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a b s t r a c t
Most available behavioral epidemiology models have linked the behavioral responses of individuals to infection
prevalence. However, this is a crude approximation of reality because prevalence is typically an unobserved
quantity. This work considers a general endemic SIR epidemiological model where behavioral responses are
incidence-based i.e., the agents perceptions of risks are based on available information on infection incidence.
The differences of this modeling approach with respect to the standard ‘prevalence-based’ formulations are dis-
cussed and its dynamical implications are investigated. Both current and delayed behavioral responses are con-
sidered.We show that depending on the form of the ‘memory’ (i.e., inmathematical language, of the information
delaying kernel), the endemic equilibriumcan either be globally stable or destabilizedviaHopf bifurcations yield-
ing to stable recurrent oscillations. These oscillations can have a very long inter-epidemic periods and a verywide
amplitude. Finally, a numerical investigation of the interplay between these behavior-related oscillations and
seasonality of the contact rate reveals a strong synergic effect yielding to a dramatic amplification of oscillations.
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1. Introduction

The birth of mathematical epidemiology dates back to a century ago
when a few pioneers established the key ideas of the discipline [1,2].
Their ground-breaking idea lied in the description of the key process
namely, infection transmission froman infected to a susceptible individ-
ual, by the law of mass action of Kinetic Theory [3,4]. Accordingly, they
represented social contacts between individuals as the random encoun-
ters of the particles of a perfect gas colliding in a box [5] and modeled
transmission as a chemical reaction occurring with a given probability
upon the occurrence of a random encounter:

Susceptibleþ Infectious ! Infectiousþ Infectious

In particular, the two key parameters, namely the per-capita contact
rate per unit time, and the infection transmission probability per contact,
were taken as natural constants of human behavior, possibly mirroring
the social characteristics of a given community or setting, at a certain
time moment.
and Geosciences, University of

).

1

Building on extensions of this simple idea, more recent pioneering
contributions aiming to better integrate models with data, allowed
mathematical models of infectious diseases to become central
supporting tools for public health decisions about e.g., the fraction of
new-born children to be immunized for a vaccine-preventable infection
or the social-distancingmeasures needed tomitigate a deadly epidemic,
or the proportions to be screened to prevent a serious sexually transmit-
ted infection [6,7].

Some of contemporary models are highly sophisticated in both their
mathematical/computational structure as well as in their data require-
ments, as apparent also from some of the main models adopted during
the COVID-19 pandemic crisis, ofwhichwe just quote a fewhere [8–10].
In all these highly sophisticated models, the key ingredients are repre-
sented by the determinants of infection transmission, namely the pat-
terns of social contacts with which individuals contact each other,
which can be classified according to a range of characteristics (e.g. age,
level of social/sexual activity, the contacts' site etc.). However, even in
these highly sophisticated models a layer is still under-developed,
namely that of humans' behavior. Indeed, until very recently the indi-
viduals' social behavior has been taken as unaffected by the state of
the infection and its serious consequences i.e., even during severe epi-
demic outbreaks individuals are assumed to continue to contact each
other at the same rate regardless of how low or high is the perceived
risk of acquiring the infection.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112072&domain=pdf
https://doi.org/10.1016/j.chaos.2022.112072
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http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/chaos


This static human behavior is an unrealistic abstraction because, by
their very nature, humans are neither static nor passive. This is even
more true in contemporary scenarios in view of the dramatic amount
and speed of information circulation. The current COVID–19 pandemics,
with its pervasive impact on society, has shown an endless list of in-
stances of spontaneous behavior changes by individuals in response to
the pandemic threat and its mitigation measures (see e.g., the review
in [11] and references therein).

The need to seriously account for human behavior has led in the last
15 years (i.e., long before the COVID–19 pandemic) to the birth of a new
branch of mathematical epidemiology, which we termed the behavioral
epidemiology (BE) of infectious diseases [12,13]. Summaries of themany
different facets of BE can be found in a number of reviews on the subject
[12–14]. It is worth noting that BE models have been, of course, pro-
posed to model various aspects of the current pandemic (see e.g., [15,
16] and references therein).

