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ABSTRACT The recent and rapid progresses in Machine Learning (ML) tools and methodologies paved the
way for an accessible market of ML services. In principle, small and medium-sized enterprises, as well as big
companies, could act as providers and consumers of services, resulting in an intense exchange ofML services
where a consumer may ask many providers for a service preview based on its particular business case, that
is, its data. In practice, however, many potential service consumers are reluctant to release their data, when
seeking for ML services, because of privacy or intellectual property concerns. As a consequence, the market
of ML services is not as fluid as it could be. An alternative to providing real data when looking for an ML
service consists in generating and releasing synthetic data. The synthetic data should 1) allow the service
provider to preview an ML service whose performance is predictive of the one the same service will achieve
on the real data; and 2) prevent the disclosure of the real data. In this paper, we propose a data synthesis
technique tailored to a family of very relevant business cases: supervised and unsupervised learning on single-
table datasets and relational datasets. Our technique is based on generative deep learning models and we
instantiate it in three variants: standard Variational Autoencoders (VAEs), β-VAEs, and Introspective VAEs.
We experimentally evaluate the two variants to measure the degree to which they meet the two requirements
above, using several performance indexes that capture different aspects of the quality of the generated data.
The results suggest that data synthesis is a practical answer to the need of decoupling ML service providers
and consumers and, hence, can favor the arising of an active and accessible market of ML services.

INDEX TERMS Synthetic data, variational auto encoders, data privacy, tabular data.

I. INTRODUCTION
An essential part of the European Commission (EC) digi-
tal strategy is titled ‘‘Shaping Europe’s Digital Future’’ [2].
It aims at setting the worldwide standard for horizontal and
vertical data sharing through the ‘‘Towards Common Data
Spaces’’ initiative [3]. The main goal is to facilitate an effi-
cient flow of data within the EU for public as well as private
sector data. However, establishing these common data spaces
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is difficult to combine with the EC goal of giving citizens
more control and protection of their data.

The absence of such common data spaces restricts business
and research opportunities, as use of data is a determin-
ing factor in the productivity of organizations. Advances
in data management are typically easily incorporated into
a practical setting. Data analysis, however, tends to be a
more convoluted process. While Machine Learning (ML)
tools provide sophisticated analytic opportunities, for most
small and medium-sized enterprises they are perceived as
esoteric, requiring a very specific skill set to be put to good
use. In consequence, data analysis is often outsourced to
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a consultancy company or a dedicated internal department.
However, topics such as data protection and confidentiality
have entered public discourse and raised concern. This has
forced organizations to reflect on the role of data in their
operations. Legislation such as the General Data Protection
Regulation (GDPR) and the California Consumer PrivacyAct
(CCPA) has further complicated the use of data, particularly
its transfer to third-party analysts.

Data security can be characterized through three risk fac-
tors [4]: (a) the risk of identifying individual records; (b) the
risk of linking records to within the dataset or across datasets;
(c) the risk of inferring confidential parameter values in a
data set. Anonymization techniques are a common way of
coping with these risks. Anonymization consists in masking,
permuting, generalizing and/or distorting records to make
their origins opaque. Unfortunately, anonymization tech-
niques have been shown to be susceptible to all three risks [5].
Moreover, the degree of anonymization directly affects the
quality of the information still contained in the dataset.

The risk of re-identification in anonymized datasets is not
just a theoretical concern. De Montjoye et al. [6] showed that
four data points (location and time of the purchase using a
credit card) are enough to uniquely re-identify 90% of indi-
viduals. Indeed, many anecdotal evidences appear to confirm
the issues of anonymization with respect to re-identification.
In 1997, the Massachusetts Governor’s medical records
were identified by matching anonymous data from medical
meetings with publicly available voter registration data [7].
In 2006, Netflix published part of its subscribers’ viewing
histories: it then turned out that users could be re-identified
through Internet Movie Database (IMDb) data [8], forcing
Netflix to remove the data mere days after the publication.
A customer sued for breach of privacy; Netflix settled. These
cases stress the need for a methodology to securely obtain
reliable analytic results without the risk of re-identification.

Deep learning (DL)-based generative models provide a
reliable alternative to data anonymization [9]. Generative
models infer patterns from a real dataset, that can subse-
quently be used to generate highly realistic, yet fully artificial
data points. Resulting artificial datasets closely mimic the
real datasets, but do not contain any sensitive information.
As such, artificial datasets can potentially be transferred with-
out breaching privacy legislation, while the quality of the
extracted information is on a par with the original dataset.

To date, most studies on generative models were conducted
in the context of image generation (e.g., [10], [11]). These
studies have introduced rigorous methodological frameworks
and pivotal insights. However, the focus on image generation
is restrictive, as most business cases are based on data in
tabular form. That is, business data is organized in one or
more tables in which rows represent entities, individuals,
or individual actions and values on columns represent their
properties. When the data span across more than one table,
there are usually dedicated columns for linking entities from
one table to another and multiple rows and columns can have

intricate inter-dependencies. This case is usually referred to
as relational data. A further difficulty in generating tabular
data is the presence of several data types [12] (for example,
categorical and continuous attributes) and the fact that some
cells (column values for rows) can be empty, i.e., there can be
missing values. These peculiarities call for a novel approach.

In this paper, we propose a pipeline for generating synthetic
data for the kind of business scenario described above. Our
contribution is twofold. First, we formally state the problem
of synthetic data generation for the case of tabular data (pos-
sibly relational) with heterogeneous data types and missing
values. In this problem statement, we also define a set of
performance indexes that are suitable to assess any solution
(i.e., any synthetic data generation technique for tabular data)
along two axes: (a) the degree towhich the technique is able to
generate data that is useful as a replacement for the original
data while working with ML services (utility-preservation)
and (b) the degree to which the technique prevents the dis-
closure of information about the entities represented in the
original data from the synthetic data (disclosure-averseness).
For the former axis, we consider the concrete case in which
a ML service provider builds an ML system based on the
synthetic data and the client can use the quality of the built
system as a predictor for the quality of the same kind of
system built on the original data. As performance indexes,
we consider both intrinsic (i.e., evaluated using merely
properties of original and synthetic data sets) and extrinsic
(i.e., evaluated through actual ML systems) measures.

Second, we design, describe in detail, and experimentally
evaluate a synthetic data generation pipeline for the case
when original data is tabular (possibly relational) and exhibits
the practically relevant peculiarities described above: het-
erogeneous data types and missing values. Our pipeline is
based on Variational Autoencoders (VAEs), that we exploit in
three variants: vanilla VAEs, β-VAE, and introspective VAEs.
Central to this approach is the introduction of a novel data
pre-processing methodology that we designed to accurately
model missing data values and temporal data attributes with
seasonality. We experimentally evaluate our pipeline on three
publicly available datasets from the UCI Machine Learning
Repository [1] and one custom relational dataset. Results
indicate that our approach is able to generate synthetic data
with strong utility-preservation and disclosure-averseness.

In this work, we chose VAE-based models for synthetic
data generation. Alternatively, generative adversarial meth-
ods (GANs) could have been chosen. However, training this
latter model involves starting with randomly generated data
points from a latent space. While this works well for image
processing, it is inefficient in the context of tabular data,
where more structure is imposed by the multitude of possi-
ble data types. Reliance on random initially sampled points
hinder the robustness of the output for tabular data. We have,
however, also included introspective VAE models. These
combine the strengths of both VAE and GAN-based methods
by inferring patterns directly from the data (like VAE-based
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models), but also using a discriminator network for fine-
tuning results (like GAN-based models). In particular, the
inclusion of a discriminator helps to identify relationships
that are causal rather than merely correlations.

The remainder of this paper is organized as follows.
In Section II we survey relevant previous works that dealt
with the task of generating synthetic data (Section II-A) and
we provide the legal framework for data privacy preservation
(Section II-B). In Section III-A we give the formal prob-
lem statement for synthetic data generation for tabular data
with heterogeneous data types and missing values; in this
part of the paper, in Sections III-C1 and III-C2, we also
define the performance indexes we propose for assessing
any solution to the problem. In Section IV we describe
in detail our approach, including the data pre-processing
steps (Section IV-A) and the way we use VAEs to generate
synthetic data (Section IV-B). In Section V we present the
experimental evaluation we performed to assess our approach
and discuss the results. Finally, in Section VI, we draw the
conclusions.

II. RELATED WORKS
A. DL FOR DATA SYNTHESIS
Most previous studies addressed the problem of synthetic
data generation aiming at solving one of the two following
problems: (a) the scarcity of real, actual data for training a
ML system; (b) the need of not disclosing some information
when giving the real data away. In both cases, DL proved to
be an effective tool.

