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Abstract
We prove that every smooth closed connected manifold admits a smooth real-valued
function with only two critical values such that the set of minima (or maxima) can
be arbitrarily prescribed, as soon as this set is a finite subcomplex of the manifold
(we call a function of this type a Reeb function). In analogy with Reeb’s Sphere
Theorem, we use such functions to study the topology of the underlying manifold. In
dimension 3, we give a characterization of manifolds having a Heegaard splitting of
genus g in terms of the existence of certain Reeb functions. Similar results are proved
in dimension n ≥ 5.
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1 Introduction

In 1946 Reeb [12] proved the following result.

Reeb’s Sphere Theorem Let M be a smooth closed manifold of dimension n. Sup-
pose that there is a smooth function f : M → R with only two critical points, which
are also non-degenerate. Then M is homeomorphic to the n-sphere.
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908 A. Lerario et al.

Subsequently, Milnor [10] improved the theorem by relaxing the non-degeneracy
assumption for the two critical points.

In the present article we study smooth functions on closed manifolds having two
critical values (instead of two critical points), which are then the minimum and the
maximum, respectively. Such functions (which are defined below, see Definition 3)
will be called Reeb functions. Moreover, we will be able to keep some control on the
critical subset of a Reeb function. Some examples of Reeb functions are provided at
the beginning of Sect. 2.

It is a natural question to understand to what extent the knowledge of the set X0 of
minima and X1 of maxima of a Reeb function f : M → R determines the manifold
M (at least up to homeomorphisms). This problem is already interesting when X0, X1
are smooth submanifolds of M and, to our knowledge, it does not seem to have been
investigated in the literature. In order to address this question, in this paper, we will
consider Reeb functions whose critical sets X0 and X1 are finite subcomplexes of M .
Notice this requirement imposes restrictions only on the structure of the critical set, and
not the behaviour of the function near it (i.e., we allow f to assume the minimum and
the maximum values with arbitrary order of degeneracy). Similar results are known
when the function has more structure. An example is [3], where Gelbukh studied
Morse-Bott functions with two critical values and classified the surfaces that admit
such functions.

To startwith,weprove that every smooth closedmanifoldM admits aReeb function,
even with a prescribed set of minima (or maxima).

Theorem 1 Let M be a smooth closedmanifold, and let X � M be a finite subcomplex.
Then there exists a C∞ Reeb function f : M → [0, 1], having 0 and 1 as extrema,
such that f −1(0) = X.

The homology of maxima and minima of a Reeb function satisfy some “duality” rela-
tion, see Remark 12. For example, if M = Sn then the homology of X0 is isomorphic
to the homology of X1, with reversed indices. Moreover, as one could expect, M \ X1
deformation retracts to X0 and viceversa, see Lemma 11.

We can restate Reeb’s Sphere Theorem using the language of Reeb functions as
follows: a smooth closed manifold of dimension n admits a smooth Reeb function
with two points as extrema, if and only if it is homeomorphic to an n-sphere. What
happens if the set of minima andmaxima are finite subcomplexes? In dimension n = 3
we prove the following result.

Theorem 2 Let M be a smooth closed connected 3-manifold. Then the following con-
ditions are equivalent:

(1) there exists a Reeb function f : M → [0, 1] having connected 1-dimensional finite
subcomplexes of the same Euler characteristic χ as extrema, for some χ ≤ 1;

(2) the Heegaard genus of M is at most 1 − χ in the orientable case and 2 − 2χ in
the non-orientable case.

Results in the same spirit as of Theorem 2 can be proved in higher dimensions using
cobordism theory, see Corollary 16.
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On smooth functions with two critical values 909

2 Reeb’s functions

In the following, smoothmeansC∞, and diffeomorphisms between smoothmanifolds
are C∞ unless otherwise stated.

We recall that every smooth manifold has a compatible PL structure, and there-
fore a triangulation which turns out to be unique up to smooth ambient isotopy and
subdivisions. This makes available all the concepts and tools of PL topology in the
smooth category. In particular we can consider subcomplexes of smooth manifolds,
and a subcomplex is finite if and only if it is compact.

