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Epigraph

It’s like in the great stories, Mr. Frodo. The ones that really mattered. Full of

darkness and danger they were. And sometimes you didn’t want to know the end.

Because how could the end be happy? How could the world go back to the way it was

when so much bad had happened? But in the end, it’s only a passing thing, this

shadow. Even darkness must pass. A new day will come. And when the sun shines

it will shine out the clearer. Those were the stories that stayed with you. That

meant something, even if you were too small to understand why. But I think, Mr.

Frodo, I do understand. I know now. Folk in those stories had lots of chances of

turning back, only they didn’t. They kept going, because they were holding on to

something. That there is some good in this world, and it’s worth fighting for.

—J.R.R. Tolkien
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Abstract

Harnessing the Power of Collective Intelligence: the Case

Study of Voxel-based Soft Robots

Federico Pigozzi, PhD
The University of Trieste, 2023

SUPERVISOR: Dr. Eric Medvet

The field of Evolutionary Robotics (ER) is concerned with the evolution of

artificial agents—robots. Albeit groundbreaking, progress in the field has stagnated

to the point that a paradigm change has become necessary. In particular, current

approaches lack adaptability. A solution has emerged from ideas from Collective In-

telligence (CI). In CI—which has relevant examples in nature—behavior emerges from

the interaction between several components. In the absence of central intelligence,

collective systems are usually more adaptable.

In this thesis, we set out to harness the power of CI, focusing on the case study

of simulated Voxel-based Soft Robots (VSRs): they are aggregations of homogeneous

and soft cubic blocks that actuate by altering their volume. The morphologies of

VSRs are intrinsically modular and thus an ideal substrate for CI; however, controllers

employed until now do not take advantage of such modularity. Our results prove that

we can foster and control the degree of modularity within a VSR controller, but

also, by embedding one neural network inside each module with no inter-module

communication, have VSRs truly driven by the CI of their modules. Furthermore,

no work to date considers the case of modules that, by their local information only,

must reason about the global properties of the collective. We evolve a robot to
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detect its global body properties given only local information processing. Finally, we

investigate different levels of adaptation in a CI system by considering how evolution

and learning interact in VSRs, and, in a different study, how Hebbian learning allows

VSRs to generalize better to unseen environmental conditions. Looking beyond VSRs,

we propose a novel soft robot formalism that more closely resembles natural tissues

and blends local with global actuation.

We believe this thesis sets the stage for further developments at the intersection

between ER and CI, in the hope that collective systems will address even more of the

field, thus paving the way for a new spring in the fascinating world of ER.
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Chapter 1: Introduction

The field of Evolutionary Robotics (ER) (Bongard, 2013) is concerned with the

optimization of virtual creatures (in the following, referred also as artificial agents,

or robots) while relying on Evolutionary Algorithms (EAs) (De Jong, 2006) as a

search method. Starting from Sims (1994), the field has blossomed, thanks to the

tendency of EAs to avoid local optima and optimize intractable spaces, like robot

morphologies (Floreano and Urzelai, 2000). ER has achieved remarkable feats, like

squeezing through tight spaces (Cheney et al., 2015), underwater locomotion (Corucci

et al., 2018), adapting to real-world changing environments (Nygaard et al., 2018), and

crossing the sim-to-real gap by designing living organisms (Kriegman et al., 2020a,c).

Despite all these efforts, there is a feeling in the research community that the field

has stagnated and grown weary (Eiben, 2021b), or even dead (Matthews et al., 2023);

after all, most works in ER have not departed significantly from the “stick-robots” of

Karl Sims, who could evolve his virtual creatures to walk, swim, and compete. There

is a need for a paradigm change to disentangle ER.

On the other side of the fence, progress in deep learning has spiraled out of

control: chatbots that eerily resemble humans (Thoppilan et al., 2022), world cham-

pions in several games (Schrittwieser et al., 2020), and even producers of realistic

Minecraft artifacts (Sudhakaran et al., 2021). However, the amazing progress of deep

learning has come to the cost of ballooning complexity in architectures and opti-

mization algorithms (just consider the case of transformer models (Lin et al., 2022)).

Many members of the public have compared AI to alchemy, starting from the late

philosopher Hubert Dreyfus (1929-2017) (Dreyfus, 1965). In general, successful AI

works often consist of tweaks to architectures and algorithms that have no founda-

tion: bells-and-whistles can put technically flawed algorithms to work, while other

algorithms work better with those stripped away (Hutson, 2018). Rahimi (2017) de-

scribed this aspect of AI research as “alchemical”: just like medieval alchemists, the
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field proceeds by trial-and-error, without grasping its scientific underpinnings. On

top of that—or, maybe, because of that complexity—deep learning systems are often

not robust when it comes to generalization. For example, Qu et al. (2020) showed

that a super-human agent trained on unmodified game screens could fail by simply

modifying some pixels on the screen.

Ideas from Collective Intelligence (CI) have emerged as an alternative to deep

learning (Ha and Tang, 2022), blending the Artificial Life (ALife), robotics, and com-

plex systems fields in the doing. CI emerges from the complex interaction of (relatively

simple) individual components, not under a “central” intelligence. Examples abound

in nature, including the foraging of ants and swarming in avian species, but we believe

the metazoan Trichoplax adhaerens to be epitomatic (Prakash and Bull, 2022). It is

a brainless animal that forages for food by self-organization of the cilia laying on its

downside: they self-organize only through mechanical interactions between them, the

organism’s cells, and the environment. By not relying on a central intelligence, CI

systems promise to achieve adaptability, including self-healing (Mordvintsev et al.,

2020), and place less rigid assumptions to the environment (Tang and Ha, 2021).

In this thesis, we set out to harness the power of CI and focus on the case study

of simulated Voxel-based Soft Robots (VSRs). VSRs are aggregations of mechanically

identical elastic blocks: as such, they have emerged as a relevant formalism to model

state-of-the-art robotic systems, e.g., soft robotics (Rus and Tolley, 2015). VSRs

are appealing for investigating questions related to evolutionary biology (Kriegman

et al., 2018), ALife (Cheney et al., 2014a), and designing living organisms that evolve

in vivo (Kriegman et al., 2020a), thus bridging the sim-to-real gap (Blackiston et al.,

2021).

Being aggregations of homogeneous blocks, VSRs are an ideal testbed for CI.

Yet, there exist several unanswered questions in the literature that, if answered, would

benefit the fields of robotics, ALife, and arguably artificial intelligence at large. We

next outline the particular questions that we aim to answer.
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1.1 Research questions

VSRs, being intrinsically modular, are ideal testbeds for CI. Modularity is a

very desirable property on the road toward fully autonomous robotic ecosystems: in

these ecosystems, robots would participate in a pipeline of automatic reconfiguration:

as the task and environment change, new robots are “born” and reconfigured from

past robots (Hale et al., 2019b; Buchanan et al., 2020). But, despite the tremen-

dous achievements of VSRs, the full potential for modularity remains unexploited.

Albeit VSR morphologies are intrinsically modular, controllers used until now act as

abstract, disembodied processing units: disassembling such VSRs to reassemble dif-

ferently, perhaps by combining modules from different VSRs, is a challenging problem.

We tap into the world of distributed controllers (Beer et al., 1992; Yim et al., 2001;

Butler and Rus, 2003), whose building blocks (e.g., neurons for a neural network)

have a physical location in the robot body (e.g., a specific voxel). Still, distributed

controllers employed for robots often rely on inter-module communication, limiting

their flexibility. To address this dilemma, we ask two questions:

1 Can we evolve modularity in a distributed VSR controller?

2 Can we design a distributed controller that dispenses with inter-module communi-

cation?

Furthermore, few works to date consider the case of modules that, by their local

information only, must reason about the global properties of the collective (Walker

and Hauser, 2021; Thandiackal et al., 2021); in other words, the spatial scale of CI. We

aim to fill this gap and consider the problem of affordance detection: understanding

what actions the environment and the body afford a robot when operating with a

distributed controller that relies only on local information processing. We focus on

a case study of passing through an aperture in a wall and detecting whether the

aperture, given the robot body, is passable or not. Hence the research question:
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3 Can we evolve robots that, by local information processing only, can reason about

their affordances?

If we were to deploy robots in real-world settings, we would want them to behave

according to correct predictions of affordances projected by their bodies in their en-

vironment, hence the relevance of this case study.

The time scale of CI is also important; indeed, natural adaptation takes place

across different time scales: evolution, development, and learning (Sipper et al., 1997).

Intuitively, nature shaped animal life through an “innate” evolved component and a

learned component. We embed a learning loop inside an outer evolutionary loop and

ask ourselves:

4 Given the importance that the representation plays for EAs, how does it impact

the speed and degree of learning?

5 Does learning—while operating at a faster time scale than evolution—help in gen-

eralizing to unseen environmental conditions?

Albeit groundbreaking, VSRs have one limitation: voxels are simulated as a

set of rigid particles interconnected by soft beams (see Chapter 2). The resulting

structure is soft, but cannot shape-change because of the rigid components. The

question then becomes:

6 Can we simulate a soft robot capable of morphing in arbitrary shapes?

Finally, to set the stage for any subsequent analysis, we first investigate:

7 What factors impact diversity and effectiveness, two key measures of evolved pop-

ulations of robots (Doncieux et al., 2015)?

As factors, we identify the three ingredients of any ER system: the representation,

the EA, and the environment.
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1.2 Achievements

We here present a concise overview of the achievements of this thesis:

1 We carry on an extensive study of what factors (among the rep-

resentation, the EA, and the environment) impact diversity and

effectiveness in VSRs, and discover that, in general, the EA and the

environment matter more than the representation. While diversity

has been extensively studied in ER (Cully and Demiris, 2017), we

believe that our work is the first to consider multiple factors affect-

ing the diversity of both morphology and behavior.

2 We propose a novel self-organizing, embodied neural controller for

VSRs that, while evolving, spreads across the VSR body in a way

that permits the emergence of modularity. In addition to being

effective on a locomotion task, different levels of modularity can be

achieved as well as the automatic discovery of modules.

3 We use the same neural controller inside each voxel, but with vox-

els communicating through implicit mechanical interactions rather

than explicit inter-voxel communication.

4 We evolve robots that can detect whether their body affords them

to solve a task—given an environment—on a case study of passing

through an aperture of variable size; we also show that different

robot morphologies can facilitate or obstruct a robot’s ability to

perceive such affordances.

5 We study how the learning of the robot controller inside the evolu-

tion of the robot body interplay with each other, in particular, how

different ways to represent a body impact the speed and degree of

learning.
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6 We show how Hebbian learning in a VSR controller evolves robots

that can generalize better to unseen environmental conditions (in

the form of damage) than with a non-Hebbian setting.

7 We conceive and validate a novel soft robot formalism that con-

sists of a pressurized medium enveloped by a chain of particles and

beams. These robots actuate by changing the internal pressure—

global actuation—and by changing the resting length of the beams—

local actuation. These robots are effective at shape-changing for

various tasks.

1.3 Organization of the thesis

The remainder of the thesis is organized as follows.

In Chapter 2 we present a concise historical background on the field of ER,

narrowing it down to the case study of VSRs and EC as an optimization algorithm.

For VSRs, we formalize their morphology and controller in detail.

In Chapter 3, we investigate what factors influence the diversity (of shape

and behavior) and the effectiveness (on a locomotion task) in the joint evolution of

VSR bodies and brains. This chapter—the most observatory in character—is the

starting point of our journey since it provides insights that will be relevant to the

other chapters.

In Chapter 4 we answer the two research questions concerning modularity

in CI. We address 2 in Section 4.1 with the proposal of a self-organizing, embodied

neural controller for VSRs that, in addition to evolving different degrees of modularity

across the robot body, also supports the automatic discovery of modules. We address

3 in Section 4.2 with a self-attention mechanism that dispenses with any inter-module

communication, allowing the VSR modules to be truly driven by their CI.

In Chapter 5 we answer the four research questions concerning the spatial and
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time scales of CI. We address 4 in Section 5.1 by showcasing the evolution of VSRs

that can not only squeeze through the aperture of a wall but also detect when their

body affords them such an action considering the size of the aperture. Our robots

solve such a challenge by relying only on local tactile feedback. CI systems display

adaptation not only at different spatial scales (i.e., local or global) but also at different

time scales: we study how different ways of evolving (the robot body, at a slower

time scale) impact the speed and degree of learning (the robot brain, at a faster time

scale) in Section 5.2 (5). Moreover, empowering VSR brains with Hebbian learning—

a specific instance of learning—evolves robots that, but virtue of the self-organization

of the Hebbian synapses, generalize better to unseen environmental conditions (6).

In Chapter 6, we propose and validate a novel formalism for modeling and

simulating soft robots, consisting of a pressurized medium enveloped by a membrane.

While VSRs still rely on an internal structure of rigid elements to simulate softness,

our new robots can assume a large gamut of shapes by combining local and global

actuation, thus answering 1.1.

Finally, in Chapter 7 we draw conclusions and reflections.

1.4 Publications

This thesis is based on a list of co-authored publications. All of these pub-

lications are the work of the author and the contributions of the co-authors are as

follows. Nearly all the publications are co-authored under the supervision of Eric

Medvet, who also provided feedback and conceptualized some of the works. An-

drea Ferigo, Federico Julian Camerota Verdù, Stephanie Woodman, Stefano Furlan,

Giorgia Nadizar, and Marco Rochelli contributed actual material, while other senior

collaborators helped supervise, conceptualize, and provide feedback.

The introduction Chapter 1 consists of unpublished material and fragments of

Pigozzi (2023b) The background Chapter 2 consists of fragments of all the author’s

oeuvre and unpublished material. Chapter 3 on factors impacting diversity and effec-
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tiveness of VSRs is based on Pigozzi et al. (2023b), which is itself the journal extension

of the conference publication Medvet et al. (2021)1, both of them co-authored with

Alberto Bartoli and Marco Rochelli. Section 4.1 on a novel self-organizing neural

controller for VSRs is based on Pigozzi and Medvet (2022). Section 4.2 on control-

ling VSRs without relying on inter-module communication is based on Pigozzi et al.

(2022)2 co-authored with Yujin Tang and David Ha. Section 5.1 about robots that

can perceive their body affordances is based on Pigozzi et al. (2023c) also co-authored

with Stephanie Woodman and Rebecca Kramer-Bottiglio. This work was carried out

while a visiting graduate fellow in the lab of Josh Bongard (who conceptualized it)

at the University of Vermont. Section 5.2 about studying how learning and evolution

interplay in modular robots is based on Pigozzi et al. (2023a) co-authored with Fed-

erico Julian Camerota Verdù. Chapter 6 about a novel soft-bodied formalism is based

on Pigozzi (2023a) (to appear at the time of this writing), itself a journal extension

of the conference publication Pigozzi (2022b). Finally, Chapter 7 with the concluding

remarks is unpublished material.

The author also co-authored other publications (Pigozzi et al., 2021; Furlan

et al., 2022; Medvet et al., 2022), not treated in this thesis because they pertain to

unrelated research lines, during his Ph.D.

1Winner of the best paper award in the complex systems track.
2Runner-up for the best paper award in the complex systems track.
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Chapter 2: Background

In this section, we motivate the field of ER in Section 2.1, before delving into

the case study of VSRs in Section 2.2 and motivating EAs as a search method in

Section 2.3.

2.1 Evolutionary Robotics

For a robot, one can optimize either the morphology, the controller, or both.

In general, the choice of the optimization algorithm (i.e., the search method) is free,

but relying on Evolutionary Computation (EC) gives rise to ER (Nolfi and Floreano,

2000).

The embodied cognition paradigm (Pfeifer and Bongard, 2006) posits that the

intelligence of an agent (e.g., a robot) emerges from the complex interaction between

the body, the brain, and the environment. Intelligence is not only rational but it

is embedded in the body also (Paul, 2006). Many organisms can perform complex

computations through their bodies only. As a matter of example, some animals

(e.g., salamanders and flatworms) are capable of regrowing amputated limbs, and the

way they achieve such regeneration is by biological processes localized in the severed

portion of their body (Joven et al., 2019). The environment plays a key role as well.

For example, it is well-known how different environmental conditions can alter the

development of an individual (Miras et al., 2020b).

Similarly, robots are usually modeled with the classic control loop: there are

two entities, the agent and the environment. Most of the time, they interact using

interfaces: the agent can collect information from the environment using sensors while

applying modifications to the environment using actuators.

Embodied cognition applies to “natural” as well as “artificial” agents, namely,

robots. When designing a robot, two key aspects must be planned: the controller
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and the morphology. The former can implement any function outputting actuation

values for the actuators; the latter dictates how the body of the robot shall be built

and assembled. Ideally, the two aspects are interlocked: a given controller might not

be well-adapted to the target morphology, and vice versa (Eiben and Hart, 2020a).

Finally, to be endowed with agency, an agent must display some attachment

to a specific goal, or task. Examples of tasks are locomoting on a surface, navigating

a maze, or grasping a Rubik’s cube (Bhatia et al., 2021). Tasks may not only be of an

engineering nature: investigating questions related to evolutionary biology or embod-

ied cognition are other examples (Kriegman, 2019). To find the robot that can best

solve a task, designers have resorted to optimization algorithms. Optimization can be

performed on the controller (for a fixed morphology), on the morphology (for a fixed

controller), or both of them at the same time (joint optimization). Different opti-

mization approaches have historically been employed, particularly EC (Floreano and

Urzelai, 2000), due to its flexibility in the choice of representation (see Section 2.3).

To conclude, here is a very gentle history of ER:

1994 Sims (1994) evolved virtual creatures for terrestrial and underwater locomotion.

It is the first published work on ER.

2000 Lipson and Pollack (2000) proved able to manufacture robots evolved with

Sims’ simulator. It received a lot of media coverage and introduced ER to the

general public.

2011 Hiller and Lipson (2011) modeled and manufactured a new type of robotic

agent, voxel-based and soft.

2013 Cheney et al. (2013) applied a neuroevolutionary algorithm to successfully

evolve the morphology of multi-material voxel-based soft robots.

2020 Kriegman et al. (2020a) synthesized living organisms (the “xenobots”) from

cells of Xenopus laevis (a frog species), after having evolved their morphology
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in silico. It spurred media attention and may have catapulted robotics into a

new age of interfacing with synthetic biology.

Albeit self-contained, this introduction to ER does not include an exhaustive

treatment of the state-of-the-art relevant for this thesis. It instead appears in the

introduction and related works sections of the respective chapters for the ease of

consultation. This introduction to ER is thus a primer on the field.

2.2 Voxel-based Soft Robots

Voxel-based Soft Robots (VSRs) are a kind of modular robots composed as

aggregations of elastic cubic blocks (voxels), made of soft material. Each voxel acts

by contracting or expanding its volume and it is the overall symphony of volume

contractions and expansions that allows for the emergence of behavior at the robot

level. VSRs were first formalized in Hiller and Lipson (2012), together with a fab-

rication method. In this work, we consider a 2D variant of simulated (in discrete

time and continuous space) VSRs (Medvet et al., 2020b). While disregarding one

dimension makes these simulated VSRs less realistic, it also eases the optimization

of VSR design, thanks to the smaller search space. We remark, however, that the

representations and the algorithms adopted in this thesis are easily portable to the

3D setting.

In the following, we outline the characteristics of VSRs relevant to this thesis

and refer the reader to (Medvet et al., 2020b) for more details. A VSR is defined by its

morphology (i.e., the body) and its controller (i.e., the brain). The former is in turn

built with a shape, dictating how many voxels the robot is constructed with and how

they are arranged in a 2D grid, and a sensory apparatus, telling what are the sensors

and how they are placed over the robot body. Sensors can provide information about

the external environment and the robot itself, turning the controller into a closed-loop

system. The controller is in charge of determining how the area of each voxel varies

over time.
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Figure 2.1: The mechanical model of a voxel in our simulation. Gray squares are
rigid bodies and black wiggly strings are springs.

2.2.1 VSR morphology

The morphology of a VSR describes how the voxels, i.e., deformable squares of

side length l = 3 cm, are arranged in a grid topology of size w×h. We model each voxel

as the assembly of spring-damper systems, masses, and distance constraints (Medvet

et al., 2020b) and is rigidly connected to its four adjacent voxels (if present). The

springs, by oscillating, allow the voxel to alter its area and thus endow it with softness,

while the bodies endow the voxel with a mass and a sense of an “embodiment”,

including the ability to react to forces and collide with other objects. We set the

same parameters for the components of each voxel as the default ones; as a result, all

the voxels share the same mechanical properties. We present a schematic view of our

voxel model in Section 2.2.1.

Over time, the voxels change their area according to (a) external forces acting

on the voxel (e.g., other voxels and bodies like the ground) and (b) a control signal

dictated by the controller. The latter produces a contraction/expansion force that

is modeled in the simulation as an instantaneous change in the resting length of the

spring-damper systems of the voxel. The length change is linearly dependent on an

actuation value residing in [−1, 1], −1 being the greatest possible expansion and 1

being the greatest possible contraction. The controller sets the actuation value for

each voxel, at every time step of the simulation.

A VSR can be equipped with sensors, and each voxel can have one or more

sensors. A sensor outputs, for every time step, a sensor reading s ∈ R
m, where m is
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the dimensionality of the sensor type. In this study, we equip VSRs with four different

types of sensors. Area sensors sense the ratio between the current area of the voxel

and its resting area (m = 1). Touch sensors sense whether the voxel is currently

touching another body different from the enclosing VSR (e.g., the ground) or not,

and output a value of 1 or 0, respectively (m = 1). Velocity sensors sense the speed of

the center of mass of the voxel along the x- and y-directions (m = 2). Lidar sensors

sense the distance to the closest objects along a predefined set of directions. Precisely,

for each direction, a lidar sensor measures the distance between the voxel center of

mass and the closest object in that direction, clipping it to d. If no object is present

at all, the sensor reading is set to d. We used d = 10 cm and the following directions

with respect to the positive x-axis: −1
4
π, −1

8
π, 0, 1

8
π, 1

4
π (so m = 5). Sensor readings

undergo a soft normalization, with tanh function and rescaling, to ensure the output

is in [0, 1]m. After normalization, every sensor reading s is perturbed into s′ = s+ν,

with ν = {νi}i ∈ R
m and νi ∼ N(0, 0.01) being additive Gaussian noise of mean 0

and variance 0.01. The purpose of this transformation is to simulate real-world sensor

noise. Figure 2.2 shows two example VSRs simulated using our software.

2.2.2 VSR controller

Let n be the number of voxels of the VSR and let r(k) = [s1 s2 . . . ] be the

concatenation of sensor readings for all the VSR sensors at time step k, i.e., at time

t = k∆t, where ∆t is the interval between two simulation time steps. The controller

is closed-loop with input r(k) and output a(k) ∈ [−1, 1]n.

Previous works dealing with VSRs employed different approaches in instanti-

ating this general definition, with different degrees of complexity. Some works, such

as, e.g., (Cheney et al., 2013), employed an open-loop controller (a phase controller),

whose output depends only on k, i.e., it does not exploit the information coming

from the sensors. In other cases, as, e.g., (Talamini et al., 2019), the controller does

not have a memory and its output depends only on the current input. In the lat-

ter scenario, the controller can be modeled as a function a(k) = f
(

r(k)
)

, or simply
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(a) Biped (b) Worm

Figure 2.2: A biped and a worm example morphologies, taken at a snapshot of the
simulation. Each square is a voxel. The color represents the ratio between its current
area and its rest area: red stands for contraction, green for expansion, and yellow for
no change. The semi-circular sectors drawn at the center of each voxel (if present) en-
code the sensor readings, and are partitioned into subsectors according to the number
of sensors; subsectors are further partitioned according to the sensor dimensionality
m. The red lines depict the rays of the lidar system.

a = f(r). In this condition, and if the function f : Rp → R
n can be parametrized

with a numerical vector θ ∈ R
q, then the problem of finding a good controller given

a morphology and a task can be cast as a numerical optimization problem.

2.2.2.1 Distributed VSR controller

For the sake of this study, we resort to the distributed neural controller pro-

posed in Medvet et al. (2020a) that facilitates the study of CI. It consists of some

fully connected, feed-forward Artificial Neural Networks (ANNs), one for every voxel,

and operates as follows.

At time step t = k∆t, each ANN (i) receives as input the local sensor readings

and the 4ncomm communication values generated by the four adjacent ANNs at the

previous time step and (ii) outputs the local actuation value and 4ncomm communi-

cation values to be fed to the adjacent ANNs at the next time step. Formally, each
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ANN works as follows:

[

a(k) o
(k)
N o

(k)
E o

(k)
S o

(k)
W

]

= ANN
([

s
(k)
i i

(k−1)
N i

(k−1)
E i

(k−1)
S i

(k−1)
W

])

, (2.1)

where a(k) ∈ R is the local actuation value, o(k)
N ∈ R

ncomm is the vector of communi-

cation values directed to the voxel above (similarly for E, S, W), s(k)i ∈ [0, 1]4 is the

concatenation of the local sensor readings, and i
(k−1)
N ∈ R

ncomm is the vector of com-

munication values coming from the voxel above and been generated at the previous

time step (similarly for E, S, W). If one of the neighbors is absent (e.g., if the voxel

lies on the boundary of the morphology), we set i
(k−1)
N (or E, S, W) to a zero-vector

0 of the appropriate size. Similarly, we use a zero-vector as input communication

values for all the voxels at the very first time step.

Despite its simplicity, this form of controller may result in interesting and

variegate behaviors, since the interconnections between voxel ANNs make the overall

architecture recurrent (Rumelhart et al., 1986), endowing the system with a form of

“memory”: therefore, there is a further dynamics introduced by the recurrent ANN

that interacts with the dynamics induced by the mechanical model of the soft body

(where the spring-and-hamper systems hold a form of “memory” too).

After some preliminary experiments and by taking into account the findings of

Medvet et al. (2020a), we use ncomm = 1, no hidden layers, and tanh as the activation

function for all the neurons—the latter guarantees that all communication values and

the actuation value are in [−1, 1].

2.3 Evolutionary Computation (EC)

EC is a family of population-based optimization algorithms (Luke, 2009); a

population of candidate solutions is kept and evolved in iterations. At each iteration

(or generation), the population is updated by applying the selection and genetic (or

search) operators. An objective function, known in the jargon as fitness, drives the

optimization process. Borrowing from the principles of Darwinian evolution (Dar-
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win, 1859), selection operators decide how unfit solutions (or individuals) should be

discarded from the population (on the contrary, fit solutions carry on to the next

iteration). Genetic operators stochastically perturb (generally, through mutation or

recombination) fit individuals to produce new candidate individuals. The combina-

tion of selection and genetic operators allows us to ascend in the fitness landscape.