Su et al. [13] show that a combination of real and artificial
data resulted in an increase in performance in image pro-
cessing. In 2019, a purely synthetic dataset was used to train
a Convolutional Neural Network (CNN) for object detec-
tion purposes [14]. Park et al. [12] developed an algorithm
based on Generative Adversarial Networks (GANs) with an
additional classifier named table-GAN to generate synthetic
data that can be used to train machine learning models. The
resulting models are subsequently applicable to the original
data set. In Chatterjee et al. [15], the authors combine GANs
with transfer learning to augment datasets to better train
ML algorithms for image classification. Castelli et al. [16]
consider the problem of fault detection in wireless networks
based on data obtained through monitoring: in order to miti-
gate the scarcity of data, the authors propose the use of a GAN
(and a variant named Wasserstein GAN) to generate syn-
thetic telecommunication data related to Wi-Fi signal quality.
These studies indicate that findings obtained through artifi-
cial datasets are also representative of the original dataset.
Oliveira et al. [17] use VAE-based models for the design of
novel molecules, and the prediction of their properties.

Studies that coped with data synthesis with the motivation
of non-disclosure deal more commonly with tabular data.
Three recent articles have shown the potential to generate tab-
ular data with one record per entry using generative models.
Xu et al. [18] propose a conditional GAN named CTGAN

where a conditional generator is used to synthesize eight
different datasets. Xu and Veeramachaneni [19] employ both
a GAN variation named Tabular GAN (TGAN) to address
the same problem. Li et al. [20] experimentally show that
synthetic data generated with GANs is sufficiently protected
against attacks aiming to identify whether specific synthetic
data points are also present in the real dataset. They show this
for both images and on single-table tabular data. All three
studies focused on tabular data containing continuous and
categorical data-types. All three papers only focus on data
with one record per entry, relying on GAN models. In our
study, we show that methods based on VAE have an equally
promising performance. Moreover, these models are adapted
to generate the more complex, yet practically relevant class
of relational datasets.

B. LEGAL FRAMEWORK FOR DATA PRIVACY
The General Data Protection Act (GDPR [21], [22]) came
into effect in 2018. The core principle of this legislation
is to protect the fundamental right of EU citizens over the
processing of their personal data. This is further echoed by
the European Commission (EC) strategy ‘‘Shaping Europe’s
Digital Future’’ [2]. At the same time, the ‘‘Towards Com-
mon Data Spaces’’ initiative will facilitate enhanced data
exchange [3]. An important part of the initiative is the Data
Governance Act, adopted in 2021 [23]. This act expressly
states the need for data sharing.

The conflict between data protection on the one hand and
the need for increased shared data spaces on the other is diffi-
cult to manage. Currently, Recital 26 of the GDPR states that
it does not apply to anonymous information. Thus, the use of
anaymous data could be a potential option in achieving both
objectives. However, the definition of the term ‘‘anonymous’’
is subject to interpretation. The same GDPR article clarifies
that anonymous information is deemed as such if it does not
relate to ‘‘an identified or identifiable natural person’’. To be
rendered anonymous, personal data shall be processed and
used in such amanner that ‘‘the data subject is not or no longer
identifiable’’([22]).

Neither the GDPR nor its predecessor, Directive
95/46/EC [24], clarify when data can be considered suf-
ficiently anonymous. A working definition is, however,
provided in Article 4 of Regulation EU 2016679 [25]. This
Article defines ‘‘personal data’’ in terms of twelve attribute
categories that are lead to re-identification susceptibility
(name, identification number, location data, online identifier,
specific physical, physiological, genetic, biometric, mental,
economic, cultural, and social identity data). Natural persons
should be protected against both direct and indirect identifi-
cation through these attribute classes. The directive does not
further specify indirect identification processes.

A more concrete conceptualization of (indirect) identi-
fication is provided by the ‘‘Article 29 Working Party on
the Protection of Individuals with regard to the Processing
of Personal Data’’ (WP29 [4]). In Opinion 03/2016 of the
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WP29, three data attacks associated with data exchange are
introduced, against which protection is required:

Re-identification attack, in which the attacker identifies an
individual in the (anonymized) dataset.

Linkage attack, in which the attacker can link an indi-
vidual’s record in the (anonymized) dataset to another
record belonging to the same individual. This other
record may be in the same dataset, or a different avail-
able dataset.

Parameter inference attack, in which the attacker can
deduce the value of a parameter from the data.

Thus, GDPR compliance requires that data is sufficiently
anonymous, so that none of these attacks are effective, regard-
less of their implementation.

To render the attacks inapplicable, data needs to be suffi-
ciently anonymized through some de-identification process
prior to its transfer. Processed data must then not contain any
link between the information and the original data subject.
Neither the GDPR, nor Directive 95/46/EC clarify how such
a de-identification process should or could be performed.
Opinion 05/2014 of WP29 classifies data anonymization
techniques common in practice into three categories: random-
ization, generalization, and pseudonymization.
Randomization is achieved through adding noise to the

date (‘‘noise addition’’; ‘‘differential privacy’’) or by per-
muting attribute values (‘‘permutation’’). Noise addition is
a collection of methods that alter attribute values. When
applying noise addition, it is important to alter values enough
to obscure personal information. At the same time, such
alterations should not remove the overall distribution of the
dataset, as this renders the anonymized data useless for sta-
tistical analysis. Noise addition techniques add noise once
to the data, prior to its exchange. Differential privacy is a
related technique, in which the noise is added ad hoc when
data is queried. Permutation is the shuffling of a number of
attribute values. After permutation, the values of (some of the)
attributes no longer belong to the corresponding individual.
Generalization is applied when specific values in a dataset

are replaced by more general ones. This reduces the risk
of individuals with highly specific attribute values being re-
identified. For instance, in certain datasets, an individual’s
place of birth may be so unique that it is easy to infer the
individual from it. Using country of birth (a more general
category) instead reduces the risk of a re-identification attack,
as more individuals share this attribute value. The most
common generalization method is k-anonymity, in which
attributes are generalized to the point where at least k indi-
viduals share each value. Note that k-anonymity results in
a loss of information, as the specific values are removed.
A further generalization step is l-diversity. This mechanism
imposes the constraint that in each of the classes with at
least k values, the remaining attributes take on at least l dis-
tinct values. This further reduces the risk of re-identification
and linkage attacks. In the previous example, knowing
an individual’s country of birth is now insufficient for a

re-identification attack. Not only are there at least k individ-
uals with the same country of birth, there are also at least
l highly distinctive records associated with them. As the
combination of k-anonimity and l-diversity may distort
the original data set, an additional constraint, t-closeness,
is introduced. This requires that each value is present as
many times as needed to mimic the initial distribution of each
attribute.
Pseudonymization is simply the replacement of one

attribute (typically a unique identifier or other attribute
with unique values) by another. Pseudonymization can help
reduce linkability, but it cannot be relied on exclusively for
anonymization. Pseudonymization methods rely on methods
from encryption to assign the pseudonyms.

Noise addition-anonymized data was shown susceptible
to re-identification and linkage attacks in practical cases
[8], [13]. It offers no protection against parameter inference
attacks and is insufficient as a standalone anonymization
method [4]. Similar arguments can be made about differential
privacy. Likewise, in datasets anonymized through permu-
tation, correlations between parameters make inverting the
permutation operations possible. As such, all three attacks
can still be executed successfully [4].

Likewise, generalization techniques remove a lot of the
information contained in a dataset, yet offer limited protec-
tion. While the risks of re-identification and linkage attacks
is reduced after generalization, parameter inference attacks
can still be executed successfully. This is because correlations
between parameters are still contained in the data. These can
be exploited to infer properties of the generalized classes of
subjects.

Data obtained after applying pseudonymization cannot be
considered fully anonymized [4]. Individuals can easily be re-
identified using values of other attributes. These values also
make linkage attacks highly applicable. Non-pseudonymized
attributes are not even altered, hence mere inspection of the
data can already be considered an attribute inference attack.
The methods should therefore be considered merely an addi-
tional layer of protection.

In conclusion, the traditional anonymization methods
insufficiently protect against the three types of attacks.
As such, these methods are not in line with the GDPR reg-
ulation, explicitly demanding such protection. Furthermore,
the degree of protection these methods provide is negatively
correlated with the degree to which they dismantle the origi-
nal data. For instance, data anonymized using noise addition
can only be considered anonymized if the impact of the noise
outweighs the information contained in the dataset [4]. When
combining multiple anonymization methods, the quality of
the information diminishes even further.
Synthetic data generated using deep generative models

form a new paradigm in secure data transfer. Every single
record is artificially generated, bearing no relation to entities
in the original database. Synthetic data generation removes
any link between available data and the individual. When
using artificial data, the singularity of some records may
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not be easily attributed to a single data subject (e.g., very
specific location data). Aminor risk with generativemodels is
that they may overfit, learning and replicating exact patterns
rather than randomly sampled ones. This can in theory lead
to successful re-identification and linkage attacks even with
synthetic data. However, this risk is only significant in small
datasets and mechanisms are available to avoid this from
occurring. In consequence, synthetic data is more defensible
from a legal perspective.

III. DEFINITIONS AND PROBLEM STATEMENT
We consider the case where an organization (customer) is
looking for a ML-based solution provided by another organi-
zation (provider). The customer aims at obtaining a preview
of the solution from the provider based on its customer,
problem-specific data. However, the customer does not want
to give the data to the provider, nor to disclose the underlying
information. For this reason, the customer wants to generate
some synthetic data such that the preview of the solution
based on the simulated data estimates the quality of the
solution that would be based on the actual problem-specific
data.