A subcomplex X of a smooth manifold M has regular neighborhoods in the PL
sense, namely closed neighborhoods of X in M that are PL submanifolds which can
be PL collapsed onto X . According to Hirsch [7] we call smooth regular neighbor-
hood of X in M a regular neighborhood whose boundary is a smooth codimension-1
submanifold of M .

A subcomplex X of a smooth manifold M is a spine for M if M can be PL collapsed
onto X , namely if M is a regular neighborhood of X . Spines always exist, seeMatveev
[9]. The reader is also referred to the classical book by Rourke and Sanderson [13] for
generalities on PL topology, triangulations, regular neighborhoods and collapsing.

Definition 3 Let M be a smooth closed manifold and let f : M → [a, b] be a Ck

function, with k ≥ 2 and a < b. We say that f is a Reeb function on M if f has a and
b as the only critical values (the extrema of f ). The subsets f −1(a) and f −1(b) are
the critical levels of f .

Without loss of generality, we assume throughout the paper that a = 0 and b = 1.
The simplest example of a Reeb function is a function on Sn with only two critical
points. Below we give some other examples.

Example 4 LetM be a smoothmanifold and g : Sn → [0, 1] be a smooth functionwith
only two critical points p0, p1 ∈ Sn . Then the function f : M × Sn → [0, 1] defined
by f (x, y) = g(y) is a Reeb function with X0 = M × {p0} and X1 = M × {p1}.
Example 5 Let K = R, C, H and denote by KPn the n-dimensional projective space
over K with homogeneous coordinates [x0, . . . , xn]. Let X0 = {xi = 0 | i ≤ k} ∼=
KPn−k−1 and X1 = {xi = 0 | i > k} ∼= KPk . The function f : KPn → [0, 1] defined
by

f (x) = |x0|2 + · · · + |xk |2
|x0|2 + · · · + |xn|2

is a Reeb function (in fact, also a Morse–Bott function).

Example 6 Let M ⊂ R
n be a smooth semialgebraic set and X ⊂ M be a basic

semialgebraic set (relative to M). There is an explicit way to define a Reeb function
f : M → R with f −1(0) = X . In fact, assuming that

X = {x ∈ R
n | g1(x) ≥ 0, . . . , gs(x) ≥ 0} ∩ M
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910 A. Lerario et al.

where gi ∈ R[x1, . . . , xn] for every i = 1, . . . , s, the function f can be constructed
as follows. First consider the functions fi : R

n → R such that

fi (x) =
{
0 gi (x) ≥ 0,

e
1

gi (x) gi (x) < 0.

Then set f = ∑s
i=1 fi |M . This example is also connected to the theory developed by

Durfee [1] and Dutertre [2].

Example 7 If f : M → [0, 1] is a Reeb function, then for every integer n > 0 the
function f n is also Reeb, with the same critical set of f but with a higher order of
degeneracy at zero. More generally, if g : I → I is a smooth map such that g′(t) �= 0
for all t ∈ (0, 1), then g ◦ f : M → [0, 1] is still a Reeb function.

Throughout the paper, we make use of the following notation. Given a function
f : M → R we set

Aε( f ) = {x ∈ M | f (x) ≥ ε} (the ε − superlevel of f )

Bε( f ) = {x ∈ M | f (x) ≤ ε} (the ε-sublevel of f ).

We recall the following well-known fact, which we state without proof (the reader
may refer to Lee [8] for a proof).

Lemma 8 Let M0, M1 be two smooth m-manifolds with non-empty boundary, and
suppose that there is a diffeomorphism ϕ : ∂M0 → ∂M1 between their boundaries.
Let f0 : M0 → [a, b] and f1 : M1 → [b, c] be Ck functions, 1 ≤ k ≤ ∞, such
that f −1

0 (b) = ∂M0 and f −1
1 (b) = ∂M1. Furthermore, we assume that ∇ f0 is non-

vanishing and pointing outwards along ∂M0, and ∇ f1 is non-vanishing and pointing
inwards along ∂M1, with respect to certain Riemannian metrics on M0 and M1. Then,
the manifolds M0 and M1, as well as the functions f0 and f1, can be glued together by
ϕ yielding a smooth manifold M = M0∪ϕ M1 and a Ck function f = f0∪ϕ f1 : M →
[a, c]. Moreover, this construction is unique up to Ck diffeomorphisms of M.