As a final ingredient, an initial population of individuals should be initialized at the

beginning of evolution, usually randomly.

Given the random initialization and the stochastic search operators, EAs are

usually regarded stochastic optimization algorithms. It is by their stochasticity that

EAs can potentially avoid being trapped in local minima and uncover novel and

interesting solutions. These are desirable properties in robotics, where:

(i) a large number of degrees of freedom makes robotic systems very hard to tune

for a human engineer (Rus and Tolley, 2015);

(ii) fitness landscapes are usually very rugged and hard to explore (Smith et al.,

2002);

(iii) diversity of solutions is also important (Cully et al., 2015).

Last but not least, by placing no assumptions on the fitness function to be optimized,

EAs are effective when there is no analytical formulation for the objective (consider,

e.g., the optimization of a robot’s morphology).

2.3.1 Evolution of Things

Textbook EC performs search through the genetic operators in a space called

the genotype space; genotypes are then mapped to the phenotype space as pheno-

types, which, in turn, are mapped to the fitness space. In other words, the phenotypes

are the solutions we are interested in, while genotypes make up the space of the ac-

tual search. Albeit having been valid for decades, this paradigm of textbook EC fails
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to capture all the facets of a complex system (like a robotic one), whose behavior

cannot be inferred from the individual properties of the components alone, but espe-

cially from their interaction (Sayama, 2015). To address this shortcoming, Eiben and

Smith (2015) have proposed a fourth space, the behavior space, sitting in the middle

between phenotype and fitness space, and labeled the resulting framework Evolution

of Things. In the Evolution of Things, phenotypes (like robots, of any kind of soft-

ware or hardware) are situated entities that exist in a given environment. As such,

by interacting with the environment, they produce behavior that cannot be predicted

from the mere phenotype, and the fitness must computed onto the behavior. The

Evolution of Things is the branch of EC where this thesis fits.
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Chapter 3: Factors impacting diversity and

effectiveness of evolved modular robots

In many natural environments, different forms of living organisms accomplish

the same task while being diverse in shape and behavior. This biodiversity is what

makes life capable of adapting to disrupting changes. Being able to reproduce bio-

diversity in artificial agents, while still optimizing them for a particular task, might

increase their applicability to scenarios where human response to unexpected changes

is not possible. As a first step in this thesis, we conduct an extensive study on what

factors impact the diversity and effectiveness of evolved modular robots.

In this chapter, we answer to question 7. We evolve, at the same time, the

morphology and controller of VSRs for the task of locomotion. As mentioned in Sec-

tion 2.2, VSRs grant great freedom in the design of both morphology and controller

and are hence promising in terms of “biodiversity”. We investigate experimentally

whether three key factors—representation, EA, and environment—impact the emer-

gence of biodiversity and if this occurs at the expense of effectiveness (by represen-

tation, we mean genetic encoding). We also devise an automatic machine learning

pipeline for systematically characterizing the morphology and behavior of robots re-

sulting from the evolution process. We classify the robots into species and then

measure biodiversity in populations of robots evolved in many conditions resulting

from the combination of different morphology representations, controller representa-

tions, EAs, and environments. The experimental results suggest that, in general, EA

and the environment matter more than representation.

3.1 Introduction

The vast majority of works in robotics aim to find one robot design that fits

well for a given task in a given environment. One intrinsic limitation of this approach
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is that, when the environmental conditions change, the found design might become

less effective, and possibly ineffective, making all the deployed robots immediately

useless. That design and the approach that produced it are intrinsically not adaptable.

Conversely, in nature, several different designs exist at the same time that fit well

for a given task (e.g., locomotion, food harvesting, and reproduction) with varying

environmental conditions. Diversity of designs, i.e., biodiversity, is hence the way

nature achieves adaptation. Through biodiversity, natural evolution made life robust

to disruptive changes, by filling a variety of ecological niches with different species.

Indeed, biodiversity is so valuable that it has to be preserved to protect life itself

(Tilman et al., 2017), as well as to increase the stability of ecosystems (Arese Lucini

et al., 2020). Diversity plays a fundamental role even in other settings, e.g., in geology

(Schrodt et al., 2019), economics (O’Sullivan and Sheffrin, 2003), culture and politics

(Young, 1979).

Obtaining diversity while evolving robots is not an easy endeavor, though.

First, comprehension, measurement, and promotion of diversity are important chal-

lenges themselves in the broader field of EC (Squillero and Tonda, 2016; Črepinšek

et al., 2013), from which ER borrows the optimization techniques. Second, the char-

acterization of diversity in ER and a deep understanding of which factors favor or

impede it are still open issues (Silva et al., 2016). The complexity of the robot-

environment interplay makes it hard to obtain useful diversity, i.e., the diversity that

does not affect effectiveness.

In this chapter, we study the impact of three factors on the diversity and

effectiveness of populations of evolved VSRs: the solution representation, the EA, and

the environment. We investigate whether the open-ended design freedom of VSRs can

also foster diversity. To this end, we deal with the joint evolution of both morphology

and controller of the robot, a problematic task in the ER community (Lipson et al.,

2016). We consider two representations for the controller and two representations

for the morphology that differ in their expressiveness and hence exhibit different

potentials for diversity while allowing concurrent evolution of VSRs morphology and
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controller. We also consider four EAs that are radically different in how they deal

with diversity and, finally, three environments with different degrees of difficulty.

Among these, we propose and assess a novel EA that promotes diversity through

speciation, where individuals are partitioned into species based on a few morphology

and behavior descriptors that we designed for the case of VSRs doing locomotion.

A key contribution of this chapter is an automatic pipeline for systematically

analyzing a very large number of VSRs (hundreds of thousands), while still looking at

them with the human eye as we do when associating living organisms with a specific

species. In doing so, we rely on Machine Learning (ML) to automatically assign

species to VSRs. We build an ML pipeline for classifying VSRs into species according

to morphology and behavior descriptors extracted from simulations of VSRs that

perform the task of locomotion. Then, we use the relative abundance of predicted

species as a measure of diversity for a population of VSRs, using the well-established

Simpson index (Simpson, 1949).

While there have been several studies addressing diversity in EC (Mouret and

Doncieux, 2012; Miras et al., 2020b; Nordmoen et al., 2021), with some of them

considering the domain of robots, we believe that our work is the first to consider

multiple factors affecting the diversity of both morphology and behavior. Moreover,

we analyze those factors based on a notion of diversity that exploits humans’ abil-

ity to discriminate between different approaches to locomotion and hence facilitates

comprehension. We believe our study may help future designers of evolvable robotic

ecosystems in prioritizing different factors in terms of their impact on the diversity

and effectiveness of evolved robots. Namely, we found that the environment and the

EA seem to have a greater impact on diversity than the representation. Hence, these

two factors should likely be the ones on which a designer should focus more.
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3.2 Related works

Earlier works examined diversity in ER (Mouret and Doncieux, 2012; Auerbach

and Bongard, 2014; Samuelsen and Glette, 2014; Miras et al., 2020b; De Carlo et al.,

2020; Nordmoen et al., 2021). Our work shares with them the general methodology,

i.e., investigating the factors that may have an impact on evolution but differ in either

the kind of robots considered or the factors themselves. Most of those works focused

mainly on the impact of the environment (Auerbach and Bongard, 2014; Miras et al.,

2020b; Gupta et al., 2021), while here we consider also the controller representation,

the morphology representation, and the EA. The studies that are most similar to ours

are (De Carlo et al., 2020) and (Mouret and Doncieux, 2012). The former investi-

gates whether a mechanism of artificial speciation can favor morphological diversity.

We also devise an EA that employs speciation and, in this respect, both the cited

work and our approach were inspired by NEAT (Stanley and Miikkulainen, 2002).

However, differently from (De Carlo et al., 2020), we (i) also consider the diversity of

behavior, (ii) work with a more expressive kind of robots, VSRs, and (iii) analyze the

joint impact of representation, EA, and environment. Mouret and Doncieux (2012)

conducted an empirical study for comparing approaches for encouraging the diversity

of the behavior of evolved robots. The authors focused mainly on the EA and on

the measure of similarity on which to build diversity promotion. Different from the

cited work, we (i) also consider the diversity of the robot morphologies and (ii) take

the representation of solutions, i.e., how to map a genotype into a pair morphology–

controller, as a factor potentially affecting diversity. We do not explicitly compare

different similarity measures; yet, in the novel simple EA we propose for promoting

diversity through speciation, we experiment with three different ways of measuring

similarity between pairs of robots.

The pursuit of diversity has become more and more important in the EC

community (Cully and Demiris, 2017). Proposals in this respect include novelty

search (Lehman and Stanley, 2008), novelty search with local competition (Lehman
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and Stanley, 2011), and quality-diversity algorithms (Cully and Demiris, 2017). In

a recent study, Nordmoen et al. (2021) showed that MAP-Elites, a form of quality-

diversity optimization, is particularly suitable for exploiting the potential for diversity

of modular (rigid) robots. The authors showed experimentally that populations of

robots that evolved with MAP-Elites are more successful when transferred to new

environments than those that evolved with other EAs. Moreover, they specifically

spotted a strong correlation between the diversity of earlier populations and the ef-

fectiveness of locomotion in new environments. In a previous study, Tarapore et al.

(2016) found that MAP-Elites is sensible to the representation of the controller in

evolutionary robotics applications: apparently, the lower locality of indirect, gener-

ative representations makes this EA less effective than with direct representations.

Interestingly, MAP-Elites has also been recently found particularly effective in the

simultaneous evolution of morphology and controller of VSRs (Ferigo et al., 2022b),

with both indirect and direct representations of the controller. Overall, these results

further motivate our aim of investigating the factors, beyond the EA, that favor or

disfavor diversity in modular robotics.

Last but not least, our work fits into a relevant body of literature in ER

concerning the joint evolution of morphology and controller. Past studies have either

employed directed acyclic graphs (Sims, 1994), L-systems (Hornby et al., 2001), gene

regulatory networks (Joachimczak et al., 2016), direct encodings (Pagliuca and Nolfi,

2020), or relied on more complex solutions as co-evolution (Cheney et al., 2018),

and evolutionary reinforcement learning (Gupta et al., 2021). In most of the cited

works, the key ingredient for achieving the concurrent optimization of morphology

and controller is the representation, i.e., how to encode in a genotype the information

needed for describing both the morphology and the controller of the robot. While,

in principle, some of the approaches mentioned above could be ported to the case

of VSRs, in this study we “only” focus on four representations resulting from the

combination of two for the morphology and two for the controller. Since we are

interested in investigating the impact of representation (and its interplay with EA
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and environment) on diversity, we choose the representations for the morphology and

the controller considering their compactness vs. expressiveness trade-off.

The intrinsic hardness of jointly evolving robot morphology and controller has

been discussed by Lipson et al. (2016), using precisely the case study of VSRs. The

reason for such difficulty rests on the embodied cognition paradigm (Pfeifer and Bon-

gard, 2006), which posits that intelligence emerges from the interaction between the

controller (brain), the morphology (body), and the environment: brains evolve to fit

a particular body and variations in the body are likely to cause mismatch (Eiben

and Hart, 2020b). On the other hand, allowing the concurrent optimization of both

morphology and controller of the robots makes their optimization more difficult as

diversity seems to vanish quickly (Pagliuca and Nolfi, 2020). An important contribu-

tion of our work is showing that it is possible to jointly evolve the morphology and

the controller of VSRs that are effective in the task of locomotion, while also being

diverse.

3.3 Materials and Methods

We discuss the methods adopted for this chapter

3.3.1 Measuring biodiversity

We take inspiration from the natural sciences and build our definition of bio-

diversity of populations of VSRs on the concept of species. A species groups together

individuals sharing the same phenotypic traits1. Once we can associate each VSR

with a species, we measure the diversity of a population of VSRs as the variety of

species of its individuals.

For VSRs, since we deal with the joint evolution of morphology and controller,

1Our definition of species takes inspiration from biology, but does not reflect it: in biology, a
species is a group of organisms in which any two individuals can mate to produce fertile offspring.
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we use both kinds of traits for defining species. That is, we define a species as a pair

of morphology species (based on morphology traits) and controller species (based on

controller traits). Aiming at defining species that are based on observable traits, we

consider the behavior, rather than the controller, of VSRs: while we do acknowledge

that the behavior is not determined by the controller alone since it depends also on the

morphology and the environment, we believe that the behavioral traits we considered

carry a significant amount of information about the underlying controller.

To have species that can be observed and discerned by humans, as it hap-

pens for living organisms, we phenotypically classify morphology species and behavior

species by human categorization. Although it is just one of the ways that modern bi-

ology uses to define species (Mayden, 1997), we believe this approach aligns with our

objective of discovering species as seen by the human eye (rather than, e.g., according

to genetic compatibility). However, since we evolve a large number of VSRs (in the

order of hundreds of thousands), species classification by human inspection alone is

not feasible. For this reason, we use ML for automatically determining the species of

a VSR, a common approach also for determining the species of plants (Franklin and

Ahmed, 2018) and animals (Tabak et al., 2019).

We rely on supervised ML for species classification: we collect a few exam-

ple cases, each one consisting of a VSR associated with a morphology class and a

behavior class (both manually assigned); then, we learn two classification models,

based on those examples, for associating any other VSR with one morphology and

one behavior class. To use supervised ML, we first define the classes and a criterion

for selecting a training set for manually assigning classes. We also define a set of

descriptors (features, in ML terminology) useful for characterizing the morphology

and the behavior of VSRs and to be fed to supervised learning techniques. In the

following subsections, we describe each of the steps in detail.
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(a) Blob (b) Limbed

(c) Elongated (d) Other

Figure 3.1: Sample morphologies for the four morphology classes.

3.3.2 Species classes definition and manual annotation

3.3.2.1 Classes definition

For deciding how many classes to use for morphology and behavior we ob-

served a large number of videos of VSRs performing locomotion on three different

terrains (flat, downhill, and uphill, see Section 3.4.3) and obtained through evolution

with six different EAs (see Section 3.3.3), two different controller representations (see

Section 3.3.5.1), and two different morphology representations (see Section 3.3.5.1).

Based on these observations, we define four classes of morphology. Blob is

compact and roundish, with no clear direction of development. Limbed has extru-

sions that might resemble limbs. Elongated is compact but with a clear direction of

development. Other is a miscellaneous class for the VSRs that cannot be classified

into one of the other classes. Figure 3.1 shows sample morphologies for the four

classes.

Concerning the behavior, we define four classes. Jumping VSRs alternate be-

tween touching the ground and lifting their body in the air. Walking VSRs cyclically

alternate the parts of the body that touch the ground. Rolling VSRs roll on them-

selves. Finally, Other VSRs cannot be classified into one of the other labels, and thus

fall in a miscellaneous class. Figure 3.2 show time-lapse images for the movement
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(a) Jumping

(b) Walking

(c) Rolling

(d) Other

Figure 3.2: Time-lapse showing locomotion for a sample VSR for each behavior class.
Figure 3.2d moves forward vibrating at a very high frequency.

of a sample VSR for each behavior class. We also provide a video of those VSRs at

https://youtu.be/tuD8scZ88Xc.

Since we define four classes for each one between morphology and behavior,

and being the species the combination of the two, it follows that we define an overall

number of 16 different species.

3.3.2.2 Manual annotation

Having defined classes for morphology and behavior as illustrated in the pre-

vious section, we need to collect a training set of examples suitable for learning two

classifiers that can automatically associate a previously unseen VSR with the corre-

sponding classes.

Since we want to measure the diversity of populations of VSRs subjected to

evolution, the training set should consist of individuals that uniformly cover the spaces
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of morphologies and behaviors that are likely to arise from evolution. However, a large

portion of VSRs being generated during evolution (in particular at its early stage)

perform poorly in the task of locomotion and are hence very difficult to associate

with behavior class. For this reason, instead of simply selecting a random sample

of all the individuals observed during the many evolutions we run (see Section 3.4.1,

Section 3.4.2, and Section 3.4.3), we proceeded as follows.

First, we define three descriptors of the VSR morphology:

1. Number of voxels dnum, i.e., the number of voxels in the VSR.

2. Elongation delong, i.e., how stretched is the morphology in its direction of max-

imum development. For computing delong we first consider the smallest ellipse

that encloses the VSR morphology; then we compute the ratio of the focal dis-

tance (distance between focal points) of the ellipse over the major axis length

(Burger et al., 2009). It follows that delong ∈ [0, 1[, with delong = 0 for perfectly

“even” morphologies (e.g., a circle or square).

3. Compactness dcompact, i.e., the ratio between the number of voxels of the VSR

and those of the convex hull enclosing the morphology. The intuition is that

dcompact is higher for morphologies with few concavities. Considering that the

convex hull of a 2D shape has an area that is always greater or equal to the area

of the shape itself, it follows that dcompact ∈]0, 1], with dcompact = 1 for perfectly

compact morphologies, i.e., morphologies with no concavities.

Then, we computed the values of dnum, delong, and dcompact for each VSR and

partitioned the pool into 4 equal-size bins per descriptor, thus partitioning the pool

of VSRs into 4 × 4 × 4 = 64 bins. Next, we removed from all the 64 bins the VSRs

that perform poorly in locomotion, i.e., those whose speed is lower than 2m/s. After

preliminary experiments, we found 2m/s to reasonably discriminate poor performing

VSRs. Finally, we selected a subset of VSRs to be manually inspected for associating
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Table 3.1: Distribution of the manually assigned labels for the morphology and be-
havior classes on the training set.

Blob Limbed Elongated Other Total

Jumping 0 1 291 25 317
Walking 67 82 64 174 388
Rolling 8 48 0 50 106
Other 82 93 132 437 744

Total 157 224 487 687 1555

a morphology and a behavior class by taking randomly 25 VSRs out of each bin

and adding 75 slow VSRs taken randomly from the discarded VSRs. This way, we

assembled a set of 25 · 64 + 75 = 1675 VSRs.

We finally had a human operator inspect the VSRs, by looking at their unla-

beled simulation videos, and assign VSRs to morphology and behavior classes until

collecting at least 100 labels per class. We ended up with a training set of 1555 labeled

VSRs, distributed among classes as summarized in Table 3.1.

The figures of Table 3.1 might suggest that our manual annotation procedure

is affected by a human bias: human annotators tended to assign to the Other classes

all the samples they were not able to assign to the identifiable cases (both for the

morphology and behavior). As a result, the dataset is slightly unbalanced and, as

we will discuss in Section 3.4, this impacted later analyses. On the other hand, we

believe that this bias is positive, in the sense that human operators did observe the

robots in the context of a race for locomotion. In the end, we are more interested

in distinguishing between a crawling and a jumping artificial organism rather than a

multitude of ways of being idle.

3.3.3 Features and learning

As in any ML application, two key design choices concern the features to

extract for describing the observations (here, simulations of VSRs) and the learning
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technique. Since we aim to classify the morphology and the behavior separately, we

define different features for the two classification tasks. We describe them in the next

subsections.

3.3.3.1 Morphology features

Since the VSR morphology is an arrangement of voxels in a 2D grid, we could

extract the features concerning the morphology directly from the grid, e.g., the de-

scriptors described in Section 3.3.2. However, the grid is a static description of the

VSR and does not capture the robot as seen during its “life”, i.e., as it could be seen

by an external observer looking at the VSR while it does locomotion. For this reason,

we define the morphology features based on the idea of the dynamic pose of the VSR.

Intuitively, the dynamic pose can be regarded as a “long-exposure photograph” of the

VSR during the simulation. We construct such a pose as follows.

Let a snapshot be the complete description of a time step of VSR simulation,

i.e., it comprises the ground and every voxel of the VSR. Let S be a sequence of such

snapshots, spanning an entire VSR simulation. For each snapshot, we determine the

minimal bounding square (x0, y0, x0+w, y0+ l) around the VSR, that is, the smallest

square parallel to the x-axis that completely encloses the VSR. Then, we partition the

minimal bounding square in 16× 16 inner squares with side lengths w
16

l
16

and build

a matrix d ∈ {0, 1}16×16 where the element di,j is 1 if and only if the corresponding

inner square (x0+(i−1) w
16
, y0+(j−1) l

16
, x0+i w

16
, y0+j l

16
) is occupied by the VSR for

at least half of the area. Finally, we compute the dynamic pose as the element-wise

mode of the matrices computed for the snapshots in S.

We use the 256 values of the dynamic pose of a VSR as a feature vector for

its morphology, obtaining fmorph ∈ {0, 1}256.
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3.3.3.2 Behavior features

Since we deal with robots performing the task of locomotion, we define two

groups of features that capture the VSR behavior while in locomotion, i.e., its gait,

from two different points of view: the movement of the center of the VSR over the

time and the way the VSR touches the ground while moving. We denote by f center and

f footprints the two corresponding feature vectors, and by fbehavior their concatenation.

We construct these vectors as follows.

Center movement Concerning the features describing the movement of the center

of the VSR, let S be a sequence of snapshots; we extract from S the discrete signals

of the x− and y−coordinate of the center of mass of the VSR. Then, we consider the

signals of the first differences and compute their Fast Fourier Transform (FFT) (Coo-

ley and Tukey, 1965), to represent the signal in the frequency domain. Subsequently,

we take the magnitude of the two FFTs, filter out the components corresponding to

frequencies greater than fmax (by taking into account the simulation time step ∆t),

and re-sample the remaining components to have nfreq components for each one of

the two axes.

We use as feature vector f center the concatenation of the two resulting vectors

of magnitudes f center =
[

f center,x f center,y

]

∈ R
+2nfreq , with R

+ = [0,+∞[. After

preliminary experiments and leveraging our expertise, we set fmax = 10Hz and nfreq =

100.

Footprints Concerning the features describing how the VSR touches the ground, we

build a definition based on the concept of footprint. Given a snapshot, we consider

the projection [x0, x0 + w] of the minimal bounding square on the x-axis and we

partition it into 8 equally-sized segments. After preliminary experiments, we found

8 to be an adequate number of segments. Then we build the footprint of the VSR

in that snapshot as a binary sequence m ∈ {0, 1}8, where the element mi is 1 if and
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only if the VSR is touching the ground for at least half of the corresponding segment

[x0 + (i− 1)w
8
, x0 + iw

8
].

Given a sequence S of snapshots, we follow the following procedure to de-

termine the set of footprint features. (1) We split S in a sequence (S1, S2, . . . ) of

non-overlapping subsequences, each one corresponding to an interval of ∆tfootprint

simulated time (we set ∆tfootprint = 0.5 s after some preliminary experiments). (2) We

build the sequence M = {m1,m2, . . . } of footprints where each mi is obtained as the

element-wise mode of the footprints computed from snapshots in Si. (3) We consider

all the non-overlapping n-grams of footprints in M , with 2 ≤ n ≤ 10, that occur

at least twice and compute the overall duration of each n-gram, computed as the

product between its number of occurrences and its duration. (4) We select as the

main footprint n-gram M⋆ the n-gram with the greatest overall duration. (5) We

compute the following features for M⋆: duration |M⋆|∆tfootprint, average touch area
1

|M⋆|
1
8

∑

m∈M⋆

∑i=8
i=1 mi, number of occurrences of M⋆ in M , mode ∆tM⋆ of the inter-

vals between subsequent occurrences of M⋆, rate of intervals that are equals to the

mode.

We use as feature vector the five features computed for the main footprint

n-gram M⋆, i.e., f footprint ∈ R
+5.

3.3.3.3 Learning technique

We rely on Random Forest (Breiman, 2001) as classifiers for the morphol-

ogy and behavior classes based on fmorph and fbehavior, respectively. We chose this

supervised learning technique because studies (Fernández-Delgado et al., 2014; Wain-

berg et al., 2016) have proved it to be among the best general-purpose classification

techniques. We used the default values for the main parameters: 100 trees in the

ensemble and
⌊√

p
⌋

features (i.e.,
⌊

√

|fmorph|
⌋

= 16 for the morphology classifier and
⌊

√

|fbehavior|
⌋

= 14) for each tree.

For an estimate of the accuracy of Random Forest on our two classification
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tasks, we performed a 5-fold cross-validation assessment using the 1555 labeled simu-

lations (Table 3.1) and obtained an average accuracy of 0.833 and 0.891 for morphol-

ogy and behavior classification, respectively. A trivial classifier (always predicting the

most frequent class) taking into account the class imbalances obtained an accuracy

of 0.442 and 0.478, respectively.

3.3.4 Simpson index

Different measures of diversity have been used in the ecological literature

(Magurran, 2013). Among them, the Simpson index is one of the most commonly

used (Simpson, 1949). Given a population of individuals that is partitioned based on

species, this index is defined as λ =
∑i=n

i=1 p
2
i , where n is the number of species and pi

is the fraction of individuals of the i-th species.

Intuitively, the Simpson index measures the probability that two individuals

picked at random with replacement belong to the same species. Since its semantics is

the opposite of the one of diversity (i.e., λ = 1 for a population composed of a single

species and it is < 1 for more diverse populations), in this study we use the Inverse

Simpson index (ISI) λ−1 (defined in [1,+∞[): the greater the ISI, the more diverse

the population. Since we defined a limited number of possible species, i.e., 16, the

actual domain of ISI in our study is [1, 16].

Simpson index is a suitable measure of diversity since it depends on both the

total number of species, as well as their relative abundance. To better grasp this

intuition, Figure 3.3 plots three example populations colored by species and their

corresponding ISI. As can be seen, the red species pollutes most of the population

in Figure 3.3a, and, as a result, the corresponding ISI is the lowest. The population

in Figure 3.3b is evenly partitioned between two species; nevertheless, there are just

two of them, so the total variety of species is not very high, and indeed ISI is only

slightly higher than before. Finally, the population in Figure 3.3c witnesses a great

variety of species, and all of them are evenly balanced in terms of abundance, which
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(a) ISI = 1.41 (b) ISI = 2.00 (c) ISI = 7.82

Figure 3.3: Example populations colored by species, and their corresponding ISI.

is reflected in its ISI.

3.3.5 Evolution of VSR morphology and controller

We want to investigate how different factors (namely, the representation, the

EA, and the environment) impact effectiveness and diversity in populations of VSRs,

i.e., whether VSRs can be optimized for a given task, using EC, while maintaining

diversity measured as above. To fully exploit the potential of expressing diverse

solutions to a task, we need a way to evolve simultaneously the morphology and the

controller.