A key ingredient of BE modeling is represented by the so–called
information index [12,17]. This is any summary measure of observ-
able epidemiological dimensions (e.g., the incidence of cases of seri-
ous infection, or of hospitalization and deaths due to invasive
disease following infection) that agents acquire from the communi-
cation systems and use to formulate their risk perception and the
ensuing behavioral response. By far, the commonest type of infor-
mation index adopted in a first generation of BE models has been
the prevalence of infection, yielding to a wide number of
prevalence-based models [12–14], sometimes expanded to account
for a number imperfections in the availability of information
(e.g., the presence of time-delays), or for the presence of heteroge-
neities (e.g., distribution of perceived risks across space), or of un-
certainty, have pervaded the development of BE. Nonetheless,
infection prevalence can hardly represent the type of information
used by agents to elaborate their perceptions of risks, simply be-
cause prevalence is most often an unobserved epidemiological
quantity. For example, in the case of childhood vaccine preventable
infections (but also for COVID–19), appropriate knowledge of prev-
alence requires costly serological surveys [18]. These issues were
noted in early discussions of the topic, where indeed both
prevalence-dependent and incidence-dependent models for vacci-
nating behavior were proposed [17,19–21]. Consistently, in this
work we extend the class of simple BE models by proposing a gen-
eral - behavior–implicit - susceptible-infective-removed (SIR) frame-
work for an endemic infectious disease as e.g., measles, where the
agents' behavioral response to the risks perceived from infection is
modeled by an incidence-based transmission rate. This will lead to
a specific new class of behavior-epidemiology models. The frame-
work adopted here has been termed as ‘behavior-implicit’ because
it considers a phenomenological formulation for the behavioral re-
sponse, but can be readily extended to a number of behavior–ex-
plicit formulations [12–14].

In particular, we consider both the scenario of a current behav-
ioral response - whereby individuals respond to changes in current
incidence only - as well as delayed responses, whereby individuals
also respond to changes in past incidence, resulting in delay- differ-
ential models with distributed delay. For the latter case we could
show delayed behavioral responses can trigger of a quite general na-
ture. Finally, we study the interplay between these behavior-induced
oscillations with those induced by the seasonality in the contact rate.
The article is organized as follows. In Section 2 we introduce the
main ideas of behavior–implicit social distancing. In Section 3 we
formulate our general model with a (behavior–implicit) incidence-
based transmission rate, whose qualitative properties are analytically
studied in Section 4. Section 5 investigates the effects of incidence-
based temporal delays, whose examples and simulations are re-
ported in Section 6. The interplay between the agents' memory
and seasonality is numerically investigated in Section 7. Concluding
remarks follow.
2

2. Behavior–dependent contact rates and information indexes

Let us consider a standard SIR transmissionmodel for an endemic in-
fectious diseases in the absence of vaccination:

S0 ¼ μ � μS � β tð ÞSI ð1Þ

I0 ¼ I β tð ÞS � μ þ νð Þð Þ ð2Þ

R ¼ 1 � S � I ð3Þ

where S,I,R denote the fractions of individuals who are, respectively,
susceptible to infection, infective, i.e. able to retransmit infection to
others, and removed because of e.g., permanent immunity acquired after
recovery from infection. The infective fraction I is also termed the infec-
tion prevalence.

The critical parameter is represented by function β(t), termed the
transmission rate, which incorporates two distinct sub-processes
namely, the social mixing process and the contagion process. The trans-
mission rate is typically time-dependent, think e.g. to the case of child-
hood vaccine preventable infections, where β(t) is forced periodically
by the alternance between school and holiday terms, and possibly also
by weather influence. Grown from some pioneering work ([22–24]
and references therein), there is nowadays a well-established literature
investigating the effects of periodically and stochastically forced trans-
mission in basic epidemiological models.

Functions

J ¼ βIS

and

FoI ¼ βI

are called, respectively, the infection incidence, representing the per-
capita flow of new infections per unit time, and the force of infection,
representing the per-capita rate at which susceptible individuals ac-
quire infection. Infected individuals are assumed to recover at a con-
stant recovery rate v > 0.

Finally, μ> 0 denotes both the birth and death rates, which are as-
sumed identical to ensure the stationarity of the population over
time, which is a common assumption in Mathematical Epidemiology
[7]. For μ = 0, the model collapses into the classical epidemic SIR
model.