For the proof of Theorem 1 we will need the following two technical lemmas.

Lemma 9 (Existence of arbitrarily flat functions)Let {ck}k∈N be a sequence of positive
real numbers. There exists a smooth function γ : [0, 1] → R such that γ (0) = 0,
γ (1) > 0, γ ′(t) > 0 for t ∈ (0, 1] and for every k ∈ N

k∑
j=0

|γ ( j)(t)| ≤ ck ∀t ≤ 1

k
.

Proof Without loss of generality, we assume that the sequence {ck}k∈N is monotone
decreasing with c0 < 1. Consider the smooth function ϕ : [0, 1] → [0, 1] defined by:

ϕ(x) = e
−1
x

e
−1
x + e

−1
1−x

, for 0 < x < 1,
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On smooth functions with two critical values 911

ϕ(0) = 0 and ϕ(1) = 1. This is a monotone function on [0, 1] with ϕ(r)(0) = 0 =
ϕ(r)(1) for all r > 0. For every k ≥ 1 let us define the function ϕk : [ 1

k+1 ,
1
k ] → R by

ϕk(x) = akϕ(k(k + 1)x − k),

where the sequence {ak > 0}k≥1 is chosen in such a way that

sup
t∈[ 1

k+1 , 1k ]

k−2∑
j=0

|ϕ( j)
k (t)| ≤ ck

3
. (2.1)

By replacing ak with a possibly smaller positive number, we can assume that:

(1) {ak}k≥1 is monotone decreasing and that
∑

k≥1 ak = A < 1.
(2) for every k ≥ 1 we have

∑
j≥k+1 a j ≤ ck

3 ;

(3) denoting by σ = (
∑

j
1
j4

)1/2, for every k ≥ 1 we have (
∑

j≥k a
2
j )
1/2 ≤ ck

3σ .

Pick now the sequence {bk}k≥1 defined by bk = bk−1 − ak and b1 = 1 − a1, and
define f : [0, 1] → R to be the function

f (t) =
⎛
⎝∑

k≥1

(ϕk(t) + bk)χ[ 1
k+1 , 1k ](t)

⎞
⎠ − (1 − A),

where χS is the characteristic function of a subset S. The function f is smooth. In
fact, for every k > 1 we have

f |( 1
k+1 , 1k )(t) = ϕk(t) + bk − 1 + A and f |( 1k , 1

k−1 )(t) = ϕk−1(t) + bk−1 − 1 + A.

Therefore

f

((
1

k

)−)
= akϕ(1) + bk − 1 + A

= ak + bk − 1 + A (2.2)

and

f

((
1

k

)+)
= ak−1ϕ(0) + bk−1 − 1 + A

= bk−1 − 1 + A. (2.3)

Since, by definition, bk + ak = bk−1, then (2.2) and (2.3) imply that

f

((
1

k

)−)
= f

((
1

k

)+)
.
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912 A. Lerario et al.

This tells that f is continuous at the points of the form t = 1
k . Moreover, since all

derivatives of ϕ vanish at 0 and 1, then for every j ≥ 1

f ( j)

((
1

k

)−)
= 0 = f ( j)

((
1

k

)+)
.

This proves that f is smooth on (0, 1]. Since f (0) = 0 and for every j ≥ 1 we have

lim
t→0

f ( j)(t) = 0,

then f is smooth on [0, 1]. Note also that f (1) = b1 − (1 − A) = A − a1 > 0.
Finally, we define γ by:

γ (t) =
∫ t

0

∫ s

0
f (x) dx ds.