We here propose different genotypic representations that jointly encode a de-

scription of both the morphology and the controller of a VSR in a single numerical

vector v ∈ R
p. The resulting optimization problem is hence a search in the numerical

space R
p, for which many techniques do exist. We experiment with two representa-

tions for the controller and two for the morphology. We also experiment with four

EAs that fit this scenario, two of them being tailored to the specific goal of promoting

diversity. In the following subsections, we describe the representations and the EAs.

3.3.5.1 Representations

We define two representations for the controller and two representations for the

morphology of the VSR in the form of a numerical vector v ∈ R
p. In both of them,

a portion vmorph of v encodes a description of the morphology and the remaining,
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disjoint portion vctrl describes the controller, i.e., v = [vmorph vctrl]. The controller

representations differ in the latter, whereas the morphology representations differ in

the former.

Controller We rely on the distributed controller of Section 2.2.2.1. It meets the

requirement of the concurrent evolution of morphology and controller: since the ar-

chitecture of each ANN, namely the size of the input and output layers is dictated

only by the parameter ncomm, the structure of this distributed controller is agnostic

with respect of the morphology of the VSR. Morphology and controller can hence be

optimized together. We consider area, touch, and velocity sensors. Considering that

the overall dimension of the sensor readings is 4, this results in each ANN having 4+4

input neurons and 4 + 1 output neurons; being there no hidden layers, each ANN is

described by 8 · 5 + 5 = 45 = nANN numerical parameters (the weights and biases of

the edges connecting the neurons).

We propose two alternatives for the distributed controller. In the Homogeneous

controller representation, denoted by Ho, we assume that all the ANNs have the same

parameters w. It follows that vctrl = w ∈ R
nANN .

In the Heterogeneous controller representation, that we denote by He, we as-

sume that ANNs may have different parameters. To favor the locality of the repre-

sentation Rothlauf (2006) and to make the controller representation agnostic to the

morphology representation, vctrl is the concatenation of the weights of the ANNs of

all the voxels, i.e., vctrl = [w1,1 . . . ww×l], where wi,j is the vector of parameters of

the ANN at the (i, j) position in the enclosing grid. It follows that vctrl ∈ R
w×l×nANN .

This representation is the same, for the controller part, as the one proposed in Medvet

et al. (2020a).

The two controller representations differ in expressiveness. The heterogeneous

representation is the most expressive one, thus resulting in the largest search space.

The homogeneous representation is the least expressive one: its search space is smaller
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and hence, in principle, easier to explore. However, it might be harder for evolution

to find the combination of genes that, when translated to the same ANNs for each

voxel, results in a VSR that exhibits the desired complex behavior.

Morphology We propose two alternatives for representing the morphology. In the

Direct morphology representation, we associate each gene with one and only one

voxel of the final morphology, i.e., a collection of adjacent voxels arranged in a 2D

grid. Given a vmorph ∈ R
w×l, we build a morphology as follows. First, we build a

Boolean matrix b = {T,F}w×l where bx,y is set to true if and only if vk > 0, with

k = x+(y−1)l. Then, we build the morphology by considering the largest connected

component of b elements set to true and putting a voxel at each element of such

set. As a consequence, vmorph comprises one number for every voxel in the grid, i.e.,

|vmorph| = w × l. Albeit simple, such direct representations have proved effective

for the joint evolution of morphology and control of other kinds of embodied agents

Ha (2019); Pagliuca and Nolfi (2020). Moreover, the irregularities that may arise

from this direct representation of a VSR morphology are potentially beneficial for the

adaptability of morphologies to different tasks Talamini et al. (2021).

In the Gaussian Mixture Model (GMM) morphology representation, based on

the observations of Hiller and Lipson (2012); Cheney et al. (2013), we use the gener-

ative representation based on a mixture of bi-variate Gaussian distributions Lindsay

(1995) described in Medvet et al. (2020b). Let nGMM be the number of Gaussians in

the mixture. First, we build a real matrix b = {T,F}w×l where bx,y is set to true if

and only if f(x′, y′) > 0, with:

f(x′, y′) =

nGMM
∑

i=1

φi

2πσi,xσi,y

exp
− 1

2

(

(x′−µi,x)

σi,x

2

+
(y′−µi,y)

σi,y

2
)

,

where x′ = 2 x
w
− 1 and y′ = 2y

l
− 1 are the x, y coordinates normalized in [−1, 1],

µi = [µi,x, µi,y] and σi =

[

σi,x 0
0 σi,y

]

are the mean vector and the covariance matrix

for the i-th Gaussian, and φi ∈ [0, 1] is its mixing coefficient. Then, we build the
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morphology by considering the largest connected component of b elements set to true

and putting a voxel at each element of such set. Since we restrict every σi to be

diagonal, vmorph comprises 5 numbers for every Gaussian in the mixture, i.e., the two

means, the two variances, and the mixing coefficient, so that vmorph ∈ R
5nGMM . Note

that we clip the values of vmorph corresponding to σi,x and σi,y, for all i, in order to

make them positive—e.g., for the first matrix, we set σ1,x = max(0, vmorph,3).

The two morphology representations differ along two axes. First, they differ in

terms of the compactness-expressiveness trade-off: the Direct representation presents,

in general, a larger search space, thus holding the potential for more expressiveness.

The GMM representation is potentially more compact (depending on the actual value

of nGMM), thus holding the potential for easier exploration of the search space. Sec-

ond, we confront a direct representation with an indirect (or generative) one. In doing

so, we tap ourselves into the debate surrounding direct and indirect encodings in ER

Veenstra et al. (2017). As a consequence of those differences, the two representations

potentially differ in the types of morphologies they are more suited to encoding. On

one side, we expect the Direct representation to encode more irregular morphologies;

while Cheney et al. (2013) proved direct representations to be sub-optimal for the evo-

lution of VSR morphologies, they can increase the degree of complexity of a dynamical

system Talamini et al. (2021) and put it in a better position to exploit morphological

offloading, i.e., moving from the brain to the body the ability to store and processing

information Nolfi (2021). On the other side, we expect the GMM representation to

generate morphologies that are more regular, symmetrical, and composed of a few

limbs. We evaluate how the morphology representations differ along these three axes

by looking into the bias of the representation in Section 3.4.1.

For the sake of this study, we performed the experiments with w = l = 10 and

nGMM = 5, resulting in |vctrl| being 45 · 10 · 10 = 4500 and 45, respectively for He and

Ho representations, and |vmorph| being 10 · 10 = 100 and 5 · 5 = 25, respectively for

Direct and GMM representations.

47



3.3.5.2 Evolutionary Algorithms

We use four EAs suitable for optimizing in the numerical space R
p. Two of

them are general purpose EAs, one is an EA that employs a form of speciation aimed

at favoring diversity in the population—yet not based explicitly on the concept of

species defined in Section 3.3.2—and one is a quality-diversity algorithm, a family of

approaches that aim at returning a population that is both diverse as possible and

effective as possible.

Evolutionary strategy The first EA is Canonical-ES (ES) (Chrabaszcz et al.,

2018), a state-of-the-art Evolution Strategy. Evolution Strategies (Schwefel, 1965;

Beyer and Schwefel, 2002) constitute a family of EAs including some variants that

have recently been shown to achieve competitive results for continuous control tasks

and game-playing (Salimans et al., 2017). ESs have also been used for evolving the

controller of VSRs (Ferigo et al., 2022a).

ES iteratively evolves a fixed-size population of npop individuals as realizations

of a multivariate normal distribution of mean µ ∈ R
p that is updated during the

evolution. At iteration, npop children are born from µ, each one obtained by applying

Gaussian noise ǫi with σmut and zero mean:

vi = µ+ ǫi (3.1)

where vi is the i-th child. Then, we update µ by selecting the fittest quarter of the

children and correcting µ according to a weighted mean of the corresponding ǫi:

µ← µ+

i=⌊npop
4 ⌋

∑

i=1

wiǫi (3.2)

with weights wi set as in (Hansen and Ostermeier, 1996):

wi =
log (npop + 0.5)− log i

∑j=npop

j=1 log (npop + 0.5)− log j
(3.3)
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We set µ by sampling uniformly in the interval [−1, 1] for each vector element.

After preliminary experiments and relying on our previous experience, we set npop =

40, σmut = 0.35, and let ES iterate until nevals = 30 000 fitness evaluations have

happened.

ES is a form of population-based optimization. We remark, however, that the

population in ES is indeed a realization of a multivariate normal distribution, i.e., all

the individuals are “variations” of a single individual, the mean of the distribution.

This observation is relevant in our settings, where we study the diversity of the evolved

solutions.

Genetic algorithm As a second EA, we use a standard variant of Genetic Al-

gorithm (GA). Our GA variant iteratively evolves a fixed-size population of npop

individuals according to a µ+ λ generational model (De Jong, 2006), i.e., with over-

lapping: at each generation, the offspring and the parents are merged and the worst

half individuals are discarded. For building the offspring, we select individuals with

tournament selection of size 5 and then apply Gaussian mutation with σmut = 0.35,

with probability pmut, or extended geometric crossover with probability 1− pmut. For

extended geometric crossover, given two parents v1,v2 ∈ R
p, the new individual is

born as v = v1 + α(v2 − v1), where each element αi of α is chosen randomly with

uniform probability in [−1, 2]. In this way, the new individual may fall outside the

hypercube defined by the parents, hence favoring exploration. Moreover, we perturb

each child of crossover by applying Gaussian mutation with σmut = 0.1, to prevent

having genetically identical children based on selecting similar parents.

As for ES, we build the initial population by sampling uniformly in the interval

[−1, 1] and iterate until nevals = 30 000 fitness evaluations have happened. Moreover,

we set npop = 100 and pmut = 0.2.

Speciated evolver We designed this EA, which is denoted by SE (for Speciated

Evolver), specifically for this study. SE employs a form of speciation inspired by
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NEAT (Stanley and Miikkulainen, 2002), the popular EA for evolving the topology

and the weights of ANNs. NEAT employed speciation to protect innovations intro-

duced by modifications in the topology. In SE, we do not optimize the topology of

the ANNs composing the controller of the VSR, while we do optimize the morphology

of the VSR. Our goal is hence not to protect innovation, but explicitly to promote

diversity.

Similarly to ES and GA, SE iteratively evolves a fixed-size population of npop

individuals, as shown in Algorithm 1. At each iteration, individuals are partitioned

into species according to a given criterion (described below) that also elects a single

representative individual of each species (lines 5 and 13). Then, the current best

individual in the population and the best individual of every species larger than nelite

are moved in the offspring (lines 6–11). The remaining individuals in the offspring are

generated as follows. First, an offspring slot of size n′
popα

ri 1
∑i=n

i=1 αri
is reserved to each

species Pi depending on the rank ri of the corresponding representative individual

repr(Pi) (line 16)—α ∈ ]0, 1] is a parameter of the algorithm, the closer to 1, the

less the preference for fittest species. Then, the offspring slot is filled by applying

Gaussian mutation or expanded geometric crossover (as in GA) to individuals of the

corresponding species Pi (lines 17–25).

We explore three variants of SE. All three of them use the k-means clustering

technique (Lloyd, 1982) for partitioning the population into species and electing as

representative individuals the one closest to the centroid of the cluster. They differ in

the features that are used for clustering individuals into species. In the first variant,

which we denote by SE-g, we use the genotype v, whose dimension depends on the

representation. In the second variant, denoted by SE-s (“s” comes from shape), we use

the vector fmorph ∈ R
256 of the morphology features (see Section 3.3.3). Finally, in

the third variant, denoted by SE-b, we use the vector fbehavior ∈ R
205 of the behavior

features (see Section 3.3.3). In all cases, we compute the Euclidean distance after

having properly normalized the vectors of the individuals of the current population.
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1 function evolve():
2 P ← initialize(npop)
3 while ¬shouldStop() do
4 P ′ ← ∅
5 (P1, . . . , Pk)← kmeans(P )
6 P ′ ← P ′ ∪ {best(P)}
7 foreach i ∈ {1, . . . , n} do
8 if |Pi| ≥ nelite then
9 P ′ ← P ′ ∪ {best(Pi)}

10 end

11 end
12 n′

pop ← npop − |P ′|
13 r ← ranks(repr(P1), . . . , repr(Pk))
14 foreach i ∈ {1, . . . , k} do
15 c← 0
16 while c < n′

popα
ri 1
∑i=k

i=1 αri
do

17 if U(0, 1) ≤ pmut then
18 v = nth(Pi, c mod |Pi|)
19 P ′ ← P ′ ∪ {mutate(v)}
20 c← c+ 1

21 else
22 v1 = nth(Pi, c mod |Pi|)
23 v2 = nth(Pi, (c+ 1) mod |Pi|)
24 P ′ ← P ′ ∪ {crossover(v1,v2)}
25 c← c+ 2

26 end

27 end

28 end
29 P ← P ′

30 end

31 end
Algorithm 1: The algorithm of SE.

We designed SE with the main goal of studying the factors affecting diversity;

the search effectiveness (both in terms of fitness and diversity) was not a design goal,

while we believe that SE simplicity favors the analysis and the interpretation of the

experimental results. We remark, however, that approaches similar to SE have been

proposed and successfully employed in the past for evolving robots, in particular using
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behavioral similarity for speciating solutions (Trujillo et al., 2011).

In the experiments, we set npop = 100, pmut = 0.2, as for GA, and iterate

until nevals = 30 000 have happened, as for GA and ES. Moreover, we set α = 0.75,

nelite = 5, and k = 10 (for k-means).

Quality-diversity algorithm Finally, we experiment with an established quality-

diversity algorithm, Multidimensional Archive of Phenotypic Elites (MAP-Elites,

hence further abbreviated as ME) (Cully et al., 2015).

ME computes a descriptor d ∈ R
q for every individual to partition the de-

scriptor space in a grid of nbin cells for every dimension. ME starts with a population

of nparents individuals randomly initialized in [−1, 1]p, evaluates them, computes their

descriptors, maps the descriptors to the corresponding cell in the grid, and selects

the best-performing individual of every non-empty cell. These individuals form the

archive. At each iteration, nparents children are born by mutating nparents randomly

chosen individuals in the archive with Gaussian mutation with σmut = 0.35, they are

evaluated, and their descriptors are computed; if the descriptor of a child maps to a

cell that is empty or stores an individual of lower fitness, the child is added to the

archive and the individual of lower fitness is discarded. The algorithm iterates until

nevals fitness evaluations have happened.

We used the morphology descriptors of Section 3.3.2, so d = [dnum, delong, dcompact] ∈
R

3. We set nbins = 10, nparents = 20, and nevals = 30 000. These choices resulted in a

grid with 103 cells.

ME is a simple yet effective algorithm that intrinsically creates an incentive

to fill as many cells in the grid as possible, thus covering as much of the descriptor

space as possible. Moreover, it has also been recently found particularly effective

in the simultaneous evolution of morphology and controller of VSRs (Ferigo et al.,

2022b). Here, we employed a simple and widespread version of ME, as we did for the

other EAs considered in this study: however, later improvements have been proposed
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for ME which further increased its effectiveness, as, e.g., the directional variation

operator proposed by Vassiliades and Mouret (2018).

3.4 Experiments and discussion

We aim to investigate how the three key factors of representation (both con-

troller and morphology), EA, and environment impact diversity and effectiveness.

For all the experiments in the following sections, we considered the task of

locomotion, since it is a classic task of evolutionary robotics (Nolfi and Floreano,

2000). The goal of the VSR is to travel as fast as possible, in the positive x direction,

on a flat surface and within a time interval of tfinal = 30 s (simulated time). The

fitness of the individual is the average velocity vx, measured considering the position

of the center of mass of the VSR at the beginning and end of the simulation:

vx =
xc(tfinal)− xc(0)

tfinal

(3.4)

where xc(t) is the x-position of the center of mass of the VSR at time t. We remark

that each simulation of any given VSR is deterministic.

We used JGEA2 for the evolutionary optimization and 2D-VSR-Sim (Medvet

et al., 2020b) for the simulation of the VSRs, with a time step of ∆t = 1
60
s and all

the other parameters set to default values. The code of the experiments is publicly

available at https://github.com/pigozzif/VSRBiodiversity. Table 3.2 reports

an overview of all the parameter values used in our experiments.

For each experiment, i.e., a combination of representation, EA, and environ-

ment, we performed 10 evolutionary runs by varying the random seed of the EA.

Table 3.3 summarizes, for each factor of investigation, the experimental settings.

During each experiment, we saved the entire population of VSRs every 1000 fitness

evaluations (to meet our storage constraints), which resulted in 3000 individuals for

every run.

2https://github.com/ericmedvet/jgea
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Table 3.2: Summary of the experimental parameters.

Context Name Description Value

Controller σnoise Standard deviation of the additive Gaus-
sian noise applied to sensor readings

0.01

Controller ncomm Number of communication values between
adjacent voxels

1

Representation (all) nsize Side length of the largest representable
VSR

10

Representation (GMM) nGMM Number of Gaussian distributions in the
mixture

5

EA (ES) σmut Standard deviation of the Gaussian noise
applied to children

0.35

EA (ES) npop Population size 30
EA (GA, SE-*) pmut Probability of applying only mutation 0.2
EA (GA, SE-*, ME) σmut Standard deviation of the Gaussian muta-

tion
0.35

EA (GA, SE-*) npop Population size 100
EA (SE-*) α Species preference 0.75
EA (SE-*) nelite Minimum species size to preserve elite in-

dividual
5

EA (SE-*) k Number of species (found by k-means) 10
EA (ME) nbin Number of bins per descriptor dimension 10
EA (ME) nparents Number of randomly chosen parents 20
EA, all nevals Number of fitness evaluations (as stop cri-

terion)
30 000

Simulation tfinal Duration of a simulation for the locomo-
tion task (in s)

10

Simulation ∆t Simulation time step (in s) 1
60

As a result, 10·4·2·3000+10·2·3120+10·2·2·3000+10·2·2·3000+10·3000 =

572 400 VSRs were generated in all of our experiments: for each one of them we

applied the two classifiers for predicting the morphology and behavior classes learned

on the subset of 1555 manually labeled VSRs, as described in Section 3.3.1.

We carried out all statistical tests with the two-sided Mann-Whitney U rank

test for independent samples, using, unless otherwise specified, 0.05 as the confidence

level.
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Table 3.3: Summary of the experiments. The table shows one row for each factor
potentially impacting diversity and effectiveness. For each factor, the table shows
the different experiments we performed, i.e., the different combinations of controller
representation, morphology, EA, and environment.

Representation

Factor Contr. Morph. EA Env. N. of exp.

Contr. repr. Ho, He Direct GA, SE-s Flat 4
Morph. repr. Ho Direct, GMM GA, SE-s Flat 4
EA Ho Direct ES, GA,

SE-g, SE-s,
SE-b, ME

Flat 6

Environment Ho Direct GA, SE-s Flat,
Down-
hill,

Uphill

6

We consider average velocity v⋆x of the best individual as a measure of effec-

tiveness and ISI (see Section 3.3.1) as a measure of diversity. We inquire into the

landscape of diversity in the population of robots by taking the median values (across

evolutionary runs) of v⋆x and ISI at the last generation. To gain more insights, for

some experiments, we also present the number of VSRs broken down by classes, at

the last generation, and the distribution of morphology (or behavior) descriptors.

Every experimental configuration was able to evolve effective VSRs for the

task of locomotion. We manually inspected a subset of the most effective VSRs

(across every combination of representation/EA/environment tested) and found that

they looked quite different. We showcase some of those VSRs in Figure 3.4; the

corresponding video can be found at https://youtu.be/_kblILsfivw. Those hand-

picked VSRs strikingly mirror emergent patterns found in nature. We nicknamed

“gecko” one individual (Figure 3.4g), for example, for its clinging to an inclined sur-

face and climbing up with a pair of short limbs. Another individual, “bigfoot” (Fig-

ure 3.4d), walked by treading a big extrusion that looked like a foot. Others slithered

like centipedes or trotted like equines, to name a few traits. In general, both primitive

and complex morphologies emerged. Interestingly, evolution succeeded in adaptation
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(a) Walrus (b) Godzilla (c) Ankylosaurus

(d) Bigfoot (e) Rhino (f) Rolling stone

(g) Gecko (h) Monkey (i) Snail

Figure 3.4: A subset of outperforming individuals, in terms of effectiveness and va-
riety of morphologies and behaviors. A video can be found at https://youtu.be/

_kblILsfivw.
also with bizarre and unusual solutions. Some individuals covered long distances

while possessing a morphology that might have turned out a handicap. As a proof of

concept, one individual (nicknamed the “snail”, Figure 3.4i) crawled forward despite

carrying on its back an uncomfortable hump (resembling a shell indeed) that might

have hindered motion.

3.4.1 Impact of the representation

In the next subsection, we investigate the impact of the representation on

effectiveness and diversity for both the controller and the morphology.
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Figure 3.5: Boxplots of v⋆x and ISI of the population at the last generation, were ob-
tained with four combinations of EA and controller representation (10 evolutionary
runs for each combination). Each lower (upper) whisker is at the smallest (larger)
data value greater than the lower (upper) quartile − (+) 1.5IQR, IQR being the
interquartile range. Numbers above each pair of boxes are p-values. The Ho repre-
sentation outperforms the He one in terms of fitness, while there is no clear difference
in terms of diversity.
3.4.1.1 Controller representations

We performed an experimental campaign of 10 evolutionary runs on the He

and Ho controller representations using GA and SE-s (i.e., the variant of SE in which

the partitioning criterion is based on morphology features). We chose these two EAs

because, as it turned out from our experiments described in Section 3.4.2, they were

the ones with the weakest ability to promote diversity (GA) and the strongest ability

to promote effectiveness (SE-s). Moreover, for the sake of this experiment, we adopt

Direct as the sole morphology representation and discuss the comparison with GMM

in the next subsection.

We report the results in Figure 3.5 in terms of v⋆x and ISI at the last generation,

together with the p-values for every EA.

From the plot, two interesting conclusions can be made:

(a) Ho outperforms He with both EAs in terms of effectiveness, and
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(b) there is no clear difference in terms of diversity.

The former means that despite the lower expressiveness of the Ho representation, a

“single ANN” (i.e., one whose weights and biases are shared among all the voxels) is

capable of driving cooperatively an entire robot when proper parameters are found.

As it turns out from our experiments, finding these parameters is feasible with both

EAs, probably because of the much lower dimension of the search space. p-values

are significant for both EAs. Regarding conclusion (b), the much smaller search

space induced by Ho does not result in a lower diversity when compared to He. The

two representations are indeed comparable in terms of ISI; neither of the p-values is

significant.

To conclude, the compactness of the search space—championed by Ho—triumphs

over the expressiveness of the representation—championed by He. For these reasons,

we adopt Ho as the only representation for the experiments in the next sections.

As an aside, we note that there is a contrast in terms of diversity between the

two EAs, regardless of the controller representation (Figure 3.5, right): we discuss

this aspect in more detail in Section 3.4.2.

Figure 3.6 reports, for each species resulting from the combination of a mor-

phology class and a behavior class, the rate (bubble size) of VSRs at the last gener-

ation belonging to that species and the average velocity vx (bubble color) of the best

VSR of that species (that is not, in general, the best of the entire population).

While there seems to be no clear difference with SE-s, we spot some trends

with GA. Diversity for Ho is greater along the behavior axis, with a relative majority

of Walking individuals. On the other side, He seems to favor more diversity along

the morphology axis, with Limbed and Other individuals being equally represented.

Overall, in all the cases the percentage of robots following in the Other class for

both morphology and behavior is significant: we remark that this finding may be

explained partly in terms of the dataset used for training the classifier, which is
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Figure 3.6: Rate (bubble size) of VSRs that belong to each species, resulting from
the combination of a morphology class and a behavior class, and average velocity vx
(bubble color) of the best VSR of each species, at the last generation. The plot shows
median values computed across 10 evolutionary runs performed with two EAs and
two controller representations.
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Figure 3.7: Boxplots of v⋆x and ISI of the population at the last generation, were
obtained with four combinations of EA and morphology representation (10 evolution-
ary runs for each combination). Numbers above each pair of boxes are p-values. The
Direct and the GMM representations are comparable in terms of effectiveness, while
SE-s foster diversity more with the GMM representation.
slightly unbalanced (see Section 3.3.2). Finally, the absence of Rolling individuals is

due to the flat terrain.

3.4.1.2 Morphology representation

We aim to investigate what impact the two morphology representations, namely

Direct and GMM, have on effectiveness and diversity. As discussed in Section 3.4.1,

we adopt Ho as controller representation, GA and SE-s as EAs. With these settings,

we performed an experimental campaign of 10 evolutionary runs with the Direct and

GMM morphology representations.

We report the results in Figure 3.7 in terms of v⋆x and ISI at the last generation,

together with the p-values for every EA.

From Figure 3.7, it clearly turns out that the Direct and GMM representations

are comparable in terms of effectiveness, with no clear differences across the EAs and

no significant p-values. Considering diversity, GMM performs better with SE-s, and
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the p-value is significant. Once again, we remark that there seems to be a significant

effect of the EA on diversity, and we treat it in Section 3.4.2.

We observe that both morphology representations are capable of evolving ef-

fective individuals, as well as preserving a fair amount of diversity (if we employ the

appropriate EA). Thus, considering also the results of Section 3.4.1, we speculate

that joint optimization of morphology and control is more susceptible to the choice

of the controller rather than morphology representation. One reason might be that

the morphology representations we consider in this work do not significantly differ

in the dimension of the search space, whereas the same is not true for the controller

representations.

We thus asked ourselves whether the two representations have a different bias

in terms of species and emergent forms of “life”, and so what classes (i.e., species) did

prevail. Figure 3.8 presents the breakdown by classes with the same visual syntax of

Figure 3.6.

As can be seen from Figure 3.8, there are relevant differences in the GA case.

In particular, the Direct representation is more capable of evolving individuals in the

Walking behavior class.

Both representations witness a proliferation of individuals in the Other behav-

ior class, which consists, for the most part, of idle individuals. This result confirms

the previous observation that the joint evolution of morphology and controller is a

difficult optimization problem: the majority of offspring individuals are born with

brains that are ill-suited for their bodies, or vice versa. To tackle this problem, other

studies employed age protection (Cheney et al., 2018) or proposed to embed a learn-

ing loop within evolution (Eiben and Hart, 2020b; Gupta et al., 2021). We chose to

not consider these further design axes in our investigation and leave them as options

for future work.

