treatment, and inadequate
monitoring of glucose levels. Traditional statistical approaches showed
that patients with higher HbA1c values are less likely to experience TI,
but HbA1c thresholds and the time frame for assessing TI varied widely
across published studies, making it challenging to draw solid conclu-
sions [13]. To date, only a few studies have employed artificial intelli-
gence (AI) and machine learning (ML) techniques to identify possible
causative factors [14]. ML algorithms analyze big data by uncovering
hidden patterns and relationships [15,16,17,18] and revolutionizing
data analysis in diabetes research for prediction, diagnosis and man-
agement [19]. Previous studies have applied ML to investigate glycemic
target attainment [15] and treatment intensification in patients with
T2D [20]. Berlowitz et al. employed classification and regression trees, a
form of ML based on decision trees, to predict antidiabetic drug inten-
sification, but did not focus on TI [20]. Recently, McDaniel and col-
laborators developed and validated a ML model to predict TI,
incorporating area-level social determinants of health [14]; however,
the ML methods employed in this study are often categorized as “black-
box” algorithms due to their non-transparent nature, making it chal-
lenging to extract explicit knowledge or interpret the decision-making
process from the generated models. To address this limitation, our
study employed the Logic Learning Machine (LLM), a “clear box-
explainable” AI algorithm [21] to uncover the determinants of TI in
patients with T2D.

In summary, our study involves 4 stages: (1) Data Collection and
Preprocessing; (2) Application of the Rulex AI Algorithm, to identify and
categorize the determinants influencing therapy intensification; (3)
Analysis and Interpretation of Results; and (4) Discussion and Implica-
tions, where we contextualize findings in personalized interventions for
patients with T2D and acknowledge the limitations of the study.

2. Material and methods

2.1. Study design and population

This is a longitudinal, retrospective, and cross-sectional study. Data
were collected from electronic records of 1.5 million patients seen at 271
diabetes clinics that are part of the Association of Medical Diabetologists
(AMD) network, covering the period from 2005 to 2019. Patients’ data
were fully anonymized ensuring compliance with ethical and regulatory
standards and, as any previous research conducted with data from the

same database, named AMD-Annals [22,23] the study was approved by
the local institutional review board. All patients consented to partici-
pate. This study was conducted on individuals on metformin mono-
therapy with HbA1c levels above 7.0 % in two consecutive
measurements. Patients with HbA1c levels below 4.5 % (<26 mmol/
mol) or above 14 % (>30 mmol/mol) and those aged 75 or older were
excluded, due to likely personalized therapeutic strategies. The final
cohort was divided into two groups: the inertia-NO group of 20.067
patients who received therapeutic intensification within 2 years of two
consecutive visits, the latter termed T-Index, with a mean HbA1c of >
7.0 %, and the inertia-YES group of 78.967 patients who did not receive
therapy intensification within the same timeframe, as detailed in Fig. 1.
In particular, this group consisted of those who either underwent
treatment intensification after two years or remained without it. Among
them, 3,834 out of 13,029 (29.4 %) did not receive intensification, while
the rest experienced delayed intensification. Further, this group was
limited to patients who still had an HbA1c level above the threshold at
two years (+0–3 months) after the T-Index, with a total of 13,029
patients.

A change in therapy was considered as any alteration in previous oral
medication. The analysis was based on real-life data and do not include
either information on dosage or treatment adherence/changes in life-
style. The two-year interval was chosen to include patients who had
been seen at least twice, reflecting normal clinical practice in diabetes
clinics in Italy, where the average time between patient visits is typically
6–8months with the possibility of some clinics having a patient load that
requires longer intervals between visits [24].

A flowchart illustrating the research methodology is presented in
Fig. 2.

2.2. Data preparation

The steps adopted for data preparation are given below:

– Data filtering: Only measurements within a reasonable range for
each variable were retained; outliers were discarded.

– Time intervals: HbA1c measurements were considered only if there
was an interval of at least 2 months between them; shorter intervals
were discarded.

– Clinical factors: For each HbA1c measurement, we noted the value of
clinical factors (e.g., systolic blood pressure) closest in time, within a
maximum interval of 4 months before and after the date of the
HbA1c measurement.

– Permanent factors: Permanent factors (such as acute myocardial
infarction) were tracked up to the date of their first detection.