In the next sections, we define this scenario in detail, intro-
ducing formal definitions for the key concepts and formally
stating the problem to be solved.

A. DATA
A dataset D is a collection of one or more tables {T1,T2, . . . }.
A table T is a collection of rows {t1, . . . , tn}. A row t is a tuple
defined over a sequence of attributesA(T ) = (a1, . . . , ap) and
represents an entity in the real world: we denote by v(t, a) ∈

V (T , a) ∪ ∅ the value of the attribute a for the row t , with
V (T , a) being the domain of the attribute a and ∅ represent-
ing the undefined value (i.e., v(t, a) = ∅ means that a is not
defined for t). We say that an attribute a is unique for a table
T if and only if (a) ∀ti, tj ∈ T , ti ̸= tj ⇒ v(ti, a) ̸= v(tj, a)
and (b) a is always defined in T .

We say that a dataset D is relational if the following
conditions hold: (a) it contains at least two tables; (b) at
least one primary table T ⋆ has a unique attribute a⋆; (c) for
each other secondary table T in the dataset, A(T ) ∋ a⋆ and
∀t ∈ T , ∃t⋆ ∈ T ⋆

: v(t, a⋆) = v(t⋆, a⋆). Intuitively, a rela-
tional dataset is a dataset with a primary table T ⋆ describing
some entities, one row per entity, and other tables describing
some other entities, each one linked to one specific entity
of T ⋆. In this work, we deal with two kinds of datasets: those
containing one table, that we call single-table datasets, and
the relational ones.

The type of an attribute a determines the nature of its
domain V (T , a). We consider five cases:

• a real-valued attribute has a domain V (T , a) ⊆ R;
• a discrete attribute has a domain V (T , a) ⊆ Z;
• a time attribute has a domain V (T , a) ⊆ N and its values
represent time instants;

• a categorical attribute has a finite domain V (T , a) con-
sisting of non-numerical items and without a natural
ordering;

• a binary attribute has a domain V (T , a) with only two
values.

Without loss of generality, we assume that, in relational
datasets, the unique attribute a⋆ of the primary table T ⋆ is
of type discrete and its values are 1, 2, · · · ∈ N, i.e., for each
ti ∈ T ⋆, v(ti, a⋆) = i.
We say that a dataset D′ is compatible with a dataset D

if the following conditions hold: (a) D and D′ contain the
same number of tables; (b) there exists a one-to-one mapping
φ : D → D′ between tables of D and tables in D′ such that
a table T and its image T ′

= φ(T ) have the same attributes
and the attributes have the same domains, i.e., A(T ) = A(T ′)
and ∀a ∈ A(T ),V (T , a) = V (T ′, a). Clearly, every dataset D
is compatible with itself.

As an example, consider a relational dataset containing
a table T ⋆

user describing users, with the |A(T ⋆
user)| =

4 attributes id⋆, age, country, gender, id⋆ being
unique, and a table Tpurchases describing purchases
made by users, with the |A(Tpurchases)| = 5 attributes
id⋆, prodId, quantity, date, prodPrice. The
attributes id⋆, prodId, gender, and country would
be categorical; age and quantity would be dis-
crete; prodPrice would be real-valued (likely, with
V (prodPrice,Tpurchases) = R+).

B. ML-BASED SOLUTION AND EFFECTIVENESS METRIC
The use cases we envision for synthetic data are supervised
learning problems, that include the very practically relevant
problems of classification and regression.

More formally, given a dataset D with at least one table T
with a target attribute â, a problem consists in finding a way
for predicting the value v(t, â) of â for a row t for which the
values of the other attributes {a1, a2, . . . } = A(T ) \ {̂a} are
known, i.e., in finding a model m : V (a1,T ) × V (a2,T ) ×

· · · → V (̂a,T ) such that m(t) ≈ v(t, â).
Given a problem, i.e., a tripletD,T , â, aML-based solution

is a procedure that, given a learning dataset D′ compatible
with D, outputs a model m for the problem.

An effectiveness metric is a procedure that, given a model
m and a testing dataset Dtest compatible with the one on
which the model has been built, outputs a numerical value
e(m,Dtest) whose semantic is, without loss of generality,
the greater, the more useful the model for solving the
problem.

As an example consider the relational dataset D composed
of the tables T ⋆

user and Tpurchases described above. A prob-
lem might be the one of predicting â = gender. A possible
solution would be the one of learning a model with Random
Forest using age and country as features. An effectiveness
metric could the accuracy of the model on the testing dataset.
A likely better solution might involve some processing of
the other table Tpurchases (i.e., its corresponding table in
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the learning dataset): for this solution, the accuracy might be
greater.

C. SYNTHETIC DATA GENERATION
The goal of this study is to propose a method that, given an
original datasetD, produces a compatible synthetic dataset D̂
such that:
(a) for every problem based on D, every solution of that

problem, and every effectiveness metric, the effective-
ness of the solution built on D̂ well estimates the
effectiveness of the solution build on D;

(b) does not disclose any information about the real-world
entities described by D.

In other words, D̂ should be utility-preserving with respect
to D, because it should allow to predict the utility of any
solution in solving any problem based on D—in particular,
it should allow to tell apart good solutions, i.e., those with
great effectiveness, and bad solutions. And D̂ should be
disclosure-averse with respect to D, because it should not
reveal information about entities described in D.
Because (i) the set of combinations of problem, solution,

effectiveness metric is potentially infinite and (ii) measuring
the degree to which the information is disclosed is hard,
strictly verifying the two conditions above in practice is very
hard. To overcome this limitation, in this paper we introduce
a few ways for measuring utility-preserving and disclosure-
averse abilities of a synthetic dataset. We present them in the
following sections.

1) UTILITY-PRESERVATION (UP)
We propose three ways for measuring the utility-preservation
(UP) of a synthetic dataset D̂ with respect to a dataset D.
One of them is extrinsic, i.e., it measures UP considering the
effects of using D̂ after using it for building a solution to a
problem. The other two are intrinsic, i.e., they do not use D̂
for actually building solutions and instead take into account
some properties of D̂ and D.

a: MODEL COMPATIBILITY (MC)
The model compatibility simply instantiates the idea that the
greater the UP, the closer the effectiveness of a model m̂ built
on D̂ to the effectiveness of a model m build on D, when both
are assessed onD. As such, MC is an extrinsic measure of UP.

More formally, given a problem, a solution, and an effec-
tiveness metric e, we define the MC of D̂ with respect to D
as:

MC
(
D̂,D

)
=

∣∣∣∣∣1 −
e (m,Dtest)

e
(
m̂,Dtest

) ∣∣∣∣∣ (1)

where Dtest is a portion of D compatible with D, m is a model
learned with the solution on the remaining portion Dtrain of
D, and m̂ is a model learned with the solution on D̂.
In practice, MC(D̂,D) considers the ratio between the

effectiveness of the model learned on (a portion of) the
original dataset and assessed on (a different portion of)

the original dataset and the effectiveness of a model learned
on the synthetic dataset D̂ and assessed on (a portion of)
the original dataset. The closer the two effectiveness values,
the closer MC(D̂,D) to 0. That is, the more similar D̂ and D.

In the experiments presented in Section V, we use MC
by choosing a few problems and a few solutions in order to
obtain an aggregate measure that averages possible lucky and
unlucky conditions.

b: PAIRWISE CORRELATION DIFFERENCE (PCD)
The pairwise correlation difference captures the idea that the
correlation between pairs of attributes in the synthetic and
original dataset should be similar. Measuring PCD does not
require applying a solution for learning a model: PCD is
hence an intrinsic measure of UP.

More formally, given the dataset D and D̂ and the mapping
φ between their tables, we define the PCD of D̂ and D as:

PCD
(
D̂,D

)
=

1
|D|

∑
T∈D

1
αT

∥C(T ) − C(φ(T ))∥F (2)

where |D| is the number of tables in D (and hence D̂) and
C(T ) is the correlation matrix of attributes in T , αT is a
normalization factor, and ∥·∥F is the Forbenius norm ofmatri-

ces, i.e., ∥A∥F =

√∑
i
∑

j

∣∣ai,j∣∣2. We assume that a proper
measure of correlation is available for any possible pair of
attribute types. Concerning the normalization factor, we set

it to αT =

√
4

(
|A(T )|2 − |A(T )|

)
, with |A(T )| being the

number of attributes in the table and hence the size of the
matrix, in such a way that PCD takes values in [0, 1].

In practice, PCD
(
D̂,D

)
considers the correlationmatrices

of all the tables in the datasets, measures the difference, and
averages them. The more similar the correlation matrices, the
closer PCD

(
D̂,D

)
to 0. That is, the more similar D̂ and D.

c: CLUSTER SYNTHETIC EVENNESS (CSE)
The cluster synthetic evenness is applicable only to single-
table datasets and investigates the tendency of the synthetic
data to groups in clusters similarly to the original data. Sim-
ilarly to PCD, measuring CSE does not involve learning a
model; thus, CSE is an intrinsic measure of UP.