We asked ourselves whether the class differences in Figure 3.8 could be due

to the morphology representations biasing the search towards different regions of the
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Figure 3.8: Rate (bubble size) of VSRs that belong to each species, resulting from
the combination of a morphology class and a behavior class, and average velocity vx
(bubble color) of the best VSR of each species, at the last generation. The plot shows
median values computed across 10 evolutionary runs performed with two EAs and
two morphology representations.
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Best individuals evolved with the Direct representation cover more effectively the
compactness axis, while best individuals evolved with the GMM representation cover
more effectively the elongation axis.
space of morphologies. To verify this hypothesis, we plot in Figure 3.9 the three

morphology descriptors introduced in Section 3.3.2, namely elongation delong (on the

x-axis), compactness dcompact (on the y-axis), and number of voxels dnum (by means

of marker size) for the best individuals at the last generation. We use the descriptors

computed on the “static” morphology, rather than the features fmorph computed out

of a simulation, for two reasons: first, the descriptors are fewer; second, they are not

influenced by the behavior and are hence better suited for discussing the bias of the

representation alone. We also show in Figure 3.10 a few sample morphologies found

throughout the phylogenetic tree for Direct and GMM representations.

Figure 3.9 illustrates that the Direct representation covers more effectively the

compactness axis, while the GMM representation covers more effectively the elon-

gation axis. Direct best individuals are usually elongated and small in size, while

GMM best individuals are all very compact and usually bigger in size. Figure 3.10

corroborates these observations, by showing how individuals evolved with the Direct

morphology representation are, generally, more knotty and less regular, with many
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(a) Direct

(b) GMM

Figure 3.10: Sample morphologies evolved with the Direct and GMM morphology
representations. Direct individuals tend to be more “limbed”, while GMM individuals
tend to be more compact.
protrusions that could potentially be employed as limbs for locomotion. This finding

is particularly insightful if we consider that the Direct representation evolves very

effectively in Walking individuals. Intuitively, limbs are necessary to generate a walk-

ing gait. GMM morphologies, on the other side, are more rounded and compact,

sometimes spindly.

These observations raise an interesting point: the morphology representation

biases the search towards particular regions of the behavior space (i.e., gaits). This

conjecture is in line with the embodied cognition paradigm (Pfeifer and Bongard,

2006), which posits that there is an inextricable relationship between the body and

the brain. As our results point out, the Direct representation is better suited for

evolving “limbed” individuals, having body extrusions that contribute to locomotion

by a walking gait.

Finally, we investigated whether the biases observed so far are due to the rep-

resentation, or also to the concurrent evolutionary factors of selection and genetic

operators (Aaron et al., 2022). To do so, we plot the distribution for the three mor-

phology descriptors, dnum, delong, and dcompact, right after population initialization,

and compare it with the distribution at the last generation. If a morphology repre-

sentation did not introduce any bias, we would expect a uniform distribution after

64



0

200

400

600

800

1,000
D

ir
ec

t
C

ou
nt

0.4 0.6 0.8 1
0

500

1,000

1,500

dcompact

G
M

M
C

ou
nt

0 0.2 0.4 0.6 0.8 1

delong

0 20 40 60 80 100

dnum

First generation Last generation
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both GA and SE-s), obtained with the two morphology representations. For a given
descriptor, selective pressure biases the search in the same direction regardless of the
representation.
population initialization. Figure 3.11 presents the results.

For a given descriptor, selective pressure biases the search in the same direction

regardless of the representation, i.e., toward more compact, elongated, and smaller

morphologies, as bigger individuals are probably more difficult to evolve.

3.4.2 Impact of the EA

We aim to investigate what impact the EA has on effectiveness and diver-

sity. As discussed in Section 3.4.1, we adopt Ho as controller representation. Since,

as reported in Section 3.4.1, Direct and GMM representations delivered comparable
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Figure 3.12: v⋆x and ISI during the evolution (median values across 10 evolutionary
runs for each EA). Variants of SE and ME foster diversity the most.
results, we resort just to Direct as morphology representation for the sake of concise-

ness. With these settings, we performed an experimental campaign of 10 evolutionary

runs with the six EAs described in Section 3.3.5, namely ES, GA, SE-g, SE-s, SE-b,

and ME.

We show in Figure 3.12 how v⋆x and ISI vary over the course of evolution. We

see that all EAs are able to evolve effective VSRs, i.e., they score well in terms of v⋆x.

In terms of ISI, SE variants and ME achieve the best results among the EAs.

Concerning diversity, the ISI plot in Figure 3.12 highlights some differences

among the EAs: however, the variability of ISI across runs, as shown in Figure 3.13,

is rather large for the majority of the EAs. The latter figure shows the distribution

of ISI at the last generation, for all six EAs. By looking at Figure 3.12 it can be

seen that SE variants and ME generally maintain a large amount of diversity in the

population, in terms of median value during the evolution, whereas ES and GA do

not. For ES, the finding is not surprising: as discussed in Section 3.3.5, this EA

does not evolve a population of actually different individuals but rather evolves one
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Figure 3.13: Boxplots of ISI at the last generation, obtained with six EAs, Ho con-
troller representation and Direct morphology representation (10 evolutionary runs for
each EA). ES and GA exhibit the lowest median diversity.
prototype individual by sampling its variants. GA performs similarly, witnessing a

drastic drop in ISI around 5000 fitness evaluations. We looked at the raw results

and found that the drastic drop in ISI is the outcome of the joint action of the

generational model (that employs overlapping) and the crossover operator: a good

individual often mates with a slightly modified copy of itself generating a “duplicate”,

rapidly swamping the population. We believe our GA turned out to operate with

the wrong exploration-exploitation trade-off, a long-standing issue in EC (Črepinšek

et al., 2013). We speculate that this limitation might be addressed by employing

some diversity promotion mechanism (Squillero and Tonda, 2018), possibly acting

at different levels of the representation (genotype, phenotype, fitness) (Bartoli et al.,

2019). As expected, ME is comparable to SE variants at promoting diversity, whereas

its slightly lower effectiveness may be due to its incentive for exploration: filling more

cells in the archive does not necessarily entail better individuals.

Figures 3.14 and 3.15 present the breakdown by classes with the same visual

syntax of Figure 3.6: Figure 3.14 shows one single plot for all the EAs; Figure 3.15

show six plots, one for each EA. In terms of effectiveness (color of each bubble in the
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figures), for the majority of the EAs, the fastest VSRs are those of class Other/Other,

followed by Other/Walking; for ES, the best VSR belongs to the Limbed/Jumping

class. By looking at the relative sizes of the bubbles, it can be seen that some EAs

tend to favor a more even distribution of evolved VSRs across classes. Overall, Fig-

ure 3.15 is consistent with Figure 3.13: SE-s exhibits the most uneven distribution

of bubble sizes. The relative majority of the evolved individuals belong to the Other

behavior class, both globally and for each EA. We traced individuals of the Other

behavior class to two major sub-classes: idle and vibrating. Not surprisingly, idle

individuals abound, as already discussed in Section 3.4.1. Vibrating individuals man-

ifest a behavior similar to that of Walking, but move their body at a higher frequency

that makes it hard to discern which parts of the body are touching the ground and

which ones are not. In this way, they achieve very high fitness. Nevertheless, the re-

sults concerning vibrating individuals call for some further remarks. If we attempted

to physically realize those vibrating VSRs, maybe using the approaches of (Krieg-

man et al., 2020a; Sui et al., 2020; Legrand et al., 2023), they would likely not be as

fast as in simulation—i.e., there would likely be a reality gap problem (Mouret and

Chatzilygeroudis, 2017). We think that the vibrating behavior evolves frequently for

two reasons. First, we do not consider energy consumption in our simulations, and

hence inefficient behaviors are not discouraged (Joachimczak et al., 2016). Second,

the recurrent nature of our neural controller, and in particular the voxel-to-voxel mes-

sage passing, likely favors the emergence of high-frequency dynamics (Medvet et al.,

2020a).

One last comment concerns the way we evaluate effectiveness. So far, we re-

ported results in terms of v⋆x, i.e., the average velocity of the best individual. In

Figure 3.16 we plot the distribution of vx, i.e., median average velocity within the

entire population of the last generation, for all six EAs, side-by-side with the corre-

sponding v⋆x.

As expected, GA witnesses a non-significant difference between the best and

median. Figure 3.16 corroborates the finding that SE variants, especially SE-g and
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Figure 3.14: Rate (bubble size) of VSRs that belong to each species, resulting from
the combination of a morphology class and a behavior class, and average velocity vx
(bubble color) of the best VSR of each species, at the last generation. The plot shows
median values computed across all the evolutionary runs performed with all the EAs,
considered together.
SE-s, foster a greater amount of diversity: differences between best and median are

strongly significant, attesting that speciation promotes diversity by protecting low-

performing species in the population. Interestingly, with SE-b the same does not

happen: from this point of view, this EA seems the one that better fits the needs of

an autonomous robotic ecosystem, by preserving different but still effective species.

3.4.3 Impact of the environment

The third and last factor we consider in our study is the environment. In

our experimental setup, the terrain profile plays the role of the environment: more

arduous terrains (e.g., uphill) correspond to less hospitable environments and less

arduous terrains (e.g., downhill) correspond to more hospitable environments. Based

on the results of Section 3.4.1, we adopt Ho and Direct as controller and morphology

representations, respectively, while based on Section 3.4.2, we use GA and SE-s as

EAs. With these settings, we performed an experimental campaign of 10 evolutionary

runs with three different terrains:

(a) flat;
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shows median values computed across all the evolutionary runs performed with each
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Figure 3.16: Boxplots of best average velocity v⋆x and median average velocity vx at
the last generation, obtained with six EAs, Ho controller representation, and Direct
morphology representation (10 evolutionary runs for each EA). Numbers above each
pair of boxes are p-values. SE-g and SE-s witness a dramatic difference between best
and median average velocity.

(b) downhill, consisting of a flat surface tilted downward by 30°;

(c) uphill, consisting of a flat surface tilted upward by 20°.

We report the results in Figure 3.17 in terms of v⋆x and ISI at the last generation,

together with the p-values.

From the plot, we draw the following observations:

(a) downhill is the terrain favoring effectiveness the most, uphill the least;

(b) downhill appears to favor more diversity than the other two terrains, but only

when using SE-s as EA;

(c) as already discussed in Section 3.4.2, the EA impacts diversity a lot, while the

same is not true for effectiveness.

We found noticeable differences between the two new terrains in terms of the

evolved species. We summarize the results in Figure 3.18, using the same visual
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syntax of Figure 3.6. The most effective individuals who evolved downhill relied,

for the vast majority, on Rolling to achieve very high effectiveness. To our surprise,

Rolling did not amount to merely falling down the surface. Instead, successful Rolling

individuals nudged themselves to create momentum at the very onset of the simulation

and expanded their bodies at every roll to accompany the descent. On the other side,

the most effective individuals who evolved uphill mostly relied on crawling to clinch

to the upright surface, resist gravity, and slowly move forward (a behavior labeled

as Walking). Being an arduous environment, uphill generated a disproportionate

amount of idle individuals of class Other, whom gravity dragged down.

As far as the morphology is concerned, downhill did favor Blob individuals,

since Blob is a very suitable morphology for the Rolling behavior. On the other hand,

uphill exerted high selective pressure on Blob individuals, since such morphology is

not suitable for climbing an inclined surface. Instead, evolution favored Elongated

individuals, who could stretch over the inclined surface and clinch to it.

At a high level, it might look like populations evolved with downhill become

swamped by Rolling/Blob individuals, and so downhill does not favor diversity. This

intuition is in contrast to what Figure 3.17 reports, as SE-s achieves a high ISI

downhill. We investigated this contradiction and found that although diverse species

did indeed coexist within the same generation, Blob/Rolling tended to be the species

with better effectiveness.

Finally, we considered the pool of individuals from the last generations of both

EAs and performed PCA on either their morphology features or their behavior fea-

tures from Section 3.3.3 and projected the best individual of each run on the resulting

2D space. Figure 3.19 provides the results, one marker for each best individual, sepa-

rately for morphology and behavior. Marker style stands for the terrain, marker color

stands for morphology or behavior class.

The PCA analysis corroborates the previous discussion, as the best individuals

evolved on a downhill cluster together in the morphology and behavior spaces while
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sharing the same Blob/Rolling class. Considerations made so far for the uphill terrain

stand as well.

To conclude, the effect of the environment on effectiveness is revealed as ex-

pected: more hospitable environments correspond to higher values since effectiveness

is an absolute measure. At the same time, diversity is higher on downhill terrain,

which is a very hospitable environment, and only if the EA is capable of favoring it;

the reason for this might be less competition.

3.5 Concluding remarks

In this chapter, we considered the automatic design of a kind of VSRs, through

EC and investigated experimentally the impact of three key factors on the effectiveness

and diversity of evolved VSRs. In the long-term vision of robotic ecosystems that are

capable of staying resilient to environmental changes even without the intervention of

human designers, diversity plays a key role. However, evolving effective and diverse
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robots is not an easy task for at least two reasons. First, optimizing concurrently

the morphology and the controller of effective robots is known to be difficult (Lipson

et al., 2016). Second, the interplay between the quality and diversity of evolved

solutions is complex in the more general context of evolutionary optimization (Cully

and Demiris, 2017).

We considered three key factors (representation, EA, and environment) and

performed several experiments in which we evolved VSRs for the task of locomotion.

For analyzing the diversity of the population of evolved robots, we relied on a well-

established index inspired by biology, the inverted Simpsons index, that measures

how many species there are in a population and how evenly they are distributed.

For assigning species to VSRs, we used a supervised machine learning approach: we

defined the classes by visual inspection, collected a few examples by manual labeling,

engineered suitable features, and learned a model.

We also proposed a novel EA based on a form of speciation, inspired by NEAT,

and instantiated it in three variants, with species depending on the genotype, morpho-

logical traits, and behavioral traits. We showed experimentally that the proposed EA

is in general able to preserve diversity without affecting effectiveness. In particular,

SE-b, the variant based on behavioral traits, seems to achieve the best results. We

leave to future work the investigation on which other traits of VSRs may be useful for

promoting diversity with SE-b or similar EAs. Beyond manually defined descriptors,

which have the drawback of being task- and robot-specific, automatic methods like

those of (Paolo et al., 2020; Cully, 2019) appear promising. Despite it is not obvious

to which degree these results can be extended to other classes of robots and tasks than

the one considered in this study, we believe our methodology can be easily ported to

other cases.

Moving forward, we will consider the Ho variant of the distributed controller

of Section 2.2.2.1, since it is comparable to its He counterpart in terms of effectiveness

and diversity while offering a more compact search space.
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Chapter 4: Modularity in Collective Intelligence

Modularity is a desirable property for embodied agents, as it could foster their

suitability to different domains by disassembling them into transferable modules that

can be reassembled differently. VSRs’ morphologies are intrinsically modular; yet,

controllers used until now for VSRs act as abstract, disembodied processing units:

disassembling such controllers for module transferability is a challenging problem.

Thus, the full potential of modularity for VSRs remains untapped. In Section 4.1, we

propose a novel self-organizing, distributed, and embodied neural controller for VSRs.

We evolve it for a given task and morphology: while evolving, the controller spreads

across the VSR morphology in a way that permits the emergence of modularity. Our

experiments confirm that our self-organizing, embodied controller is indeed effective

on locomotion on rugged terrain. By mimicking the structural modularity observed

in biological neural networks, different levels of modularity can be achieved.

Distributed robotic controllers usually rely on inter-module communication,

a practical requirement that makes modules not perfectly interchangeable and thus

limits their flexibility. Indeed, the self-organizing, embodied controller of Section 4.1

still relies on neural synapses reaching from one voxel to another. To address this

limitation, in Section 4.2 we use the same neural controller inside each voxel, but

without any inter-voxel communication, hence enabling ideal conditions for modu-

larity: modules are all equal and interchangeable. We evolve the parameters of the

neural controller—shared among the voxels. Crucially, we use a local self-attention

mechanism inside the controller to overcome the absence of inter-module communi-

cation, thus enabling our robots to only implicitly communicate through mechanical

interactions and be truly driven by the CI of their modules.
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4.1 Evolving modularity in soft robots through an embodied
and self-organizing neural controller

In this chapter, we answer to question 1.

4.1.1 Introduction

Albeit their bodies are intrinsically modular, controllers used until now for

VSRs act as abstract, disembodied processing units: disassembling such VSRs to

reassemble differently, perhaps by combining modules from different VSRs, is a chal-

lenging problem. Indeed, modularity is a very desirable property on the road toward

fully autonomous robotic ecosystems. Thus, despite the tremendous achievements of

VSRs, the full potential for modularity remains unexploited.

To address this dilemma, we propose a novel self-organizing, embodied Artifi-

cial Neural Network (ANN)-based controller for VSRs. Nodes and edges are precisely

located throughout the VSR body without a topology fixed a priori. We optimize the

controller for a locomotion task (on rugged terrain) and a given morphology through

EC: while evolving, the controller spreads and self-organizes across the VSR body in

a way that permits the emergence of modularity. Self-organization allows one to tune

the degree of neural complexity across the body.

We experimentally inquire whether such a controller (i) is effective at solving

the task, (ii) is transferable through disassembling and reassembling its body and

what role does modularity play in the process, and whether (iii) it allows for the

automatic discovery of modules.

Our experimental results confirm that our controller is indeed effective. We

also find that, when disassembling and reassembling by combining modules from

different VSRs, modularity is crucial: more modular controllers turn out to be more

transferable than less modular controllers. Finally, our embodied, self-organizing

controller allows for the automatic discovery of modules to be transferred. As such,

this work positions itself on the road toward an automatic pipeline for the fabrication
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of new robots in a human-out-of-the-loop manner by assembling modules from other

robots.

4.1.2 Related work

This work is relevant for research on the topic of modularity in the fields of

artificial intelligence and robotics. Modularity is an emergent property of a complex

system, typically a network. We take inspiration from Yamashita and Tani (2008)

and distinguish between structural and functional modularity. In the former, dense

connectivity within modules and sparse connectivity between modules emerge. In the

latter, a network supports many different functional patterns. For the sake of this

study, we are mostly concerned with structural modularity.

From a biological viewpoint, many scientists agree that modularity (the ability

to separate functional processes into modules) played a key role in the evolvability

of natural systems (Wagner and Altenberg, 2005; Wagner et al., 2007). Recently,

Gutai and Gorochowski (2021) suggested that modern ANNs are much less modular

than biological neural networks, and thus suffer from being monolithic. Concurrently,

Eiben (2021a) put modularity under the spotlight as a key ingredient in the road

toward fully autonomous robotic ecosystems. Indeed, Faiña (2021) described the

benefits of modularity as simplifying the search space for robotic morphologies and

controllers. Additionally, as made clear in Yim et al. (2007), the versatility, robust-

ness, and cheapness of modular robots make them suitable for deployment in a short

time.

Under these premises, there has been a growing body of literature devoted

to the topic of modular robotics. Starting from the early theoretical formulations

(Neumann and Burks, 1966), the last decades saw many physical realizations being

proposed (Howison et al., 2020), including soft ones (Sui et al., 2020). Platforms for

the automatic design and manufacture of robots from modular components have also

been recently explored (Faiña et al., 2015; Moreno et al., 2018). Although interest
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and progress have been remarkable, there remain practical and theoretical challenges

to be addressed (Liu et al., 2016). In this scenario, our work can be seen as a stepping

stone toward reconfigurable robots with non-trivial control.

While the idea of optimizing ANNs through EC is not new (Kitano, 1990;

de Garis, 1998; Stanley and Miikkulainen, 2002; Stanley et al., 2009), not a lot of

studies have investigated the interplay between the evolution of ANNs and modularity.

Even more, while their achievements have been tremendous, most state-of-the-art

neuroevolutionary algorithms fail to produce modular ANNs (Clune et al., 2010).

The handful of studies related to evolution and modularity mostly highlight the many

benefits of modular ANNs, especially when applied to robotic tasks. In a series of

experiments (Bongard, 2011; Bongard et al., 2015; Cappelle et al., 2016), modularity

turned out to improve the generalization abilities of robotic agents, and Ellefsen et al.

(2015) showed it can also subdue the infamous problem of catastrophic forgetting

in ANNs (French, 1999) via reinforcement learning. Other studies highlighted the

interlink between modularity and specialization (e.g., multi-tasking), both under a

computational (Schrum and Miikkulainen, 2014) and a biological (Espinosa-Soto and

Wagner, 2010) perspective. Finally, in a computational biology study, Clune et al.

(2013) demonstrated how modularity can emerge in ANNs as a “spandrel”—i.e., a

phenotypic trait that is a byproduct of the evolution of some other trait (Gould and

Lewontin, 1979)—to minimize connection costs between neurons.

Despite being ground-breaking, these works suffer from one (or both) of the

following pitfalls. First, only some of them (Bongard et al., 2015; Cappelle et al.,

2016) are conducted under the embodied cognition paradigm, which postulates that

intelligence emerges from the complex interactions between the brain, the body, and

the environment (Brooks, 1990; Pfeifer and Bongard, 2006). The others consider

ANNs that function as abstract processing units and are not pervasive for the body

they control. Indeed, Mitchell (2021) listed a lack of embodiment as one of the four

“fallacies” of artificial intelligence, and the dualist bias “body vs. mind” is well-known

to be rooted in our culture (Bloom, 2004). Second, even when under an embodiment
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perspective, none of them addresses how to self-organize modularity inside a robotic

agent body and exploit it for the sake of reconfigurability.

In this chapter, we build on our previous research. In Medvet et al. (2020a),

we proposed a representation for a distributed and embodied controller and a recon-

figurability procedure for VSRs that, together, proved effective. For the sake of this

study, we term that procedure disassembly-reassembly and describe it thoroughly in

Section 4.1.5.3. Later, in Medvet et al. (2021) and Pigozzi et al. (2023b), we showed

how that representation could be made more compact without loss of effectiveness or

diversity. We extend our previous studies by introducing a self-organizing controller

that is capable of supporting differing degrees of complexity across the body; as a

result, it is better suited to further exploit the intrinsic modularity of VSRs.

4.1.3 Limitations of most controllers

Several kinds of controllers have proven effective for robotics tasks, including

phase controllers (Joachimczak et al., 2016), central pattern generators (Kamimura

et al., 2004), and ANNs (Talamini et al., 2019; Ferigo et al., 2022a). Nevertheless, the

majority of them are disembodied and do not self-organize, suffering from limitations

that we detail here.

First and foremost, they do not allow for the full exploitation of modularity

and reusability. Consider the case of disassembling a VSR for the sake of transferring

its components to other robots and reusing them. A disembodied controller, being

tightly bound to the morphology, would require to be re-designed from scratch. Once

transferred to a new morphology, controllers have to be learned all over again, result-

ing in the notorious “catastrophic forgetting” problem (French, 1999), i.e., controllers

learned for one problem become ineffective when transferred to a new one.

Second, they usually do not self-organize their structure, shrinking the space

of possible functions that can be explored. Self-organization is beneficial as it can

discover emergent properties that cannot arise by a single intelligence only. In nature,
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self-organization provides mechanisms that evolution can exploit (Johnson and Lam,

2010) and instances of self-organizing intelligence are countless in biology.

Our controller addresses all of these shortcomings by its embodiment and self-

organization properties, as we explain in the following.

4.1.4 Embodied, self-organizing neural controller

4.1.4.1 Design goals

Based on the considerations drawn in Section 4.1.3, we want our controller to

be:

(a) Embodied: it has to be located in the robot body.

(b) Self-organizing: it must permit different degrees of complexity in different parts

of the body. The actual distribution of complexity that fits a given task and

morphology must emerge from optimization.

(c) Optimizable for a given task and morphology.

4.1.4.2 Definition

Based on the vast existing literature on ANNs, which are well-known universal

function approximators (Goodfellow et al., 2016; Schäfer and Zimmermann, 2006),

and considering previous applications of ANNs for controlling VSRs (Talamini et al.,

2019; Ferigo et al., 2021; Medvet et al., 2021), we decided to rely on ANNs for building

our embodied, self-organizing controller.

We represent the controller as a directed graph G = (V,E) encoding an ANN

where V are the nodes and E are the edges. The nodes of the graph are the neurons,

and the edges of the graph are the synapses between them describing how computation

flows over the ANN.

Each node is a tuple v ∈ N × {0, . . . , w − 1} × {0, . . . , h − 1} × T, where the

elements of the tuple constitute the node attributes that we denote using the following
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dot notation, for the sake of clarity. v.index ∈ N is the unique identifier for the node

in the graph and its sole purpose is to formally permit the existence in V of nodes

with the same values for all the other attributes. v.x ∈ {0, . . . , w − 1} and v.y ∈
{0, . . . , h− 1} are the coordinates of the voxel the node is placed into—recall that a

VSR morphology is a grid of size w×h. v.type ∈ T = {sensor,hidden,actuator}
is the neuron type. Each node of type sensor is statically associated with one

element of one sensor placed in the same voxel of the node. Similarly, each node of

type actuator is statically associated with the actuator of the voxel the node is in.

Each edge is a tuple e ∈ V ×V ×R×R. e.source ∈ V and e.target ∈ V are the

source and target nodes, respectively. e.weight ∈ R is the edge weight. e.bias ∈ R is

the edge bias.

Since each one of the nodes of V is located in a precise voxel of the mor-

phology, the controller is embodied, which meets our first design goal. As a further

consequence, nodes and edges can be located more or less densely across the mor-

phology, which meets our second design goal.

4.1.4.3 Computation

During the simulation, at each time step the controller reads the readings

from the sensors and inputs them to sensor neurons, propagates the values across

hidden neurons, and outputs as actuation values the values that reach the actuator

neurons.

In detail, the controller works as follows. Let in(v) ⊆ E be the set of incoming

edges of a node v. Let h(k)(v) ∈ R be the activation value of node v at step k.

Collectively, the activation values {h(k)(v)}v∈V of all the neurons v ∈ V constitute

the state of the controller at step k. Initially, at k = 0, we set each activation value

to 0. Then, we update the state as follows. If the node is a sensor neuron, then we

set h(k)(v) to the tanh of the element of the current reading of the sensor associated
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with the node. Otherwise, we set the activation value to:

h(k)(v) = tanh





∑

e∈in(v)

h(k−1)(e.source) · e.weight + e.bias



 (4.1)

The concatenation of the activation values of the nodes of type actuator forms the

actuation values a(k) at step k.

