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Abstract: We investigate the role of vortices in the decay of persistent current states of annular atomic
superfluids by solving numerically the Gross–Pitaevskii equation, and we directly compare our results
with the 6Li experiment at LENS data. We theoretically model the optical phase-imprinting technique
employed to experimentally excite finite-circulation states in the Bose–Einstein condensation regime,
accounting for imperfections of the optical gradient imprinting profile. By comparing simulations of
this realistic protocol to an ideal imprinting, we show that the introduced density excitations arising
from imperfect imprinting are mainly responsible for limiting the maximum reachable winding
number wmax in the superfluid ring. We also investigate the effect of a point-like obstacle with
variable potential height V0 on the decay of circulating supercurrents. For a given obstacle height,
a critical circulation wc exists, such that for an initial circulation w0 larger than wc the supercurrent
decays through the emission of vortices, which cross the superflow and thus induce phase slippage.
Higher values of the obstacle height V0 further favor the entrance of vortices, thus leading to lower
values of wc. Furthermore, the stronger vortex-defect interaction at higher V0 leads to vortices that
propagate closer to the center of the ring condensate. The combination of both these effects leads
to an increase in the supercurrent decay rate for increasing w0, in agreement with experimental
observations.

Keywords: Bose–Einstein condensates; persistent currents; superfluids; vortices; phase-slippage;
solitons

1. Introduction

One of the most fascinating properties of quantum fluids in multiply connected ge-
ometries is the possibility to excite persistent currents, i.e., long-lived states of quantized
circulation with a non-zero, dissipationless current [1–5]. In superconducting rings, per-
sistent currents constitute the ground state of the system in the presence of an external
magnetic field piercing the ring [6], whereas in neutral rotating superfluids they appear as
metastable states in the energy spectrum [7,8]. A persistent current state with circulation
w corresponds to a wave function with an integer number w of 2π-phase windings. The
quantized nature of the circulation makes such a state topologically protected against
decaying into the underlying state with circulation w− 1. In fact, the transition between
the two states can occur only via a phase slip of 2π in the wave function. In rotating neutral
superfluids, this results in an effective energy barrier separating circulation states with
different w, creating the characteristic parabolic washboard energy spectrum [9].

Ultracold atomic superfluids in ring traps offer an ideal platform to investigate the
stability of persistent currents, due to the high level of control of these systems and to
the possibility of introducing ad hoc defects to trigger the current decay [10]. A non-zero
circulation can be introduced in an atomic superfluid ring in several ways [11]: by stirring
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a repulsive obstacle through the ring with a well-defined frequency [5,12,13], by exciting
Raman-transition with structured a Laguerre–Gauss beam [14,15], or by optically phase-
imprinting the desired winding onto the superfluid wave function [16–18]. By accessing
persistent current states at high w and monitoring their long-time dynamics, the metastable
character of persistent currents has been observed [19,20], and their decay has been induced
by introducing a repulsive weak link [12] or a localized obstacle in the ring [16]. In these
systems, the current decay proceeds via the emission of quantum or thermal phase slips in
one-dimensional [21] or quantized vortices in three-dimensional systems, which escape
from the ring central hole, enter the bulk density, and thus remove one circulation quantum
from the local current.

In the recent work of Ref. [16], we investigated the stability of persistent currents of
homogeneous paired fermionic superfluids in a clean ring trap and in the presence of a local
defect. We accessed non-zero circulation states by phase imprinting an azimuthal gradient
profile, which we then probed interferometrically to measure the current in the ring. The
phase-imprinting technique allowed us to effectively populate on-demand circulation
states in all the different regimes throughout the crossover from a Bose–Einstein condensate
(BEC) of tightly bound molecules to a Bardeen–Cooper–Schrieffer (BCS) superfluid of
Cooper pairs. In particular, circulations up to w = 6 were obtained in the BEC limit with
a single imprinting pulse, mainly limited by the unwanted excitations introduced by the
non-perfectly sharp imprinting profile. On the other hand, in the presence of a single
obstacle, we observed the emergence of a critical circulation wc: for w < wc the current is
stable, whereas it decays via the emission of quantized vortices for w > wc. Although in
the presence of the obstacle the connection between the current decay and the emission of
vortices is apparent even in the experimental results, it is more elusive to investigate the
source of the current instability in the clean ring, setting the upper limit for the highest w
that can be realized.

In this work, we numerically model the experiment reported in Ref. [16] in the BEC
regime to shed light on the microscopic mechanism connecting the persistent current
instability to the emission of quantized vortices, both in the clean ring and in the presence
of the obstacle. First, we investigate the effect of the non-ideal experimental imprinting
procedure on the maximum winding number observed. By modelling the experimental
imprinting profile, we investigate the stability of the excited current, confirming that the
circulation is limited by the density excitations introduced by the imprinting, which favor
the vortex emission. Then, we study the persistent current decay dynamics in the presence
of a local obstacle in the ring density as a function of the obstacle height. In all the studies
reported in this paper, we observed the current decay to go along with the emission of
quantized vortices and we characterized its microscopic dynamics.

The paper is structured as follows. In Section 2 we describe the numerical methods
employed for this study: in Section 2.1 we present the different numerical techniques to
excite the persistent currents, and in Section 2.2 we describe the numerical procedure to
study the decay induced by a local obstacle. In Section 3 we report our results: in Section 3.1
we compare the numerical and experimental techniques to measure the persistent currents;
in Section 3.2 we discuss the maximum circulation state achievable under the experimental
conditions; finally, in Section 3.3 we report our numerical study of the defect-induced
current decay as a function of its heights.