In the case of a constant transmission rate β(t) = β, the model be-
havior is summarized by the basic reproduction number

R0 ¼ β= vþ μð Þ

representing the number of secondary infections generated by a single in-
fective individuals during her infective period (of duration D=1/(ν+ μ)
in a wholly susceptible population. For ℛ0 ≤ 1 there is a unique steady
state, the so-called disease free equilibrium:DFE=(1,0,0), which is glob-
ally asymptotically stable (GAS). For ℛ0 > 1 a unique endemic
equilibrium EE= (Se, Ie,Re) appears which can be proven to be GAS.

In the mathematical epidemiology literature, Capasso and Serio [25]
were first in modeling the influence of human behavior in simple SIR
epidemiological models. In their work, which focused on the epidemic
case (μ=0), the transmission rate βwas taken as a decreasing function
of infection prevalence: β= β(I(t)), with: (d/dI)β(I) < 0. This was done
to account for ‘psychological effects....because in the presence of a very
large number of infectives the population may tend to reduce the num-
ber of contacts per unit time’ [25]. The authors pointed out that, unlike
standard mass action approaches, this formulation could cause the
force of infection to become a non-monotone function of infection prev-
alence (e.g., if β(I) = β0(1 + hI2)−1).

In contemporary behavioral epidemiology language, the model by
Capasso and Serio represented the first behavior implicit epidemic



model with prevalence-dependent social distancing. Since [25], several
other works have investigated epidemic models with a non-linear
force of infection ([12,13] and references therein).

In previous work on behavior-implicit SIR models with vaccination,
we represented the individual's propensity to be vaccinated as a generic
function of the available information on the present and past states of
the infection [17], or of the information on vaccine adverse events
[26]. Formally, we did this by introducing suitable variables M(t) that
we termed information indexes. In other works [27], we extended
these ideas to social distancing, by allowing the contact rateβ to be a ge-
neric function of an appropriate information index M, such that:

FoI Mð Þ ¼ β Mð ÞI ð4Þ

where (d/dM)β(M) < 0. In this case, the information indexM represents
any summary of the available information on the risk of infection and its
sequelae, which is used by agents to modulate their behavior at risk.

Once plugged into the above SIR model, assumption (4) yields the
following family of SIR models with behavior-dependent contact rate:
[27]:

S0 ¼ μ 1 � Sð Þ � β Mð ÞIS ð5Þ

I0 ¼ β Mð ÞIS � μ þ νð ÞI ð6Þ

completed by the balance equation of the removed fraction R(t): R(t)=
1 − S(t) − I(t) and by the specific model of the index M. In [27] we
showed that - regardless of the specific hypothesesmade onM - models
(5)–(6) always admits the disease free equilibrium

DFE ¼ 1, 0ð Þ

which is GAS when β(0) ≤ (μ + ν), whereas it is unstable for β(0) >
(μ + ν). Equivalently, the DFE is unstable when ℛ0(0) = β(0)/(μ +
ν) > 1 i.e., when the basic reproduction number ℛ0(0) in conditions
of ‘negligible’ information - i.e., when no behavioral response is trig-
gered - exceeds one. In the following, wewill assume that the DFE is un-
stable i.e., the disease is always endemic in the absence of behavioral
responses.

In a first approximation, one could assume that M is a continuous
function ω of current values of S,I variables i.e., M(t) = ω(S, I) with
∂Iω(S, I) > 0. More realistically M will also depend on past values of
state variables [12,17], yielding the equation

M tð Þ ¼
Zt

� ∞

ω S τð Þ, I τð Þð ÞK t � τð Þdτ ð7Þ

where function K is a delaying, or memory, kernel [28] .
In the special case K(t) = δ(t), where δ is the Dirac function, the

unlagged case M(t) = ω(S(t), I(t)) is recovered.
In particular in [27] we only focused on the prevalence-dependent

case i.e.,M= f(I). This allowed us to show that the system has a unique
endemic equilibrium, which is globally stable in the memoryless case
[27] as well as in the case of exponentially fading memories [29], but
can be destabilized by appropriate nontrivial memory kernels [27].

3. SIR models with incidence-based behavioral responses: the
memoryless case

The novelty of this work is that the individuals' social distancing re-
sponse is assumed to depend on the information on the infection inci-
dence. We will first introduce incidence-based information indexes,
and use them to formulate general SIR endemic models with
incidence-based social distancing.