In other words, at time step k every node sends the activation value to all its

outgoing neighbors. At the next time step k + 1, the neighbors, in turn, apply the

activation function to it and save the result as the activation value for the next time

step. Every edge propagates a message only once per time step, at every time step.

Having no real incoming neighbors, a sensor node treats the sensor reading as if it

were the message propagating from an incoming neighbor.

We remark that this controller is a dynamical system since there is a delay

of one-time steps in the propagation of information along each edge. Moreover, we

remark that the controller representation does not forbid cycles in the graph.

4.1.4.4 Optimization

We want to optimize a controller, i.e., a graph as defined in Section 4.1.4.2,

for a given task and a given robot morphology.

Graphs are, in general, difficult to optimize: being the search space non-

numeric, we cannot employ standard numerical optimization algorithms. We resort to

EC for optimization. Indeed, EAs have already proven capable of dealing with graph-

like structures (Miller and Harding, 2008; Stanley and Miikkulainen, 2002), provided

that a fitness function and an appropriate representation are given. Additionally,

EAs have also been argued to be a competitive alternative when optimizing ANNs

for continuous control tasks (Such et al., 2017a). EC is thus suitable for achieving

the third design goal.

We used the EA in Algorithm 2. It evolves a fixed-size population of npop

individuals, i.e., graphs, initially set randomly, for a fixed number of ngen generations.
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At each generation, the current population is used to generate an offspring of npop new

individuals that are then merged into the parent population. Each new individual G′

is generated by applying mutation to a parent G selected with tournament selection

with size ntour. After parents and offspring have merged, the population for the

next generation is selected by picking the npop best individuals, i.e., using truncation

selection.

1 function evolve():
2 P ← initialize(npop)
3 foreach i ∈ {1, . . . , ngen} do
4 P ′ ← ∅
5 foreach j ∈ {1, . . . , npop} do
6 G← selectTournament(P, ntour)
7 G′ ← mutate(G)
8 P ′ ← P ′ ∪ {G}
9 end

10 end
11 P ← P ∪ P ′

12 P ← truncate(sort(P ), npop)

13 end
Algorithm 2: The EA used in our experiments.

Since the controller consists of a graph, we used genetic operators suitable

for this kind of representation. In particular, we used five mutation operators: edge

mutation, edge addition, edge removal, node addition, and node removal. In line

7 of Algorithm 2, we beget an offspring G′ by first copying the parent G and then

applying one of the five mutation operators according to their relative probabilities

pmut, pedgeAdd, pedgeRemove, pnodeAdd, and pnodeRemove. In the following, we detail the five

mutation operators:

Edge mutation. We randomly pick an edge e ∈ E with uniform probability and

mutate its weight and bias with additive Gaussian noise, i.e., e.weight ←
e.weight + α and e.bias← e.bias + β with α, β ∼ N(0, σ2

mut).
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Edge addition. We randomly pick two nodes u, v ∈ V with uniform probability,

such that u.type 6= actuator and v.type 6= sensor. Then, we add an new

edge e from u to v, i.e., with e.source = u and e.target = v, and we set

e.weight, e.bias ∼ U(−1, 1).

Edge removal. We randomly pick an edge e ∈ E with uniform probability and

delete it from the graph. If, after this operation, hidden nodes have no incoming

and outgoing edges left, we remove them from V to decrease the redundancy of

the representation (Rothlauf and Goldberg, 2003; Rothlauf, 2006).

Node addition. We randomly pick two nodes u, v ∈ V with uniform probability,

such that u.type 6= actuator and v.type 6= sensor. We then create a new

hidden node w and set w.x and w.y to be the coordinates of a voxel picked at

random. Finally, we add an edge e from u to w and an edge e′ from w to v and

we set e.weight, e.bias, e′.weight, e′.bias ∼ U(−1, 1).

Node removal. We randomly pick a hidden node v ∈ V with uniform probability

and delete it from the graph, together with all its incoming and outgoing edges.

If, after this operation, hidden nodes have no incoming and outgoing edges left,

we remove them from V .

We initialize each individual of the initial population as follows. We add to v a

sensor node for each sensor reading element in the given morphology, associate v the

node with it, and set v.x and v.y to the coordinates of the voxel hosting the sensor.

We add to V an actuator node v for each voxel in the given morphology, associate v

the node with the actuator, and set v.x and v.y to the coordinates of the voxel. For

each actuator node v and each sensor node u in the same voxel, we add to E an edge

e from u to v and we set e.weight, e.bias ∼ U(−1, 1).

As a result of this initialization procedure, no edges are encroaching on differ-

ent voxels for the VSRs of the very first generation, and the controllers can be regarded
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as being minimal. We adopt this initialization strategy in line with the complexifi-

cation principle of starting minimally and incrementally growing topologies of ANNs

(Stanley and Miikkulainen, 2002).

We remark that the mutation operators that affect the topology of the graph,

i.e., edge and node addition (or removal), by changing the preference for edges in-

side or outside modules, can affect the degree of modularity of the controller. This

consideration will reveal itself useful in Section 4.1.5.2.

We used the same parameter values for all experiments, with values determined

after preliminary experiments, except for ngen that is detailed separately for every

experiment. After preliminary experiments and relying on our previous experience,

we set npop = 96, ntour = 5, σmut = 0.7, pmut = 0.5, pedgeAdd = 0.1, pedgeRemove = 0.1,

pnodeAdd = 0.15, and pnodeRemove = 0.15.

4.1.4.5 Advantages and limitations of the embodied, self-organizing con-
troller

The controller presented in this section addresses the design goals presented

in Section 4.1.4.1 and has several advantages.

First, as required by the first design goal, it is embodied, as the nodes are

precisely located throughout the VSR body. By this property, the VSR brain can be

partitioned into subgraphs (by selecting subsets of nodes and the edges incident to

them), and each of the subgraphs can then be traced back to the portions of the body

it belongs to. At the same time, should the VSR be dissected into physical modules

(e.g., for the sake of transferring it to assemble a new VSR), each physical module

would then be able to refer to the subgraph of the controller it was the embodiment

for. As a result, each subgraph (once transferred with its physical counterpart) still

finds itself in a body it is acquainted with, and is well-positioned to exploit the rep-

resentations learned during its “previous life”. Other studies have indeed highlighted

how modular controllers are less prone to catastrophic forgetting (Ellefsen et al.,
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2015). Since functional modules, i.e., units sharing the same function or purpose,

can arise in embodied agents, the representations learned locally in a given functional

module could well be transferred to a new module performing the same, or a similar,

function.

Since both the topology and the parameters can freely evolve in the body,

our controller is self-organizing and thus satisfies the second design goal. This fact

bears an important consequence: emergent properties, that would not arise without

self-organization, can be observed. This is a consequence of the expressiveness of

our representation: the search is performed in the space of every possible topology

(and parametrization) encompassing a given morphology. We remark that there is no

upper (or lower) bound on the length (measured, for example, in terms of voxels to be

crossed) of the edges. Potentially, interesting long-range synapses can be established

between the neurons of the controller. Remarkably, self-organization can also be

biased purposely to explore some portions of the search space more densely, to ease

the emergence of some properties we deem interesting a prior (Templier et al., 2021).

Moreover, self-organization could be used as a way of testing how the “brain” of a

robot adapts to the sensors and the robot shape, and make parallels with neuroscience.

As intriguing as it may be, we did not explore this last topic further, and leave it for

future work.

Third, messages propagate over the graph one hop at a time, and these delays

could be exploited by the optimization algorithm to introduce timed dependencies

that would not be possible otherwise. As a proof of concept, Cheney et al. (2014a)

demonstrated the benefits of having messages propagating “physically” across a VSR

body, and the claim is biologically grounded (Segev and Schneidman, 1999). More-

over, we remark our model is stateful, and could thus show interesting temporal

dynamic behavior, as it couples two dynamical systems, the mechanical one and the

controller one. Contrarily, a stateless controller (without cycles and delays) couples

its static system with only the mechanical dynamical system.
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Fourth, distributing the controller delivers advantages on its own. Distributed

controllers do not suffer from having a single-point-of-failure, and would thus prove

resilient to both exogeneous (e.g., environmental changes) and endogeneous (e.g.,

malfunctions) threats once deployed in vivo. As a biological counterpart, animals

that excel in regenerating their amputated limbs, like sea stars (Lawrence, 2020),

usually have a distributed nervous system1; some species can even beget stand-alone

new individuals from fragments of their bodies, like flatworms of the genus Planaria

do (Gentile et al., 2011). Although there is evidence that these properties are due to

pluripotent stem cells (Baguna et al., 1989), having a less centralized nervous system

intuitively eases regeneration.

We remark that the way we model the embodied, self-organizing controller in

this study also implies a few limitations.

First, the location of nodes within the voxel is relevant only for nodes of types

actuator and sensor. Since there are no differences in the way the activation value

is computed between a pair of nodes located in the same or different voxel, a controller

is in practice functionally invariant to the location of hidden nodes. To verify the

practical impact of this modeling choice, we conducted an experimental campaign

where we explicitly took into account the location of hidden nodes as follows. We

modified the edge addition genetic operator in such a way that long connections had

a lower probability of being added: as a consequence, the location of all nodes—

including hidden nodes—matter when evolving the controller topology. We do not

present the full results for brevity, but we found that the controllers that evolved

in this way were in general worse than those that evolved without considering node

location. As an alternative, we could take into account node location by introducing

longer delays in information spreading along long connections: we leave this possibility

for future work.

1Notable exceptions being salamanders (Joven et al., 2019) and axolotls (Roy and Gatien, 2008).
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Second, we do not model the cost of complex and large controllers. As a

consequence, no factors are driving the evolution towards parsimony: we expect the

complexity of the network to increase virtually unbounded during the evolution. This

is what we observed in our experiments. While we acknowledge that the physical

realization of arbitrarily complex neural controllers might be unfeasible, the size of

the controllers we evolved in this study is in practice small, in the order of a few

hundred nodes and edges.

4.1.5 Experimental evaluation

We performed several experiments aimed at answering the following research

questions:

RQ1 Is the proposed controller effective?

RQ2 Does it enable module transferability? Can transferability be fa-

vored or disadvantaged?

RQ3 Can we automatically discover modules?

To answer these questions, we performed several experiments with two different

VSR morphologies, depicted in Figure 4.1. We experimented with a 4 × 3 (size of

the voxel grid constituting the shape) rectangle with a 2 × 1 rectangle of missing

voxels at the bottom-center, that we call biped, and with a 6 × 2 rectangle, that we

call worm. We use similar sensor configurations for the two shapes: area sensors for

every voxel, touch sensors for the voxels in the bottom row of the shape, velocity

sensors for the voxels in the top row of the shape, and lidar sensors for the voxels

in the rightmost column of the shape. This sensor configuration results in an overall

number of 31 = 10 · 1 + 2 · 1 + 4 · 2 + 3 · 5 sensor nodes and 10 actuator nodes in the

controllers for the biped and 40 = 12 · 1 + 6 · 1 + 6 · 2 + 2 · 5 sensor nodes and 12

actuator nodes in the controllers for the worm.
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(a) Biped (b) Worm

Figure 4.1: The two morphologies used in our experiments.
For all the experiments, we considered the task of locomotion. The goal of

the VSR is to travel as far as possible on a terrain along the positive x direction in a

fixed amount of simulated time. The fitness of the individual is the average velocity,

measured as:

v̄x =
xc(tfinal)− xc(ttransient)

tfinal − ttransient

, (4.2)

where xc(t) is the x-position of the center of mass of the VSR at time t. We set tfinal =

30 s and ttransient = 5 s to discard the initial transitory phase and avoid deceptive and

inconclusive behaviors (Whitley, 1991). Locomotion is a classic task in evolutionary

robotics and usually consists of making the robot run along a flat surface. We here

used instead an uneven (hilly) terrain with bumps. The bumps have an average height

of 1m (3m being the side length of a voxel) and an average distance of 10m. Moreover,

we used a different hilly randomly generated terrain at every fitness evaluation, to

prevent the robots from “overfitting” to a single terrain profile, making adaptation

more challenging.

We implemented the software for the experimental evaluation in Java, build-

ing on two frameworks: JGEA2 for the evolutionary optimization and 2D-VSR-

Sim3 (Medvet et al., 2020b) for the simulation of VSRs. In the simulations, we

set the time step to ∆t = 1
60
s and all other parameters to default values. The

code for the experiments is publicly available at https://github.com/pigozzif/

SelfOrganizingVSRController.

For each experiment, unless otherwise specified, we performed 10 evolutionary

runs by varying the random seed for the EA. We remark that each simulation is instead

2https://github.com/ericmedvet/jgea
3https://github.com/ericmedvet/2dhmsr
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deterministic, given a terrain and a VSR. After verifying the adequate hypotheses, we

carried out all statistical tests with the Mann-Whitney U rank test for independent

samples (Mann and Whitney, 1947) using, unless otherwise specified, 0.05 as the

confidence level.

4.1.5.1 RQ1: effectiveness of evolved controllers

We say that a controller is effective if it meets two criteria: (a) it can success-

fully solve the task at hand and (b) it is more complex than the minimal controller.

The latter point is crucial, since a controller that has not evolved to be more complex

than the minimal controller could not be considered “self-organizing”, invalidating all

of our conjectures. We thus introduce a simple, yet effective measure of controller

complexity that measures its size:

|G| = |V |+ |E| (4.3)

that is the sum of the number of nodes and edges of the graph. Concerning the success

in solving the task, we measure it using the robot average velocity v̄x, as defined in

Equation (4.2).

We ran an experimental campaign with 10 runs lasting ngen = 3000 generations

each, and for the two shapes introduced previously.

Figure 4.2 shows, for the two shapes, the best individual velocity v̄x and con-

troller size |G| during the evolution. For both indexes, the figure shows the median

± standard deviation across the 10 runs.

Table 4.1 reports the results in terms of |G|, and its components |V | and |E|,
for the best individual at the last generation, separately for the two shapes, and

compares them with the values at the start of evolution. Recall that, for a given

shape, |G|, |V |, and |E|, are the same for every individual in the first generation

(given a morphology). For the indexes at the last generation, the table shows the

median and standard deviation across the 10 runs.
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Figure 4.2: Median ± standard deviation (solid line and shaded area) across the
10 runs of the robot velocity v̄x (top) and controller size |G| (bottom) for the best
individual, for biped (left) and worm (right).

Initial At last generation

Shape |V | |E| |G| |V | |E| |G|
biped 45 35 80 88.5±17.3 96.5±26.8 179.5±42.2
worm 52 40 92 99.0±16.6 115.0±24.8 216.0±39.4

Table 4.1: Median and standard deviation of number of nodes |V |, number of edges
|E|, and controller size |G| for the best individual, at initialization, and the last
generation.
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From the table and the figure, we observe that the evolved VSRs turn out

to be effective according to our criteria. First, evolution is capable of finding good

solutions to the locomotion task. The best individuals run on average at v̄x = 5m/s

at the end of evolution, against approximately 0.5m/s at the beginning, signifying

a considerable gain in locomotion skills. We visually inspected the behaviors and

found them to be highly effective for locomotion on a hilly terrain. As a proof of

concept, Figures 4.3a to 4.3d are time-lapse images for the movement of two bipeds

and two worms chosen randomly among the 10 best individuals resulting for each

of the two shapes. As can be seen from the pictures, bipeds hop on their legs,

and worms inch forward as a caterpillar would do. To appreciate even more the

adaptive behaviors exhibited by the robots, the videos of all the 10 best bipeds and

worms can be found respectively at https://youtu.be/-ECoa1tffok and https:

//youtu.be/jADw6Qf70g0. As a side comment, we found the gaits evolved with the

self-organizing controller to be particularly fluid when compared to our previous works

(Talamini et al., 2019; Medvet et al., 2020a, 2021).

Second, the evolved controllers do increase well beyond their initial size during

evolution. The numbers reported in Table 4.1 imply there is a 149% median increase

in |G| for the biped shape, and a 135% median increase for the worm shape. Fig-

ure 4.2 corroborates this finding by showing an upward trend in the |G| lines over the

evolution (right plot), even though it appears to decelerate toward the end. At the

same time, there does not seem to be an unexpected difference in contribution to |G|
between nodes and edges (the latter being slightly more abundant than the former).

By manually inspecting the evolved controllers, in particular the locations of

nodes and edges over the body, we noticed some patterns. Most notably, long-range

edges do arise. For example, numerous edges connect the front part to the rear part

of many worms. Intuitively, they establish a feedback mechanism that is necessary

to inch forward as a caterpillar would do. Another recurring feedback mechanism

evolved between the two legs of bipeds, contributing to their signature gait (i.e.,
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(a) Biped (video available at https://youtu.be/qkVa9hiOveI)

(b) Biped (video available at https://youtu.be/oYeaZwtR8OI)

(c) Worm (video available at https://youtu.be/k1f2vQNyrEU)

(d) Worm (video available at https://youtu.be/HaZHnaRIPqA)

Figure 4.3: Time-lapse showing locomotion for two bipeds and two worms chosen
randomly among the 10 best individuals resulting for each of the two morphologies.
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hopping between the front and the rear leg). These facts altogether point out that

self-organization is indeed at work.

By looking closer at Figure 4.2, it looks like velocity reaches a plateau well

before controller growth stops. Indeed, there is no evidence controller growth stops at

all. It might be the case that there exists some sort of “critical mass” of the controller

such that, after a local optimum in the fitness space is reached, evolution keeps

adding redundant genetic material (i.e., neurons and edges that do not necessarily

contribute to the locomotion skills of the VSR). Since we do not disfavor in any way

the addition of new edges and nodes that do not modify the functionality of the overall

controller, we can speculate we are witnessing an instance of the bloat phenomenon

(Silva and Costa, 2008) observed in the evolution of computer programs (also known

as genetic programming, see Koza (1993)). It has been argued that bloat is beneficial

to the individual as it provides a buffer against the deleterious effects of mutation and

recombination (López et al., 2011). Interestingly, there is a rich body of literature in

biology on the benefits of neutrality, after the work of Kimura (1979).

But then, does self-organization matter? In other words, if (we speculate) bloat

is at work, it might be that all those hidden neurons and edges are just excess genetic

material, and evolution is simply optimizing the set of initial edges (those between

sensors and actuators) and their parameters. To shed light on this argument, we

performed an ablation study, aiming at exploring what happens if we evolve only

the weights and biases and not the topology of the controller (which is stuck to

be the initialization topology, see Section 4.1.4.4). In particular, we reset pmut =

1 and all other mutation probabilities to 0. Figure 4.4 summarizes the results by

showing the boxplots for the distribution of the v̄x of the best individuals at the last

generation for the two cases: with and without topology optimization. Interestingly,

the distributions are radically different. We carried out a one-sided Mann-Whitney

U test with the null hypothesis that, for each shape, the median of the best fitness

for evolving the topology is greater than the median best fitness for not evolving the

topology. We found that the null hypothesis can be rejected at the 0.05 significance

96



0

2

4

6

8

10

< 0.001
v̄ x

Biped

< 0.001

Worm

w/ topology optimization w/o topology optimization

Figure 4.4: Boxplots for the distribution of the velocity v̄x of the best individuals
at the last generation, for biped (left) and worm (right), obtained with or without
topology optimization. The bars above pairs of boxes show the corresponding p-value.
level (p-value < 0.001 for both shapes). Even though this result is valid only for

this kind of initialization, it still suggests that self-organization does indeed benefit

evolution.

4.1.5.2 RQ2: module transferability

Because of the way we defined the controller, specifically, since we put nodes

inside voxels, it is clear that it can by-design be disassembled together with the mor-

phology. Nevertheless, achieving module transferability in practice requires also a

reassembly phase, in which disassembled modules are reused for building new VSRs.

We hence define a way of transferring modules, using a disassembly-reassembly pro-

cedure, and a way for measuring the effectiveness of the transfer.

4.1.5.3 Disassembly-reassembly procedure

Let r1, r2 be two donor robots that have been optimized for a given task. We

assume that each of the robots can be disassembled in at least two modules, a module
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being a connected subset of robot voxels. The disassembly-reassembly procedure

consists of building a new, reassembled robot r′ by combining at least one module

from the first robot and at least one module from the second robot. We measure the

transferability of the two modules used to build r′ as the relative ability of r′ to solve

the task concerning the ability of the donors r1, r2. We remark that this definition of

transferability is somehow limited, as it does not measure the degree to which robot

modules can be re-used for arbitrarily different tasks. Nevertheless, we believe that

the possibility of reusing modules for the same task is indeed useful (and, hence, it is

important to quantify this possibility): in the long term, re-using parts of disposed

robots might be an enabling factor for fully autonomous robotic ecosystems (Hale

et al., 2019b).

In the specific scenario of locomotion and with robots equipped with our con-

troller, we cast this general definition as follows. When disassembling a robot, for each

resulting module we drop all the edges whose source or target nodes are not located in

voxels belonging to the module. When reassembling a robot from existing modules,

we do not add any new edge between nodes located in different modules—in some

preliminary experiments, we explored other options, e.g., “rewiring” crossing edges at

random, but we found they do not deliver any advantage. We measure transferability

as:

ρ =
v̄x,r′

v̄x,r1+v̄x,r2
2

, (4.4)

where v̄x,r1 , v̄x,r1 , and v̄x,r′ are the velocities of the three robots.

Since some edges of the controller get dropped in the disassembly-reassembly

procedure, before measuring the velocity v̄x,r′ of the reassembled robot r′, we re-

optimized it using the same EA used for from-scratch optimization (see Algorithm 2),

yet starting from a different initial population. This re-optimization is of crucial

importance since we want the new VSRs to be effective and we expect the reassembled

robot to benefit from a reasonable amount of fine-tuning. The overall goal, however, is

to make reassembly of pre-optimized modules cheaper than optimizing from scratch.
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In detail, the initial population of the re-optimization is composed of the controller

G′ of the reassembled robot r′ and npop− 1 mutations of G′ obtained by applying the

same mutation operators (with the same probabilities) of the optimization step (see

Section 4.1.4.4).

We remark that the disassembly-reassembly procedure requires to (a) define a

partitioning of the two donor robots r1 and r2, (b) select one or more modules of r1

and one or more modules of r2, and (c) define a way to combine the selected modules.

It is evident that module transferability strongly depends on these three key choices.

As an example, consider the case in which two “trunks” coming from two-legged robots

with different morphologies, each with a trunk and a few legs, are glued together: it

is very unlikely that the resulting “trunk-only” robot will be effective in locomotion

since it has no legs. The representation of the controller on transferability, hence,

clearly plays a secondary role. In the next sections, for answering RQ2, we manually

choose reasonable options for these three choices. Later, in Section 4.1.5.7, we show

how our representation may be helpful while coping with the first choice (partitioning

a robot in modules) automatically.

Kriegman et al. (2019) considered a similar case of damage recovery, but fo-

cused on the morphology rather than the control: they evolved shape changes to

recover the lost function after physical damage, with no adaptation to the control

policy.

4.1.5.4 Experimental procedure

We considered the two morphologies of the previous experiments and manually

partitioned them into modules as shown in Figure 4.5. Then, we proceeded as follows.

First, we performed 10 evolutionary runs for each of the two morphologies,

obtaining ten bipeds and ten worms. Then, we performed two types of reassembly

for each morphology: a homogeneous one, where modules of the reassembled robots

come from robots with the same morphology, and a heterogeneous one, where modules
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(a) Biped (b) Worm

Figure 4.5: Our manual partitioning in modules (one color for each module) of the
two morphologies.
came from robots with the other morphology.

In the homogeneous case, we proceeded as follows. For the biped and each

i ∈ {1, . . . , 10}, we reassembled a new biped by taking the red and blue modules (the

“legs”) from the i-th biped (i.e., the best individual obtained at the end of the i-th run)

and the yellow module (the “torso”) from the ((i+1) mod 10)-th biped. Similarly, for

the worm and each i ∈ {1, . . . , 10}, we reassembled a new worm by taking the red

module (the “back half”) from the i-th worm and the yellow module (the “front half”)

from the ((i+ 1) mod 10)-th worm.

In the heterogeneous case, we proceeded as follows. For the biped and each

i ∈ {1, . . . , 10}, we reassembled a new biped by taking the red and blue modules from

the i-th biped and the yellow module from the i-th worm. For the worm and each

i ∈ {1, . . . , 10}, we reassembled a new worm by taking the red module from the i-th

worm and the yellow module from the i-th biped.

After reassembly, we re-optimized each resulting reassembled robot with the

EA of Algorithm 2 with the population initialization procedure modified as described

in Section 4.1.5.3. For the re-optimization, we set ngen = 510, a computational budget

which is remarkably lower than the one used for optimization (≈ 17%).

Upon re-optimization, we measure transferability ρ as defined in Equation (4.4).

We also count how many edges were cut during disassembly, and compute the sum of

their weights and biases in absolute value, as proxies of how destructive that operation

is. To make figures comparable, we cast these indexes as relative to their correspond-

ing values before the disassembly. We denote by ηnum the ratio between the number

of edges dropped from a module upon disassembly and the overall number of edges
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Figure 4.6: Median ρ, across the 10 reassembled robots for each morphology and
reassembly type, during the re-optimization for four combinations.
in the module (before disassembly). Similarly, we denote by ηweight the ratio between

the sum of weight and bias (in absolute value) of edges dropped from a module upon

disassembly and the overall sum of edges in the module (before disassembly).

In the next subsection, we present the results and comment on them.

4.1.5.5 Results

Figure 4.6 reports the median (across the 10 reassembled robots for each mor-

phology and each reassembly type, i.e., homogeneous and heterogeneous reassembly)

ρ during the re-optimization for four combinations. We remark that a value of ρ = 1.0

(on the y-axis) corresponds to fully recovering the average velocity of the donors.
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Our disassembly-reassembly procedure partially succeeds in recovering the lost

functionality, in the homogeneous as well as in the more challenging heterogeneous

combinations. Due to the intrinsic hardness of the heterogeneous reassembly case,

and for the sake of brevity, in the following, we discuss only the homogeneous case.