2. Methods

We study the dynamics of a Bose–Einstein condensate (BEC) in a ring geometry at
T = 0 by numerically solving the time-dependent mean-field 3D Gross–Pitaevskii Equation
(GPE):

ih̄
∂Ψ(r, t)

∂t
= − h̄2

2M
∇2Ψ(r, t) + VΨ(r, t) + g|Ψ(r, t)|2Ψ(r, t) (1)

where Ψ(r, t) is the condensate wave function, M the particle mass, V the external trapping
potential, and g = 4πh̄2aM/M the interaction strength. To model the experiment reported
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in Ref. [16] in the BEC regime, we employ M = 2 m, where m is the mass of 6Li atoms, and
aM = 0.6 a is the molecular s-wave scattering length, with a = 1010 a0 the atomic one and
a0 the Bohr radius. Throughout this work, the external trapping potential is provided by
the combination of a 3D harmonic confinement and a hard-wall one in the x − y plane,
namely V = Vharm + Vring, which creates a highly anisotropic superfluid, oblate in the
vertical direction. The two are defined as follows:

Vharm =
1
2

M
(

ω2
⊥r2 + ω2

z z2
)

, (2)

where {ω⊥, ωz} = 2π × {2.5, 396}Hz are the radial and axial trapping frequencies,
respectively, and

Vring = V1

[
tanh

(
r− Rout

σ

)
+ 1
]
+ V1

[
tanh

(
Rin − r

σ

)
+ 1
]

, (3)

where {Rin, Rout} = {9.6 , 21.0}µm are the inner and outer ring radii, and σ = 0.37µm and
V1 = 2.5 µ, where µ is the chemical potential of the superfluid. The ring trap parameters
V1 and σ have been chosen so to match the numerical density at equilibrium with the
experimental one.

To numerically find the system ground state, the Equation (1) is solved in imaginary
time. In particular, we use a Cartesian grid composed of {Nx, Ny, Nz} = {256, 256, 80}
points along the x, y, and z direction, respectively. We set the same grid size along the x- and
y-axis, i.e., |x|, |y| < 34.846µm and |z| < 11.0µm. The time step is set to ∆t = 1× 10−5 ω−1

⊥ .
For a particle number equal to the experimental one, namely N = 7.5× 103, we numerically
obtain µ = 1.06 kHz and a healing length of ξ = 0.61µm, consistent with the calculated
ones for the experimental BEC superfluid [16]. This gives rise to a grid spacing along the
three directions of ∆x = ∆y = 0.45 ξ and ∆z = 0.46 ξ.

To directly compare with the experimental observables, we implement in our numer-
ical simulations the interferometric technique employed experimentally to measure the
circulation. It consists of introducing a disk condensate at the center of the superfluid
ring as a phase reference and measuring the circulation in the ring from their interference
pattern acquired in time-of-flight (TOF) [22–24]. To do so, we modify the trapping potential
in the x− y plane to account for the central disk condensate:

Vring = V1

[
tanh

(
r− Rout

σ

)
+ 1
]
+ V1 exp

[
−2(Rin − r)2

d2

]
(4)

where d = 1.1µm. The number of particles in such a modified trap is N = 10 × 103.
To numerically obtain the interferograms, we remove Vring in 0.3 ms, while keeping the
harmonic vertical confinement. As the superfluid expands in the x− y plane during the
TOF, we modify accordingly the numerical grid to contain it all while keeping the same
grid spacing as for the simple ring simulations. Thus, we modify our grid size by using
Nx = Ny = 384 grid points for a grid size of length |x|, |y| < 53.186µm.

2.1. Phase Imprinting

In the experiment of Ref. [16], the current in the ring is excited via a phase imprinting
technique: the superfluid density is illuminated for a time tI by a far-detuned laser with
an intensity profile showing a linear gradient along the azimuthal direction. A phase
∆φ(θ) = U(θ) × tI/h̄ is imprinted on the superfluid wave function, where U(θ) is the
dipole potential exerted by the laser beam. The phase winding in the ring is thus directly
controlled by acting on the imprinting time. Because of the finite resolution (∼1 µm) of
the optical setup imaging the imprinting pattern on the atomic cloud, the light gradient
presents a sharp gradient in the opposite direction, which introduces density excitations.

Numerically, the winding number of the ring is imprinted by multiplying the initial
wave function by the phase factor exp(−i∆φ(θ)) = exp(−iU(θ)tI/h̄) during the imaginary
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time evolution. In the following study, we have employed two different imprinting profiles
U(θ) to investigate different aspects of the persistent current stability. To examine the
maximum winding number excitable under the experimental conditions, we choose U(θ)
to closely model the experimental imprinting profile. In particular, for such a realistic
imprinting, we use:

U(θ) =

{
U0

(
1− θ

2π−∆θ

)
0 ≤ θ ≤ 2π − ∆θ

U0
∆θ (θ − ∆θ + 2π) 2π − ∆θ < θ < 2π,

(5)

where U0 = 7.8 µ is the height of the gradient at the discontinuity and ∆θ = 0.03 rad.
On the other hand, when studying the current stability in the presence of the ob-

stacle, we employ an ideal imprinting where U(θ) is a simple linear gradient, namely
U(θ) = U0(1− θ/2π). Such a procedure allows us to excite a well defined winding num-
ber w0 without introducing any density excitations and therefore to decouple the current
decay induced by the presence of the obstacle from the density excitation introduced by
the imprinting. For both imprinting procedures, we define the total imprinted winding as
∆φI = U0tI/h̄, coinciding with the imprinted phase difference at the gradient discontinuity.