In particular,we depart from thememoryless case,where only infor-
mation on current incidence is used by agents to formulate their risk
3

perceptions. In this case, the information indexM is defined (implicitly)
as an increasing function of current incidence:

M ¼ A β Mð ÞSIð Þ ð8Þ

where (d/dM)β(M) < 0 and (d/du)A(u) > 0.
It follows that:

J ¼ β Mð ÞSI ¼ A � 1 M S, Ið Þð Þ ð9Þ

yielding the following differential-algebraic system

S0 ¼ μ 1 � Sð Þ � A�1 Mð Þ ð10Þ

I0 ¼ A�1 Mð Þ � μ þ νð ÞI ð11Þ

M ¼ A β Mð ÞSIð Þ ð12Þ

to be complemented by equation R = 1 − S − I.
Systems (10)-(11)-(12) defines a general family of behavior-

implicit SIR models with incidence-based social distancing.
In relation to Systems (10)-(11)-(12), note that

∂IM ¼ A0 β Mð ÞSIð Þ β Mð ÞS
1 � β

0
Mð ÞA0

β Mð ÞSIð ÞSI > 0

(where, for the sake of the notation simplicity, f′(z) = (d/dz)f(z))
and, similarly, ∂SM > 0.

As a consequence, a function ϕ(X) exists with ϕ′(X) > 0, allowing to
define the information index as

M ¼ ϕ SIð Þ ð13Þ

It follows that the force of infection reads

FoI ¼ A�1 M S, Ið Þð Þ
S

implying

∂IFoI > 0 ð14Þ

This leads to the following important epidemiological consequence:
Corollary If social distancing is uniquely determined by incidence

then the force of infection cannot be unimodal. That is, unlike the
prevalence-dependent case, the force of infection cannot decrease for
large I.

In what follows, for sake of generality we will assume A(x) = kx
where k ∈ (0,1) is the under–reporting rate of actual incidence.

4. The memoryless case: equilibria and global stability analysis

Systems (10)-(11)-(12) always has a disease free equilibrium:

DFE ¼ 1, 0ð Þ

which is GAS if β(0) ≤ (μ+ ν) and unstable if β(0) > μ+ ν. Of course, in
the unstable case the stablemanifold of theDFE is given by the axis I=0
(we omit the trivial proof).

To investigate the existence of endemic states we shall focus on the
case β(0) > μ + ν with initial conditions in the set

Ω ¼ S, Ið ÞjS ≥ 0, I > 0, Sþ I ≤ 1f g

If the model admits endemic states

EE ¼ Se, Ieð Þ



they must be such that

Se ¼ 1 � αIe ð15Þ

Me ¼ A μ þ νð ÞIeð Þ ð16Þ

β Með ÞSe ¼ μ þ ν ð17Þ

where βe : = β(Me). This implies

Se ¼ 1 � αIe ð18Þ

Me ¼ A μ þ νð ÞIeð Þ ð19Þ

r Ieð Þ ¼ 1
1 � αIe

ð20Þ

where

r Ieð Þ ¼ β A μ þ νð ÞIeð Þð Þ
μ þ ν

which is a decreasing function of Ie, such that r(0) = β(0)/(μ + ν) > 1.
Therefore, Eq. (20) implies that Eq. (20) has a unique solution Ie ∈ (0,μ/
(μ + ν)) i.e., the system has a unique endemic equilibrium point.

As for the local stability of the endemic state, for the sake of simplic-
ity we will consider here only the baseline case A(x) = kx [17], but the
present discussion easily extends to the case where A(x) is a generic in-
creasing function. In this case, our system reads

S0 ¼ μ 1 � Sð Þ � M
k

ð21Þ

I0 ¼ M
k

� μ þ νð ÞI ð22Þ

M ¼ kβ Mð ÞSI ð23Þ

A linearization of system (21)-(22)-(21) at the endemic state EE by
setting (S, I,M) = (Se, Ie,Me) + (s, i,m) yields the equations

s0 ¼ � μs � m
k

ð24Þ

i0 ¼ m
k

� ri ð25Þ

m ¼ k
hsþ ri
1þ kσ

ð26Þ

where h = β(Me)Ie, r = β(Me)Se = μ + ν and σ = − β′(Me)SeIe > 0.
The corresponding characteristic polynomial reads

P λð Þ ¼ λþ μ þ h
1þ kσ

� �
λþ rkσ

1þ kσ

� �
þ hr
1þ kσ

showing that both eigenvalues have negative real part, implying that
the endemic state is locally asymptotically stable (LAS).