More formally, given the two single-table datasetsD and D̂,
consisting respectively of the tables T and T̂ , and a clustering
technique, we define the CSE for D and D̂ as:

CSE
(
D̂,D

)
=

α

k

i=k∑
i=1

∣∣∣∣∣∣
∣∣∣Ci ∩ T̂

∣∣∣
|Ci|

−

∣∣∣T̂ ∣∣∣
|T | +

∣∣∣T̂ ∣∣∣
∣∣∣∣∣∣ (3)

where Ci is the i-th cluster among the k clusters obtained by
applying the clustering technique to the union of T and T̂ and
α is a normalization factor, depending only on |T | and |T̂ |,
that makes CSE take on values in [0, 1]. Precisely, we set the
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value of α to:

α =


|T | + |T̂ |

|T |
if |T̂ | ≤ |T |

|T | + |T̂ |

|T̂ |
otherwise

(4)

In practice, CSE merges the original and synthetic rows
(i.e., data points) and cluster them in k clusters. Then,
it measures the proportion of synthetic data in each clus-
ter and compares this figure against the overall proportion
of synthetic data. Finally, it averages the difference of the
proportions across all clusters. The smaller the average dif-
ference, the more evenly the synthetic data distributes across
clusters, i.e., the more similar are synthetic and original data
in the way they group together.

In the experiments presented in Section V, we use k-means
as clustering technique, choosing the value of k automatically
in each case with the elbow method. k-means requires that all
the attributes in the table are numeric. In the later sections,
we will show how we can transform any dataset in a single-
table dataset in which all attributes are numeric: by applying
this transformation to bothD and D̂, we can measure CSE for
any pair of compatible datasets.

2) DISCLOSURE-AVERSENESS (DA)
For measuring the degree to which a synthetic dataset D̂ pre-
vents disclosure of the information about entities described in
the original dataset D, i.e., the disclosure-averseness (DA) of
D̂, we propose three intrinsic measures, described below.

Differently than for UP, we do not propose any extrinsic
measure, i.e., a measure that aims at capturing the amount of
information that is disclosable upon a reasonably meaningful
attempt of disclosure. Despite, in principle, such a measure
would be desirable, it is in practice very hard to devise it,
since its soundness would greatly depend on the concrete
nature of information, its value, and on a realistic modeling
of the disclosure attempt, i.e., on a realistic threat model.
Very likely, meeting all these requirements would make the
measure very specific.

a: NEAREST NEIGHBOR DISTANCE RATIO (NNDRµ, NNDRσ ,
AND NNDRp)
The three intrinsic measures of DA are all based on the
concept of nearest neighbor and are applicable only for
single-table datasets and with a proper distance function d
between rows of the table T (and T̂ , that has the same
attributes). More formally, given the two single-table datasets
D and D̂, consisting respectively of the tables T and T̂ ,
we define the mean nearest neighbor distance ratio for D and
D̂ as:

NNDRµ

(
D̂,D

)
=

∣∣∣∣∣1 −
1

|T |

∑
t∈T

mint̂∈T̂ d
(
t, t̂

)
mint ′∈T\{t} d (t, t ′)

∣∣∣∣∣
=

∣∣∣∣∣1 −
1

|T |

∑
t∈T

ρ(t)

∣∣∣∣∣ (5)

In practice, NNDRµ considers each original row t ∈ T
andmeasures its distances to the closest original and synthetic
rows: if the ratio ρ(t) between these figures satisfies ρ(t) > 1,
then t is closer to an original, than a synthetic row; else,
if ρ(t) < 1, then t is closer to a synthetic row. Then, NNDRµ

averages the ratio across all original rows and tells its distance
from 1: the closer the average to 0, the smaller the difference
between closest distances to synthetic and original data. That
is, the harder the task of re-identifying a real entity from
synthetic data.

Similarly, we define the standard deviation of NNDR as:

NNDRσ

(
D̂,D

)
=

√√√√∑
t∈T

(
ρ(t) −

1
|T |

∑
t∈T ρ(t)

)2
|T | − 1

(6)

In practice, the lower NNDRσ , the more even the value of ρ

across entities, i.e., the harder to identify some of them (for
the same value of NNDRµ).Moreover, if NNDRσ is large and
NNDRµ is close to 1, it follows that a set of synthetic rows
may be too close to original rows, and the remaining are very
far.

In order to capture the quantity of original rows that are too
close to synthetic rows, i.e., that could be identified easily,
we define a further index:

NNDRp
(
D̂,D

)
=

∣∣∣∣12 −
1

|T |
|{t ∈ T : ρ(t) < 1}|

∣∣∣∣ (7)

In practice, NNDRp measures the rate of original rows that
are closer to synthetic rows than to other original rows and
then tells how this rate is close to the ideal value of 50%: the
lower NNDRp, the lower the proportion of original rows that
are closer to synthetic rows than to other original rows.

b: NEAREST NEIGHBOR DISTRIBUTIONS
DIFFERENCE (NNDD)
Finally, we define the nearest neighbor distributions differ-
ence as follows. Given the distributions of the values of the
distance to the closest original and synthetic neighbors across
original rows t ∈ T , NNDD

(
D̂,D

)
is 1 if the null-hypothesis

that the two distributions are different cannot be rejected and
0 otherwise. In practice, if the distributions are statistically the
same, it would be hard to find a pattern in distances among
real and synthetic entities that is exploitable for telling apart
the former from the latter. In our experiments, we perform the
statistical significance test for the null-hypothesis using the
Kolmogorov-Smirnov test and a predefined value for α.

IV. OUR APPROACH
We propose to solve the problem stated in Section III-C with
a data synthesis pipeline whose core is based on variational
autoencoders (VAEs). Since VAEs operate on numerical data,
the first and last steps of our pipeline take care of converting
all the attribute values in the actual dataset D to numbers
(in the first step) and converting the numbers generated by
the VAE back to the suitable data types (in the last step) to
populate the synthetic dataset D̂. Moreover, we include in the
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pipeline a special treatment of relational datasets that allows
to (a) restructure them in such a way that they can be fed to
a VAE and (b) take into account the number of rows in each
secondary table that are associated with the respective entity
in the primary table.

In the following sections, we describe the pipeline in detail.

A. CONVERSION TO AND FROM NUMBERS
In general, we convert values of attributes whose type is
one of the five types described in Section III-A to numerical
vectors of a suitable size—that is, one value corresponds to a
vector in Rp with p ≥ 1. Formally, we define the conversion
to and from numbers of values for the attribute a of a table T
as a pair of functions φtype : V (T , a) → Rp and φ−1

type : Rp
→

V (T , a). We describe how we build φtype and φ−1
type, given a

table T ∈ D and an attribute a ∈ A(T ), for the five types in
the following sections.

Eventually, we convert each table T in D to a collection
X = {xi}i of numerical vectors, one vector per row, resulting
from the concatenation of the single vectors obtained by
converting each attribute:

xi =
[
xi,a1 xi,a2 . . .

]
=

[
φtype (v(ti, a1)) φtype (v(ti, a1)) . . .

]
(8)

Consistently, when converting a collection of numerical vec-
tors back to a table of rows with proper attributes (i.e., the
same of T ), we first split a vector xi in chunks of proper
size, then use the corresponding φ−1

type to map each chunk to
an attribute value of the row ti. We denote these two steps
respectively as X := φtype(T ) and T := φ−1

type(X ).

1) REAL-VALUED AND DISCRETE ATTRIBUTES
For real-valued and discrete attributes, we use a quantile-
based conversion. We remark that we convert also this
kind of attributes, that are already numerical in the original
dataset, in order to make them more VAE-friendly. Indeed,
in image processing applications, where VAEs are partic-
ularly common, continuous numerical attributes typically
represent color, hue, or saturation values, with magnitudes
represented on the same scale. In tabular data, no such
scale-indifference between numerical attributes can be guar-
anteed: for instance, in financial data, investments may be
expressed in magnitudes of tens of thousands, whereas age
is measured on a much smaller scale. This may make the
VAE less effective, as attributes with larger values may be
incorrectly be interpreted as having more impact. A quantile-
based conversion is one of the method to cope with this
problem [26].

Formally, let {v(ti, a)}i be the defined values (i.e., not ∅) of
the attribute a in the table T , with ∀i, v(ti, a) ∈ V (T , a) ⊆ R,
since the attribute is numeric.Wefirst compute the k quantiles
(q1, . . . , qk ) of {v(ti, a)}i, with q1 = mini v(ti, a) and qk =

maxi v(ti, a) and k ≥ 2 being a parameter of the conversion.

Then, we define φtype : [q1, qk ] → [0, 1] as:

φtype(v) =


j
k

if v ̸= ∅

0.5 otherwise
(9)

with j such that v ∈
[
qj, qj+1

[
. We define φ−1

type : [0, 1] →

[q1, qk ] as:

φ−1
type(x) = qj + (qj+1 − qj)(kx − j) (10)

with j = ⌊kx⌋.
In practice, an input numerical value is mapped to the cor-

responding percentile (scaled to [0, 1]); in the other direction,
a value in [0, 1] is mapped to the corresponding quantile
interval and, inside it, linearly scaled. As a result, all real-
valued and discrete attributes are mapped to [0, 1] (thus
p = 1), hence mitigating the scale problem.