2.2. Introducing a Local Obstacle

To study the dynamics of the ring currents in the presence of an obstacle, we solve
Equation (1) by changing the trapping potential to also account for the defect. In particular,
we add the defect contribution to the already presented expression of V, parameterizing it
with the following Gaussian shape:

Vdefect = V0 exp

[
−2(x− x0)

2

σ2
d

]
exp

[
−2(y− y0)

2

σ2
d

]
(6)

where (x0, y0) are the defect center coordinates along the x- and y-axis, σd is its 1/e2

Gaussian width, and V0 is its height. Throughout this work, the defect is positioned almost
central to the ring transverse extension, with x0 = −15.0µm, and y0 = 0. The defect width
is kept fixed at σd = 1.4µm, while its height is varied in the range 0.8 µ ≤ V0 ≤ 2.0 µ.

In the numerical study of the obstacle-induced current decay, we modify the pa-
rameters of the ring trap to account for the slightly different experimental conditions
in the presence of the central disk used for the interferograms. In particular, we use
{Rin, Rout} = {10.45, 21.0}µm, σ = 1.47µm in Equation (3), and a total number of parti-
cles of N = 6035. These parameters lead to a chemical potential µ = 1.15 kHz.

3. Results
3.1. Numerical and Experimental Measurement of the Ring Winding Number

From the solution of the GPE equation of Equation (1), we extract the density ρ
of the atomic cloud and its phase φ by considering the Madelung representation of the
wave function Ψ(x, y, z) =

√
ρ(x, y, z) exp(iφ(x, y, z)). In Figure 1a,b, we report the 2D

density and phase of the ring superfluid after a total imprinted winding of ∆φI = 2× 2π
performed with the realistic imprinting procedure. The superfluid ring shows a density
depletion corresponding to the gradient discontinuity, caused by the sharp anti-gradient
in the imprinted profile of Equation (5). The same perturbation is also observed in the
experimental superfluid density reported in Figure 1d, acquired by imaging in situ the
atomic cloud immediately after the imprinting of ∆φI = 2× 2π. As will be discussed
in detail in the next section, the density excitations produced by the imperfections of the
imprinting gradient set the effective limit on the maximum winding number we can excite.

Whereas the 2D superfluid density provides information on the imprinting-induced
density excitations on the cloud, the phase profile of Figure 1b measures the circulation in
the ring. The winding number of the superfluid ring is indeed encoded in the number of
2π-jumps performed by the phase in the regions of non-zero density, where this quantity is
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well defined. In particular, Figure 1b shows two phase jumps, as clearly illustrated in the
azimuthal profile of φ reported in Figure 1c, signaling a winding number w = 2 in the ring.
More quantitatively, from the 2D profile of the superfluid phase we can calculate the mean
circulation as < w >=

∫ Rout
Rin

dr
∮

r v(r) · dl , where v(r) = h̄/M∇φ(r) is the velocity of the
superfluid.

20 μm

20 μm
0 1 2
0

1

2

10 2
0

1

2

0

1

2

3
O.D.

(a) (b) (c)

(d) (e) (f)

Figure 1. Comparison between numerical and experimental observables. (a) Numerical density
profile extracted immediately after a realistic imprinting of ∆φI = 2× 2π. The 2D density is obtained
by integrating ρ(x, y, z) along the z-axis and scaling it to its maximum value. (b) Numerical superfluid
phase in the xy-plane 50 ms after the imprinting. (c) Azimuthal profile of the numerical phase profile
as in (b) along the circle at r = (Rout + Rin)/2 marked by the dash-dotted gray line. (d) Experimental
in situ density profile of the superfluid ring immediately after the imprinting of ∆φI = 2 × 2π.
(e) Experimental interferograms obtained 50 ms after the same imprinting as in (d). (f) Azimuthal
profile of the phase difference measured from the interferograms of (e). For each value of θ, the local
relative phase is obtained from a sinusoidal fit of the radial density in the interferogram [16]. The red
solid line represent a linear fit, from the slope of which we extract the winding w = 2.12(6).

Experimentally, the phase of the ring is not an accessible quantity as it is for numerical
simulations. However, the interferometric technique already discussed accesses the relative
phase of the ring with respect to the disk superfluid at rest, such that from the interferograms
we can measure the ring winding number. In Figure 1e, we report the interferogram
obtained after the imprinting of ∆φI = 2 × 2π. The two clockwise spirals in such an
image reveals a circulation of w = 2 in the clockwise direction. From the sinusoidal fit of
the radial profile of the interference pattern in the interferograms [16], the experimental
azimuthal trend of the relative phase can be extracted (see Figure 1f). The local relative
phase displays the same linear trend, modulus 2π, exhibited by the numerical phase of
Figure 1c, demonstrating that the two methods provides the same information on the
winding number. We note that, as long as there are no vortices in the ring density, the
mean circulation measured from the numerical phase profile coincides with the winding
number we can extract form the interferogram, with the number of spirals appearing in the
interference pattern. However, when vortices are traveling in the ring density, the extracted
value of the mean circulation is affected by the local phase winding around the vortices,
and the values of 〈w〉 extracted from the mean circulation and from the interferograms may
slightly mismatch. In particular, the interferogram patterns measure the winding number
of the internal edge of the ring, where the interference with the phase reference occurs,
whereas the mean circulation accounts for the whole phase profile in the ring.
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3.2. The Maximum Circulation State

