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In the present work we consider the incompressible Navier–Stokes equations

⎧⎪⎪⎨
⎪⎪⎩

∂tu + u · ∇u− Δu = −∇p,

div u = 0,

u|t=0 = u0,

(INS)

in the whole bidimensional space R2. Very recently in [4] T. Buckmaster and V. Vicol proved the existence of 
infinitely many periodic weak solutions of (INS) in T3 = R

3/Z3 with finite kinetic energy using the technique 
of convex integration developed by C. De Lellis and L. Székelyhidi in [5] and [7] (and later used in order to 
obtain several other outstanding results [6], [8], [2], [9], [3]). Unfortunately the result in [4] does not solve the 
longstanding conjectures posed by J. Leray in 1934 on whether weak solutions which belong to the energy 
space

L∞ (
R+;L2 (

R
d
))

∩ L2 (
R+; Ḣ1 (

R
d
))

,

are unique in such space when d � 3.
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In such direction, when d = 3, the Escauriaza–Seregin–Šverák criterion [10] provides a sharp character-
ization of smoothness of Leray–Hopf solutions to the Navier–Stokes equation: if the Leray–Hopf solutions 
belong as well to the space L∞ (

[0, t] ;L3 (
R

3)) for some t > 0 then the solution is unique and smooth up 
to time t.

The result of Buckmaster and Vicol must hence be understood in contraposition to the result proved 
in [10] (which is the endpoint result of the more general Ladyženskaya–Prodi–Serrin regularity criterion 
[11], [14], [15]): they prove that there exists a β ∈ (0, 1/3) such that for any nonnegative smooth function 
e : [0, T ] → R+ there exists a v ∈ C

(
[0, T ] ;Hβ

(
T

3)) weak solution of (INS) such that e is the kinetic energy 
profile of v, i.e. e (t) =

∫
T3 |v (x, t)|2 dx. Indeed there is hope to achieve nonuniqueness for weak solutions 

only if β < 1/2, since otherwise, by Sobolev embeddings, v would be in L∞ (
[0, t] ;L3 (

T
3)) and hence thanks 

to the result proved in [10] it would be smooth, and being so his energy decay would be unique and not 
arbitrary as it is proved in [4].

In the present note we prove a weaker result than the one proved in [4]; we prove that in R2 there exists 
infinitely many nontrivial smooth solutions of the initial value problem (INS) when u0 = 0 with infinite 
kinetic energy for each t > 0. In particular the functions we construct, following the methods of the classical 
result of Tychonoff [16], are not tempered distributions and they grow exponentially, as |x| → ∞. Hence we 
provide an elementary example of nonuniqueness of distributional solutions for the system (INS) when the 
space dimension is two, result which is not proved in [4]. In Section 3 we prove that Burgers equation in R
admits infinitely many distributional solutions exploiting the same technique.

1. Tychonoff’s example

In this section we illustrate the well known methodology exploited by Tychonoff in 1935 in order to prove 
that the one-dimensional heat equation (1.1) with zero initial data admits infinitely many weak solutions 
in the domain (x, t) ∈ R × R+. In the original work [16] several domains and boundary conditions are 
considered, nonetheless we will provide a proof of such result in the restricted setting mentioned above since 
our purpose is to provide a simple introduction to the method which we will exploit in the following.

A. Tychonoff in [16] proved that the homogeneous, one dimensional, linear diffusion equation
{
ut = uxx, (x, t) ∈ R× (0,∞) ,

u (x, 0) = 0, x ∈ R,
(1.1)

admits infinitely many smooth solutions which does not decay as |x| tends to infinity. The method he uses 
is very simple: he looks for solutions u = u (x, t) of the form

u (x, t) =
∞∑

n=0
anf

(n) (t) xn,

where f is defined on R+, infinitely differentiable in such domain and such that2 f (n) (t) t→0+

−−−−→ 0 for any n. 
Since there exist many f satisfying such property we will deduce the nonuniqueness result letting varying 
f in an infinite family.