– Medication tracking: For each HbA1c measurement, medications
related to the previous measurement were tracked, on the assump-
tion that the achievement of specific goals depends on the treatments
followed in the period before the HbA1c measurement.

2.3. Logic learning machine

As opposed to “black-box” AI algorithms, Rulex® (Innovation Lab,
Rulex Analytics) LLM is a type of transparent ML that utilizes the
Switching Neural Network technique for supervised data mining
[21,25,26]. When utilized for prediction, it is able to explain patient
response to an initial premise via the creation of models, following the
selection of the most relevant variables, without prior knowledge,
demonstrating accuracy comparable to, or even surpassing, the best ML
algorithms [27]. The technical workflow of Rulex has been previously
described in detail [26,28].

To summarize the Rulex® data analysis process:

1) Training phase: model creation using 70 % of the available data and
all known variables.

N. Musacchio et al.
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2) Test phase: the newly created model is tested on the remaining 30 %
of the data to evaluate its performance, including sensitivity, speci-
ficity, precision, accuracy, and the calculation of ROC-AUC.

3) Creation of the feature ranking: elicitation of a list, in order of
importance, of the relevant variables that explain the starting
premise.

4) Identification of threshold values: presentation of the threshold
values, if any, for the most relevant variables.

5) Prediction: when employed for prediction, the model explicitly ex-
plains the reason for its response, considering the variables of a new
patient.

In this analysis, a predictive model using LLM identified true TI in
patients on metformin monotherapy, based on whether therapy inten-
sification occurred within two years. The analysis assumed therapy
intensification within two years if needed at T0 (YES/NO). The model
was developed using data from two patient groups, termed “inertia-YES”
and “inertia-NO”, as explained above. The mean time to delayed
intensification was calculated specifically for the former subgroup. For
both groups, the mean, standard deviation (SD), and median were
computed for various variables at T-Index. To compare the groups, these
statistics were also calculated at the time of treatment intensification (T-
Intensify) for the inertia-NO group and approximately two years after T-
Index (T-Index + 2 years) for the inertia-YES group. The model utilized
descriptive variables (demographic, clinical, organizational) available
at specific visits and dynamically derived variables, which change over
time, referring to the period after T-Index. (Table 1).

3. Results

3.1. Characteristics of subjects

The total number of patients included in the study was 33.096 of
which 13.462 (41 %) were females and 19.634 (59 %) were males. The
percentage of patients with high/very high cardiovascular risk (CVD
risk) as defined by the ESC guidelines for diabetes [29] was 71 % in both
groups, with 14.273 out of 20.067 in the inertia-NO group and 9.261 out
of 13.029 in the inertia-YES group. At T-Intensify, 17.352 out of 20.067
patients in the inertia-NO group (86 %) had high/very high CVD risk,

while 11.462 out of 13.029 patients in the inertia-YES group (88 %) had
high/very high CVD risk at T-Index + 2 years. Table 2 shows the char-
acteristics for both patient groups at T-Index and at T-Intensify for the
inertia-NO group and T-Index + 2 years for the inertia-YES group. The
student’s t-test uncovered important differences between the two groups
of patients: those with inertia-NO and those with inertia-YES regarding
certain clinical variables. Specifically, it showed that patients with
observable TI generally have slightly lower average values of key
metabolic syndrome parameters at the T-index, such as HDL cholesterol,
triglycerides, HbA1c, BMI, and systemic blood pressure. This suggests
that these patients, on average, appear to be less complicated. However,
it’s worth considering that these differences might be influenced by the
large sample size. To address this, we conducted a ML analysis, which
helped us identify which of these clinical variables truly played a sig-
nificant role in predicting TI.

3.2. LLM models and performance evaluation

The LLM analysis yielded two models: one using descriptive vari-
ables only and another combining descriptive and dynamic variables
that reflect patients’ progress after the T-Index. The first model had a
modest performance yielding a ROC-AUC of 0.66, an accuracy of 0.62, a
precision of 0.66, and a recall of 0.63. The addition of the dynamic
variables improved the model’s performance, resulting in an increase of
the ROC-AUC to 0.81 with a 95 % confidence interval of 0.793–0.820
(Fig. 3), accuracy to 0.71, precision to 0.80, and recall to 0.71.