The experimental data reported in Ref. [16] show that the maximum circulation
excitable with a single phase imprinting is wmax = 6 in the BEC regime. This value
corresponds to superfluid velocities well below the speed of sound in every region of
the ring, as the velocity of the superfluid at the inner ring radius is roughly 0.2 cs. To
understand the origin of such a maximum winding number, we numerically study the
imprinting procedure for both ideal and realistic imprinting. In both cases, we measure
the excited ring circulation from the numerical interferograms and compare it with the
experimental imprinting characterization in Figure 2a. For both experimental (green
symbols) and numerical results obtained with either of the two imprinting methods (green
line for realistic, black symbols for ideal imprinting), the measured winding 〈w〉 displays
the typical step-like trend arising from the quantized nature of the circulation. However,
whereas with the ideal imprinting, the measured winding keeps increasing, the excited
circulation with the realistic imprinting saturates at wmax = 7 for large ∆φI/2π ≥ 7, in
qualitative agreement with the experimentally observed wmax = 6 in the BEC regime [16].
In particular, the numerical simulation for ∆φI/2π > 5 with the realistic imprinting
show that, initially, a circulation of ∆φI/2π is excited in the ring, but it quickly decays
to a lower value in a timescale of a few milliseconds, consistent with the experimental
observations [16]. Such a decay is never observed in the numerical results employing the
ideal imprinting, which is able to excite stable circulation state for arbitrarily large ∆φI .
After an ideal imprinting of a phase multiple of 2π, the atomic density is observed to be
unperturbed, with no density excitations that could limit the imprinted circulation.

On the other hand, both in the experimental in situ density profile and in the numerical
one after the realistic imprinting procedure, a density depletion is clearly visible at the
location of the sharp anti-gradient of the imprinting profile. In order to understand the
connection of such a density perturbation with the observed wmax, we follow its evolution
in time. Figure 2b shows the short-time dynamics of the ring superfluid density in the
xy-plane for ∆φI/2π = 1 (i—numerical, ii—experimental) and for ∆φI/2π = 8 (iii). For
small ∆φI , the initial density cut decays into two sound waves propagating in opposite
directions, as observed both numerically and experimentally in Figure 2b(i,ii). The presence
of these sound waves only generates some density fluctuations and therefore it does not
affect the circulation in the ring, which is observed to be stable to w = 1. On the other hand,
for larger ∆φI/2π = 8, which corresponds to longer imprinting time, the extension of the
initial density depletion increases (see Figure 2b(iii), t = 0 ms). In this case, the decay of
such a density perturbation leads to larger amplitude sound waves, which, favored also
by the larger superfluid velocity, triggers the entrance of vortices from both the inner and
the outer edge of the ring. As a vortex enters the bulk density from the inner ring radius,
it removes one circulation quantum from the local ring current, causing the imprinted
circulation state to decay to a lower value. The presence of vortices in the superfluid density
as a consequence of the imprinting is also observed experimentally, as reported in Figure 2c.
In particular, we find that the average number of vortices 〈Nv〉 detected after the imprinting
grows as a function of the imprinted phase difference, and it is non-zero for small ∆φI .

The effect of the density-depletion decay on the circulation in the ring is clearly
summarized in Figure 2d, where we report the numerical interferograms as a function of
time after a realistic imprinting of ∆φI/2π = 1, 5, 8. In the first case, the density depletion
decay introduces only sound waves in the ring superfluid, which quickly decay out without
affecting the circulation state, which is always measured to be w = 1 in the interferograms.
On the other hand, for larger ∆φI , the density depletion decay causes vortices to enter
the ring superfluid density, which in turn induce the circulation state to decay to a lower
value. In the case of ∆φI/2π = 5, the system reaches a new equilibrium in approximately
50 ms, and the interferogram at this time shows the coexistence of a circulation of w = 4
and one vortex. For ∆φI/2π = 8, a larger time is needed to reach the new equilibrium, but
eventually the system stabilizes to a circulation of w = 6 with two vortices, as shown in the
interferogram at t = 200 ms. We note that in both ∆φI/2π = 5, 8 cases, the interferograms
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taken at intermediate time before reaching the equilibrium display a higher number of
vortices, as they also account for the ones that entered the bulk from the outer ring, which
do not affect the extracted ring winding number and quickly leave the ring density.

Ti
m

e

Time

ΔφI = 5 x 2π ΔφI = 8 x 2πΔφI = 2π

Nv=0 Nv=1 Nv=2w=4 w=6

Ideal imprinting
Real imprinting

Exp. data

(a)

(c)

(b)

(d)

(i)

(ii)

(iii)

.

t = 0 ms t = 0.25 ms t = 0.75 ms t = 1 ms t = 1.5 ms

t = 0 ms t = 0.64 ms t = 1.91 ms t = 2.55 ms t = 6.37 ms

Figure 2. (a) Average winding number 〈w〉measured at time t = 50 ms from the numerical (green
line) and experimental (green symbols) interferograms as a function of the imprinted phase ∆φI . The
results of the numerical simulations with the ideal imprinting are reported as black squares, and they
are performed only for integer values of ∆φI/2π for ∆φI/2π > 5. Experimental data are taken from
Ref. [16]. (b) Time evolution of the density excitation introduced by the imprinting for: (i) numerical
data with realistic imprinting of ∆φI/2π = 1, corresponding to tI = 127µs, (ii) experimental data
with imprinting of ∆φI/2π ' 1 taken from Ref. [16], (iii) numerical data with realistic imprinting of
∆φI/2π = 8. Numerical density is plotted in Cartesian coordinates, the experimental one in polar
coordinates. (c) Number of vortices/antivortices Nv experimentally observed in the ring density after
1.5 ms TOF [16]. Images are acquires 20 ms after the imprinting of the phase ∆φI . (d) Time evolution
of the numerical inteferograms computed for imprinted phases of ∆φI/2π = 1, 5, 8.