Let us hence for instance define the following sequence (uk)k�1 of formal series

uk (x, t) =
∞∑

n=0

(
exp

{
− 1
t2k

})(n)

(2n)! x2n, for any k ∈ N, k � 1. (1.2)

2 Here and in the rest of the work f(n) denotes the n-th derivative of f .
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It is possible to prove that, fixed a t > 0, there exists a θ = θ (2k) > 0 such that

∣∣∣∣∣
(

exp
{
− 1
t2k

})(n)
∣∣∣∣∣ � n!

(θt)n
e−

1
2 t−2k

, (1.3)

we can hence deduce that, fixed t > 0, the series (1.2) is convergent in any compact set of R and is hence 
a genuine pointwise solution of (1.1) in any compact set, which implies as well that it is a distributional 
solution of (1.1). Moreover

uk (·, t) t↘0−−−→ 0, in D′ (
R

2) .
Indeed its growth as |x| → ∞ is greater than any power law, hence it is not a tempered distribution.

2. Infinitely many distributional solutions of (INS) in R2 × R+

In this section we exploit the construction illustrated in the previous section in order to construct infinitely 
many distributional solutions for the Cauchy problem

⎧⎪⎪⎨
⎪⎪⎩

∂tu + u · ∇u− Δu = −∇p,

div u = 0,

u|t=0 = 0,

(2.1)

when (x, t) ∈ R
2 × R+.

The main result of the present note is the following one:

Theorem 2.1. There exist infinitely many smooth

u ∈ C1 ((0,∞) ;D′ (
R

2)) ∩ L∞
loc

(
R

2 × R+
)
,

distributional solutions of the two dimensional incompressible Navier–Stokes equations (2.1) such that

u (·, t) t ↘ 0−−−−→ 0 in D′ (
R

2) .
Remark 2.2.

� It is important to underline the fact that each u pointwise solution of (2.1) will not be a tempered 
distribution. In particular the following relation will hold true

|∂αu (x, t)|
|x|N

|x|→∞−−−−−→ ∞,

for any multi-index α and N > 0.
� It is obvious from the above point that the solutions constructed are not L2 integrable, hence they are 

not Leray–Hopf solutions. It may be of interest though to remark that they are neither uniformly locally 
L2 integrable, whence they are not infinite energy weak solutions in the sense of Lemarié–Rieusset [12].

� We want to underline that every solution of (2.1) will be of infinite kinetic energy for each t > 0. �
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Before starting to prove Theorem 2.1 let us recall some classical result concerning the incompressible 
Navier–Stokes equations. Given a bi-dimensional vector field u we can define the vorticity as

ω (x, t) = −∂2u1 (x, t) + ∂1u2 (x, t) . (2.2)

If u is a smooth solution of the equation (2.1) then ω has to solve

{
∂tω + u · ∇ω − Δω = 0,

ω (x, 0) = 0,
(2.3)

and we can recover u from ω via the Biot–Savart law

u (x, t) = 1
2π

∫
R2

(x− y)⊥

|x− y| ω (y, t) dy,

see [1, p. 292].
Moreover since div u = 0 there exists a unique (up to an additive constant) stream function ψ (x, t) such 

that

u (x, t) =
(
−∂2ψ (x, t)
∂1ψ (x, t)

)
= ∇⊥ψ (x, t) . (2.4)

Comparing hence the equations (2.2) and (2.4) we deduce the Poisson equation for ψ

Δψ = ω. (2.5)

Let us consider hence at this point a radial symmetric smooth vorticity ω, i.e.

ω = ω (r) , r = |x| =
√
x2

1 + x2
2.