To exclude the existence of closed orbits in Ω, an application of the
Dulac-Bendixon theorem to Systems (21)–(22) using various standard
integrating factor (such as 1/I), failed. Therefore, we applied the follow-
ing continuous transformation of variables:

X, Ið Þ ¼ SI, Ið Þ

leading to the system

X0 ¼ μ I−Xð Þ−I
ϕ Xð Þ
k

ð27Þ

I0 ¼ X
I
ϕ Xð Þ
k

� μ þ νð ÞI ð28Þ
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Systems (27)–(28) does not admit closed orbits since its divergence
is always negative:

div X0, I0
� � ¼ � μ � I

ϕ0 Xð Þ
k

� X

I2
ϕ Xð Þ
k

� μ þ νð Þ < 0

It follows that, for the original system, the endemic state EE is always
GAS in Ω. In words, no incidence-based social distancing response is
able to destabilize the endemic state of the basic endemic SIR model
(similarly to what occurs for the corresponding prevalence-based sys-
tem analysed in [27]).

5. SIRmodels with incidence-based behavioral responses: the role of
memory

In this sectionwe analyse the effects of ‘delayed’ incidence-based so-
cial distancing, by which individuals determine their behavioral re-
sponses accounting not only for current incidence but also for past
incidence trends.

In this case, the following general SIR model arises:

S0 ¼ μ 1 � Sð Þ � β Mð ÞIS ð29Þ

I0 ¼ β Mð ÞIS � μ þ νð ÞI ð30Þ

M tð Þ ¼
Z t

� ∞
kβ M τð Þð ÞS τð ÞI τð ÞK t � τð Þdτ ð31Þ

To understand the dynamical implications of delayed incidence-
based social-distancing, we now turn to the analysis of the local stability
of the endemic state EE under twomain subcases of kernel K(.), namely,
(i) the classical case of an exponentially fadingmemory, and (ii) themore
realistic case of an acquisition-fading memory [30], where an exponen-
tially declining phase is preceded by an initial phase of information ac-
quisition.

5.1. The effects of an exponentially fading memory

Exponentially fading memory kernels are represented by K(t) = a
exp (−at), with expectation <t> given by the fading time scale T = 1/
a [28]. By applying the linear chain trick [28] to Eqs. (29)–(30)–(31),
we get the following three-dimensional system:

S0 ¼ μ 1 � Sð Þ � β Mð ÞIS ð32Þ

I0 ¼ β Mð ÞIS � μ þ νð ÞI ð33Þ

M0 ¼ a kβ Mð ÞSI � Mð Þ ð34Þ

The corresponding Jacobian matrix J at the endemic state reads as
follows:

J ¼
� μ þ hð Þ � r σ

h 0 � σ
akh akr � a 1þ kσð Þ

0
B@

1
CA

whose characteristic polynomial is given by

P λð Þ ¼ λ3 þ c2λ2 þ c1λþ c0

where:

c2 ¼ μ þ hþ a 1þ kσð Þ>0
c1 ¼ hr þ a hr þ kσ μ þ rð Þð Þ>0

c0 ¼ ar hþ μkσð Þ>0

The Routh-Hurwitz condition for local stability reduces to the condi-
tion c1c2 > c0 which reads:



h2a2 þ h1aþ h0>0

which is true for all a > 0 since it is straightforward to verify that

h2 ¼ 1þ kσð Þ hr þ kσ μ þ rð Þð Þ>0
h0 ¼ hr μ þ hð Þ>

and

h1 ¼ � hr þ hr 1þ kσð Þ � μrkσ þ μ þ hð Þ hr þ kσ r þ μð Þð Þ ¼
h2 þ hkμσ þ 2hkrσ þ 2hμ þ kμ2σ þ μ2>0

As a consequence, under an exponentially fading memory the EE is
LAS for all a > 0.

In plain words, no ‘exponentially delayed’ incidence-based social
distancing response is able to destabilize the endemic state, regardless
of how far into the past goes the information used by agents to elaborate
their behavioral response.