Then, γ (0) = 0 and γ (1) > 0. Moreover for every t ∈ (0, 1)

γ ′(t) =
∫ t

0
f (x) dx > 0,

since the integrand is non-negative and non-zero on any interval (0, t).
For t ≤ 1

k we have the following estimate for |γ (t)|:

|γ (t)| ≤
∫ 1

k

0

∫ 1
k

0
| f (x)| dx ds ≤ 1

k2
sup
t≤ 1

k

| f (t)| = 1

k2
sup

1
k+1≤t≤ 1

k

| f (t)|

≤ −1 + A + (1 − a1 − · · · − ak) = A − a1 − · · · − ak

=
∑
j≥k+1

a j ≤ ck
3

.

(2.4)

Notice that, since f is monotone, from the previous computation it also follows that

sup
t∈[0, 1k ]

| f (t)| = sup
t∈[ 1

k+1 , 1k ]
| f (t)| ≤ ck

3
.

Therefore, for t ≤ 1
k we have the following estimate for the derivative |γ ′(t)|:

|γ ′(t)| ≤
∫ 1

k

0
| f (x)| dx ≤ 1

k

ck
3

≤ ck
3

. (2.5)

123



On smooth functions with two critical values 913

Moreover, for t ≤ 1
k we have the following estimate for

∑k
j=2 |γ ( j)(t)|:

k∑
j=2

|γ ( j)(t)| =
k−2∑
j=0

| f ( j)(t)| ≤ sup
i≥k

sup
t∈[ 1

i+1 , 1i ]

k−2∑
j=0

|ϕ( j)
i (t)|

= sup
t∈[ 1

k+1 , 1k ]

k−2∑
j=0

|ϕ( j)
k (t)| ≤ ck

3
,

(2.6)

where in the last step we have used (2.1). Combining (2.4), (2.5) and (2.6) we get:

k∑
j=0

|γ ( j)(t)| ≤ ck for t ≤ 1

k
.

��
Lemma 10 Let M be a smooth manifold, and let X � Int(M) be a finite subcomplex.
Let also U be a compact, smooth regular neighborhood of X. Then there exists a C∞
function α : U → [0, 1] such that:

(1) α−1(0) = X and α−1(1) = ∂U;
(2) α has no critical values in (0, 1);
(3) the sublevels Bε(α) are smooth regular neighborhoods of X for every ε ∈ (0, 1].
Proof There is a triangulation of M such that the star st(X , M) of X is a regular
neighborhood of X in M . We set Ũ = st(X , M). Let us also consider the function
f̃ : Ũ → [0, 2] which is affine-linear on every simplex and which takes value zero
on X and value 2 on ∂Ũ . Observe that this function is piecewise smooth, and hence
Lipschitz. Let ṽ be the Lipschitz vector field on Ũ constructed as in [6, Lemma 2.3].
It follows from [7] that there exists a fundamental system of neighborhoods {Un}n≥1
of X in M such that

(1) U1 ⊂ Ũ and Un+1 ⊂ Int(Un) for every n ≥ 1;
(2) Xn = ∂Un is a smooth embedded submanifold of M of codimension one;
(3) the vector field ṽ is transversal to Xn for every n ≥ 1;
(4) Un \ Int(Un+1) is PL diffeomorphic to Xn × [ 1

n+1 ,
1
n ].

For every n ≥ 1 let now vn be a smooth vector field onUn \ Int(Un+1) which is suffi-
ciently close to ṽ in order to guarantee that the flow lines of vn give a diffeomorphism

ϕn : Xn ×
[

1

n + 1
,
1

n

]
→ Un \ Int(Un+1).

All these diffeomorphisms can be glued together to give a diffeomorphism

ϕ : X1 × (0, 1] → U1 \ X .
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914 A. Lerario et al.

Let π2 be the projection of X1 × (0, 1] on the second factor. Notice that, by the
uniqueness up to smooth isotopies of regular neighborhoods, we can assumeU = U1
and define the map α : U → [0, 1] such that

{
α
∣∣
U\X = γ ◦ π2 ◦ ϕ−1

α
∣∣
X ≡ 0,

where γ : [0, 1] → [0, 1] is an appropriate smooth function thatwewill now construct.
Such function will bemonotone, with nonzero derivative on (0, 1] andwith derivatives
that go to zero sufficiently fast at zero, in such a way that α will be smooth and with
no critical points in U other than the points in X .