In conclusion, the density excitations introduced by the anti-gradient in the imprinting
profile set the limit of the maximum circulation state we can populate. Experimentally, it
is observed that wmax increases with increasing Rin, confirming that the vortices emitted
from the inner ring are responsible for the circulation state decay for large ∆φI . Rings with
smaller Rin present a higher superfluid velocity at the inner ring radius, as v ∼ 1/r. The
critical velocity for vortex emission from the inner ring radius is therefore overcome for
smaller ∆φI , leading to a lower maximum stable circulation state in the ring.

Figure 2c shows a non-zero number of vortices in the superfluid density even for
∆φI/2π < 5, when the imprinted circulation does not show any decay. These are mainly
vortices entering the bulk from the outer ring, not perturbing the ring current, but they
can also arise from the decay of a soliton-like excitation we introduce in the ring when
imprinting ∆φI = π + k 2π, with k integer. Under this condition, the depletion introduced
by the imprinting has the phase profile of a soliton and, similarly to a soliton, it decays
into a vortex–antivortex pair [25,26]. A comparison between the short-time dynamics for
the numerical and experimental in situ density profile after an imprinting of ∆φI ' π is
reported in Figure 3a,b. In both cases we observe the soliton to bend, due to the velocity
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difference between the outer and inner edge of the superfluid, undergoing the so-called
snake-instability to finally break into a vortex–antivortex pair [27,28], which has opposite
circulation and propagates in the opposite direction. Both the numerical and the experi-
mental interferograms obtained 50 ms after the imprinting measure w = 0, signaled by an
interference pattern with concentric rings [see Figure 3c,d]; whereas in the numeric one, the
presence of a vortex is clearly evident, in the experimental one it is less striking. Because of
its proximity to the outer edge of the ring, the antivortex is more sensible to the presence of
thermal effects or other experimental fluctuations that induce it to leave the bulk density
faster in the experiment with respect to T = 0 GPE simulations. A peak around 〈Nv〉 ' 1 is
clearly visible in Figure 2, as here vortices are counted 20 ms after the imprinting pulse and
are still present in the superfluid density. We note that for an imprinting of ∆φI = π + k 2π,
a soliton is excited also for the ideal numerical imprinting procedure, showing a similar
decay dynamic to the one illustrated in Figure 2. In fact, these solitonic states are the
excitations that separate two consecutive circulation states, as also found in Ref. [29]. In
conclusion, when imprinting a non-integer multiple of 2π, the phase-structured density
excitations produced at the gradient discontinuity always evolve into vortices, which then
propagate on top of the ring current (if present), without further perturbing it.

(a)

20 μm

(i) (ii)

(ii)

20 μm

(i)

(iii)

(iii)

(iv)

(iv)(b)

(c)

(d)

Time

Figure 3. (a,b) Time evolution of the soliton-like density excitation introduced in the superfluid
density after an imprinting of ∆φI/2π = 0.49 ((a) numerical data with realistic imprinting) and
∆φI/2π = 0.54 ((b) experimental data). Numerical images are obtained after a time 0 ms (i), 3.4 ms (ii),
4.5 ms (iii), and 6.2 ms (iv) from the imprinting; the experimental one are measured after 0 ms (i),
0.6 ms (ii), 1.4 ms (iii), and 2.0 ms (iv) from the imprinting. The excitation decay dynamics happen
over a faster timescale in the experiment, most likely because of its finite temperature. (c,d) Numerical
and experimental interferograms acquired 50 ms after the same imprinting of panel (a,b), respectively.
Both panels are adapted from Ref. [16].

3.3. Supercurrent Decay Induced by the Obstacle

In this section we focus on the effect of an externally introduced localized defect on the
ring persistent current. Throughout this section, we employ the ideal imprinting method in
the numerical simulation in order to study the dissipation of the current introduced only
by the obstacle. We introduce the defect potential of Equation (6) at time t = 0 and we
monitor the evolution of the ring current, extracted from the 2D phase profile as the mean
circulation. Figure 4a shows the numerical results for an obstacle height of V0 = 2 µ and
initial circulations of w0 = 4, 5, 7. Similar to the experimental and theoretical findings of
Ref. [16], we observe the emergence of a critical circulation: initial states of w0 ≤ wc are
unperturbed by the obstacle, whereas for w0 > wc, the current decays down to a lower
circulation, and it achieves its final value w f in timescales of a hundred milliseconds. In
particular, for V0 = 2 µ as in Figure 4a, the critical circulation is wc = 4. Consistent with
the results reported in Ref. [16], obtained for a smaller V0/µ ' 1, the supercurrent decay is
observed to happen over a faster timescale for larger w0 − wc. Furthermore, as observed
in Ref. [16] and as shown in Figure 4d, the current decay happens via the emission of
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quantized vortices that enter the bulk superfluid through the low-density channel between
the obstacle and the inner ring radius.

(a) (b) (c)

(d)

Time

(i) (ii) (iii) (iv) (v)

Figure 4. (a) Time evolution of the mean circulation for w0 = 4, 5, 7 in the presence of an obstacle.
(b,c) Time evolution of the local superfluid velocity v(r∗) and local speed of sound c(r∗), extracted
for r∗ = (Rin + x0)/2, for w0 = 4 = wc (b) and w0 = 5 > wc (c). (d) The 2D density profiles of
the superfluid ring extracted at different times following the vortex emission event for w0 = 5; in
particular, the images are taken at t = 11.46 ms (i), t = 14.01 ms (ii), t = 15.28 ms, t = 17.19 ms,
and t = 20.37 ms. A low-density channel is created between the obstacle and the inner ring radius
(i–iii) that favors the entrance of a vortex in the superfluid density (iv). After an interaction with the
obstacle, the vortex leaves the defect region and travels through the superfluid density under the
effect of the underlying current (iv,v). All the results reported in this figure are obtained for a defect
height of V0/µ = 2.