2) TIME ATTRIBUTES
Time attributes typically represent timestamps of events
related to an entity. When converting time attributes, we con-
sider the time density of these events, we attempt to infer the
periodic component of this density and decouple it from the
trend component, and we map these components to normal-
ized values.

Formally, let {v(ti, a)}i be the defined values of the attribute
a in the table T , with ∀i, v(ti, a) ∈ V (T , a) ⊆ N—in practice,
time values are expressed using numbers, as in the Unix
time format. First, we compute the earliest value τmin =

mini v(ti, a) and the latest value τmax = maxi v(ti, a). Second,
we build a time series bwith 1

δτ
(τmax−τmin) elements, where

δτ is a parameter of the conversion, as:

bj = |{i : τmin + jδτ ≤ v(ti, a) < τmin + (j+ 1)δτ }| (11)

that is, bj is the number of values within the j-th δτ -long
interval. Third, we compute the discrete cosine transform
(DCT) of b and obtain the period τ ⋆ of the strongest harmonic
of b. Then, we define φtype : [τmin, τmax] → [0, 1]2 as:

φtype(v) =

{
(x1, x2) if v ̸= ∅
(0, 5, 0.5) otherwise

(12)

with:

x1 =

⌊
v− τmin

τ ⋆

⌋
τ ⋆

τmax − τmin
(13)

x2 =
v mod τ ⋆

τ ⋆
(14)

where mod means the remainder of the real division.
We define φ−1

type : [0, 1]2 → [τmin, τmax] as:

φ−1
type(x) = φ−1

type(x1, x2) = τmin + x1 (τmax − τmin) + x2τ ⋆

(15)

In practice, given the periodicity τ ⋆ computed considering
the DCT, x1 represents the period in which the value v(ti, a)
falls in and x2 represents the offset with respect to the starting
time of that period.
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3) CATEGORICAL AND BINARY ATTRIBUTES
For categorical and binary attributes we rely on one-hot
encoding.

Formally, let c1, . . . , ck be the different categorical values
(with k = 2 for binary attributes) in C ⊆ V (T , a). We define
φtype : C → [0, 1]|C| as:

φtype(v) =

{
x if v ̸= ∅
(0.5, . . . , 0.5) otherwise

(16)

with x ∈ {0, 1}k and:

xi =

{
1 if v = ci
0 otherwise

(17)

We define φ−1
type : [0, 1]|C|

→ C as:

φ−1
type(x) = cj (18)

with j = argmaxi xi.

4) MISSING VALUES
In order to support datasets with missing values, that are
rather common in business data, we perform a further pro-
cessing for each attribute of each table for which there are
missing values, i.e., for which at least one value is ∅.
Formally, for each attribute a and each table T such that

for at least one row ti ∈ T the value v(ti,T ) = ∅,
we introduce a further numerical value in the conversion
(besides those deriving from the type conversions described
above) that encodes the fact that the value is undefined
(i.e., ∅). We define this further mapping based on the pre-
viously described cases:

φ′
type(v) =

{ [
φtype(v) 0

]
if v ̸= ∅[

φtype(v) 1
]

otherwise
(19)

and:

φ′−1
type(x) =

{
φ−1
type(v) if xlast > 0.5

∅ otherwise
(20)

where xlast is the last element of x.
In practice, for attributes that can be undefined, we append

one further element to the vector output by the conversion that
is 1 if the value is missing and 0 otherwise. When converting
back to the attribute type, we use the last element to decide if
the value has to be set to ∅.
Summarizing, each value of an attribute is converted to a

numerical vector in [0, 1]p, with p = 1 for real-valued and
discrete attributes, p is the number |C| of distinct categorical
values for categorical and binary attributes, and p = 2 for
time attributes. When attributes have missing value, p is
increased by 1.

B. USING VAEs for GENERATING SYNTHETIC
NUMERICAL DATA
Having described how to convert tables in collection of
numerical vectors (and the opposite conversion), the problem
of synthetic dataset generation can be split in five steps. For
ease of presentation, we first describe those steps for the
single-table dataset case, then we will refine the description
for the more complex case of relational datasets.

Given a single-table dataset D with a table T , we:

1) transform T to X = {xi}i = φtype(T ), with each
xi ∈ [0, 1]q;

2) learn a VAE on X , i.e., a pair consisting of a encoder
φenc : Rq

→ Rr and a decoder φdec : Rr
→ Rq;

3) generate a collection Ŷ = {ŷj}j of numerical vectors,
with each ŷj ∈ Rr ;

4) obtain a collection of X̂ = {x̂j}j of numerical vectors,
with each x̂j = φdec(ŷ) ∈ [0, 1]q by applying the decoder
to each element in Y ;

5) transform X̂ to a synthetic table T̂ = φ−1
type(X̂ ) by

converting back to an attribute value each chunk of x̂.

In the following sections, we describe steps 2, 3, and 4 in
detail. We described steps 1 and 5 in the previous sections.

1) VARIATIONAL AUTOENCODERS (VAEs) BACKGROUND
We considered three variants of VAEs for generating
numerical data: standard variational autoencoders (VAE),
beta-variational autoencoders (β-VAE), and introspective
variational autoencoders (introVAE). These methods were
originally conceived in the field of image processing.

VAEs form a paradigm in generative machine learning,
in which an algorithm referred to as the encoder infers a prob-
abilistic latent representation in Rr (the latents space, also
named code) of an input numerical dataset in Rq. A decoder
is an algorithm trained to take random samples from the latent
representation and convert them back toRq. Both the encoder
and decoder are typically artificial neural networks and they
are learned concurrently using a combined loss function [27].
The dimension r of the latent space, as well as the architecture
(i.e., number of hidden layers, activation function, etc.) of the
encoder and the decoder are hyperparameters.

β-VAEs form an extension of the VAE modeling frame-
work. This methodology was originally developed to infer
disentangled latent representations. In such representations,
each latent variable affects observable attributes in an indi-
vidual manner, rather than having single latent variables
encoding complex interactions of factors. A disentangled
representation enables users to control individual factors of
variation. Disentanglement is achieved through requiring the
variables in the latent space to be statistically independent.
β-VAEs are promising in syntethic data generation as they
allow to explore different trade-offs between realism of syn-
thetic data and the strictness of this independence constraint.
In practice, both objectives are terms in the loss function,
and an additional hyperparameter β is used to manage their
relative importance [10].
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IntroVAEs form a hybrid framework that combine VAE
with generative adverserial networks (GANs) [28]. In GANs,
two neural networks are trained concurrently: a generator
that samples synthetic data points from a latent spaces and
a discriminator, trained to make distinctions between empir-
ical and synthetic data points. By training both networks
with one loss function, a zero-sum game is obtained. This
is because the generator aims to maximize the number of
times the discriminator incorrectly classifies an artificial data
point. Naturally, the discriminator aims to minimize this
quantity. In IntroVAE, a standard VAE model is augmented
with a discriminator. The VAE generates artificial data points,
and the discriminator classifies data points as either real
or synthetic. The incorporation of the discriminator results
in synthetic data in which realism is achieved on a finer
scale [11]. While VAE and β-VAE guarantee that coarse
patterns in data are preserved, IntroVAE enable the generation
of synthetic data that is realistic at the level of individual
data points. This is because the discriminator infers and
exploits particular inter-dependencies between attributes that
(β-)VAE loss functions, typically based on Kullback-Leibler
(KL) divergence cannot identify. In IntroVAE, two parame-
ters for leveraging the trade-off between KL-divergence and
reconstruction error are additional hyperparameters. Com-
pared to GANs, the use of VAE as a generating mechanism
results in accelerated convergence. IntroVAE are also less
likely to overfit, reproducing exact patterns inferred from
empirical data. Unfortunately, the discriminator in IntroVAE
complicate the back-propagation algorithm for non-numeric
data types. Therefore, we use the Gumbel softmax function as
the activation function, with its temperature being a hyperpa-
rameter as outlined for GANs in [28]. The use of this loss
function to make IntroVAE applicable to tabular data is a
novel contribution of our work.

2) LEARNING A VAE
From the point of view of our approach, all the three variants
(standard VAE, β-VAE, and IntroVAE) can be seen as ‘‘black
boxes’’ that given a dataset X = {xi}i, with xi ∈ Rq,
a target latent space dimension r , and a suitable set of hyper-
parameters values (that is different among the three versions
of VAE), output a pair of multivariate numerical functions
φenc : Rq

→ Rr and φdec : Rr
→ Rq (encoder and decoder,

respectively). The two functions are neural networks and are
completely described by a vector θ = [θenc θdec] ∈ Rm of
numerical parameters, whose size m depends on the variant.
We obtain θ from X in a learning process which is a gradient-
based optimization driven by a loss function L : Rm

→ R
such that the lower L(θ ), the better the pair φenc, φdec descri-
bed by θ .
The loss function is based on the assumption that the

decoder and the encoder act as conditional probability distri-
butions on the proper spaces. The values of X are considered
observations stemming from an underlying probability dis-
tribution over a latent space Z . The decoder φdec defines a

probability distribution depending on parameters θdec, such
that p(x|z, θdec) is the probability that x was observed, given
that the latent variables were z and the model parameters were
θdec. Symmetrically, the encoder φenc defines the distribution
of the latent space for given observations parametrized by
θenc. Thus, p(z|x, θenc) is the probability that z was the latent
vector, given that x was observed.