For the construction of γ , denote β = π2 ◦ ϕ−1 and fix fiberwise norms on the jet
bundles J k(U , R) and J k(R, R). We denote both these norms by ‖ · ‖. Denoting by
j kp f ∈ Jp(X , M) the k-th jet of a smooth map f : X → M , we claim that for every
k ≥ 0 there exists p(k) > 0 such that every p ∈ U \ X and for every smooth function
γ : [0, 1] → R, we have

‖ j kp(γ ◦ β)‖ ≤ C(k) · ‖ j kβ(p)γ ‖ · ‖ j kpβ‖k, (2.7)

for some C(k) > 0. Denoting by (x1, . . . , xn) coordinates on U1, Faá di Bruno’s
formula reads:

∂k(γ ◦ β)

∂x1 · · · ∂xk (x(p)) =
∑

π∈Pk

γ (|π |)(β(p)) ·
∏
b∈π

∂ |b|β
∂xi1 · · · ∂xib

(x(p)),

where Pk denotes the set of all partitions π of the set {1, . . . , k} and “b ∈ π” means
that the variable b runs through the list of all of the blocks of the partition π . In
particular, from this formula we deduce that:

‖ j kp(γ ◦ β)‖ ≤ C1(k)

(
sup

j=0,...,k
|γ ( j)(β(p))|

) ∑
π∈Pk

∏
b∈π

∣∣∣∣ ∂ |b|β
∂xi1 · · · ∂xib

(x(p))

∣∣∣∣
≤ C2(k)

(
sup

j=0,...,k
|γ ( j)(β(p))|

) ∑
π∈Pk

‖ j kpβ‖|b|

≤ C3(k)‖ j kβ(p)γ ‖ · (#Pk) · ‖ j kpβ‖k
≤ C(k) · ‖ j kβ(p)γ ‖ · ‖ j kpβ‖k,

which is (2.7). For every k ≥ 0 set now

c̃k := C(k) sup
p∈ϕ(X1×[ 1

k+1 ,1])
‖ j kpβ‖k .
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On smooth functions with two critical values 915

From Lemma 9 (applied with the choice {ck = (c̃kk)−1}) we get a smooth func-
tion γ̃ : [0, 1] → R such that γ̃ (0) = 0, γ̃ (1) > 0, γ̃ ′(t) > 0 on (0, 1] and∑

j≤k |γ̃ ( j)(t)| ≤ 1
kc̃k

for all t ≤ 1
k .

We define our function as γ := γ̃ /γ̃ (1), so that γ (1) = 1. We claim that for every
� ≥ 0 and for every ε > 0 there exists m ≥ 0 such that ‖ j�p(γ ◦ β)‖ ≤ ε for all

p ∈ β−1([0, 1
m ]). This means that for every � ≥ 0 the �-th jet of γ ◦β goes uniformly

to zero as p approaches X . Hence, the extension of γ ◦ β to zero on X is smooth on
U1.

In order to prove the claim, let � ≥ 0, ε > 0 and pick m ≥ 0 such that

1

m
≤ min

{
1

�
, εγ̃ (1)

}
.

Let p = ϕ(x, t) be a point with t = β(p) ≤ 1
m and choose k ≥ m such that

1
k+1 ≤ t ≤ 1

k . Then:

‖ j�p(γ ◦ β)‖ ≤ ‖ j kp(γ ◦ β)‖
≤ C(k) · ‖ j kβ(p)γ ‖ · ‖ j kpβ‖k

= C(k)

γ̃ (1)
‖ j kβ(p)γ̃ ‖ · ‖ j kpβ‖k

= C(k)

γ̃ (1)

⎛
⎝ k∑

j=0

|γ̃ ( j)(β(p))|
⎞
⎠ · ‖ j kpβ‖k

≤ C(k)

γ̃ (1)