To understand the vortex emission mechanism, we numerically compute the super-
fluid velocity v and the local speed of sound c at a point r∗ in the middle between the defect
position and Rin. Figure 4b,c show the results for the two values of w0 = 4 = wc (b) and
w0 = 5 > wc (c). Consistent with the expected velocity trend v(t = 0) ≈ w0/r∗, increasing
the value of w0 leads to larger values of the initial superfluid velocity. For w0 = 4, we
observe the local superfluid velocity, after a small initial increase, to saturate to a plateau
value lower than c. However, for w0 = 5 > wc, the creation of the low-density channel
close to the defect leads the local superfluid velocity to increase until its value exceeds the
local speed of sound c(r∗), which, on the other hand, is decreasing, and a vortex enters the
bulk density. When leaving the region at r∗, the vortex causes a phase slip that decreases
the superfluid velocity v(r∗). Furthermore, in the region crossed by the vortex, the local
circulation is decreased by one unit. In the w0 = 5 case reported here, two vortices are
emitted corresponding to the first two superfluid velocity maxima, while the third one
corresponds to the emission of only sound waves. After these vortex emission dynamics,
the superfluid velocity reaches a smaller value than its initial one, i.e., the ring current is
dissipated.

Finally, we report a numerical study of the effect of the vortex height on the current
decay dynamics for w0 = 8. As reported in Figure 5a, increasing V0/µ leads to a faster
current decay and to a lower final circulation. We quantitatively analyze the effect of the
obstacle height by performing an exponential fit of the numerical data with the function
f (t) = a exp (−γt) + w f (dashed lines of Figure 5a). The fit results obtained for the final
circulation w f are reported in Figure 5b. To compare the decay timescales under different
V0/µ, we account for the different values of w f and define the winding decay rate Γ = a×γ,
plotted in Figure 5c. The decrease in w f and the almost monotonic increase in Γ in the
explored range of V0/µ results from the microscopic dynamics of the vortex emission
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process. In order to better understand their dependence on the defect height, we extract the
trend of the critical circulation wc as a function of the defect height, as reported in Figure 5d.
We find that, on average, wc decreases with V0/µ, rapidly in the region of V0/µ ' 1
and more gently for higher obstacles. This leads to an increase in the vortex emission
frequency for fixed w0 as it increases with w0 − wc [16]. In particular, for V0/µ = 0.8, the
vortices are emitted periodically roughly every 10 ms, whereas for V0/µ = 2, the period for
vortex emission is around 3 ms. Furthermore, the total number of vortices emitted is, on
average, larger for higher V0/µ, as higher V0 determines a larger increase in the superfluid
velocity in the channel between the obstacle and the inner ring radius. More phase slippage
in the superfluid velocity is therefore needed to finally reduce the superflow below the
critical value of the local speed of sound, leading to an increased decay rate because of
the accumulative effect of many vortices emission events [30]. In addition, for large V0/µ,
the stronger vortex–defect interaction induces each vortex to leave the obstacle region at a
larger radius, thus yielding to a faster decrease in the mean circulation. We note that we
expect that increasing the barrier width instead of its height would similarly lead to a lower
critical circulation and a faster mean circulation decay in time.

The effect of the defect in the current dynamics can also be interpreted under the
parabolic washboard potential representation. That is, the obstacle in the superfluid density
lowers the energy barrier Eb,w separating the circulation states w and w − 1 from one
another, such that Eb,w>wc = 0, which defines the critical circulation. For increasing defect
height, then, the barrier Eb,w for a given w gets lower, provoking the decrease in wc. We can
estimate the effect of the defect for different V0/µ by calculating Eb,1 from the numerical
simulation results, as the state w = 1 is stable under all the conditions we explored. In
particular, we define Eb,1 = E(∆φI = π)− E(∆φI = 2π) as the difference between the total
energy of the system after the imprinting of π and 2π. We find that Eb,1(V0/µ = 2) =
0.62 Eb,1(V0/µ = 0.8), implying that increasing the defect height increases the probability
of a vortex to enter the ring superfluid. Interestingly, we note that the ratio of the energy
barriers is compatible with the ratio between the observed wc at the two obstacle heights.

(a) (b)

(c) (d)

Figure 5. (a) Time evolution of the mean circulation for w0 = 8 in the presence of an obstacle of
variable height V0/µ (see legend). The dashed lines represent the fitted exponential profile for each
defect height. (b,c) Final circulation w f (b) and winding number decay rate Γ = a× γ (c), as extracted
from the exponential fit of the decays in panel (a). (d) Critical circulation wc as a function of the defect
height V0/µ.
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4. Conclusions

We performed a numerical study of the stability of persistent currents in a BEC under
the experimental conditions of Ref. [16]. By numerically solving the GPE, we have followed
the dynamical evolution of currents, both in a clean ring and in the presence of a localized
defect, identifying vortex emission as the source of the instability in both cases. In the clean
ring, the density excitations introduced by the non-ideal imprinting favor vortices to enter
the superflow from the ring center, effectively setting the upper limit of circulation that can
be imprinted by a single optical imprinting pulse. In the presence of an obstacle, for high
enough w, the local superfluid velocity increases until its maximum value exceeds the local
speed of sound, leading to vortex injection in the superfluid bulk that tears away a local
circulation quantum. We found that a higher obstacle yields to a lower critical circulation
and a faster decay. As a future perspective, it could be interesting to investigate how the
presence of more obstacles and their distribution over the superfluid density would affect
the stability of the current and its decay mechanism.