The magnitude of the effect differs by morphology; bipeds hover above 60%

and worms just fall short of 80%. Nevertheless, we are far from recovering (let alone

outclassing) the average velocity v̄x of donors. Arguably, the morphology also affects

transferability, with more “primitive” shapes like worms being advantaged.

To explain why recovering is not complete, we looked at the values of ηnum and

ηweight, which measure the impact of disassembly in terms of edges being cut. Median

values are ηnum = 0.60 and ηweight = 0.56, for the biped, and 0.45 and 0.38 for the

worm. In other words, the disassembly of a robot in modules is a very destructive

operation for the VSR controller and the re-optimization struggles in recovering the

lost structure. Interestingly, values of ηnum and ηweight are lower for the worm (fewer

edges are cut) and this is somehow reflected in the value of ρ, which is greater for the

worm than for the biped.

4.1.5.6 Fostering modularity

Having observed that the removal of edges crossing modules appears to be

detrimental to transferability, we designed a variant of the EA for evolving controllers

that is aimed at discouraging the use of edges crossing modules. In other words, with

this variant, we can foster the modularity of the controller.

In detail, the EA is the same as the one presented in Section 4.1.4.4, except for

two mutation operators. We introduce a biased edge addition operator, and a biased

node addition operator, that substitutes the original edge addition and node addition

operators (edge removal and node removal are left untouched, as well as the mutation

probabilities).

In the biased edge addition operator, when picking the pair of nodes u, v to be
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connected by the new edge (see Section 4.1.4.4), instead of using uniform probability,

we pick pairs whose nodes are in the same module with a probability that is ω larger

than the probability of picking nodes that are in different modules.

In the biased node addition operator, the choice of nodes u, v works as above;

the new node w is placed in a random voxel of the module, if u, v are in the same

module, or a random voxel of the robot, otherwise.

The role of the parameter ω is to determine the degree of preference toward

modularity. With ω > 1 we foster modularity, with ω < 1 we discourage modularity,

with ω = 1 we are neutral, i.e., we use the same operators of the original EA of

Section 4.1.4.4.

While designing this variant, i.e., the two biased mutation operators, we got

inspiration from nature. In fact, Wagner et al. (2001) suggests that only two processes

can foster modularity in biological systems: parcellation and integration. The latter

consists of the selective acquisition of genes that map to phenotypic traits belonging to

the same module. In other words, modular phenotypic traits are favored by evolution.

In light of this consideration, biased edge addition and biased node addition, by

favoring connectivity within modules, can be seen as a simplified form of integration.

The same processes (of parcellation and integration) have been fruitfully exploited

for modular ANNs in Mouret and Doncieux (2009), but dealing with a different set

of tasks and not under an embodiment perspective.

For assessing the effectiveness of this variant in fostering modularity, i.e., fa-

voring module transferability, we performed an experimental campaign following the

same procedure described in Section 4.1.5.4 with three EAs: the original one (ω = 1,

“neutral” in the figures), one with ω = 10 (“more modularity” in the figures), and one

with ω = 0.1 (“less modularity” in the figures), the latter as a sort of control group.

Figure 4.7 summarizes the main outcome of this experimental campaign by

reporting the median (across the 10 reassembled robots for each morphology) ρ during

the re-optimization for the two morphologies and the three variants.
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Figure 4.7: Median ρ, across the 10 reassembled robots for each morphology, during
the re-optimization for biped (left) and worm (right) and for the three EA variants
(line color).

The foremost observation is that the two new variants perform as expected—

the result of the “neutral” variant is, obviously, the same as in the previous exper-

iments. There seems to be a stark contrast between the median profile of ρ of the

different variants. Not only do modular controllers, i.e., those obtained with ω = 10,

recover more quickly than neutral ones, i.e., those obtained with ω = 1, but they

also appear to be fitter at the very end of evolution. The same holds when compar-

ing neutral controllers with their non-modular counterparts, i.e., those obtained with

ω = 0.1. Statistical tests comparing median ρ across the evolutionary runs showed

the differences at the end of re-optimization are indeed significant, except for the

neutral vs. modular and neutral vs. non-modular pairings for the worm shape.

We hypothesize that, intuitively, the observed differences are due to the dif-

ferent number of edges that are cut upon disassembly for the three variants, that we

report in Figure 4.8. It can be seen from the figure that modular controllers stay in

the range of 0.25–0.5 of edges cut (ηnum), while the proportions are higher for the

neutral and non-modular variants. The plots for ηweight corroborate this interpreta-

tion. Statistical tests, whose outcomes are reported in Figure 4.8, support our claim
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Figure 4.8: Boxplots for the distribution of ηnum of ηweight (rate of edges cut upon
disassembly) for the two morphologies and the three EA variants. All p-values are
significant.
that the three variants are different in terms of ηnum and ηweight.

As an aside, by looking at the raw values of v̄x after the re-optimization, we

observe that the magnitude of the loss for the value of the donor robots varies with the

morphology, being less pronounced for worms, and more evident for bipeds and that

worms have, on average, fewer edges cut. Undoubtedly, the configuration influences

how large the gap between bipeds and worms, with modular biped controllers being

more or less at the same level as their worm counterparts, whereas we witness a 30%

hiatus with non-modular controllers. For this, we conjecture the reason to be that the

long-range edges (non-modular controllers are biased toward) bear more importance

in bipeds rather than worms. This fact is meaningful if we consider the gait of bipeds

and the many long-range edges that evolve between the two legs (see Section 4.1.5.1).

To gain further insights into the three variants, we compared them in terms

of the outcome of the first optimization, i.e., we looked at the values of v̄x and |G|
obtained before the disassembly-reassembly procedure. Figures 4.9 and 4.10 summa-

rizes the results concerning these indexes, respectively as the median values for v̄x
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Figure 4.9: Median ± standard deviation (solid line and shaded area) across the
10 runs of the robot velocity v̄x (top) and controller size |G| (bottom) for the best
individual, for biped (left) and worm (right) and for the three EA variants.
and |G| during the evolution and as the boxplots for the distributions of the value of

v̄x of the best individuals at the end of the evolution.

It can be seen that, for what concerns the size |G| of controllers, the three

variants exhibit negligible differences. From another point of view, favoring or dis-

couraging modularity does not impact the self-organization of the controller.

Concerning the velocity v̄x, Figure 4.9 seems to suggest that there are some

differences. In particular, it looks like modular evolved VSRs are, on average, less

fit than neutral ones, which in turn seem to be, on average, less fit than their non-

modular counterparts. Despite those differences are not statistically significant (see

the p-values in Figure 4.10), we think they can be explained by the role of long-range
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Figure 4.10: Boxplots for the distribution of the velocity v̄x of the best individuals
at the last generation, for biped (left) and worm (right), obtained with the three EA
variants. The bars above pairs of boxes show the corresponding p-value.
edges, i.e., edges crossing several voxels. Non-modular controllers might outperform

the others because their long-range edges (they are implicitly biased toward) carry

“more” information. More broadly, the effectiveness of a procedure for favoring or

disfavoring modularity might depend on the choice of how to split the robot into

modules. However, we here compared EA variants using the same choice for modules

and we do not have any argument for hypothesizing that a different choice might be

better for favoring or disfavoring modularity.

To summarize, two conclusions can be made. First, in line with the embodied

cognition paradigm, morphology impacts transferability. Second, after disassembly-

reassembly, we do not always fully recover the lost functionality of the donor robots.

In particular, the degree of modularity does impact the transferability of an embodied

controller. There are, however, two caveats: (a) modularity appears to negatively

affect average velocity v̄x before disassembly and (b) favoring modularity requires the

manual definition of modules before the optimization. The latter point is undeniable,

but we will next introduce a procedure for the automatic discovery of modules inside

VSRs having an embodied, self-organizing controller.
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4.1.5.7 RQ3: automatic modules discovery

So far, we assumed that the partitioning in modules of a given morphology was

known a priori, i.e., before the optimization of a controller for that morphology. We

were hence considering a human-in-the-loop scenario, in which the human designer

plays a key role in defining modules.

In this section, we propose a way for discovering modules a posteriori, i.e.,

after the optimization, and automatically: we hence consider a human-out-of-the-loop

scenario. More specifically, we propose a method to partition a VSR with a given

morphology into modules, inclusive of both body and brain, after the optimization of

an embodied, self-organizing controller for that morphology.

While the human-in-the-loop setting is interesting per se, e.g., for transferring

robotic components and assembling new robots, the human-out-the-loop would be in-

teresting even in the long-term, visionary setting of an autonomous robotic ecosystem;

in this scenario, the ecosystem could be made more efficient by reusing (recycling)

components of robots that have to be disposed of. As a principled instantiation of

this scenario, consider the ARE project (Hale et al., 2019b).

The proposed method works as follows. Let r be the VSR to be partitioned in

modules and let B be the morphology (i.e., the set of voxels with their positions in

the grid) of r and G = (V,E) the controller of r. Let (B′, G′) be a candidate module,

with B′ ⊆ B being a connected subset of voxels of r and G′ = (V ′, E ′) the subgraph

of G containing all the vertexes V ′ ⊆ V located in voxels of B′ and all the edges

E ′ ⊆ E whose source or target nodes are in V ′. We define the module compactness

c(B′, G′) of a candidate module (B′, G′) as:

c(B′, G′) =

∑

e ∈ E ′
inside|e.weight|+ |e.bias|

∑

e ∈ E ′|e.weight|+ |e.bias| , (4.5)

where E ′
inside = {e ∈ E ′ : e.source ∈ V ′ ∧ e.target ∈ V ′} is the subset of E ′ edges that

do not cross the boundaries of the module, i.e., whose source or target nodes are in

V ′.
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(a) Biped (b) Worm

Figure 4.11: A random subset of robots partitioned into modules with the automatic
procedure, one color for each module. The module with the greatest compactness is
depicted in red.

Based on the module compactness definition, we propose this procedure for

partitioning a VSR into modules. First, we identify all the candidate modules whose

size |B′| is in a given range [bmin, bmax]. Second, we find the candidate module with

the greatest compactness and partition the robot in that module and the modules

remaining after removing it. The number of modules resulting from this procedure

can be larger than 2, if, upon the removal of the module with the greatest compact-

ness, the remaining part of the robot is not physically connected—see, for example,

Figure 4.11a.

The rationale of this procedure is to exploit the findings of the previous ex-

periments, that suggest that cutting edges is deleterious concerning module transfer-

ability. We remark that the procedure itself is applicable because the controller is a

graph distributed over the body.

Other graph clustering techniques exist in the literature that we could have

used in place of module compactness. To name a few, these include minimum cut algo-

rithms (Goldschmidt and Hochbaum, 1988), spectral clustering (Seary and Richards,

1996), and community detection algorithms (Girvan and Newman, 2001). While any

of the above would be a legitimate choice, we here adopt a simple approach that is

still intuitive, easy to implement, and effective.

We performed a qualitative evaluation of this procedure by applying it to

the VSRs evolved in the experiments described in Section 4.1.5.1. After preliminary

experiments and taking into account the size of the biped and the worm, we set

bmin = 2 and bmax = 5. Figure 4.11 shows a few of the partitioning that we obtained

in this experiment.
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By looking at the modules with the greatest compactness (i.e., the red ones),

we notice some patterns. For the biped shape, there seems to be a tendency to find

modules that span horizontally across the body, connecting the front with the rear.

It might be the case that dense neural connectivity subsists between these two body

parts. This is likely to be useful in a gait that is alternated like the biped one. To a

lesser extent, the same considerations can be made for the worm shape.

We envision such modules to be of high utility when assembling brand-new

VSRs from pre-optimized components. As a result, this heuristic could well fit in an

automatic pipeline of robot disassembly and assembly, where new VSRs are fabricated

in a human-out-of-the-loop manner by assembling modules picked from a repository

and briefly fine-tuning them.

4.1.6 Concluding remarks

VSRs are intrinsically modular in morphology. Existing methods for building

controllers for VSRs are not, however, capable of exploiting the modularity of the

morphology. Addressing this limitation would permit to disassembling of robots in

modules, encompassing both the body and the brain, and to reassembling them differ-

ently, to cope, e.g., with malfunctions, broken components, or different environments

and tasks. In the long term, enhancing the modularity of VSRs would enable the

building of libraries of pre-optimized modules that can be reused over and over.

We proposed a representation for an embodied, self-organizing neural con-

troller in which nodes and edges of the ANN are located at precise voxels in the

VSR morphology. We also described an EA suitable for evolving a controller with

our representation given a task and a morphology. With an extensive experimental

campaign, we showed that:

(i) our representation and EA allow to obtain effective controllers for the task of

locomotion;
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Figure 4.12: Overview of the proposed approach. We use the same neural controller
(left picture) inside each voxel, with shared parameters. The middle picture is a
biped with the attention matrices of the different voxels. Each controller uses self-
attention to compute importance scores (A) among the inputs sensed by its voxel.
We also find evolved controllers to generalize to unseen morphologies (right picture;
color represents the ratio between the voxel current area and its rest area: red stands
for contraction, green for expansion, yellow for no change).

(ii) VSRs with evolved controllers can be disassembled and reassembled in differ-

ent VSRs and are able, after a cheap re-optimization, to recover the original

functionality;

(iii) modularity can be favored or discouraged through a simple numerical parameter

in the mutation operators of the EA and this is reflected in the ability to recover

the functionality;

(iv) due to its self-organizing property, our controller can be helpful for partitioning

automatically VSRs in modules that exhibit potentially good transferability.

4.2 Evolving modular soft robots without explicit inter-module
communication using local self-attention

In this chapter, we answer to question 2.

4.2.1 Introduction

Yet, in the path toward autonomous robotic ecosystems, full exploitation of

modularity is still a roadblock (Yim et al., 2007), as the flexibility of modular robots
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depends on how the modules are “wired” together. Minimizing the need for com-

munication among modules would permit to disassembling robots and reassembling

them differently, to cope with different tasks. Early controllers for VSRs relied on a

single centralized neural network (Talamini et al., 2019) or fixed, rigid inter-module

communication between voxels (Medvet et al., 2020a; Horibe et al., 2021), effectively

making their design closer to a single, large neural controller with shared weights.

This rigid Message-Passing (MP) mechanism, while practical, makes the modules not

perfectly interchangeable, thus limiting their flexibility. This leads to the question of

whether VSRs will work at all if we remove all MP channels between modules. Any

communication will thus take place through physical interactions in the environment

initiated by each module (Sharma et al., 2020), while simultaneously performing a

task collectively: an outmost instance of morphological computation (Hauser et al.,

2011) (i.e., the “brain” offloading computation to the “body”).

In this chapter, we explore the properties of such modular robots without MP

channels. We use the same neural controller inside each voxel, but without any inter-

voxel communication, hence realizing the ideal conditions for modularity: modules are

all equal and interchangeable, enabling our robots to truly be driven by the CI of their

modules. We leverage EAs to optimize the controller parameters, and experimentally

test whether the resulting VSRs are effective in a locomotion task on hilly terrains. We

initially found the lack of inter-module communication to be too severe of a handicap

for VSRs that rely on traditional fully-connected neural network controllers. However,

we find that a local self-attention mechanism—a form of adaptive weights—achieves

superior performance since instances of the same controller embodied in the same

robot can focus on different inputs. See Figure 4.12 for an overview of the proposed

approach. Further, we also find that we can generalize to unseen morphologies after

a short fine-tuning, suggesting that an inductive bias related to the task arises from

true modularity. Through these findings, we envision this work to position itself as a

stepping stone in the road toward autonomous robotic ecosystems.
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4.2.2 Related work

Modularity allows robotic systems to present various kinematic configurations

beyond what a fixed architecture can, and such robots are usually optimal for solving

many robotic tasks (Siciliano et al., 2008; Eiben, 2021b). Modularity in robotic sys-

tems takes the form of fabricating physical parts that are interchangeable for a single

robot, or designing independent robots that participate in a common task adaptively

(Faiña, 2021). Due to the flexibility, versatility, and robustness to changing envi-

ronmental conditions (Yim et al., 2007), we are witnessing an increasing number of

works on modular robots (Howison et al., 2020), including soft ones (Sui et al., 2020).

For example, Kamimura et al. (2003) proposed a method to automatically generate

locomotion patterns for an arbitrary configuration, and Groß et al. (2006) tackled

object manipulation and transportation tasks using self-reconfigurable swarm-bots.

The possibilities of such systems are encouraging, but the self-organizing and adap-

tive properties are even more inspiring. In a life-long gait learning task, Christensen

et al. (2013) showed that, given a body configuration, a modular system can auto-

matically figure out the best gaits, while presenting morphology independence and

fault tolerance. Taking a step further, Pathak et al. (2019) demonstrated that a

modular robotic system can generalize to unseen morphologies and tasks. Finally,

Pigozzi and Medvet (2022) partitioned modular robots into independent units based

on self-organizing neural controllers.

The concept of modularity appears also in the AL and machine learning com-

munities, most noticeably in the area of neuroevolution and CA (Ha and Tang, 2021).

Indeed, we are witnessing a surge in works that incorporate these ideas into modular

robots. While most robotic works are controller-focused, AL and ML researchers also

explored the co-optimization of configuration and controller (Ha, 2019; Lan et al.,

2021; Bhatia et al., 2021). For instance, Cheney et al. (2014b) evolved soft robots

with multiple materials through a generative encoding. Inspired by multi-cellular

systems, Joachimczak et al. (2016) evolved soft-bodied animats in both aquatic and
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terrestrial environments, showcasing the concept of metamorphosis in simulation.

In another soft robot simulation work, partially damaged robots regenerated their

original morphology through local cell interactions in a neural CA system (Horibe

et al., 2021). Moreover, Sudhakaran et al. (2021) grew complex functional entities

in Minecraft through a neural CA-based morphogenetic process. Finally, there exists

a whole body of literature on the evolution of virtual creatures with artificial gene

regulatory networks (Cussat-Blanc et al., 2019).

Intuitively, the performance of a modularized system depends on the commu-

nication pattern, one therefore naturally wonders if there exist better MP graphs.

Recent work suggests that GNNs possess self-organizing properties and are capable

of learning rules for established CA systems (Grattarola et al., 2021), which hints at

learning novel inter-module communication patterns. On the other hand, the very

existence of inter-module MP prevents modular robots from being robust and truly

interchangeable. Researchers thus set their eyes on the other end of the spectrum

and explored the possibility of creating modular robots with more localized commu-

nication (Owaki et al., 2021) or even without inter-module communications (Martius

et al., 2013; Kalat et al., 2018; Queralta et al., 2019). In this work, we evolve simu-

lated VSRs for locomotion tasks and demonstrate that it is possible to evolve a shared

controller for each voxel that excludes communication with others.

4.2.3 Methods

We provide an overview of the methods for this work.

4.2.3.1 VSR controller

We consider the distributed controller presented in Section 2.2.2.1. In partic-

ular, we adopt the “homogeneous” variant discussed in Chapter 3, where the ANNs

share the same parameters: we have seen that such homogeneous representation is

comparable to one where parameters are different for every ANN, with the additional
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benefit of a more compact search space, similarly to what happens in most multi-

agent reinforcement learning systems (Wong et al., 2021). Moreover, parameter shar-

ing makes the controller agnostic to the morphology, putting us in a vantage point to

test generalization to unseen morphologies. Concerning the model of Section 2.2.2.1,

we here drop MP among voxels, as the focus of this work is on minimizing (and, pos-

sibly, dispensing with) inter-module communication in soft robots: we hence enable

interchangeability of modules and thus the full exploitation of modularity. Moreover,

we perform actuation every kact steps, rather than at every time step as in Chapter 3

and section 4.1, to prevent VSRs from exploiting the emergence of high-frequency

dynamics. Finally, we equip voxels with touch, area, and velocity sensors.

Every ANN takes as input the local sensor readings s ∈ R
4 and outputs the

local actuation value a ∈ R. We use a one-hot encoding of s ∈ R
4 to let the voxels

know where they are in the body: the actual input of the ANN is hence built as

follows. Let n be the number of voxels of a given VSR; for the i-th voxel, let hi ∈ R
n4

be a one-hot vector that is 1 at the i-th entry and 0 everywhere else. We encode s for

each i-th voxel as X = shT
i ∈ R

4×n. X is then a matrix that is equal to s at the i-th

column and 0 otherwise. In this way, a voxel can distinguish itself in the morphology.

We apply this same pre-processing to every model considered in this chapter.

We remark that one-hot encoding does not invalidate the claim that voxels

are all identical: in practice, it just requires the “operator” (i.e., the robot assembler)

to set the position of each voxel “in” the voxel controller itself, i.e., to do the proper

configuration. Regardless of the ANN architecture, there is a unique vector θ ∈ R
p

of parameters that specifies every ANN in the VSR. Thus, we optimize a VSR for a

given task by optimizing the parameters θ.

4h was the activation in Section 4.1; with a slight abuse of notation, we repurpose it to be a
one-hot encoding.
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4.2.3.2 Self-attention

Attention can be seen as an “adaptive weights” (Ferigo et al., 2022a) mech-

anism that computes importance scores for the inputs. Attention mechanisms were

first introduced in the context of machine translation (Bahdanau et al., 2014; Luong

et al., 2015) to capture relationships in temporal sequences of data, and have thus

prospered in natural language processing (Devlin et al., 2018; Galassi et al., 2020).

Attention mechanisms have achieved state-of-the-art performance in domains (e.g.,

computer vision (Khan et al., 2021)) where data are not temporal but spatial (Doso-

vitskiy et al., 2020; Wu et al., 2020) or even sets (Lee et al., 2019; Tang and Ha,

2021), also considering robotic settings (Choi et al., 2017; Zambaldi et al., 2018; Tang

et al., 2020). There is indeed evidence that the nervous system modulates attention

on every sensory channel (Driver, 2001). As a result, being attention an adaptive

weights mechanism, we argue it could supplant inter-module communication by com-

puting importance scores that are tailored to the specific voxel, while being local

(i.e., attending only to voxel-specific information) and shared (i.e., same parameters

for every voxel).

Let X ∈ R
r×u be a sequence of u inputs of dimension r5. In its general

formulation, an attention module computes an attention matrix A ∈ R
r×r, to get

weighted inputs:

Y = AX (4.6)

to be fed to a downstream module f(Y ) = z ∈ R for some desired output z.

While a great variety of attention mechanisms do exist in the literature (Chaud-

hari et al., 2021), we resort to self-attention (Vaswani et al., 2017). Self-attention is a

generalized form of attention and has already been shown to achieve state-of-the-art

results on continuous control tasks that exploit data other than temporal (Tang et al.,

5r denoted a robot in Section 4.1; with a slight abuse of notation, we repurpose it to be a
dimension.
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2020). Self-attention computes:

A = σ

(

1√
d
QKT

)

(4.7)

where d ∈ R, σ(·) is a non-linear function that constrains A to be in a given range

(e.g., tanh), Q,K ∈ R
r×d (known as the Query and Key matrices) are the output of

linear transformations of the form:

Q = XW q + bq (4.8)

K = XW k + bk (4.9)

where W q ∈ R
u×d, W k ∈ R

u×d are weight matrices, bq ∈ R
d, bk ∈ R

d are bias

vectors, and + denotes the matrix-vector addition (the vector is added to each row of

the matrix). We take the dot product between Q and K to compute compatibility

between two different representations of the inputs. The division in Equation (4.7)

appears because the dot product grows with the operand dimensions.

Self-attention in VSR controller We use the one-hot encoded sensor reading as

input X: then, r = 4 (number of sensor readings) and u = n (number of inputs, the

voxels). The attention matrix is A ∈ R
4×4: the attention is on the sensor readings

and A dimension does not depend on the robot morphology. For self-attention to

focus only on local information, we set on each i-th voxel W q = hiw
T
q and W k =

hiw
T
k , with hi defined as in Section 4.2.3.1: in this way, we extract the column of X

corresponding to the voxel. wq,wk ∈ R
d are evolvable vectors of parameters and are

the same for all the voxels. We summarize the building blocks of our architecture in

Figure 4.13.

After preliminary experiments, we set σ(·) to be tanh, d = 8, and f to be a

Multi-Layer Perceptron (MLP) with no hidden layers and tanh activation function

(to ensure the output lies in [−1,+1]). Moreover, given that we use tanh as non-

linearity in Equation (4.7), the entries of A lie in [−1,+1], +1 being the highest
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Figure 4.13: The architecture of our self-attention controller. Evolvable parameters
are shown in brown, the attention module is shown in yellow, and the downstream
module is shown in green. Parameters are the same for every voxel.
compatibility between two inputs and −1 the least. Finally, our model differs from

the original formulation of self-attention (Vaswani et al., 2017) in that we set Values

to be the identity function, since, after preliminary experiments, we found them to

be unnecessary.

In a self-attention model of this form, we optimize the parameters θ = [θattn θf ],

where the attention module parameters θattn are the concatenation of wq,wk, bq, bk,

and the downstream module parameters θf are the weights and biases of the down-

stream MLP. Then, θ is the genotype of our EA, which we detail in the next subsec-

tion.

4.2.3.3 Evolutionary algorithm

We perform optimization through EC; in particular, we resort to a GA (De Jong,

2006). Indeed, Risi and Stanley (2019) used GAs to effectively evolve complex neural

architectures consisting of heterogeneous modules, and Such et al. (2017b) proved

GAs to be competitive with state-of-the-art reinforcement learning algorithms.

We adopt the same GA of Section 3.3.5.2. After preliminary experiments

and exploiting our previous knowledge, we set npop = 100, ntour = 5, σmut = 0.35,

σ′
mut = 0.1, pmut = 0.2, and, unless otherwise specified, nevals = 30 000.
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4.2.4 Experiments

Our goal is to answer the following questions with an experimental analysis:

RQ1 Are VSRs evolved with self-attention effective at solving a loco-

motion task? If so, are they robust to environmental changes?

RQ2 Why does self-attention work?

We evaluate our method on two different VSR shapes, namely a 4×3 rectangle

with a 2 × 1 rectangle of missing voxels at the bottom-center, that we call biped

(same as Figure 2.2a), and a 7 × 2 rectangle with empty voxels at the odd x

positions in the bottom row, that we call comb . The dimension of X is hence

4× 10 for the biped shape and 4× 11 for the comb shape (the second operand in the

multiplication is the number of voxels); as a result, the self-attention controller has

|θ| = 73 parameters for biped (|θf | = 41 of the downstream MLP and |θattn| = 32

for the attention module) and 77 for comb (|θf | = 45 and |θattn| = 32).