1

kc̃k
· ‖ j kpβ‖k

≤ 1

kγ̃ (1)
≤ 1

mγ̃ (1)
≤ ε,

which is what we wanted. Since γ̃ ′(t) > 0 on (0, 1], the same is true for γ ′(t) and
therefore α has no critical points other than the points in X . ��
Proof of Theorem 1 Without loss of generality we may assume that M is connected,
sincewe can construct theReeb function independently on each connected component.
Let α : U → [0, 1] be given by Lemma 10, whereU is a smooth regular neighborhood
of X inM . Let now V = M\Int(U ) and consider a spine Y for V . Using Lemma 10we
get a smooth regular neighborhood V ′ of Y in M and a function α′ : V ′ → [0, 1] with
the set ofminimaY ; using theuniqueness of regular neighborhoods,V is diffeomorphic
to V ′ and hence the function α′ can be defined on V itself. Set β = 1 − α′. We can
glue the functions α and β along the common boundary ∂U = ∂V , using Lemma 8.
The result is a Reeb function f on M with extrema X and Y , as desired. ��
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916 A. Lerario et al.

2.1 Relation betweenmaxima andminima

Lemma 11 Let M be a smooth, connected, compact manifold and let f : M → [0, 1]
be a Reeb function such that X0 = f −1(0) is a finite subcomplex. For every ε ∈ (0, 1)
there exists a smooth regular neighborhood T of X0 in M such that T ⊂ Int(Bε( f ))
and W = Bε( f )\ Int(T ) is an h-cobordism between ∂T and f −1(ε) = ∂Bε( f ). In
particular M\ f −1(1) deformation retracts to X0.

Proof Without loss of generality we assume that X0 is connected; the non-connected
case can be treated analogously, working separately on every connected component.

We observe first that the sublevels Bε( f ) are also connected. In fact, suppose by
contradiction that there exists 0 < a < 1 such that Ba( f ) is not connected. Denote
by C a connected component of Ba( f ) that does not contain X0. Let

b = min
x∈C f (x)

and fix x̄ ∈ C such that f (x̄) = b. This is a critical point for f that is not in X0 or
X1, so we get the contradiction.

Moreover the family of sublevels {Bε( f )}ε>0 is a fundamental system of neigh-
borhoods. In fact let V be a closed regular neighborhood of X0 and take

s = min
x∈∂V

f (x).

If we assume that B s
2
( f ) � Int V , then we can separate it as

(
B s

2
( f ) ∩ Int V

)
�

(
B s

2
( f ) ∩ (M \ V )

)
,

which leads to a contradiction, since B s
2
( f ) is connected.

Let α : U → [0, 1] be given by Lemma 10 and consider the family {Bε(α)}0<ε≤1
of smooth regular neighborhoods of X0 (recall that U = B1(α)). Let 0 < ε3 < ε2 <

ε1 < ε be such that

Bε3(α) ⊂ Int(Bε2( f )) ⊂ Bε2( f ) ⊂ Int(Bε1(α)) ⊂ Bε1(α) ⊂ Int(Bε( f )).

We set T = Bε3(α) and fix a Riemannian metric on M , so that we can consider the
gradients of f and α (and their flows). We can write W = W ′ ∪ f −1([ε2, ε]) with
W ′ = Bε2( f ) \ Int(T ). Following the flow of −∇ f one first deformation retracts
W onto W ′. Since W ′ ⊂ α−1([ε3, ε1]) ⊂ W , we can restrict to W ′ the deformation
retraction of α−1([ε3, ε1]) onto ∂T = α−1(ε3), given by the flow of −∇α. This gives
a deformation retraction of W onto ∂T . A similar reasoning, exchanging the roles of
α and f and using their gradients, yields a deformation retraction of W onto f −1(ε).
This proves the first part of the lemma, since the inclusions ∂T ↪→ W , f −1(ε) ↪→ W
are in particular homotopy equivalences.
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On smooth functions with two critical values 917

The second part of the lemma follows easily: M \ f −1(1) deformation retracts to
Bε( f ) using the flow of −∇ f ; Bε( f ) = W ∪ T deformation retracts to T (by the
previous part) and T deformation retracts to X0, since it is a regular neighborhood. ��
Remark 12 Suppose that M is a closed oriented n-manifold and let f : M → [0, 1] be
a Reeb function having as extrema two finite subcomplexes X0, X1 ⊂ M . There are
isomorphisms Hi (M, X1) ∼= Hi (M, M − X0) ∼= Hn−i (X0), for all i ≥ 0, the former
being induced by inclusion and using Lemma 11, while the latter is a well-known
duality (see for example [4, Proposition 3.46]). Then, the long exact sequence of the
pair (M, X1) yields the following long exact sequence

· · · → Hi (X1) → Hi (M) → Hn−i (X0) → Hi−1(X1) → · · · .