The F1 Score, the harmonic mean between precision and recall,
effectively addresses both false positives and false negatives and is a
suitable measure for evaluating our unbalanced dataset [30]. The F1
Score ranges from 0 (indicating a complete lack of classification ability)
to 1 (perfect classification of all variables). Our model, incorporating
both descriptive and dynamic variables, achieved an F1 Score of 0.75,
demonstrating its good performance (Table 3) in identifying features
correlated with the defined outcomes of the analysis (inertia yes/no).

Table 4 displays the Feature Ranking (FR) generated by the ML al-
gorithm, which identifies parameters with a relevance > 0.1 and ranks
them based on their significance relative to a threshold value.

The table highlights the prominent role of HbA1c in determining TI,
both as a single visit measure and as regards its trend pattern after T-

Fig. 1. Diagram illustrating the various time points examined in the study, highlighting the selection of cohorts.

N. Musacchio et al.
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Index. For the inertia-NO group, the threshold HbA1c at a current visit
was > 7.6 % (>60 mmol/mol), while the HbA1c yearly trend after T-
Index was > +0.12, the mean HbA1c after T-Index was > 7.7 % (61
mmol/mol) and there was no threshold value for the HbA1c standard
deviation (SD) after T-Index. For the inertia-YES group, the threshold
value HbA1c at a current visit was < 7.6 % (<60 mmol/mol), the mean
HbA1c after T-Index was < 7.7 % (<61 mmol/mol), the HbA1c yearly
trend after T-Index was <+0.12, and HbA1c SD after T-Index was <

+0.10 OR > +0.57. These findings suggest that a slight increase in
HbA1c, with significant fluctuations (HbA1c SD>+0.57), is more likely
to result in TI compared to a situation with greater HbA1c increases and
lower fluctuations. In addition, one other case of inertia also exists. In
this situation, there is a trend toward a slight increase and very low
fluctuation (HbA1c SD < +0.10).

Interestingly, the frequency of patient visits, or mean interval be-
tween visits, was ranked third in importance. If the frequency was less
than 4 months it was correlated with inertia-NO, but if it was greater
than 6 months, it was associated with inertia-YES.

In our study, we also found that fasting glucose had a significant
impact on the prediction of inertia-NO or inertia-YES. A fasting glucose
value greater than 190 was associated with inertia-NO, while a value

less than 160 was associated with inertia-YES. Age was also identified as
a significant factor. Individuals under the age of 55 or over 67 were more
likely to have inertia-NO, while those between 60 and 67 years old were
more likely to have inertia-YES. The feature ranking continues with
several other variables used in the machine learning model, which
means that they contribute to the accuracy of the forecast, but their
relevance is < 0.1 and therefore they have not been included in Table 4.

Given these results which showed a dominant role of HbA1c from
various perspectives, we sought to determine whether the HbA1c at the
current visit, the mean HbA1c after T-Index, the HbA1c yearly trend,
and the HbA1c SD were individually dominant variables or whether
their integrated effect, which describes a patient’s glycemic trend dy-
namics, was more significant, as suggested by the LLM model. To
investigate this, we calculated the ROC-AUC for each variable inde-
pendently, and the results (0.59, 0.65, 0.54, and 0.59, respectively)
show only a slight predictive performance. In contrast, when we utilized
only these four variables, in the machine learning model, the resulting
ROC-AUC was 0.76. These findings confirm that the variation of HbA1c,
represented by the 4 variables that trace its fluctuation over time, can
correctly predict the “inertia-NO” or “inertia-YES” condition with 76 %
accuracy.

Fig. 2. Study Flowchart.

N. Musacchio et al.
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4. Discussion

TI is a widespread issue in T2D patients, with a reported prevalence
of up to 50 % [31]. Even in our study involving patients on metformin
monotherapy, 39 % (13,029 out of 33,096) experienced TI despite the
availability of multiple therapeutic options. Over the years, several ef-
forts have been made to define TI yet major improvements are lacking
[24].

Here, we sought to pinpoint factors indicating higher inertia risk. The
main strength and novelty of our approach was the use of a transparent
ML technique to generate the model, as opposed to the traditional sta-
tistical approaches. We incorporated for the first time standard patient
visit data [32,33] and dynamically-derived variables such as mean,
trend, and SD in patients with T2D, to capture the dynamics associated
with each patient’s progress.