Since the Laplace operator is rotationally invariant we can deduce, as in [13, pp. 47, 48], that ψ is a radially 
symmetric function as well, whence (2.4) becomes

u = 1
r
x⊥ψr, x⊥ = (−x2, x1) . (2.6)

The Poisson equation (2.5) in polar coordinates reads as

ψrr + 1
r
ψr = ω,

whence

ψr (r, t) = 1
r

r∫
0

s ω (s, t) ds, (2.7)

whence comparing (2.6) and (2.7) we deduce the following simplified Biot–Savart law for radial vorticities;

u (x, t) = 1
r2 x⊥

r∫
s ω (s, t) ds. (2.8)
0
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Let us observe now that if (2.4) and (2.5) hold true the following identity holds true:

u · ∇ω = det
(

∂1ψ ∂2ψ

∂1Δψ ∂2Δψ

)
= J (ψ,Δψ) ,

but if the stream function ψ is radial then

J (ψ,Δψ) ≡ 0.

Let us sketch a quick proof of such identity; let us recall that for the radial function ψ

{
∂1ψ = cosϕ ψr,

∂2ψ = sinϕ ψr,

and since ψ is radial

Δψ = ψrr + 1
r
ψr = Ψ,

which is again radial, whence

J (ψ,Δψ) = det
(

cosϕ ψr sinϕ ψr

cosϕ Ψr sinϕ Ψr

)
= 0.

Whence the vorticity ω solves the linear homogeneous diffusive equation

∂tω = Δω, (2.9)

in R2.
Considering hence the radial Biot–Savart law (2.8) in order to prove Theorem 2.1 is will be sufficient to 

prove the following result

Proposition 2.3. There exist infinitely many ω ∈ C1 ((0,∞) ;D′ (
R

2)) ∩ L∞
loc

(
R

2 × R+
)

smooth radial dis-
tributional solutions to linear homogeneous diffusive equation

ωt −
1
r
ωr − ωrr = 0,(r, t) ∈ R+ × (0,∞) , (2.10)

such that ω (·, t) → 0 in D′ (R+) as t → 0.

Remark 2.4. The equation (2.10) is nothing but (2.9) in polar coordinates for radial functions. �

Proof. Following Tychonoff’s method let us construct a smooth solution of (2.10) in the form

ω (r, t) =
∞∑

n=0
anf

(n) (t) r2n, (2.11)

and imposing that

lim f (n) (t) = 0, ∀ n ∈ N.

t→0+
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Standard computations shows that

ωt (r, t) =
∞∑

n=0
anf

(n+1) (t) r2n,

1
r
ωr (r, t) =

∞∑
n=0

(2n + 1) an+1f
(n+1) (t) r2n,

ωrr (r, t) =
∞∑

n=0
2 (n + 1) (2n + 1) an+1f

(n+1) (t) r2n.

Whence it is sufficient to define the sequence (an)n recursively as

an+1 = an
(2n + 1) (2n + 3) =

(
n+1∏
k=1

(2k − 1)−2

)
a0

2 (n + 1) + 1 . (2.12)

Let us note that until now no initial condition is defined, in order to do so for each k ∈ N, k � 1 let us 
define

fk (t) = exp
{
− 1
t2k

}
, (2.13)

and let the sequence (an)n�0 satisfy (2.12) for any a0 > 0. Let us now consider the sequence (indexed in 
k � 1)

ωk (r, t) =
∞∑

n=0
anf

(n)
k (t) r2n,

using the bound (1.3) and the explicit definition of the coefficients an given in (2.12) we deduce that, fixed 
t > 0, the power law (2.11) converges in any compact set of R+. Moreover for any k � 1 the function ωk

is a distributional smooth solution of (2.10) which converges to zero as t ↘ 0 in the sense of distributions, 
concluding. �
Proof of Theorem 2.1. Applying the radial Biot–Savart law (2.8) to any one of the vorticities constructed 
in Proposition 2.3 we deduce the explicit power law defining uk, k � 1

uk (x, t) = x⊥
∞∑

n=0

an
2 (n + 1) f

(n)
k (t) r2n,

= x⊥
∞∑

n=0

an
2 (n + 1) f

(n)
k (t)

(
x2

1 + x2
2
)n

,

(2.14)

and fk is defined as in (2.13). Let us hence consider the Poisson equation in the unknown pk:

Δpk = div (uk · ∇uk) . (2.15)

We underline the fact that being uk smooth and locally L∞ then the distribution div (uk · ∇uk) is well 
defined, smooth and locally L∞.