5.2. The effects of an acquisition-fading kernel

The acquisition-fading kernel, introduced in [30], has the following
form:

K tð Þ ¼ 1
Tb � Ta

e� t=Tb � e� t=Ta

� �
ð35Þ

This kernel models two sub-processes occurring independently and at
different time-scales: i) the first one is represented by formation and ac-
quisition of information, with time-scale Ta, as mirrored by the fact that
K(0) = 0 i.e., one has no instantaneous knowledge of infection spread;
ii) the second one is a process of fading of the acquired information,
with time-scale Tb. Often the first process is much faster than the second
i.e., Tb > Ta. The acquisition-fading kernel has expectation <t > = Ta +
Tb and Var(t) = Ta

2 + Tb
2. Note that the second order Erlang kernel

K(t) = a2t exp (−at), most often used in the literature on time-
lags [28] corresponds to Eq. (35) for b → a.

Again, by an application of the linear chain trick [28], we get the 4-
dimensional system:

S0 ¼ μ 1 � Sð Þ � β M2ð ÞIS ð36Þ

I0 ¼ β M2ð ÞIS � μ þ νð ÞI ð37Þ

M0
1 ¼ a g S, Ið Þ � M1ð Þ ð38Þ

M0
2 ¼ b M1 � M2ð Þ ð39Þ

where a=1/Ta, b=1/Tb,M(t) =M2(t). Note that the equations forM1

and M2 mimick the fact that the type of time lag described by the
acquisition–fading distribution is a sequence of two independent expo-
nentially fading memories.

The Jacobian matrix at the endemic equilibrium reads:

J ¼
− μ þ hð Þ −r 0 σ

h 0 0 −σ
akh akr −a −akσ
0 0 b b

0
BB@

1
CCA

The resulting characteristic polynomial is

P λð Þ ¼ λ4 þ∑
3

i¼0
qiλ

i
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where

q3 a,bð Þ ¼ aþ bþ hþ μ>0,
q2 a,bð Þ ¼ ab 1þ kσð Þ þ hþ μð Þ aþ bð Þ þ hr>0,
q1 a, bð Þ ¼ ab μ þ hþ μ þ rð Þkσð Þ þ hr aþ bð Þ,

q0 a, bð Þ ¼ abr hþ μkσð Þ>0

The Routh-Hurwitz condition for the local stability of the endemic
state EE can be written as follows:

RH a,bð Þ ¼ q1
q3

� �2

� q1
q3

� �
q2 þ q0 < 0

Therefore, at the points (a,b) of the locus RH(a,b) = 0, the system
undergoes a Hopf bifurcation, with pulsation

ω2
H ¼ q1

q3

As it is easy to verify, if the pair (a,b) is such that both 0< a<<1 and
0 < b << 1 then R(a,b) < 0, i.e. EE is LAS. Similarly, if both a and b are
very large: a,b >> 1, then the EE is LAS. Thus the endemic equilibrium
could only destabilized for intermediate values of a and b. Since R(a,b)
is a fourth–order polynomial in the variables a > 0 and b > 0, the
exact shape of the instability region can be analytically determined
by Cardano's formula for the solution of fourth-order algebraic equa-
tion. However, since this formula is cumbersome, we omit it. In the
practice one has to resort to numerical computations, even in the
case a = b.

To sum up, unlike the exponentially fading kernel, the acquisition-
fadingmemory (and, probably, other unimodal kernels) can destabilize
the endemic state of an SIR model with incidence-based social distanc-
ing. This in particular holds true for the special case of the second order
Erlangian kernel, as is easy to check.

6. Incidence-based social distancing: an illustration based on the
acquisition-fading memory

In this section we report a few examples of the working of the
more interesting model presented here, namely the delayed
model with acquisition-fading memory. The purpose of this sec-
tion is primarily that of illustrating the potential richness of the
model.

In these illustrations, we will resort to the following simple func-
tional specification of β(M)

β Mð Þ ¼ β0 1 � qMð Þþ

where (x)+ equal to x if x ≥ 0, and equal to 0 if x < 0.
This type of piecewise linear behavioral responses (used in [12,17])

postulates the annihilation of the risk of infection beyond some thresh-
old incidence. The parameter q tunes the strength of the behavioral re-
sponse.Moreover, we assumeβ(0)> μ+ν to ensure the existence of an
endemic state.