Our study confirms a delay in therapeutic action both in terms of the
size of the phenomenon and in the HbA1c level, 8.0 % (64 mmol/mol),
which on average is accepted without intervention [34]. Moreover, our
findings indicate that there are two different types of TI, potentially
reflecting different approaches taken by the physician. The first is
characterized by a slight but constant increase in HbA1c, with values
that do not fluctuate significantly. In this case, the physician may miss
the fact that though the increase in HbA1c is slight, the patient never-
theless remains in a state of poor glycemic control, which in turn could
lead to poor health outcomes. The second type involves a slight increase
in HbA1c, but with significant fluctuations in values. In this situation, as
the HbA1c is increasing slightly, but the fluctuations in its values are
significant, the physician may assume that the HbA1c will eventually
normalize under the existing therapeutic conditions, especially when its
levels are not significantly elevated [i.e., below 7.6 % (60 mmol/mol)].
This delay is considered “tolerable,” but it can result in the patient’s
HbA1c remaining at or exceeding the optimal target level, leading to

diabetes-related complications and even increased CVD risk [35].
The results of our study also demonstrate the critical importance of

incorporating transparent LLM analysis alongside traditional statistical
methods to gain a more comprehensive and nuanced understanding of
complex medical data. Specifically, when examining HbA1c as a static,
isolated variable, there was no significant difference between the two
study groups, a finding that is confirmed by LLM. This suggests that
HbA1c value at a single visit, alone, is not strongly correlated with
meaningful outcomes. However, when combined with other variables
that describe the dynamics of the T2D patient’s glycemic trend, HbA1c
becomes an important predictor of outcomes. Similarly, our results
suggest that TI may stem from a limited long-term perspective on how
variables interrelate with poor glycemic outcomes. Although traditional
statistical analysis found no significant age difference across the two
groups, our LLM analysis uncovered that age plays a key role in deter-
mining glycemic outcomes, further emphasizing the value of incorpo-
rating AI techniques such as LLM to better identify patients subgroups
bearing specific combination of variables which, taken together, might
affect the clinical outcome.

Our study provides valuable insights into the factors contributing to
therapy intensification delays in T2D patients. However, it is crucial to
acknowledge the limitations of our research, which may impact the
interpretation of our findings. First, as a retrospective real-life study, not
all variables had consistent data available for each patient, leading to
some missing data as detailed in Table 2, and while efforts were made to
mitigate this limitation, it could potentially affect the overall robustness
of the analysis. However, it is important to note that the Rulex AI al-
gorithm employed in our study can manage missing values effectively,
as it does not include them in the specific rules generated. This capa-
bility helps to minimize the impact of missing data on the overall
analysis and findings.

Moreover, our analysis is based on real-world data collected from
271 distinct diabetes centres in Italy; consequently, the inherent di-
versity of data sources introduces the possibility of a “Batch effect”
caused by fluctuations in measurements and analytical techniques.
While we acknowledge this potential source of bias, its complete
exclusion is challenging in real-world data analyses. While our study
utilized a large and robust dataset, a notable limitation is the lack of
detailed information on medication dosage, treatment adherence, and
changes in lifestyle. These factors could have provided a more
comprehensive understanding of the determinants influencing TI.
Future studies should consider incorporating these variables to gain
deeper insights into the multifaceted nature of TI in T2D management.
Furthermore our study lacks of comparison with other machine learning
algorithms, which may have resulted in suboptimal performance.
Additionally, the internal validation of results, without external vali-
dation using independent datasets, limits the generalizability of the
findings. Future studies should consider validating our model using
external datasets to enhance the robustness of our conclusions. Finally,
this study uses data gathered over a large timeframe (2005–2019),
which poses challenges in identifying those physicians who may have
changed their approach over time including their willingness to inten-
sify therapy or make other adjustments. Over this period, there were
updates to diabetes management guidelines and the introduction of new
antidiabetic drugs into the market. These changes might have influenced
the treatment approaches adopted by physicians, potentially biasing our
analysis towards identifying primarily the “common” drivers over the
entire period. Consequently, specific drivers associated with distinct
sub-periods may not have been fully captured. To overcome this limi-
tation, future studies may benefit from using more recent data that
provide amore up-to-date and nuanced view of physicians’ attitudes and
practices regarding therapy intensification in T2D patients.

Despite these limitations, we strongly believe that the findings of this
study could encourage the physician to gain greater awareness about the
dynamic aspects of the course of T2D and adopt mechanisms that allow
them to self-correct, remain updated on the latest developments in

Table 1
Summary of the variables included in the LLM analysis.