Specifically, for standard VAEs we use the Kullback-
Leibler (KL)-divergence between observations X and the
distribution of generated data the following loss function:

L(θ ) = Ez∼p(z|x,θenc) log p (x|z, θdec)

= Eφenc logφdec (21)

where the latter is a shorthand for the former.
For β-VAEs, a constraint is imposed that the encoder φenc

must also be sufficiently similar to a given prior P(z) (of the
latent space). Typically, the multivariate normal distribution
N (0,1) is chosen as the prior, which enforces statistical inde-
pendence on the latent space. KL-divergence ia also invoked
to achieve this. The constraint is incorporated into the loss
function through the KKT-conditions. Hence, β-VAEswe use
the following loss function:

L(θ ) = −Eφenc logφdec + βDKL (φenc ∥ N ) (22)

where DKL(φenc ∥ N (0,1)) denotes the KL-divergence
between distributions p(z|x, θenc) and N (0,1). The param-
eter β is a hyperparameter used for scaling the relative
importance of reconstruction accuracy and similarity to the
prior.

Finally, for IntroVAEs we use the loss function specified
in [11], that we do not report here for brevity.

Concerning the optimizer, we use ADAM with standards
parametrization.

3) LATENT DATA GENERATION AND MAPPING
Given a target size n of the synthetic data n = |X̂ |, we gener-
ate the collection Ŷ = {ŷj}j of n points in the latent space as
follows.

First, we compute the image of the input dataX in the latent
space, i.e., the collection Y = {yi}i, with yi = φenc(xi) ∈ Rr ;
we denote this step as Y := φenc(X ). Then, we fit a multi-
variate normal distribution over Y and obtain its parameters
µ ∈ Rr and 6 ∈ Rr×r ; we denote this step as (µ,6) :=

N−1(Y ). Finally, we sample the multivariate normal distri-
bution N (µ, 6) n times and obtain Ŷ ; we denote this step
as Ŷ :

n
∼ N (µ, 6). As the last step, we obtain X̂ := {x̂j}j by

applying the decoder to Ŷ , i.e., ∀j, x̂j := φdec(ŷj); we denote
this step as X̂ = φdec(Ŷ ).
Summarizing, the entire process from T to T̂ consists of

the following steps:

X := φtype (T ) (23)

(φenc, φdec) := learn (X) (24)

Y := φenc (X) (25)

(µ, 6) := N−1 (Y ) (26)
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FIGURE 1. Schematic representation of the steps for going from a table T
of a single-table dataset to a synthetic table T̂ . In red, the parameter and
input provided by the user.

Ŷ :
n
∼ N (µ, 6) (27)

X̂ := φdec

(
Ŷ

)
(28)

T̂ := φ−1
type

(
X̂

)
(29)

The same steps are depicted in Figure 1.

C. RELATIONAL DATASETS
Relational datasets require a different approach, since they
are constituted by more than one table. We modified the
approach described above in order to accommodate this dif-
ference and driven by a further two-fold goal: (1) generate
synthetic secondary tables whose size are consistent with
the corresponding original tables; (2) make several rows of
the synthetic secondary tables refer to the same row in the
synthetic primary table, as happens for the original data.

For achieving these goals, we use a multi-level VAE
(ML-VAE), i.e., a single VAE variant that is different from
the three variants used in the case of single-table datasets.
ML-VAE were originally conceived for inferring disentan-
gled latent representations when data is not independent,
identically distributed [29]. The use of this methodology for
generating synthetic dataset with more than one table is a
novel contribution of our work. The original method pro-
posed in [29] operates by stratifying the data into strata with
shared characteristics: each of the characteristics upon which
stratification is based are then mapped to one latent variable
during encoding. A disentangled latent representation is then
obtained in which the properties of each stratum correspond
to a unique variable in the code. In our case, instead, we use
the disentangled latent variables to represent the row in the
primary table to which a point refers to.

In practice, we repeat a slightly modified version of the
steps described in Section IV-B one time for each table in
the dataset and add, for each table, a pre-processing step
and a post-processing step. Let the original dataset D be
composed by the primary table T ⋆ and by h secondary tables
T 1, . . . ,T h. We proceed as follows.

1) PRIMARY TABLE
We pre-process the primary table T ⋆, obtaining a table T ′⋆,
by adding one new discrete attribute aT l for each secondary
table T l . For each row t in T ⋆ and each l, we set the value
v
(
t, aT l

)
to the number of rows t ′ in T l such that v(t ′, a⋆) =

v(t, a⋆). In other words, aT l for t represents the number of
secondary entities, i.e., entities of a secondary table, that

refer to the primary entity described by t . We also remove a⋆

from A(T ⋆).
Then, we learn a β-VAE φ⋆

enc, φ
⋆
dec, with r

⋆ as latent space
dimension, on X⋆

= φtype(T ′⋆).
We build Y ⋆, Ŷ ⋆, and X̂⋆ in the same way of the single-

table case: in particular, we use n as the user-provided size
of the synthetic primary table to be generated from X̂⋆. Then,
when building the synthetic primary table, we apply φ−1

type to
X̂⋆, obtaining T̂ ′⋆

= φ−1
type(X̂

⋆), and finally post-process T̂ ′⋆,
obtaining T̂ ⋆, by removing the attributes aT 1 , . . . , aT h and by
adding again a⋆, whose values are set to v(t̂j, a⋆) = j.
Summarizing, for the primary table T ⋆ we do the following

steps in order to obtain the corresponding synthetic primary
table T̂ ⋆:

T ′⋆
:= preProc

(
T ⋆

)
(30)

X⋆
:= φ⋆

type
(
T ′⋆

)
(31)(

φ⋆
enc, φ

⋆
dec

)
:= learn

(
X⋆

)
(32)

Y ⋆
:= φ⋆

enc
(
X⋆

)
(33)(

µ⋆, 6⋆
)

:= N−1 (
Y ⋆

)
(34)

Ŷ ⋆
:
n
∼ N

(
µ⋆, 6⋆

)
(35)

X̂⋆
:= φ⋆

dec

(
Ŷ ⋆

)
(36)

T̂ ′⋆
:= φ−1

type

(
X̂⋆

)
(37)

T̂ ⋆
:= postProc

(
T̂ ′⋆

)
(38)

2) SECONDARY TABLES
We repeat the same procedure, described below, for each
secondary table T l .

First, similarly to the case of the primary table, we pre-
process T l by removing the attribute a⋆, hence obtaining
T ′l . We remark that, since we never alter the ordering of
items in the collections that we work with (each T l and its
corresponding T ′l , X l , and Y l), we are still able to track items
back to the row in the primary table they refer to.

Then, we learn a ML-VAE φlenc, φ
l
dec from X l . In this

ML-VAE, the encoder is a function φlenc : Rql
→ Rr l ,

ql being the size of elements of X l and r l being the user-
provided size of the latent space for this secondary table.
Differently than previous cases, here the decoder is a function
φldec : Rr l+r⋆

→ Rql : that is, the dimension of the source
space for the decoder is larger than the dimension of the
destination space of the encoder. Precisely, the former has r⋆

more variables than the latter. When learning the ML-VAE
on X l , i.e., when computing the loss for elements {xli}i of
X l , each point in the latent space is obtained as a row-wise
concatenation:

yli = [

∈Rrl︷ ︸︸ ︷
φlenc

(
xli

) ∈Rr⋆︷ ︸︸ ︷
φ⋆
enc

(
x⋆

)
] ∈ Rr l+r⋆ (39)

where x⋆ is the element of X⋆ corresponding to the row t⋆

of the primary table such that v(t⋆, a⋆) = v(t li , a
⋆), i.e., the
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primary row related to the row xli of the secondary table T l .
As a shorthand, we write collectively that:

Y l = {yli}i =

{
[φlenc

(
xli

)
φ⋆
enc

(
x⋆

)
]
}
i

=

[
φlenc

(
X l

)
φ⋆
enc

(
prim

(
X l

))]
(40)

When learning this ML-VAE, we use the same optimizer
described in Section IV-B2 and the following loss function:

L(θ )=
1

|T ⋆|

|D|−1∑
l=1

∑
v⋆∈V (T ⋆,a⋆)

(
Lreg(l, v⋆, θ ) − βlLKL(l, v⋆, θ )

)
(41)

where:

Lreg(l, v⋆, θ ) =

∑
t li :v(t

l
i ,a

⋆)=v⋆

Eφlenc(v⋆)
Eφlenc(t

l
i )
logφldec (42)

LKL(l, v⋆, θ ) =

∑
t li :v(t

l
i ,a

⋆)=v⋆

DKL(φlenc(t
l
i ) ∥ P(l,v⋆)) (43)

and where φlenc(v
⋆) denotes the encoder of table T l restricted

to rows t li such that v(t li , a
⋆) = v⋆ (that is: the condi-

tional probability distribution of the latent space given that
v(t li , a

⋆) = v⋆, the set of such observations and the parame-
ters θ ). Likewise, φlenc(t

l
i ) is the conditional probability of the

latent representation of row t li given the parameters and obser-
vations. Decoder φldec(t

l
i ) is defined analogously. P(l,v⋆) is the

prior for table T l and unique attribute v⋆ ∈ V ⋆ represented
in the latent space (in our case each chosen as multivariate
normal Gaussian); βl is a table-specific factor analogous to
standard β in β-VAE.
Then, we extract the rounded values nl1, . . . , n

l
n of the

attribute aT l from T̂ ′⋆, with n = |T̂ ′⋆
|. Each nlk represents

the number of rows in the synthetic secondary table T̂l that
should refer to the k-th primary entity in T̂ ⋆. We also take the
corresponding points ŷ⋆1, . . . , ŷ

⋆
n in the primary latent space.