Claim 1. Let uk be defined as in (2.14), then the pressure defined by the Poisson equation (2.15) is a radial 
distribution.
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Let us hence prove the Claim 1, we drop the index k for the sake of clarity. If u is defined as in (2.14) it 
is hence clear that

u (x, t) =
(
−x2
x1

)
U (r, t) ,

where U is a radial distribution. Moreover standard computations imply that, if div u = 0;

div (u · ∇u) = (∂1u1)2 + (∂2u2)2 + 2∂1u2 ∂2u1.

Whence since

x1 = cosϕ r, x2 = sinϕ r,

∂1 = cosϕ ∂r, ∂2 = sinϕ ∂r,

we can argue that

(∂1u1)2 + (∂2u2)2 = 2r2 cos2 ϕ sin2 ϕ (∂rU)2 ,

while since

∂1u2 ∂2u1 = −U2 − r2 cos2 ϕ sin2 ϕ (∂rU)2 − r U∂rU cos2 ϕ− r U∂rU sin2 ϕ,

we deduce that

div (u · ∇u) = (∂1u1)2 + (∂2u2)2 + 2∂1u2 ∂2u1,

= −2U2 − 2r U∂rU,

is a radial distribution. Therefore since the Laplacian is rotationally invariant the Poisson equation (2.15)
can hence be rephrased as the ODE

prr + 1
r
pr = −2U2 − 2r U∂rU,

which we can solve uniquely, up to a constant, by identification of coefficients.
We hence identify infinitely many (uk, pk)k distributional solution of (2.1) which are not tempered dis-

tributions, concluding. �
3. Playing with Burgers equation

In the example constructed for the bidimensional Navier–Stokes we exploited the fact that u ·∇ω = 0 for 
radial vector fields, whence we constructed infinitely many smooth solutions for the linear diffusion equation 
(2.10) using the technique of Section 1. In the present section instead we linearize a nonlinear parabolic 
equation (namely Burgers equation) and we will produce infinitely many weak solutions on the renormalized 
unknown.

In the present section we consider the one dimensional Burgers initial value problem

⎧⎨
⎩

ut + 1
2
(
u2)

x
= uxx, (x, t) ∈ R× (0,∞)

u| = 0, x ∈ R.

(3.1)

t=0
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The result we prove in such section is the following one

Proposition 3.1. There exist infinitely many u ∈ C1 ((0,∞) ;D′ (
R

2))∩L∞
loc

(
R

2 × R+
)

smooth distributional 
solutions to the Burger equation (3.1) such that u (·, t) → 0 in D′ (R) as t → 0+.

Proof. It is well known that the Cole–Hopf transformation

u = −2 φx

φ
, (3.2)

linearize the Burgers equation, i.e. φ solves
{
φt = φxx,

φ|t=0 = φ0.
(3.3)

The value of φ0 in (3.3) is indeed determined by the initial value of (3.1) via the transformation (3.2). In 
the present work we suppose φ0 (x) = 1, we will see that such condition in (3.3) suffice to obtain solutions 
to (3.1) via the transform (3.2). Let us hence define φ̃ as

φ (x, t) = 1 + φ̃ (x, t) ,

if φ solves (3.3) with initial datum φ0 (x) = 1 then indeed φ̃ has to solve

φ̃t = φ̃xx, φ̃
∣∣
t=0 = 0.

As explained in Section 1 we can provide infinitely many solutions 
(
φ̃k

)
k�1 to the above system of the form

φ̃k (x, t) =
∞∑

n=0

f
(n)
k (t)
(2n)! x2n, fk (t) = e−t−2k

.

Moreover

φ̃k,
(
φ̃k

)
x

t↘0−−−→ 0, in D′ (R) ,

whence setting φk = 1 + φ̃k and uk = −2φ−1
k (φk)x we deduce that for each k � 1 uk solves (3.1) in the 

sense of distributions and uk (·, t) t↘0−−−→ 0 in D′ (R), concluding. �
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