Antropometric parameters Organizational parameters

Age; Q-score;
Sex; Years of clinical observation

(considered a proxy of duration
of diabetes);

Weight; Treatments
Height; Drug therapy for diabetes (type

and associations);
Body mass index (BMI); Drug therapy for dyslipidemia

(type and associations);
Systolic blood pressure (BP), diastolic BP; Drug therapy for hypertension

(present or not);
and derived variables or index. Additional drugs.

Biochemical parameters Diabetes complications and
comorbidities*

HbA1c at current visit; HbA1c at previous visit,
HbA1c drop speed, HbA1c gap between visits

Presence of nephropathy;

Fasting glucose; Presence of atrial fibrillation;
Triglycerides; History of heart failure;
Total cholesterol; History of stroke;
High-density lipoproteins (HDL); History of cardiac complications;
Low-density lipoproteins (LDL); Presence of vasculopathy;
Creatinine; Presence of lower limb

complications;
Estimated glomerular filtration rate (eGFR); Presence of neuropathy;
Micro–macro/albuminuria; Presence of foot complications;
Serum uric acid; Presence of eye complications;
Serum glutamic oxaloacetic transaminase
(GOT);

Presence of hepatopathy.

Serum glutamic pyruvic transaminase (GPT);
Mean, SD and trend for each variable and same
variables for follow-up visits.

* Further details on the classification of complications can be found in the
supplementary material of our previously published work [15].

N. Musacchio et al.
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Table 2
Characteristics of patients who experienced treatment inertia and those who did not, measured across two consecutive visits (T-Index), after treatment intensification
(T-intensify), and at least two years after the initial T-Index.

(continued on next page)

N. Musacchio et al.
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Table 2 (continued )

(continued on next page)
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diabetes care, and consequently avoid TI. Furthermore, we propose
incorporating the model described in this study into a patient’s elec-
tronic record to automatically alert the physician to the need for

immediate action, eliminating any potential for TI. By leveraging tech-
nology in this manner, we could help to improve the quality of care
provided to T2D patients.

Table 2 (continued )

N. Musacchio et al.
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5. Conclusion

Modern physicians are confronted with a vast array of variables
when making medical decisions, making it challenging to evaluate all
the data simultaneously. Luckily, the emergence of “augmented intelli-
gence” techniques offers crucial support to clinicians, helping prevent
treatment delays, reduce negative patient outcomes, and lower health-
care costs.

Our findings bring attention to the time-based risk of specific HbA1c
patterns, in which HbA1c levels, although not stably very high, remain
decompensated for prolonged periods, thereby increasing the risk of
complications. The results highlight the significance of the time duration
during which HbA1c remains decompensated, rather than solely
focusing on its levels. This study, alongside others utilizing cutting-edge

technologies to enhance medical decision-making, emphasizes the
importance of exploring areas such as TI. Through our real-world
analysis of a substantial patient cohort, we have discovered novel pa-
rameters that, when identified and addressed, can effectively mitigate
TI. This valuable insight opens the door to developing personalized
treatment strategies for patients with T2D.
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Fig. 3. ROC-AUC for the combination of descriptive and dynamic variables.

Table 3
Performance of the LLM analysis.

Parameters Values

ROC-Area under the curve (AUC) 0.81
Confidence interval (95 %) 0.793–0.820
Accuracy 0.71
Precision 0.80
Recall 0.71
F1 score 0.75

Table 4
Ranking of most relevant factors for Inertia-YES and Inertia-NO situations.

Relevant factors Threshold
Inertia-NO

Threshold
Inertia-YES

Relevance
(0–1)

Hemoglobin A1c (HbA1c)
at current visit

> 60 mmol/mol
(>7.6 %)

< 60 mmol/mol
(<7.6 %)

0.671

Mean HbA1c after T-Index > 61 mmol/mol
(>7.7 %)

< 61 mmol/mol
(<7.7 %)

0.388

Mean Interval between
two consecutive visits T-
Index

< 4 months > 4 months 0.186

HbA1c trend after T-Index
(yearly trend)

> +0.12 < +0.12 0.179

Fasting glucose > 190 < 160 0.174
Age at current visit > 67 OR < 55 > 60 AND < 67 0.172
HbA1c standard deviation
(SD) after T-Index

< +0.10 OR >

+0.57
0.111
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