Subsequently, for each k ∈ {1, . . . , n}, we:
(1) compute Y ′l,k as the image φlenc(X

l,k ) in the reduced
latent space of X l,k , where X l,k is the sub-collection of
points in X l that corresponds to the k-th primary entity
in the primary table, i.e., X l,k = {xli : v(t li , a

⋆) = k};
(2) fit a multivariate normal distribution over Y ′l,k obtaining

µl,k and 6l,k ;
(3) sample the multivariate normal distribution

N
(
µl,k , 6l,k) nlk times obtaining Ŷ ′l,k ;

(4) build Ŷ l,k by row-wise concatenation of Ŷ ′l,k and nlk
copies of ŷ⋆k , that constitute the disentangled variables
representing the k-th primary entity;

(5) compute X̂ l,k as the image of φlenc(Ŷ
l,k ).

Once, we collected all the h collections X̂ l,1, . . . , X̂ l,h,
we obtain X̂ l by merging them, i.e., X̂ l =

⋃k=n
k=1 X̂

l,k . Finally,
we obtain T̂ ′l by applying φ−1

type on X̂
l and then post-process

T̂ ′l by adding the attribute a⋆: for each row, we set the value
to the k corresponding to the X l,k the row comes from.

Summarizing, for each secondary table T l we do the fol-
lowing steps in order to produce the corresponding synthetic
secondary table T̂ l :

T ′l
:= preProc

(
T l

)
(44)

X l := φltype

(
T ′l

)
(45)(

φlenc, φ
l
dec

)
:= learn

(
X l

)
(46)

X l,k :=

{
xli : v

(
t li , a

⋆
)

= k
}

∀k (47)

Y ′l,k
:= φlenc

(
X l,k

)
∀k (48)(

µl,k , 6l,k
)

:= N−1
(
Y l,k

)
∀k (49)

Ŷ ′l,k
:
nlk
∼ N

(
µl,k , 6l,k

)
∀k (50)

Ŷ ′l,k
:=

[
Ŷ ′l,k nOf

(
ŷ⋆k , n

l
k

)]
∀k (51)

X̂ l,k := φldec

(
Ŷ l,k

)
∀k (52)

X̂ l :=

k=n⋃
k=1

X̂ l,k (53)

T̂ ′l
:= φ−1

type

(
X̂ l

)
(54)

T̂ l := postProc
(
T̂ ′l

)
(55)

We remark that, for secondary tables, the number of rows
in the table is not chosen by the user, but is instead generated
as part of the synthetic data. Hence, we meet the first goal
stated in Section IV-C. Moreover, since we reserve a portion
of the latent space for disentangled variables that represents
the primary entity, and sincewe use several copies of the same
values, we meet the second goal stated in Section IV-C: rows
in a secondary table that refers to the same primary entity are
generated from point in the latent space that are the same for
a portion of the dimensions.

The overall process for generating synthetic relational
datasets is depicted in Figure 2.

D. IMPLEMENTATION
In practice, we implemented the approach described above
based on a mix of existing (e.g., TensorFlow) and ad hoc
developed software frameworks. We made the synthetic
data generation service available online, as a Software-as-
a-Service (SaaS) tool. If particular security concerns forbid
the transfer of data to the cloud, the structure could also be
deployed directly on a client local infrastructure.

We defined anAPI for accessing the service.When the user
requires a synthetic data generation service, he/she uploads
the data through the API. We store the data using an array of
HDFS nodes. A centralized component of the system, that
we call coordinator, saves the data structure, the targeted
section of the HDFS, the TensorFlow model (i.e., the various
parameters θ for the VAEs), and the job details on a job
database. Computing nodes, equipped with GPUs and having
direct access to HDFS, train the TensorFlow model. After

VOLUME 11, 2023 63317



D. Panfilo et al.: DL-Based Pipeline for the Generation of Synthetic Tabular Data

FIGURE 2. Schematic representation of the steps for going from a relational dataset D = (T ⋆, T 1, . . . , T h) to a compatible synthetic relational
dataset D̂ = (T̂ ⋆, T̂ 1, . . . , T̂ h). In red, the parameter and inputs provided by the user; in colored dashed rectangles, parts of the steps that are
repeated for l and k .

FIGURE 3. Overview of the implementation as a SaaS.

training, compute nodes generate the requested amount of
synthetic data and store them to HDFS. The coordinator also
takes care of training and generating jobs and of the resource
allocation for each of them, using a message queue. The
architecture is depicted in Figure 3.

V. EXPERIMENTAL EVALUATION
We performed an experimental campaign aimed at assessing
to which degree our data synthesis pipeline meet the two
requirements stated in Section III. To this end, we considered
4 datasets, one of which being relational, applied our tech-
nique several times, and measured the performance indexes
defined in Section III-C1 (for UP) and Section III-C2 (for
DA) on the generated synthetic datasets.

A. DATASETS
We took three single-table datasets from the UCI Machine
Learning Repository [1]: Insurance, Covertype, Bank, The
size of the corresponding tables ranges from ≈1000 to
≈600 000 rows. The number of attributes ranges from
14 to 54: overall, all types of attributes are represented (real-
valued, discrete, time, categorical, binary). Each dataset has

TABLE 1. Overview of the four datasets used in the experiments, one row
per table. Column |T | indicates the number of rows in the table. Column
|A(T )| indicates the number of attributes. Columns R+D, B, C, and T
indicate the number of real-valued and discrete, binary, categorical, and
time attributes respectively. The column Target indicates whether the ML
problem build on the table is a classification (C) or a regression (R)
problem.

a predefined target attribute, i.e., one for which a supervised
learning problem can be built: for two of them (Covertype,
Bank), the target attribute is categorical; for Insurance, it is
numeric. The corresponding problems are hence classifica-
tion and regression.

We also built an ad hoc relational dataset composed of
three tables (Users, Events A, Events B): Users is the primary
table. We here included only numerical attributes, with the
exception of a single categorical attribute, for the table Users,
that we set as the target attribute.

Table 1 summarizes the salient information of the four
datasets.

B. PROCEDURE
We performed a five-fold cross validation of our data synthe-
sis technique. That is, for each dataset, we split the dataset
in 5 partitions. Then, for each partition Dout, we took it
apart and learned a synthetic dataset D̂ on the four remaining
partition D, setting n = |D̂| = |D|. Finally, we measured
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the UP and DA indexes on the pair D̂,D, using Dout as Dtest
when needed. For the single-table datasets, we perform the
split in partitions by simply partitioning the corresponding
tables in equally sized slices (after shuffling the rows) For
the relational dataset, we first partitioned the primary table in
equally sized slices, then, for each partition, we selected the
rows of the two secondary tables accordingly—as a results,
the overall size of the five datasets were different.

We applied our data synthesis pipeline in the three variants
(VAE, β-VAE, IntroVAE) five times for each partition of
the single-table datasets, by varying the random seed for the
random components of the approach (namely, the training of
the VAEs). This way, we attempted to mitigate out possible
artifacts in the results caused by lucky or unlucky conditions.
We used the single proposed variant for the relational dataset
partitions. Overall, we hence generated 3 · 3 · 5 · 5 + 1 · 1 ·

5 · 5 = 250 synthetic datasets. In the tables presented below,
we report the mean and standard deviation of the values of
the indexes across the 5 ·5 application of each variant to each
dataset.