For all the experiments, we considered the task of locomotion. The goal is to

travel as fast as possible on a terrain along the positive x direction, in a fixed amount

of simulated time tfinal. We use as fitness the average velocity vx of the center of mass

of the VSR during the simulation. We set tfinal = 30 s. As in Section 4.1, we consider

a hilly terrain, consisting of bumps that are randomly procedurally generated with an

average height of 1m and an average distance of 10m. We randomize the seed for the

procedural generation at every fitness evaluation and re-evaluate individuals retained

from the previous iteration, so that evolution does not unfairly favor individuals with

an “easy” terrain and to make adaptation more challenging.

We implemented the experimental setup in the Java programming language,

relying on JGEA6 for the evolutionary optimization and 2D-VSR-Sim (Medvet et al.,

6https://github.com/ericmedvet/jgea.
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2020b) for the simulation of VSRs. For the latter, we set ∆t = 1
60
s for the time

step, and all other parameters to default values (as a result, all voxels share the same

mechanical properties). After preliminary experiments, we set kact = 20 (i.e., one

actuation every ≈ 0.33 s). We made the code publicly available at https://github.

com/pigozzif/AttentionVSRs.

For each experiment, we performed 5 evolutionary runs by varying the random

seed for the EA. We remark that, for a given VSR and terrain, the simulations are

instead deterministic. We carried out all statistical tests with the Mann-Whitney U

rank test for independent samples.

4.2.4.1 Results

We present the results of our work.

RQ1: effectiveness and robustness with self-attention To verify the effec-

tiveness of evolved VSRs equipped with our self-attention model, we measure their

performance in two different cases: in the same conditions, they were evaluated dur-

ing the evolution and in slightly different environmental conditions aimed at testing

individual generalization abilities. In both cases, we use vx as the performance index:

in the former, it is the value of the fitness function itself, while in the latter it is the

average over 10 unseen hilly terrains, obtained with 10 different predefined random

seeds.

As a baseline, we compare the self-attention model (hereon Attention) with:

(a) a “communication-less” MLP (hereon MLP), that takes the same input as At-

tention;

(b) a “communication-based” MLP (hereon MLP-Comm), that takes as input the

local sensor readings and the 4 values generated by the four adjacent voxels (if

any, or zeros, otherwise) at the previous time step. Then, it outputs the local
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Figure 4.14: Median ± standard deviation (solid line and shaded area) of the average
velocity for the best individuals found during each evolutionary run, obtained with
three controller models and two shapes. Attention is never worse than the baselines.

actuation and the 4 values that will be used by the adjacent voxels at the next

time step. This model is the same as (Medvet et al., 2020a, 2021) and, by the

MP mechanism, is an instance of a communication-based controller.

Both models have the same architecture as the self-attention downstream MLP

(see Section 4.2.3.2): as a result, MLP has 41 parameters for biped and 45 for comb,

while MLP-Comm has 405 for biped and 440 for comb. MLP-Comm and MLP dif-

fer from Attention in that they do not employ an attention mechanism to obtain

importance scores for the inputs. For the optimization, we use the same EA of Sec-

tion 4.2.3.3.

We summarize the results in Figure 4.14, which plots vx in terms of median

± standard deviation for the best individuals throughout evolution. Moreover, Fig-

ure 4.15 shows vx for the best individuals over the re-assessment terrains. For the

same shape, it also reports the p-value for the statistical test against the null hypoth-

esis of equality between the medians.
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Figure 4.15: Distribution of the average velocity across 10 unseen hilly terrains for
the best individuals found during each evolutionary run, obtained with two controller
types and two shapes. Attention outperforms the baselines in terms of re-assessment.

From the figures, we find that Attention outperforms both baselines. The

curves of Figure 4.14 also suggest that all models settle on a plateau and that contin-

uing evolution would unlikely bring better results. Attention individuals also perform

better in terms of re-assessment: they achieve significantly better vx on unseen ter-

rains. Moreover, MLP-Comm outdoes a poor-performing MLP, as attested by the

low vx scores, especially for the biped shape. We visually inspected the evolved be-

haviors for the best individuals and found them to be highly adapted to a locomotion

task on hilly terrain; indeed, bipeds hop on their legs as equines do and combs prop-

agate leg movements from posterior to anterior as millipedes do. We made videos

available at https://softrobots.github.io7. With no communication, a “vanilla”

MLP controller fails; it does not enable communication-less VSRs. To reach a decent

performance, we must add an MP communication mechanism. Intuitively, the MP

mechanism is very important for emerging behavior to arise with an MLP-based con-

troller. Self-attention instead does enable truly communication-less VSRs: it performs

better or comparatively to both a communication-less and a communication-based

MLP. We believe the reason for this to be that self-attention is a form of adaptive

weights, tailoring importance scores to the inputs and, indirectly, to the particular

7Number 1 and number 2.
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(a) (b) (c) (d)

(e)

Figure 4.16: Time-lapse showing locomotion for a sample VSR and the corresponding
attention matrices. The color of each voxel encodes the ratio between its current area
and its rest area: red for < 1, yellow ≈ 1, green > 1; the circular sectors drawn
at the center of each voxel indicate the current sensor readings. The color of each
attention score tells the strength of the compatibility between inputs and provides an
interpretation of what is driving the behavior of the VSR.
voxel.

In addition to the evolved behaviors, we also visualized the attention matrices.

Indeed, interpretability is one of the major strengths of self-attention and allows

humans to get an insight into the robot’s inner decision mechanisms. To illustrate

that point, Figure 4.16 presents a locomotion time-lapse for a sample VSR: at each

time step, it displays the robot state in the top row and the corresponding attention

matrices in the bottom row; as happens with our distributed controller, there is

one such attention matrix for every voxel in the morphology. Columns and rows of

the attention matrices correspond to sensors, in particular: first for the touch sensor,

second and third for the x- and y-velocity sensors, and fourth for the area sensor. The

color of each attention score tells the strength of the compatibility between inputs

and provides an interpretation of what is driving the behavior of the VSR.
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From the visualization, we realize attention scores are consistent with humans’

intuition and common sense. From Figure 4.16a to Figure 4.16b, attention shifts from

the touch sensor of the rear leg to the touch sensor of the front leg. In Figure 4.16c, the

VSR stops at a hole in the terrain, and the attention matrix witnesses a radical shift

as a consequence. In Figure 4.16d and Figure 4.16e, the VSR starts walking again

by first focusing on the front leg, and then on the rear leg, initiating locomotion once

again. We found the other individuals to present similar attention patterns.

We conducted an ablation study to assess whether evolution found a trivial

solution for self-attention or not. Indeed, AL researchers are all aware of the many

uncanny and “creative” convergences that artificial evolution is capable of (Lehman

et al., 2020). In particular, we test whether the attention update over time is needed

or not, i.e., if there is a “one attention to rule them all” case. To this end, we conducted

the following procedure. Given an evolved VSR with Attention, we take a snapshot

of it at every second of the simulation, alongside its attention matrix at that time

step. For every such snapshot, we simulate it on a fixed unseen hilly terrain for 30 s

with the attention matrix frozen (i.e., it is the same as the one in the snapshot).

We repeated this procedure for the best individual of every evolutionary run. We

summarize the results in Figure 4.17 in terms of vx (median ± standard deviation),

with the time (in s) at which we took the corresponding snapshot on the x-axis.

We see that performance drops dramatically, meaning that self-attention is indeed a

fundamental piece in the architecture and that it is non-trivial.

Through that evidence, we can answer positively to RQ1: VSRs evolved with

self-attention can solve the task of locomotion and outperform an MLP baseline with-

out relying on inter-module communication, while being fairly able to generalize to

unseen terrains.

RQ2: why does self-attention work? We hypothesize the reasons for self-

attention effectiveness to be:

124



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Snapshot time [s]

v
x

Biped

0 5 10 15 20 25 30

Snapshot time [s]

Comb

Figure 4.17: Median ± standard deviation (solid line and shaded area) of the av-
erage velocity for the best individuals found during each evolutionary run, with the
attention matrix frozen at different time steps of the simulation (on x axis in s),
obtained with the two shapes. Self-attention evolves to be a necessary component of
the controller, and ablating it results in abysmal performance.

(a) self-attention evolves to represent an inductive bias, i.e., what tasks the con-

troller is naturally suited at tackling, and

(b) self-attention evolves to be an instinctive component (akin to reflexes in biol-

ogy), that complements decision-making with a fast time-scale of adaptation.

We first focus our attention on the inductive bias hypothesis. In the field of

machine learning, an “inductive bias” refers to the set of assumptions made by an

algorithm to generalize to novel and unseen data (Mitchell, 1980); in our case, data

refers to tasks. If self-attention evolved an inductive bias, as others did point out

(Zambaldi et al., 2018), it would represent features that are general for the task of

locomotion and are thus suitable for generalization.

To test the inductive bias hypothesis, we experiment with generalization to

unseen morphologies. Given the attention module θattn evolved on a specific mor-

phology, we wonder whether we can freeze it and use it as an off-the-shelf “feature

extractor” for a different morphology—as mentioned in Section 4.2.3.2, θattn dimen-

sion is agnostic concerning the morphology. If self-attention evolved an inductive
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bias, it would be useful to control the new morphology. In particular, for frozen self-

attention, we fine-tune the downstream module. The goal of fine-tuning is to have a

VSR that is effective and converges faster than evolving from scratch. If that were

the case, self-attention would be useful to quickly assemble new VSRs for a different

task, starting from pre-optimized components. This fine-tuning procedure is of crucial

importance since we expect one-shot generalization to fail as a consequence of the em-

bodied cognition paradigm (Pfeifer and Bongard, 2006; Shapiro, 2019), which posits a

deep entanglement between the morphology and the controller of an embodied agent.

For every best individual θ⋆ =
[

θ⋆
attn θ⋆

f

]

of an evolutionary run from the

experiments of Section 4.2.4.1, we freeze its attention module parameters θ⋆
attn and

fine-tune its downstream module parameters θ⋆
f using the same GA of Section 4.2.3.3

(i.e., mutation and crossover operate on θ⋆
f only), yet starting from a different initial

population. In detail, the initial population is composed of θ⋆ and npop − 1 muta-

tions of it, obtained by copying θ⋆
attn and re-initializing θf by sampling uniformly

[−1,+1]|θf |.

We conducted an experimental campaign of 5 evolutionary runs, lasting nevals =

20 000 fitness evaluations each, with one larger version of each of the two shapes

used in the previous experiments. We fine-tuned the best individual of every run as

explained above, freezing and transferring its attention module to the correspond-

ing smaller or larger morphology, i.e., from biped-small to biped-large , from

biped-large to biped-small, from comb-small to comb-large , and from

comb-large to comb-small. For fine-tuning, we set nevals = 10 000 fitness evaluations

as termination criterion, as our goal is to quickly adapt to a new task starting from

pre-optimized components (i.e., the attention module). We summarize the results in

Figure 4.18: for each morphology, we compare vx (in terms of median ± standard

deviation) for fine-tuning (Fine-tune) and from-scratch optimization (From-scratch).

For a fair comparison, we plot the results from From-scratch over 30 000 fitness eval-

uations, since every Fine-tune run is the outcome of evolution with 20 000 fitness

evaluations plus fine-tuning with 10 000.
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Figure 4.18: Median ± standard deviation (line and shaded area) of the average
velocity for the best individuals found during each evolutionary run, with two con-
troller types (color), with optimization from scratch (dashed line) or fine-tuning pre-
optimized attention (solid line) on a different morphology. Attention evolves an in-
ductive bias that, generally, represents invariant features for the locomotion task.
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From Figure 4.18, we see that Fine-tune succeeds in converging much faster.

Moreover, the curves suggest that Fine-tune would benefit from a longer re-optimization;

however, we remark that the goal of this study is not to reach the best perfor-

mance, but to converge cheaply. We visually inspected the behaviors of the Fine-

tune individuals and found them to be adapted for a locomotion task and consis-

tent with the behaviors observed in Section 4.2.4.1. We made videos available at

https://softrobots.github.io for the best Fine-tune individuals8.

We conclude that it is often possible to re-use an evolved attention module

for a smaller or larger morphology, after a fine-tuning stage. That result is hopeful

in the context of future autonomous robotic ecosystems: we expect new robots to

be assembled from pre-optimized components, so that they are, at the same time,

proficient at new tasks and computationally cheaper than optimizing from scratch.

We believe the result is relevant, as, to date, (Kriegman et al., 2021) is the only

other work addressing generalization to different soft robot morphologies through EC.

Albeit ground-breaking, Kriegman et al. (2021) achieved generalization by computing

the fitness function over three different morphologies at every evaluation, which might

not be feasible in a fully autonomous setting. We achieve generalization with no

penalty during evolution, at the cost of introducing a fine-tuning stage. Finally,

we remark it could be argued that other works, e.g., (Wang et al., 2018; Pathak

et al., 2019; Huang et al., 2020), achieved generalization to unseen morphologies

via techniques more sample-efficient than EC, most notably Reinforcement Learning

(RL). While those advances are indeed noteworthy, there are reasons to use EC in the

first place: empirically, we find that RL algorithms are notoriously more unstable than

evolution; indeed, there is a recent body of literature that shows how even simple EAs

can achieve performance competitive to state-of-the-art RL systems (Salimans et al.,

2017; Such et al., 2017b; Risi and Stanley, 2019), at the benefit of less complexity

and less sensitivity to hyperparameters.

8Numbers 3, 4, 5, and 6.
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It is worth noting that evolution and learning can complement each other

very effectively (Eiben and Hart, 2020b). For example, in evolutionary robotics,

learning augments evolution by allowing newborn controllers to adapt more quickly

to their bodies (Gupta et al., 2021; Luo et al., 2021). Self-attention is not a form

of learning: in particular, there is no memory or state, as every attention matrix

is computed just from current observations. We argue that self-attention evolves to

have an instantaneous time-scale of adaptation; similarly to reflexes, it immediately

reacts to sensory perceptions. Under this light, self-attention belongs to the “System

1” mode of thought: as put forward in the seminal work of Kahneman (2011), System

1 thinking is fast, instinctive, and emotional. System 1 then exists at the level of

the subconscious. That hypothesis is in line with the nature of attention in biology

(Cohen and Rafal, 1991; Treisman et al., 1992).

To validate that hypothesis, we experiment by slowing down the dynamics of

attention. In particular, given the attention matrix A as defined in Equation (4.7),

that depends only on current input, we define the matrix A′(k) as:

A′(k) =

{

αA+ ηA′(k−1) if k > 0

A if k = 0
(4.10)

where α, η ∈ [0, 1]. α acts as a learning rate, weighting the current attention, while

η acts as a forget rate, weighting the attention compounded from the previous time

steps. In the following, we substitute A with A′(k) in Equation (4.6), i.e., A′(k) is the

effective attention matrix at time step k, i.e., at time t = k∆t. As a side note, if we

enforce α+ η = 1, Equation (4.10) resembles the “associative weights” memory of Ba

et al. (2016).

In the following, we evolve α and η as part of the genotype. To enforce

α, η ∈ [0, 1], when mapping a genotype θ into a robot phenotype, we set both to

be the absolute value clipped at 1 of the corresponding genes. In doing so, we let

evolution discover what is the fittest value for α and η and, as a result, what is the

optimal balance between current information and past information in self-attention.

In a certain sense, we are “meta-evolving” self-attention.
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Figure 4.19: Median ± standard deviation (solid line and shaded area) of the α and η
values of Equation (4.10) for the best individuals found during each evolutionary run,
obtained with two shapes. Self-attention evolves to quickly forget past information
and attend to the present.

With those settings, we conducted an experimental campaign of 5 evolutionary

runs with the shapes of Section 4.2.4.1. We found the resulting best individuals to be

not significantly different from those evolved previously, in terms of effectiveness and

qualitative analysis of self-attention, so we simply show in Figure 4.19 the evolution of

α and η. We notice a clear trend: α evolves to be 1, while η evolves to come closer to

0. In other words, self-attention evolves to keep all the present information and retain

little from the past. Those results mostly confirm our hypothesis that evolution leads

self-attention to have an instantaneous time-scale of adaptation, akin to an instinct.

Through those tests, we can answer to RQ2: self-attention works because it

evolves to represent an inductive bias that is useful for generalization; at the same

time, self-attention evolves to be an instinctive adaptation mechanism, allowing the

controller to react quickly to changes in the inputs.
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4.2.5 Conclusion

In the path toward autonomous robotic ecosystems, full exploitation of modu-

larity remains a roadblock (Yim et al., 2007). Minimizing the need for communication

among robot modules would greatly facilitate the disassembly of robots in components

and their reassembly in different forms, to cope, e.g., with different tasks.

Considering the case of VSRs, that, a priori, enjoy a high degree of modularity

(in both bodies and brains), those points are precisely what the chapter demonstrates:

(i) We can evolve controllers that dispense with inter-module communication for a

locomotion task on hilly terrains;

(ii) We can achieve generalization to unseen morphologies, after a short fine-tuning

with evolution.

To do so, we employ a local self-attention mechanism—a form of adaptive weights—to

let every voxel adapt to its local perceptions and optimize the controller parameters

(which are the same for all the voxels) with EC. On the other side, an MLP baseline

is not proficient in the same task. We also observe that self-attention evolves to be

an instinctive adaptation mechanism, allowing the controller to quickly react to input

changes.

Yet, it is unclear how our results extend beyond the scope of modular soft

robots, including modular rigid robots. Future work will develop on these ideas to

investigate how critical the soft body dynamics are in supporting full controller mod-

ularity, and how to leverage self-attention to evolve communication patterns tailored

to different voxels.
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Chapter 5: Spatial and Time Scales of Collective

Intelligence

No work to date considers the case of modules that, by their local informa-

tion only, must reason about the global properties of the collective; in other words,

the spatial scale of CI. Indeed, a vital component of intelligent action is affordance

detection: understanding what actions external objects afford the agent. Affordance

detection is relevant to improve the reliable and safe action of robots in the world.

In Section 5.1, we find that a robot with an appropriate morphology can evolve to

predict whether it will fit through an aperture with just minimal tactile feedback.

We also find that some robot morphologies facilitate the evolution of more accurate

affordance detection, while others do not.

The time scale of CI is also important. Indeed, that is how nature shaped

animal life on Earth: animals are endowed with bodies sculpted by evolution and

learn throughout a lifetime. Still, learning the controllers of robots while evolving

their morphologies is a complex endeavor in robotics; one issue is the choice of genetic

encoding for the morphology. Such a choice can be crucial for the effectiveness of

learning, i.e., how fast and to what degree agents adapt, through learning, during their

lives. In Section 5.2, we evolve the morphologies of VSRs with two different encodings,

direct and indirect while learning the controllers with reinforcement learning. We

experiment with three tasks, ranging from cave crawling to beam toppling, and study

how the encoding influences the learning outcome. Our results show that the direct

encoding corresponds to an increased ability to learn, mostly in terms of learning

speed. The same is not always true for the indirect one. We link these results to

different shades of the Baldwin effect, consisting of morphologies being selected for

increasing an agent’s ability to learn during its lifetime.

In addition, we hypothesize that learning, since it operates at a faster time

scale than evolution, can help in generalizing to unseen environmental conditions.
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According to Hebbian theory, synaptic plasticity is the ability of neurons to strengthen

or weaken the synapses among them in response to stimuli. It plays a fundamental

role in the processes of learning and memory of biological neural networks. With

plasticity, biological agents can adapt on multiple time scales and outclass artificial

agents, the majority of which still rely on static ANN controllers. In Section 5.3, we

propose a Hebbian ANN controller for VSRs where every synapse is associated with a

Hebbian rule that controls the way the weight is adapted during the VSR lifetime. For

a given task and morphology, we evolve the controller for the task of locomotion the

parameters of the Hebbian rules, rather than the weights. Our results show that the

Hebbian controller is more adaptable to unseen environmental conditions (in the form

of damage). We also provide novel insights into the inner workings of plasticity and

demonstrate that “true” learning does take place, as the evolved controllers improve

over the lifetime and generalize well.

5.1 Morphology choice affects the evolution of affordance de-
tection in robots

In this chapter, we answer to question 3.

5.1.1 Introduction and related works

A vital component of cognition is affordance detection (Gibson, 1977): un-

derstanding what actions external objects afford the viewer (i.e., the agent). These

include the viewer’s body, its surrounding environment, and how these can poten-

tially interact. If we were to deploy robots in hazardous and exotic environments

(Hale et al., 2019a; Nitschke and Howard, 2021), we would need to endow such robots

with a sense of what their bodies and environments afford them for their safe action.

Consider the case of a robot that must pass through an aperture: not every aperture

is passable for every robot body, and attempting to pass through an impassable aper-

ture would be disastrous for the robot itself and the agents interacting with it. Thus,
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Figure 5.1: Our robots (here, a starfish-shaped robot) predict their affordances (such
as the passability of an aperture given their bodies) and take appropriate actions
(attempt to pass through passable apertures). For the sake of the former, voxels
vote (based on their local sensor readings) for impassability (red color) or passability
(blue color). We evolve robots that can discriminate between passable and impassable
apertures while moving in the correct direction (on the other side of the aperture if
it is passable, in front of the aperture if it is impassable).
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we want robots that behave according to correct predictions of affordances projected

by objects in their environment.

Natural agents evolved the innate ability to detect affordances (Stoffregen,

2018). Indeed, neuroscience has argued that no cognition is otherwise possible without

understanding the interactions between one’s body and the environment (Limanowski

and Blankenburg, 2013; Kiverstein and Sims, 2021). Not surprisingly, researchers

have striven to endow artificial agents with the same ability. Different communities

developed different concepts and terminologies: self-modeling in robotics (Bongard

et al., 2006; Cully et al., 2015; Chen et al., 2022), world models (Ha and Schmidhuber,

2018) in machine learning, intrinsic motivation (Oudeyer et al., 2007), empowerment

(Klyubin et al., 2005) and information-driven measures (Martius et al., 2013) in the

cognitive sciences. More specifically, Slocum et al. (2000), extending the work of (Beer

et al., 1996) on the simplest behavior that raises issues of genuine cognitive interest,

evolved robots to detect affordances by visually deciding which openings their bodies

could and could not fit through.

Still, whether and how morphology affects a robot’s ability to detect affor-

dances is yet an unexplored issue, despite the embodied cognition paradigm (Pfeifer

and Bongard, 2006), positing a deep entanglement between the brain, the body, and

the environment, suggests that morphology can facilitate or obstruct the ability to

evolve a behavior for an animal or robot.

Here, we set out to study morphology choice in the evolution of affordance

detection and consider VSRs. Given that the interactions between a soft robot’s body

and its environment are hard to predict (Rus and Tolley, 2015), affordance detection is

likely to be more arduous for soft robots. These robots, equipped with minimal tactile

feedback, decide whether or not their bodies can fit through an aperture, and, if so,

then attempt to pass through it. We experiment with three morphologies and evolve

the parameters of their closed-loop controllers since EAs allow for the exploration of

search spaces unencumbered by a priori assumptions.
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We show experimentally that the choice of morphology plays a key role: some

morphologies facilitate the evolution of affordance detection, while others do not.

In particular, simpler morphologies may be less suitable for detecting affordances.

Looking forward, we envision that the joint optimization of morphology and control

may facilitate the evolution of affordance detection in robots and thus improve their

reliable and safe action in the world.

5.1.2 Embodied agent model

Soft robots have several advantages over rigid robots, such as deforming their

bodies (Shah et al., 2021b) for, e.g., squeezing through tight spaces (Cheney et al.,

2015) or underwater locomotion (Corucci et al., 2018). However, the interactions

between a soft robot’s body and its environment are more complex and harder for

the robot to predict (Rus and Tolley, 2015). For example, a soft robot may be able

to deform itself to fit through a narrow aperture but not be able to determine what

that deformation is. For this reason, we herein investigate the evolution of soft robot

affordance detection, as it is likely to be more difficult compared to rigid robots.

5.1.2.1 Mechanical model: the Voxcraft simulator

We simulate VSRs and their environment using the Voxcraft soft-body physics

engine (Liu et al., 2020), the GPU-accelerated version of Voxelyze (Hiller and Lipson,

2014). Contrary to what was seen in previous chapters, this simulator is a 3D one.

Voxcraft simulates each voxel as a point mass connected to up to six neighboring

point masses with Euler-Bernoulli beams. Every voxel has a specific temperature

that, at time step k, changes according to:

∆T = αak (5.1)

where α ∈ R is a fixed amplitude across the robot and ak ∈ R is the temperature

change (actuation) output by the controller embedded in the voxel. A beam, in turn,

sets its resting length to the average of the current temperatures of the two voxels it
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Figure 5.2: A snapshot from the Voxcraft simulator. Red voxels are active voxels
(i.e., actuators), while black voxels are immovable and do not actuate.
connects: the higher the two temperatures, the more the beam stretches, the lower the

two temperatures, the more the beam contracts. The robot’s environment contains

objects constructed from voxels with unvarying temperatures (Figure 5.2).

Following Kriegman et al. (2021), we set α = 14.4714 and simulate materials

of 10 kg ·m−3 density, Young’s modulus of 104Pa, Poisson’s ratio of 0.5, coefficient

of static friction of 1, and coefficient of dynamic friction of 0.5. Each voxel is 0.01m

in length.

5.1.2.2 Sensing

We equip the voxels with touch, floor, and velocity sensors, and a central

pattern generator. Touch and velocity sensors are as described in Chapter 2. Floor

sensors perceive whether the voxel is touching the floor or not and return 1 if yes,

and −1 if not. Finally, a central pattern generator—relevant to animal and robotic

locomotion alike (Ijspeert, 2008)—inputs the value of sin(−2πk) at time step k. Each

voxel thus has 5 sensors.

5.1.2.3 Controller

We formulate the controller architecture to enable the robot to predict affor-

dances (such as the passability of an aperture) and take appropriate actions (attempt

to pass through passable apertures) by local processing of sensed interactions between

its voxels and external objects.

We do so by beginning with the distributed controller described in Chapter 2,
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consisting of ANNs (a closed-loop system), one for every voxel. We adopt the “homo-

geneous” variant presented in (Medvet et al., 2021), where the neural networks share

the same parameters: because of the more compact search space, such homogeneous

representation is comparable to one where parameters are different for every voxel.

Moreover, as seen in Pigozzi et al. (2022), parameter sharing makes the controller ar-

chitecture agnostic for the morphology: the number of input and output neurons and,

thus, the number of parameters does not depend on the arrangement and number of

voxels in the morphology.