Author Contributions: Conceptualization of the study, K.X. and G.D.P.; numerical simulations and
analysis, K.X.; experimental data analysis, G.D.P.; supervision and experimental measurements
planning, F.S. and G.R. All authors contributed to the interpretation of the results and to the writing
of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Research Council under Grant Agreement
No. 307032, the Italian Ministry of University and Research under the PRIN2017 project CEnTraL,
and European Union’s Horizon 2020 research and innovation program under the Qombs project FET
Flagship on Quantum Technologies Grant Agreement No. 820419. G.D.P. acknowledges financial
support from the PNRR MUR project PE0000023-NQSTI.

Data Availability Statement: Data presented in this paper are available from the corresponding
author upon reasonable request.

Acknowledgments: The authors acknowledge the LiLab experimental team at LENS, and especially
Nicola Grani and Diego Hernandez-Rajkov, for providing data of the spurious vortices number, and
Woo Jin Kwon, for stimulating discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

BEC Bose–Einstein condensate
GPE Gross–Pitaevskii equation
TOF Time-of-flight

References
1. Doll, R.; Näbauer, M. Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring. Phys. Rev. Lett. 1961,

7, 51–52. [CrossRef]
2. Bluhm, H.; Koshnick, N.C.; Bert, J.A.; Huber, M.E.; Moler, K.A. Persistent Currents in Normal Metal Rings. Phys. Rev. Lett. 2009,

102, 136802. [CrossRef]
3. Vinen, W.F. Mutual friction in a heat current in liquid helium II. II. Experiments on transient effects. Proc. R. Soc. London. Ser.

Math. Phys. Sci. 1957, 240, 128–143.
4. Ryu, C.; Andersen, M.; Clade, P.; Natarajan, V.; Helmerson, K.; Phillips, W.D. Observation of persistent flow of a Bose-Einstein

condensate in a toroidal trap. Phys. Rev. Lett. 2007, 99, 260401. [CrossRef]
5. Cai, Y.; Allman, D.G.; Sabharwal, P.; Wright, K.C. Persistent currents in rings of ultracold fermionic atoms. Phys. Rev. Lett. 2022,

128, 150401. [CrossRef]
6. Tinkham, M. Introduction to Superconductivity, 2nd ed.; Dover Publications: New York, NY, USA, 2004.
7. Leggett, A.J. Superfluidity. Rev. Mod. Phys. 1999, 71, S318–S323. [CrossRef]
8. Mueller, E.J. Superfluidity and mean-field energy loops: Hysteretic behavior in Bose-Einstein condensates. Phys. Rev. A 2002,

66, 063603. [CrossRef]

http://doi.org/10.1103/PhysRevLett.7.51
http://dx.doi.org/10.1103/PhysRevLett.102.136802
http://dx.doi.org/10.1103/PhysRevLett.99.260401
http://dx.doi.org/10.1103/PhysRevLett.128.150401
http://dx.doi.org/10.1103/RevModPhys.71.S318
http://dx.doi.org/10.1103/PhysRevA.66.063603


Atoms 2023, 11, 109 12 of 12

9. Bloch, F. Superfluidity in a Ring. Phys. Rev. A 1973, 7, 2187–2191. [CrossRef]
10. Amico, L.; Boshier, M.; Birkl, G.; Minguzzi, A.; Miniatura, C.; Kwek, L.C.; Aghamalyan, D.; Ahufinger, V.; Anderson, D.; Andrei,

N.; et al. Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Sci. 2021, 3, 039201. [CrossRef]
11. Amico, L.; Anderson, D.; Boshier, M.; Brantut, J.P.; Kwek, L.C.; Minguzzi, A.; von Klitzing, W. Colloquium: Atomtronic circuits:

From many-body physics to quantum technologies. Rev. Mod. Phys. 2022, 94, 041001. [CrossRef]
12. Wright, K.C.; Blakestad, R.; Lobb, C.J.; Phillips, W.D.; Campbell, G.K. Driving phase slips in a superfluid atom circuit with a

rotating weak link. Phys. Rev. Lett. 2013, 110, 025302. [CrossRef] [PubMed]
13. Eckel, S.; Lee, J.G.; Jendrzejewski, F.; Murray, N.; Clark, C.W.; Lobb, C.J.; Phillips, W.D.; Edwards, M.; Campbell, G.K. Hysteresis

in a quantized superfluid ‘atomtronic’circuit. Nature 2014, 506, 200–203. [CrossRef] [PubMed]
14. Beattie, S.; Moulder, S.; Fletcher, R.J.; Hadzibabic, Z. Persistent currents in spinor condensates. Phys. Rev. Lett. 2013, 110, 025301.

[CrossRef] [PubMed]
15. Ramanathan, A.; Wright, K.; Muniz, S.R.; Zelan, M.; Hill, W., III; Lobb, C.; Helmerson, K.; Phillips, W.; Campbell, G. Superflow in

a toroidal Bose-Einstein condensate: An atom circuit with a tunable weak link. Phys. Rev. Lett. 2011, 106, 130401.
16. Del Pace, G.; Xhani, K.; Muzi Falconi, A.; Fedrizzi, M.; Grani, N.; Hernandez Rajkov, D.; Inguscio, M.; Scazza, F.; Kwon, W.J.;