Finally, as information index we choose the reported incidence:

M ¼ kβ Mð ÞSI

These hypotheses imply:

M S, Ið Þ ¼ kSI
1þ qkSI

and

β Mð ÞSI ¼ SI
1þ qkSI



In particular, the equation determining the endemic prevalence Ie is
as follows

1 − krIð Þ 1 − αIð Þ ¼ 1
ℝ

i.e.

krαI2 � α þ krð ÞI þ pcr ¼ 0

so that

Ie ¼
α þ krð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ k2r2 þ 2αkr 1 � 2pcrð ÞÞ

q
2

In order to assign the behavioral parameter q, we use the following
argument. Consider a standard SIR model with standard incidence and
constant contact rate equal to β0>0. The corresponding endemic
equilibrium (Ssir, Isir) is as follows

Ssir ¼ 1
ℝ0

Isir ¼ 1 � Ssirð Þ μ
μ þ ν

Therefore, the endemic incidence reads as

Jsir ¼ β0SsirIsir

Then, as regards q, since forM=1/q it is β(M) = 0.5β0, and since, in
turn, β is assumed to be proportional to the incidence with
proportionality factor k, we assumed:

q ¼ 1
kf Jsir

1 � Ssir

with f ∈ (0,1). Note that q−1 = kfJsir. In other words: the baseline
transmission rate is halved when M is equal to a fraction f of the
behavior–independent steady state incidence.
Fig. 1. The SIR model with incidence-based transmission response and acquisition-fadingmem
tical stability region (white) vs the instability region (dark blue), which can be approximated b
tiny values of a and/or b, corresponding to unrealistically large Ta and/or Tb. Parameter values:
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Last, we use the following values for the other parameters (time
unit: days−1):mu=1/(50 ∗ 365.25), corresponding to a life expectancy
of 50 years (reasonable for low-income settings), v = 1/7 correspond-
ing to a duration of the infective phase of seven days, ℝ0=15
(adimensional), a typical value of the basic reproduction number of
measles, and consequently: β0 = ℝ0(μ + ν). We obtain

Ie ≈ 3:33� 10�5

Se ≈ 0:913478

Je ¼ 4:73� 10�6

The resulting stability boundary is plotted in the left panel of Fig. 1.
The region where local stability prevails (i.e., the points (a,b) where
RH(a,b)<0) is the clear one, while the instability region is the one in
dark color. The stability region can be roughly approximated by the con-
dition

aþ b > w

wherew≈ 2×0.0662. However, in the previous sectionwenoted that for
small values of (a,b) the endemic equilibrium is LAS. And indeed, our nu-
merical computations confirm that for tiny - possibly unrealistic - values of
a and/or b the EE is again LAS, as shown (for the sake of the curiosity) in
the right panel of Fig. 1. For example, for b= 0.1a, we obtained that the
endemic state EEwas LAs for 0 < a< 0.000015615 (corresponding to ac-
quisition delays of at least 175.33 years, a totally unrealistic duration) and,
more interestingly, a > 0.12043. This threshold corresponds to approxi-
mately 8.3 days and a fading time of about 83, so that theminimal average
delay capable to destabilize the system is in the range of≈91 days. Fig. 2
reports the output of a simulation of the system over a period of 40 years,
starting from the endemic equilibriumof the baseline SIRmodel in the ab-
sence of a behavioral response, i.e., from the initial condition:

S 0ð Þ, I 0ð Þ,M1 0ð Þ,M2 0ð Þð Þ ¼ , Ssir , Isir , Jsir , Jsirð Þ

and setting a=0.05/day (corresponding to an average delay of acquisi-
tion of information of Ta = 20 days) and b= 0.005, corresponding to a
ory kernel: regions of local stability vs instability of the endemic state. Left Panel: the prac-
y the relationship a+ b ≥ω. Right panel: appearance of an additional (tiny) LAS region for
as specified in the main text.



Fig. 2. The SIRmodel with incidence-based transmission response and acquisition-fadingmemory kernel temporal trend of themodel for a=0.05 and b=0.1a showing the onset of large
oscillations with a period of about 450 days. Left Panel: trend of infective prevalence (normalized by the equilibrium prevalence Ie) from t = 0 to a max time of 40 years. Right panel:
‘zoomed’ trend of infective prevalence in the time interval from 36 to 40 years. Parametric values: as in specified in the text.
fading time of information of 200 days. This yielded the onset of large
oscillations (left panel of Fig. 2) with a resulting long-term period
of about 450 days (see zoom at the right panel of Fig. 2). The cor-
responding long-term amplitude was about 28 times larger than
the value of the steady state prevalence Ie of the baseline SIR
model.

Alternative choices of the delay parameters Ta, Tb are capable to
bring oscillations with any desired inter-epidemic period and very
large amplitude, in the spirit of [17].