In the non-orientable case an analogous long exact sequence holdswithZ2 coefficients.
This means that the image of the inclusion Hi (X1) → Hi (M) lies in the orthog-

onal complement of the restriction Hn−i (M) → Hn−i (X0). This gives a necessary
condition for two finite subcomplexes of M to be the extrema of a Reeb function.

In the particular case of M = Sn we can notice something more. Alexander duality
in fact states that H̃i (Sn\X0) ∼= H̃n−i−1(X0) and therefore

H̃i (X1) ∼= H̃n−i−1(X0).

This implies for example that the sum of the Betti numbers of X0 must coincide with
the sum of the Betti numbers of X1.

3 Dimension 3

We prove now Theorem 2 from Sect. 1, whose statement we recall here for the reader’s
convenience.

Theorem 2 Let M be a smooth closed connected 3-manifold. Then the following con-
ditions are equivalent:

(1) there exists a Reeb function f : M → [0, 1] having connected 1-dimensional finite
subcomplexes of the same Euler characteristic χ as extrema, for some χ ≤ 1;

(2) the Heegaard genus of M is at most 1 − χ in the orientable case and 2 − 2χ in
the non-orientable case.

Proof (1) ⇒ (2). Given ε > 0, by Lemma 11 there exists a regular neighborhood T
of X0 such that T ⊂ Int(Bε( f )) and W = Bε( f )\ Int(T ) is an h-cobordism. By [5,
Theorem 10.2], it follows that this cobordism is a product, that is W ∼= ∂T × [0, 1].
Since T is a genus-g handlebody, with g = 1−χ in the orientable case and g = 2−2χ
in the non-orientable case, it follows that Bε( f ) = T ∪ W is a genus-g handlebody.
Similarly, the superlevel Aε( f ) is a genus-g handlebody and the Heegaard genus of
M = Bε( f ) ∪∂ Aε( f ) is at most g.

(2) ⇒ (1). Consider a genus g Heegaard splitting of M = P ∪∂ Q, where P and Q
are 3-dimensional handlebodies of genus g, with g = 1−χ in the orientable case and
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g = 2− 2χ in the non-orientable case. Then there are connected graphs X0 ⊂ P and
X1 ⊂ Q with Euler characteristic χ , such that P is a regular neighborhood of X0 and
Q is a regular neighborhood of X1. The proof of the claim follows immediately from
Lemma 10 and the uniqueness of regular neihgborhoods, as in the proof of Theorem 1.

��
Remark 13 In the proof of the first implication of the previous theorem we used [5,
Theorem 10.2]. The application of this result does not need the Poincaré Conjec-
ture because the sublevel Bε( f ) can be embedded into a handlebody (hence in R

3)
following the flow of −∇ f . In particular Bε( f ) does not contain fake 3-cells.

Remark 14 If M is a closed, orientable 3-manifold and f : M → [0, 1] is a Reeb
function such that X0 ∼= X1 ∼= Sk are smoothly embedded k-spheres, then one can
prove that for k = 0, and hence X0 ∼= X1 ∼= {−1, 1}, we have M ∼= S3 � S3.
This case follows from Milnor’s version of Reeb’s Sphere Theorem, by looking at
the two connected components one by one. For k = 2, following the same lines
as in Proposition 15 below, and using the fact that the h-cobordism holds true also
in dimension n = 3, being equivalent to the Poincaré Conjecture, one proves that
M ∼= S1 × S2.

4 Higher dimensions

Consider amanifoldM of dimension n and a Reeb functionwith two smoothly embed-
ded copies of Sk , k < n, as extrema. If we restrict to n ≥ 6, we may use cobordism
techniques and prove the following statements.