Roati, G. Imprinting Persistent Currents in Tunable Fermionic Rings. Phys. Rev. X 2022, 12, 041037. [CrossRef]
17. Zheng, Y.; Javanainen, J. Classical and quantum models for phase imprinting. Phys. Rev. A 2003, 67, 035602. [CrossRef]
18. Kumar, A.; Dubessy, R.; Badr, T.; De Rossi, C.; de Goër de Herve, M.; Longchambon, L.; Perrin, H. Producing superfluid

circulation states using phase imprinting. Phys. Rev. A 2018, 97, 043615. [CrossRef]
19. Moulder, S.; Beattie, S.; Smith, R.P.; Tammuz, N.; Hadzibabic, Z. Quantized supercurrent decay in an annular Bose-Einstein

condensate. Phys. Rev. A 2012, 86, 013629. [CrossRef]
20. Kumar, A.; Eckel, S.; Jendrzejewski, F.; Campbell, G.K. Temperature-induced decay of persistent currents in a superfluid ultracold

gas. Phys. Rev. A 2017, 95, 021602. [CrossRef]
21. Polo, J.; Dubessy, R.; Pedri, P.; Perrin, H.; Minguzzi, A. Oscillations and decay of superfluid currents in a one-dimensional Bose

gas on a ring. Phys. Rev. Lett. 2019, 123, 195301. [CrossRef]
22. Eckel, S.; Jendrzejewski, F.; Kumar, A.; Lobb, C.J.; Campbell, G.K. Interferometric measurement of the current-phase relationship

of a superfluid weak link. Phys. Rev. X 2014, 4, 031052. [CrossRef]
23. Corman, L.; Chomaz, L.; Bienaimé, T.; Desbuquois, R.; Weitenberg, C.; Nascimbene, S.; Dalibard, J.; Beugnon, J. Quench-induced

supercurrents in an annular Bose gas. Phys. Rev. Lett. 2014, 113, 135302. [CrossRef]
24. Mathew, R.; Kumar, A.; Eckel, S.; Jendrzejewski, F.; Campbell, G.K.; Edwards, M.; Tiesinga, E. Self-heterodyne detection of the in

situ phase of an atomic superconducting quantum interference device. Phys. Rev. A 2015, 92, 033602. [CrossRef]
25. Donadello, S.; Serafini, S.; Tylutki, M.; Pitaevskii, L.P.; Dalfovo, F.; Lamporesi, G.; Ferrari, G. Observation of solitonic vortices in

Bose-Einstein condensates. Phys. Rev. Lett. 2014, 113, 065302. [CrossRef] [PubMed]
26. Ku, M.J.; Mukherjee, B.; Yefsah, T.; Zwierlein, M.W. Cascade of solitonic excitations in a superfluid fermi gas: From planar

solitons to vortex rings and lines. Phys. Rev. Lett. 2016, 116, 045304.
27. Anderson, B.; Haljan, P.; Regal, C.; Feder, D.; Collins, L.; Clark, C.W.; Cornell, E.A. Watching dark solitons decay into vortex rings

in a Bose-Einstein condensate. Phys. Rev. Lett. 2001, 86, 2926. [CrossRef] [PubMed]
28. Cetoli, A.; Brand, J.; Scott, R.; Dalfovo, F.; Pitaevskii, L. Snake instability of dark solitons in fermionic superfluids. Phys. Rev. A

2013, 88, 043639. [CrossRef]
29. Muñoz Mateo, A.; Gallemí, A.; Guilleumas, M.; Mayol, R. Persistent currents supported by solitary waves in toroidal Bose-Einstein

condensates. Phys. Rev. A 2015, 91, 063625. [CrossRef]
30. Xhani, K.; Neri, E.; Galantucci, L.; Scazza, F.; Burchianti, A.; Lee, K.L.; Barenghi, C.F.; Trombettoni, A.; Inguscio, M.; Zaccanti,

M.; et al. Critical Transport and Vortex Dynamics in a Thin Atomic Josephson Junction. Phys. Rev. Lett. 2020, 124, 045301.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevA.7.2187
http://dx.doi.org/10.1116/5.0026178
http://dx.doi.org/10.1103/RevModPhys.94.041001
http://dx.doi.org/10.1103/PhysRevLett.110.025302
http://www.ncbi.nlm.nih.gov/pubmed/23383912
http://dx.doi.org/10.1038/nature12958
http://www.ncbi.nlm.nih.gov/pubmed/24522597
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://www.ncbi.nlm.nih.gov/pubmed/23383911
http://dx.doi.org/10.1103/PhysRevX.12.041037
http://dx.doi.org/10.1103/PhysRevA.67.035602
http://dx.doi.org/10.1103/PhysRevA.97.043615
http://dx.doi.org/10.1103/PhysRevA.86.013629
http://dx.doi.org/10.1103/PhysRevA.95.021602
http://dx.doi.org/10.1103/PhysRevLett.123.195301
http://dx.doi.org/10.1103/PhysRevX.4.031052
http://dx.doi.org/10.1103/PhysRevLett.113.135302
http://dx.doi.org/10.1103/PhysRevA.92.033602
http://dx.doi.org/10.1103/PhysRevLett.113.065302
http://www.ncbi.nlm.nih.gov/pubmed/25148333
http://dx.doi.org/10.1103/PhysRevLett.86.2926
http://www.ncbi.nlm.nih.gov/pubmed/11290074
http://dx.doi.org/10.1103/PhysRevA.88.043639
http://dx.doi.org/10.1103/PhysRevA.91.063625
http://dx.doi.org/10.1103/PhysRevLett.124.045301

	Introduction
	Methods
	Phase Imprinting
	Introducing a Local Obstacle

	Results
	Numerical and Experimental Measurement of the Ring Winding Number
	The Maximum Circulation State
	Supercurrent Decay Induced by the Obstacle

	Conclusions
	References