Concerning the UP indexes, we proceeded as follows.
For MC and classification datasets, we considered Random
Forest (RF), logistic regression classifier (LRC), adaptive
boosting (ADA), and multi-layer perceptrons (MLP) as solu-
tions (i.e., learning techniques) and accuracy (Acc.) and area
under the ROC curve (AUC) as effectiveness metrics. For
MC and regression datasets (only Insurance), we considered
linear regressions (LR), ridge regression (RR), polynomial
Support Vector Regressions (SVR), and multi-layer percep-
trons (MLP) as solutions and the coefficient of determination
(R2) and the mean squared error (MSE) as effectiveness
metrics. For all single-table datasets, we used all the attributes
as features when applying the learning technique for building
a prediction model for the target attribute. For the relational
dataset, we (i) built a single aggregated table by associating
with each row of theUser table a tuple consisting of themeans
of the attributes of the corresponding rows in the secondary
table, hence obtaining a table with 10 attributes, and (ii) use
all the attributes of the aggregated table as features. For
clarity, we present these indexes as triplets: e.g., MC-RF-
AUC is the MC measured on a classification datasets using
RF as learning technique and AUC for evaluating the learned
models.

For PCD, we computed the Pearson correlation on the
numerical conversion of the tables, rather than on the actual
tables, i.e., on X = φtype(T ) and X̂ = φtype(T̂ ) rather than on
T and T̂ . This way, we circumvented the problem of finding a
suitable correlationmeasure for each possible pair of attribute
types.

For CSE, we proceeded as for PCD.Moreover, for the rela-
tional dataset case, we measured this index on the (numerical
conversion of the) single aggregated table.

Concerning the DA indexes, we proceeded as follows.
For all the NNDR indexes (NNDRµ, NNDRσ , and NNDRp)
and for NNDD, we proceeded as for CSE. For NNDD, we

TABLE 2. Summary of the parameter values.

performed the statistical significance test with two values of
α, 0.05 and 0.01.

We performed all the experiments by using the implemen-
tation of our pipeline described in Section IV-D for generating
the datasets and an ad hoc piece of software (written in
Python 3) for measuring the UP and DA indexes on the
generated datasets. We set the parameters of the synthesis
pipeline to the values shown in Table 2 after some preliminary
experiments.

C. BASELINE
We remark that, to the best of our knowledge, no other
methods exist that are capable of generating synthetic data
in the same scenario our method is (heterogeneous data
types, relational datasets). However, in order to provide a
comparison baseline, we designed and implemented a simple
methodology that applies to most of the cases of our scenario
and experimented with it in the same way we did for VAE,
β-VAE, and IntroVAE.

The baseline synthetic data generation technique works as
follows. Given a single-table dataset D with a table T , this
technique produces a compatible dataset D̂ consisting of a
table T̂ that is just a subset of rows of T . Namely, while
building T̂ , we select 1

2 |T | rows of T with random sampling
without repetitions.

It can be seen that, in the trade-off betweenUP andDA, this
technique favors UP. Since T̂ contains a subset of rows of T ,
it will be very likely useful for building an ML model whose
performance is predictive of the one of an ML model built
on T . On the other hand, T̂ clearly discloses the information
in T , since it contains real data points. We hence expect this
baseline to be challenging for our method in terms of UP.
Concerning DA, regardless of the value of the corresponding
indexes, this baseline technique does disclose real data points.

D. RESULTS AND DISCUSSION
Tables 3 and 4 present the results for UP, respectively for
the classification datasets, for which the target variable is
categorical (Covertype, Bank, and the relational one), and for
the regression dataset, for which the target variable is numeric
(Insurance)—we show the results in two separate tables
because the ML techniques and the effectiveness metrics
used while evaluating MC are different for the classification
(Accuracy and AUC) and regression cases (R2 and MSE).
Table 5 presents the results for DA. All the tables show the
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TABLE 3. Results for UP on the classification datasets (mean ± standard deviation across the five folds and five repetitions). For all the indexes, the
lower, the better.

TABLE 4. Results for UP on the regression dataset (mean ± standard deviation across the five folds and five repetitions). For all the indexes, the lower,
the better.

variants of our method and the baseline applied to different
datasets on rows and the values for the performance indexes
on columns. For each row, i.e., for each pair of synthetic
data generation technique and dataset, the tables show the
mean value across the five folds and five repetitions (i.e.,
25 samples) of each performance index. For all the indexes,
with the exception of NNDD, the lower the better.

By looking at the tables, it can be seen that, in general, all
UP values are very low, i.e., very good. In particular, for what
concerns MC, β-VAE and IntroVAE obtain better results
than the vanilla VAE in almost all cases (i.e., dataset and
effectiveness metric), one exception being MC-RF-Acc. for
Covertype. For the regression dataset, Insurance, the absolute
values for MC-*-MSE are larger than the other MC values:
we believe that this is because MSE does, differently from
the other effectiveness measures, depend on the scale of the
target variable. However, the relative ranking among the three
variants of VAEs stays the same.

Concerning PCD, it can be seen that the values are very
close to zero in all the cases. This means that the way the
variables are correlated in the original and synthetic dataset is
very similar. For gaining further insights in how our technique
correctly preserve the general structure of the data, in terms
of correlation, we show in Figure 4 the correlation matrices
for the original and synthetic data (after the numerical con-
version, i.e., on X and X̂ ) for one fold-repetition of the Bank
dataset with β-VAE. The figure highlights that the pairwise
inter-dependencies among variables of the original dataset are
well preserved in the synthetic dataset.

In terms of differences among the three variants, the values
of CSE, differently from those of PCD, seem to suggest that

FIGURE 4. Correlation matrices (of variables after the numerical
conversion) of original and synthetic data for one fold-repetition of the
Bank dataset with β-VAE. Red denotes negative correlation; blue denotes
positive correlation; yellow denotes ≈ 0 correlation.

IntroVAE is in general worse than the other two variants: this
means that the synthetic data generated with this technique
cluster in a way that is slightly different than the way in which
the original data do. Overall, the values for UP performance
indexes suggest that all the four technique variants (VAE,
β-VAE, IntroVAE, and ML-VAE for the relational dataset
case) are able to generate synthetic data that can be useful
for replacing the original data.

Concerning theDA indexes, the numbers in Table 5 suggest
that, for classification datasets IntroVAE, seems in general
better in generating data that prevents disclosure: NNDRp for
this variant is consistently lower than the values of the index
for the other two variants. We recall that the closer NNDRp
to 0, the more even the distribution between original rows
that are more similar to other original rows and to synthetic
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TABLE 5. Results for DA on all the datasets (mean ± standard deviation across the five folds and five repetitions). For NNDR indexes, the lower, the
better; for NNDD indexes, the greater, the better.

rows. In other words, with NNDRp = 0, for any original
row, the probability that its closest row is a synthetic data
point is exactly 50%: hence, it is hard to tell apart original
and synthetic rows by just looking at proximity to known
rows. The other two indexes related to the concept of nearest
neighbor distance ratio (NNDRµ and NNDRσ ) appear more
difficult to interpret. For the regression dataset, the values
of NNDRp are in general very close to 0, regardless of the
VAE variant, but the values for NNDRµ are larger. Since the
fact that the target variable does not impact in any way on
neither the generation process, nor on the measurement of
DA indexes, we infer from this observation that Insurance is
a harder dataset, from the point of view of DA.

For what regards NNDD, that builds over the same idea of
distance, it can be seen that the results are good (NNDD close
to 1 for both values of α) for most of the variants and datasets.

We performed our experiments on a machine with an Intel
i7 6500UCPUwith 4 logical cores at 2.5GHz, equipped with
16GB RAM and a NVidia RTX1080 GPU. The generation of
the synthetic dataset took a time that was dependent mostly
on the size of the original dataset: on average, 0.02 s for
each row.

VI. CONCLUDING REMARKS
In this paper, we presented a pipeline, based on VAEs, for
generating synthetic tabular data from realistic business data
with heterogeneous data types and missing values. We also
introduced a set of indexes for measuring the effectiveness of
our pipeline in generating synthetic data that is useful and
prevent disclosure of information contained in the original
data. We evaluated experimentally our method, using the
aforementioned indexes, on three publicly available datasets
consisting of one table each and on a custom relational
dataset consisting on three tables. The results indicated that
β-VAEs and IntroVAEs are particularly reliable for generat-
ing synthetic tabular data. They preserve privacy and vital
statistical data properties such as correlations. Furthermore,

they preserve utility for the development of ML models,
particularly in the context of classification problems. For
regression problems, the utility appears more difficult to
guarantee. For relational data, ML-VAE showed effective in
generating reliable and privacy preserving synthetic data.

Future research should inspect whether the target appli-
cation of synthetic data can inform the performance metrics
used, and thereby the hyperparameter optimization process.
This can help tune parameters so that VAE-based models
are better equipped to generate synthetic data for regression
problems. Metrics specifically developed for measuring the
performance of generators of relational data should also be
further inspected. In this work, we noted that some metrics
cast light on both privacy protection and utility preservation.
Intuitively put, this is because if a synthetic dataset is very
realistically distributed over its space, its data points will
not be centered suspiciously around specific empirical (real)
data points. As such, the synthetic data points will not leak
information about any empirical data points. The accurate
distribution will, however, also increase the utility of the
synthetic data for statistical and artificial intelligence pur-
poses. This observation should be studied further, as utility
and privacy are often seen as competing objectives.
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