7. The interplay between behavioral responses and seasonal forcing
of the contact rate

In this section we briefly study the interplay between delayed be-
havioral responses and the presence of seasonality in the transmission
rate. Seasonality in contact rate is one of themost important and studied
topics in in the mathematical modeling of infectious diseases [31].

Assuming, for the sake of the simplicity, that the transmission rate is
time periodic bymeans of amultiplicative periodic functionψ(t) having
period of one year and an average value equal to one

M ¼ A ψ tð Þβ Mð ÞSIð Þ ð40Þ

where we recall that A′(u) > 0. From Eq. (40) it follows that

M ¼ ϕ ψ tð ÞSIð Þ

yielding the following DAE system:

S0 ¼ μ 1 � Sð Þ � A�1 Mð Þ ð41Þ

I0 ¼ A�1 Mð Þ � μ þ νð ÞI ð42Þ

M ¼ A ψ tð Þβ Mð ÞSIð Þ ð43Þ

For example, in the case, considered in the previous section, where
β(M) = β0(1− qM) one has that:

M S, I, tð Þ ¼ kψ tð ÞSI
1þ qkψ tð ÞSI

In our simulations we set

ψ tð Þ ¼ 1þ Q sin
2π
T

t
� �

where 0 < Q < 1.
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The effect of the seasonal oscillations can be very strong also in the
short term of 40 years. Indeed, see Fig. 3, in 40 years the oscillations
reach a peak amplitude of about 110Ie and the epidemic peaks are
shifted of 800 days about. Extending the simulation up to 400 years
the oscillations reach a peak amplitude of≈200Ie.

8. Concluding remarks

In this work we expanded the class of behavioral epidemiology
models by considering endemic SIR models with incidence-based
social-distancing. The idea is that individuals at risk of infection modify
their social behavior in response to the available information on some
appropriate function of the (current or past) incidence of the infection.
In many cases, this is more realistic than the typical prevalence-based
models routinely used in the behavioral epidemiology literature
[12–14]. This leads, at variance with many epidemic models, to a
differential–algebraic system.

We considered both current and delayed behavioral responses. As
for the latter we considered two forms of the delaying kernel, namely
the classical exponentially fading memory and an acquisition-fading
memory that includes the ‘classical’ humped Erlang kernels as special
cases.

Our results showed that the system has a unique endemic equilib-
rium. This endemic state was shown to be globally attractive when
the behavioral response is based only on information on current
incidence.

In presence of delayed behavioral responses, we showed that the en-
demic state (i) remains locally stable independently of the delay under
exponentially fading memories, (ii) can be destabilized, by way of a
Hopf bifurcation, in the presence of the more realistic acquisition-
fading memory. The latter mechanism can induce recurrent behavior-
induced epidemics without the need for seasonal forcing.

Finally, the inclusion of seasonality of the baseline contact rate did
not induce chaos. However, it had a strong effect on the above–
mentioned recurrent epidemics: the period of the solutions was re-
markable increased, and the epidemic peaks were strongly amplified.

Although providing useful new pieces of information, our work has
some limitations. First, it would be interesting to extend our behavior
implicit formulation to a fully behavior explicit setting [12, 14]. Second,
we proposed a deterministic model, which is only an adequate approx-
imation in the case of a large population. Moreover we did not consid-
ered the possible presence of extrinsic stochastic perturbations, which
can be affect both small and large populations. Further, the proposed
model assumes that the population is homogeneously mixing. A spatial
approach, especially based on a networked meta–population approach



Fig. 3. The SIR model with incidence-based transmission response and acquisition-fading memory kernel: the interplay with seasonality in transmission. Here ψ(t) = 1 + Q sin (2πt/T)
with Q = 0.9, T is equal to one year, a = 0.05 and b = 0.1a. Onset of very large oscillations of a period of about 800 days and of a peak amplitude ≈110Ie (which running for a longer
maximal time the simulation reaches a value ≈200Ie).Other parameters are specified in the text.
as in [13,32] would improve the applicability of the proposed model to
real scenarios. Moreover, the networked approach could reveal emer-
gent and topology–dependent features such as phase transitions,
which are not possible in non–spatial models. An interesting example
is, for example, the phase transitions observed in the vaccination–
related behavioral epidemic model in [32]. Finally, a parallel modeling
of the formation and spread of the information (see for example for
other scenarios: [13,33]) would be of interest.
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