Proposition 15 Let M be a smooth closed connected orientable manifold of dimension
n ≥ 6. Suppose that there exists a Reeb function f : M → [0, 1] whose extrema are
finite subcomplexes with fundamental group having trivial Whitehead group. Then
Bε( f ) and Aε( f ) are smooth regular neighborhoods of X0 and X1, respectively.

Proof As in the proof of Theorem 2, for ε > 0, by Lemma 11 there exists a regular
neighborhood T0 of X0 such that T0 ⊂ Int(Bε( f )), and W0 = Bε( f ) \ Int(T0) is an
h-cobordism. Since X0 has trivial Whitehead group, by the s-cobordism Theorem [11,
Sect. 10] we conclude that W0 is trivial, hence W0 ∼= ∂T0 × [0, 1]. The same holds
for a regular neighborhood T1 of X1, because of the triviality of the Whitehead group
of X1. Hence, Bε( f ) and Aε( f ) themselves are smooth regular neighborhoods of the
respective subcomplex. ��

From this result, we can then deduce the following corollary.

Corollary 16 Let M be a smooth closed connected orientable manifold of dimension
n ≥ 6 and let 1 ≤ k < n. Then the following conditions are equivalent:

(1) there exists aReeb function f : M → [0, 1]with two smoothly embedded k-spheres
as extrema, with trivial normal bundle;

(2) M is obtained by gluing two copies of Sk × Dn−k along their boundaries with a
diffeomorphism of Sk × Sn−k−1 = ∂(Sk × Dn−k).
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Proof (1) ⇒ (2). Since the preimages X0, X1 of the two critical values are spheres,
their Whitehead group is trivial. Then, Bε( f ) and Aε( f ) are diffeomorphic to the
normal bundle Sk × Dn−k , by Proposition 15. The claim follows.

(2) ⇒ (1). This direction is trivial. ��
Notice in particular that for k = n − 1, M is diffeomorphic to Sn−1 × S1.

5 Concluding remarks and open questions

Remark 17 The s-cobordism theorem still holds true in dimension 5 topologically, so
Proposition 15 and Corollary 16 can be extended to dimension 5 up to homeomor-
phisms instead of diffeomorphisms. However 5-dimensional s-cobordism theorem
fails in the smooth category. Indeed, any two homeomorphic but not diffeomorphic
closed smooth simply connected 4-manifolds are known to be smoothly h-cobordant.

In dimension 4, the h-cobordism theorem holds topologically in the simply con-
nected case, while in the smooth category it is equivalent to the 4-dimensional Smooth
Poincaré Conjecture, which is still open. It would be intriguing to investigate an anal-
ogous to Corollary 16 in dimension 4, in the smooth category.

Remark 18 If f : M → [0, 1] is a Reeb function with extrema X0, X1 ⊂ M , the flow
of ∇ f , with respect to a fixed Riemannian metric, yields a diffeomorphism

M \ (X0 ∪ X1) ∼= f −1(ε) × R,

for any ε ∈ (0, 1), and f −1(ε) is a smooth closed hypersurface in M . In particular,
M \ (X0 ∪ X1) has finitely many ends, because the connected components of X0 ∪ X1
can be identified with the end points of M \ (X0 ∪ X1), which, in turn, correspond
to the connected components of f −1(ε). Moreover, if M is connected and X0 and
X1 have topological dimension at most dim M − 2, then they do not disconnect M
and hence they must be connected. Therefore, certain subspaces of M (for example,
a Cantor set) cannot occur as extrema of a Reeb function.

So, the following question arises naturally.

Question 19 Which subspaces of a closed manifold can be realized as one of the
extrema of a certain Reeb function?

Another question is motivated by our constructions in Lemma 10 and in Theorem 1,
which produce Reeb functions admitting a collapsing pseudo-gradient vector field v,
that is, the flow lines of v (resp.−v) give a collapsing of M \X0 to X1 (resp. of M \X1
to X0).

Question 20 Does there exist a closed manifold M with a Reeb function f : M →
[0, 1] with no collapsing pseudo-gradient vector field?
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