There are 17 input and 2 output neurons (Figure 5.3). At time step k, every

neural network outputs ak ∈ [−1, 1] and vk ∈ [−1, 1], a vote that is a confidence

score of the voxel on what the affordance is at the robot level, according to its local

observation.

Every neural network takes as input its local observation xk ∈ R
17: the 5 sensor

values described in Section 5.1.2.2, but also, to introduce a form of communication

among the voxels, in the ak−1 outputs from its six adjacent neighbors of the previous

time step and the vk−1 outputs from its six adjacent neighbors of the previous time

step. If a neighbor is absent, we set those inputs to 0.

In preliminary experiments, we found that memory helped the evolution of

successful behaviors. So, in the reported experiments, we implement each neural net-

work as an Elman network, the simplest instance of stateful neural network (Elman,

1990):

hk = σ(W xxk +W hhk−1 + bh) (5.2)

yk = σ(W yhk + by) (5.3)

where hk ∈ R
nmem is a memory vector and σ(·) is an element-wise activation function.

An Elman network is a three-layer neural network with a recurrence in the second

layer. The first layer has one input neuron for every input; the second layer (Equa-

tion (5.2)) computes a non-linear combination of the inputs and the memory of the

138



Figure 5.3: The architecture of the Elman network. There is one such network
embedded within every voxel. We list the outputs on top and the inputs to the left:
these include the vote and the actuation of the six adjacent neighboring voxels of the
previous time steps.
previous time step hk−1 to output hk, which it then feeds to the third layer (Equa-

tion (5.3)) for the final output. hk then becomes the memory vector for the next time

step and the network unfolds over time, hence its recurrent nature. W x ∈ R
nmem×17,

W h ∈ R
nmem×nmem , bh ∈ R

nmem , W y ∈ R
2×nmem , and by ∈ R

2 are the evolvable pa-

rameters of the network. We summarize the architecture of our Elman network in

Figure 5.3.

After preliminary experiments, we set nmem = 6, h0 = 0, and tanh as activa-

tion function (to ensure the output lies in [−1, 1]).

We optimize a robot for a task by optimizing the vector θ = [W x W h bh W y by] ∈
R

p of parameters that specify every neural network in the robot. For our setting,

p = 158.

Voting mechanism. At every time step k, the robot performs affordance detection

by predicting whether the aperture in front of it is passable or not. It does so as

follows.
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(a) If voxel i’s vote vi,k is greater than 0, this denotes the voxel predicting that the

aperture is passable, and we set vi,k to 1. Otherwise, we set vi,k to 0, denoting

a prediction that the aperture is impassable;

(b) We compute the majority vote across all voxels and store it in vk. If there is a

split vote, we set vk to 1.

5.1.3 Experimental procedure

Our goal is to answer the following research questions:

RQ1 Can affordance detection be evolved for soft robots?

RQ2 If yes, do some robot morphologies allow for the evolution of more

accurate affordance detection than others?

To this end, we evolved three different robot morphologies to perceive whether

an aperture is passable and whether they take the appropriate action based on this

conclusion (Section 5.1.3.2).

5.1.3.1 Robots

We experimented with three different robot shapes: a 5 × 5 square of voxels

(the “flatworm”) , a 9 × 9 four-legged “starfish” , and a 6 × 6 “gecko” .

The controller inputs, outputs, and parameters are the same for all voxels in all three

shapes. The three shapes entail different morphologies: the flatworm has no salient

features on its body, the starfish has four limbs, while the gecko has many protrusions

that it can potentially use as hooks (hence the name, because geckos climb on trees

through tiny hooks on their finger palms).
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Figure 5.4: The robot, with body length lbody voxels, faces three different environ-
ments. In the first, it must detect that the aperture is impassable, and avoid at-
tempting to move through it: it should minimize its distance from the green point at
the end of the simulation. In the second and third environments, the robot should
detect that the aperture is passable, pass through it, and minimize its distance from
the blue point at the end of the simulation.
5.1.3.2 Task

We initially place the robot in front of an aperture formed by two walls (Fig-

ure 5.4). We evaluate the robot multiple times in the presence of apertures of differing

widths and positions. The robot’s task is to move to a target position on the far side

of the aperture if it judges it passable, and to a target position before the aperture

(but not at) if it judges it impassable. We build the walls with voxels having the

same material properties as the robot. We design the task such that the decision to

navigate the aperture or not is dependent on the aperture width and the robot’s body

length.

If we evaluated each θ in one environment with a passable aperture and another

with an impassable one, the robot could evolve degenerate behaviors rather than
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affordance detection. For example, the robot could evolve to reach out toward just

one of the two walls. Since the wall would be at a different relative position from

the robot in the two environments, different parts of the robot would collide with the

wall in the two environments. The robot could evolve the ability to predict whether

the aperture is passable just from this information, but fail to generalize to new

environments. So, we evaluated each θ in three environments as shown in Figure 5.4.

For a robot with a body length lbody voxels long, we set the two walls lbody

voxels in front of the robot’s most anterior voxel. In the first environment, we set the

aperture width to 1 voxel, making it impassable, and center it in front of the robot.

In the second environment, we set the aperture width to lbody − 1 voxels, making

it passable, because the robot can move and deform itself. To minimize the search

space, we offset the aperture to the left by ⌈lbody/2⌉ voxels. The third environment

is the same as the second except that we offset the aperture ⌈lbody/2⌉ voxels to the

right.

5.1.3.3 Fitness functions

As we wish to evolve robots that attempt to pass through passable apertures,

and also explicitly predict whether apertures are passable or not, we must formu-

late two separate fitness objectives. We thus introduce a bi-objective evolutionary

optimization problem with a “locomotion” fitness objective floc and an “affordance

detection” fitness objective faff.

For the i-th of the three environments, we measure the distance di of the

robot’s center of mass from the relevant target position at the end of the simulation.

Given that our EA requires bounded objective values (see Section 5.1.3.4), we set

di = dmax if di > dmax. After preliminary experiments, we found dmax = 5 to be

sufficient. Then, di ∈ [0, 5].
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For the i-th of the three environments, we also measure:

acci = 1− 1

tfinal

tfinal
∑

k=tcontact

|vk − gi| (5.4)

where tfinal is the total number of time steps in the simulation, tcontact is the time

step at which the robot first touches the walls, vk is the robot’s prediction about the

aperture’s passability (see Section 5.1.2.3), and gi ∈ {0, 1} is the ground truth for the

i-th environment (0 for impassable and 1 for passable) and is available only to the

fitness function, not the robot. The summation on the right of Equation (5.4) counts

the number of time steps that the robot’s majority vote (see Section 5.1.2.3) differs

from the ground truth. Thus, Equation (5.4) is the accuracy for the binary classi-

fication problem of discriminating between passable and impassable environments.

Then, acci ∈ [0, 1]. Given that we equip the robot with minimal tactile sensors (see

Section 5.1.2.2), no vote on the passability of an aperture is meaningful without first

touching it. With this in mind, we start counting votes only after the robot has per-

ceived its first contact with the walls at tcontact; in this way, dividing by tfinal indirectly

rewards the individuals for approaching the walls as soon as possible. If the robot

never touches the walls, we set acci = 0.

After evaluating the robot in all three environments, we set floc and faff to the

worst of the robot’s three actions and the worst of its three attempts at affordance

detection, respectively:

floc = max
i=1,2,3

di (5.5)

faff = min
i=1,2,3

ai (5.6)

to reward robustness across all environments.

Finally, we found some individuals achieved high fitness while ignoring the

aperture by crashing into the walls to climb over them, or by circumventing the walls

altogether. To punish these exploitative behaviors, we assigned the worst possible

fitness values (i.e., di = 5 and acci = 0) to any individual that, at any time step, has
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more than half of its voxels outside of the bounding volume of the environment. The

bounding volume of the environment is 3lbody voxels wide,
⌈

lbody

3

⌉

+1 voxels tall, and

5lbody voxels deep.

5.1.3.4 Evolutionary algorithm

EAs are effective multi-objective optimizers (Zhou et al., 2011) and have

proved competitive on continuous control tasks (Such et al., 2017b; Risi and Stanley,

2019). We employed the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

(Deb et al., 2002), an established bi-objective EA. NSGA-II evolves a population of

individuals by iterations according to a µ+ λ generational model. We initialize indi-

viduals at the very first iteration by uniform sampling from the interval [−1, 1]p. At

each iteration, NSGA-II sorts the population into Pareto shells according to the two

objectives floc and faff. As the genetic operator, we used Gaussian mutation of mean

0 ∈ R
p and step-size σmut; as the selection operator, we used crowded tournament

selection of size ntour. We iterate until nevals fitness evaluations have been computed.

The output of the above procedure is a set of Pareto-optimal individuals,

namely, those belonging to the first Pareto shell: of these, we label as “specialists”

those that are the best in one particular objective. We then have two specialist

individuals θ∗

loc
and θ∗

aff
according to our two objectives floc and faff. We are also

interested in individuals who perform well for both objectives. Then, we label as

“knee” the individual that is the closest (in the fitness space) to the center of the

bounding box of the first Pareto shell. We then have one knee individual θk. After

preliminary experiments and relying on our experience, we set µ = λ = 50, σmut =

0.35, ntour = 5, and nevals = 10 000 (corresponding to 200 iterations).

5.1.3.5 Experimental settings

For every experiment in this work, we performed 10 evolutionary runs by

varying the random seed for the EA. We performed all statistical tests with the
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Mann-Whitney U rank test for independent samples. As a soft-body physics en-

gine, we employed Voxcraft (Liu et al., 2020), written in C++ and CUDA, and

we developed a Python wrapper for the evolutionary optimization. Simulation fre-

quency is 200Hz and we set each simulation to 50 s of simulated time, for a total of

tfinal = 10 000 time steps. All simulations are deterministic for a given random seed

and controller. The code is publicly available at https://github.com/pigozzif/

Voxcraft-python.git.

5.1.4 Results

In the following, we provide results for both research questions.

5.1.4.1 RQ1: can affordance detection be evolved for soft robots?

Before delving into whether and how morphology affects a robot’s ability to

detect affordances, we first verify if we can evolve affordance detection in soft robots.

To test this question, we conducted quantitative analysis by comparing the behaviors

of robots controlled by random or evolved controllers, and qualitative analysis by

inspecting their behaviors. For this question, we only considered the starfish robot.

5.1.4.2 Quantitative analysis.

As performance indexes, we measure the fitness values for the specialist indi-

viduals, namely f ∗
loc for θ∗

loc and f ∗
aff for θ∗

aff, but also, the fitness values for the knee

individual, namely fk
loc and fk

aff for θk.

As baselines, we compare our methodology with random controllers. After

preliminary experiments, we found controllers that were random in both the outputs

(actuation and affordance detection) to perform very poorly: the vast majority of

them failed to touch the walls and perform any affordance detection at all. Thus,

for a fairer comparison, we devised two controls, one for every fitness function: one

control where we randomize the controller output for actuation and one control where
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we randomize the controller output for affordance detection. We optimize the two

controls using the same EA of Section 5.1.3.4 and compare them with evolution where

neither of the outputs is randomized (i.e., our approach). As a result, we have three

different treatments:

EvolvedBoth: our approach, where neither of the outputs is randomized;

EvolvedAffordance: at every time step and for every voxel of every individual, we

discard the output at controlling temperature change (and, thus, locomotion)

and substitute it with a random number in [−1, 1];

EvolvedLocomotion: at every time step and for every voxel of every individual,

we discard the output vt voting for affordance and substitute it with a random

number in [−1, 1].

We remark that all three have the same controller architecture and thus the

same size of the search space.

We summarize the results in Figure 5.5, which plots floc and faff in terms of

median ± standard deviation throughout evolution, for the specialists and the knee

individuals. Moreover, we compare in Figure 5.6 the Pareto shells at the beginning,

the halfway, and the end of evolution for three exemplar runs of the BothEvolved

treatment. The utopia point (the one optimizing both objectives) sits in the upper-

left corner.

Our EvolvedBoth treatment evolves affordance detection specialists that are

better at affordance detection than random controllers, and locomotion specialists

that are better at locomotion than random controllers. The picture is similar if we

look at the knee individuals. The lines of Figure 5.5 also suggest that all treatments

settle on a plateau and that more evolution would unlikely occur.

From Figure 5.5, we spot different patterns for the two fitness functions. fo-

cusing on the affordance detection fitness (lower side of Figure 5.5), the BothEvolved
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Figure 5.5: Median ± standard deviation (solid line and shaded area) for the two
fitness values for the 10 specialist individuals and 10 knee individuals drawn from
the 10 evolutionary runs, obtained with one experimental (EvolvedBoth) and two
control (EvolvedAffordance and EvolvedLocomotion) treatments. The blue line on
the upper plot is well above the upper bound and would have skewed the other lines.
For the locomotion objective, specialists and knees mostly coincide. Our EvolvedBoth
treatment evolves affordance detection significantly better than the two controls.
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Figure 5.6: Pareto shells at different iterations (corresponding to the start, the
halfway, and the end of evolution) for three exemplar evolutionary runs of the Both-
Evolved treatment. The utopia point (the one optimizing both fitness functions) sits
in the upper-left corner. As evolution progresses, Pareto shells approach the utopia
point more and more.
treatment outclasses the two controls in terms of detection accuracy: by the end

of evolution, its specialist individuals can, on average, correctly detect whether the

aperture is passable or not at least 76.26% of the time steps. That is significantly

better than what the EvolvedLocomotion treatment evolves (p < 0.0001). If we look

at the knee individuals, the affordance detection fitness is lower, but the p-value is

still significant if we compare them with the EvolvedLocomotion treatment. Thus,

evolution can find individuals that detect affordances significantly better than random

controllers (the EvolvedAffordance line is stuck at the bottom because its specialists

are unable to even reach the walls) and that, to some extent, are effective in both

objectives.

Looking at the locomotion fitness (upper side of Figure 5.5), both the Evolved-

Both and the EvolvedLocomotion treatments evolve effective individuals (p-value not

significant): they take less than 2000 fitness evaluations to evolve the behavior of

reaching the target. Moreover, performance is similar for specialists and knee indi-

viduals. We do not show the EvolvedAffordance line (the blue line) as it would be

stuck at such a high value to skew the remaining lines. We visually inspected the be-

haviors evolved by EvolvedAffordance and, not surprisingly, found them to drift away

over the floor until well exceeding the dmax upper bound we set in Section 5.1.3.3.

Thus, we have to evolve also the locomotion behavior.
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From Figure 5.6, we conclude that evolution is indeed taking place in our

EvolvedBoth treatment: as evolution progresses, individuals in the Pareto shell from

early during the evolutionary process are dominated by individuals in later Pareto

shells.

5.1.4.3 Qualitative analysis.

We analyze the evolved behaviors both in terms of locomotion and in terms

of affordance detection.

For locomotion, an individual shows successful behavior if it reaches the target

position and, in passable environments, correctly passes through the aperture in the

walls.

We plot a top-view for the positions at the end of a simulation for 5 of the

specialist individuals θ∗
loc in Figure 5.7: for the same individual, we then have a red

point for the impassable environment, a blue point for the environment passable to

the left, and a green point for the environment passable to the right. Moreover, the

dashed lines stand for the position of the walls.

From the figure, we conclude that effective locomotion behavior did indeed

evolve. Moreover, knee individuals behave nearly the same as specialists. After visual

inspection, not only we found them to dodge the walls and slip in the aperture, but

also to eventually bend their trajectories to come as close as possible to the target.

With the exception of one run, which resulted in a specialist that does not reach the

target but passes through the aperture and drifts away, most of them reach and touch

the target.

Our robots rely on minimal tactile feedback for sensing their environment.

Then, an individual shows successful affordance detection behavior if a majority of

the voxels not only stand for the correct vote even if only a few of them are sensing

the walls but also if they retain the correct vote over time, possibly even after losing

contact with the walls. Our distributed controller, having one neural network embed-
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Figure 5.7: Top-view of the final positions of 5 among the locomotion specialists
at the end of the simulation. The dashed lines stand for the position of the walls.
In passable environments, the specialists evolve to eventually reach the target. In
impassable environments, the robots stay on the near side of the walls: most of the
red points overlap.
ded inside each voxel, allows us to observe in real time how voting shifts over time

across the voxels.

We visually inspected the behaviors of the specialist individuals θ∗
aff and depict

the time-lapse for an exemplar specialist in Figure 5.8 and include more at https://

affordancesoftrobots.github.io/affordancesoftrobots/. Red voxels vote for

impassability, whereas blue voxels vote for passability. In addition, we border a voxel

in yellow if its touch sensor is firing (i.e., it is contacting a wall). Frame 1 corresponds

to the snapshot at the first time step and we take the others at regular intervals of

1500 time steps (approximately 7.5 s of simulated time).

We found the behaviors of the vast majority of specialist and knee individuals

to consist of the same voting pattern. Those robots evolved to vote for passability by

default and to switch to impassibility after detecting the pattern of sensory signals

corresponding to the impassable environment, or vice versa.

Referring to Figure 5.8, this successful voting pattern unfolds as follows:
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(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4
Impassable Passable

Figure 5.8: Time-lapse for the voting of an exemplar specialist in the impassable
environment. Voxels bordered in yellow are in contact with the walls at that time.
Frame 1 corresponds to the snapshot at the first time step and we take the others at
regular intervals of 1500 time steps (approximately 7.5 s of simulated time). Frame 1:
when receiving no tactile feedback, the robot votes for passability. Frame 2: the robot
contacts the wall and the tip’s touch sensor sends feedback. Frame 3: the correct vote
propagates from the tip to the rest of the body. Frame 4: a majority of the voxels
retain the correct vote even after the robot loses contact with the wall.
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Frame 1: At the beginning, starting apart from the walls, the robot receives no tac-

tile feedback from its environment. At this point, individuals do not necessarily

cast the correct vote (blue color in Figure 5.8). The robot moves forward.

Frame 2: Once the robot contacts the walls with its arm, the touch sensor located

on the tip starts firing and sends its feedback to the neural network embedded

in the tip voxel.

Frame 3: After a short “burn-in” period has elapsed, where voting happens ran-

domly, we see the correct vote (the red color in Figure 5.8) propagate from the

tip voxels to the rest of the body until flipping the majority towards the correct

vote.

Frame 4: Crucially, a majority of the voxels retain the correct vote even after the

touch sensor at the tip stops firing.

Through that evidence, we can answer positively to RQ1: we can evolve soft

robots with the ability to detect their affordances.

5.1.4.4 RQ2: do some robot morphologies allow for the evolution of more
accurate affordance detection than others?

To investigate whether and how morphology affects the evolution of affordance

detection, we performed 10 additional evolutionary runs for each of the two additional

morphologies: the “flatworm” and the “gecko” (see Section 5.1.3.1). We analyze and

compare the results with different morphologies both quantitatively and qualitatively

using the same methodology of Section 5.1.4.1. By the distributed controller, all three

morphologies entail the same size of the search space, since the controller architecture

does not depend on the number of inputs and outputs, as well as the number and

arrangement of voxels.

We summarize the results in Figure 5.9, which plots floc and faff in terms of

median ± standard deviation throughout evolution, for both the specialist and the
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knee individuals.

5.1.4.5 Affordance detection.

For facc, the three morphologies differ both in terms of efficiency (i.e., speed of

convergence) and in terms of performance of the final specialist and knee individuals.

On one side, geckos quickly converge to a very high fitness value, to the point of

outclassing the starfishes; on the other side, the f ∗
acc for flatworms plateaus at around

50%: this is not statistically different from mean f ∗
acc obtained by random controllers.

Starfishes evolved facc values between those of flatworms and geckos. We found the

p-values to be significant among different morphologies for both specialists and knee

individuals. Finally, we repeated the same EvolvedLocomotion control experiments

of Section 5.1.4.4 for the gecko and flatworm morphologies: geckos are statistically

better than their random counterparts on facc, while the same is not true for the

flatworms (p-value not significant).

These results suggest that robots with more complex morphologies (e.g., the

gecko), where we define complexity simply by the number of parts comprising the

robot, might evolve more accurate affordance detection than those with simpler mor-

phologies (e.g., the flatworm). To gain deeper insights into this intuition, we visually

inspected the evolved behaviors. We found geckos to exhibit voting patterns similar

to those discussed for the starfishes in Section 5.1.4.1: one or a few tips perceive the

wall in front of them, propagate the correct vote across the body which retains it

even in case the tips lose contact with the walls. Contrarily, we did not find signs

of evolution in the flatworms: their voting patterns are random and chaotic. https:

//affordancesoftrobots.github.io/affordancesoftrobots/ shows one instance

of this.
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Figure 5.9: Median± standard deviation (solid line and shaded area) of the two fitness
values for the 10 specialist individuals and the 10 knee individuals drawn from the 10
evolutionary runs, obtained with three morphologies. For the locomotion objective,
specialists and knees mostly coincide. The flatworm struggles to evolve affordance
detection behavior, while the gecko outperforms the other morphologies.
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5.1.4.6 Locomotion.

The difference among morphologies is less pronounced when we look at the

locomotion fitness (upper side of Figure 5.9): the flatworm shape is thus not deficient

per se, as it can evolve to locomote, but it is deficient for affordance detection.

These results suggest that different morphologies can facilitate the evolution

of affordance detection behavior. One intuitive explanation is that, in the flatworm,

it is more difficult for each voxel to distinguish itself: indeed, recalling that absent

neighbors provide inputs of 0, a voxel can distinguish itself by the pattern of absent

neighbors, but the majority of voxels in the flatworm have the same neighborhood

pattern. Thus, different environments result in patterns of sensing that are more

difficult to discriminate. Alternatively, a robot composed of more parts, or that can

radically change its shape, may obstruct the evolution of affordance detection because

self-contortions can more easily or rapidly alter the kinds of affordances afforded by

objects in its environment. Altogether, these insights suggest that morphology plays

an important role in the evolution of affordance detection. Albeit we here considered

only a few robot body plans, and they remained fixed during evolutionary optimiza-

tion, in the future, joint optimization of morphology and control may facilitate the

evolution of affordance detection in robots and thus improve their reliable and safe

action in the world.

5.1.5 Concluding remarks

Considering the case of VSRs—whose softness makes the interactions between

their bodies and the environment less predictable—we address the question of whether

a modular agent can, by local information processing only, detect the affordances of

its body and what role the morphology plays in facilitating it or not. We optimize

VSRs to decide whether or not their bodies can fit through an aperture, and, if

so, then attempt to pass through it. We evolve the parameters of their closed-loop

controllers and experiment with three morphologies. Our results show that different

155



morphologies can facilitate the evolution of affordance detection behavior: some are

effective, while others are not and we conjecture the reason to be their differing degrees

of complexity. This work demonstrates that sensation and control are necessary but

not sufficient for understanding how affordance detection evolves in organisms or

robots: we must also take into account morphology.

5.2 How the morphology encoding influences learning ability
in body-brain co-optimization

In this chapter, we answer to question 4.

5.2.1 Introduction

Starting from the seminal work of Sims (1994), researchers have resorted to

evolution for co-optimizing embodied agents’ bodies and brains. Still, the embodied

cognition paradigm (Pfeifer and Bongard, 2006), which posits a deep entanglement

between the brain and the body, challenges our ability to do so: parent agents of-

ten beget offspring having a mismatch between the morphology and the inherited

controller (Eiben and Hart, 2020b). On the other side, learning alone is myopic

since adapting the morphology is also essential (Hart and Le Goff, 2022). As a re-

sult, co-optimization, by embedding the learning of controllers within the evolution

of morphologies (Gupta et al., 2021; Luo et al., 2021), has come into practice, since

it gives time for controllers to adapt to their morphologies. Intuitively, that is how

nature shaped animal life on Earth. How to design a co-optimization setting is how-

ever a complex endeavor; the designer must select—among the others—the genetic

encoding for the morphology, which is of crucial importance for evolution (Cheney

et al., 2013; Veenstra et al., 2017).

We evolve the morphologies of VSRs using EAs (De Jong, 2006) while learning

the controllers with RL (Sutton and Barto, 2018). We resort to VSRs as they provide

so many more degrees of freedom and flexibility than traditional robots, providing
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Figure 5.10: The intuition of plasticity. As a matter of example, we show a two-
dimensional genotype space together with a two-dimensional phenotype space. A
genotype gi maps to a phenotype pi, which is plastic: through learning, it can visit
any point in its epigenetic space (the shaded circle) during its lifetime, to finally settle
to a learned phenotype p′i. The learning trajectories (the dotted lines) need not be
straight.
ideal testbeds for theories related to embodied cognition (Kriegman et al., 2018). We

experiment with two genetic encodings for the morphology, a direct and an indirect,

and focus our analysis on how phenotypic plasticity, which is the result of the interac-

tion between evolution and learning in embodied agents, affects evolution in the two

encodings.

In biology, phenotypic plasticity is the capacity of a phenotype to describe

a trajectory in the phenotype space during its lifetime; in other words, plasticity

enables an agent to explore neighboring regions of the phenotype space. Plasticity

smooths the fitness landscape since it eases climbing to peaks (Price et al., 2003). The

most straightforward instance of plasticity is lifetime learning (Kelly et al., 2012), also

known as the epigenetic timescale of adaptation (Sipper et al., 1997). Thus, learning

defines an epigenetic space, the subset of points in the phenotype space that a starting

phenotype (i.e., right after genotype-phenotype mapping) can reach through lifetime

learning. We illustrate the intuition for plasticity in Figure 5.10.

Plasticity is relevant because it does impact evolution: learning smooths the

fitness landscape, but it also incurs in costs, as it is time-consuming and relies on trial-

and-error, and there is evidence that biological evolution selects for morphological

traits that reduce the cost of (i.e., speed up) learning (Weber and Depew, 2003). In

other words, if there is an advantage to making a behavior “rigid” (or, not plastic),
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it will usually be advantageous to do so, since rigid behaviors are less expensive than

plastic (learned) ones. As a homage to its first supporter, James Mark Baldwin, this

phenomenon has been labeled—on how plasticity impacts evolution—the Baldwin

effect (Baldwin et al., 2018; Baldwin, 1897). We remark that the Baldwin effect is

not an instance of Lamarckism (Turney, 2002).

We experiment with three tasks from the EvoGym benchmark (Bhatia et al.,

2021), consisting of bridge walking, beam toppling, and cave crawling, and analyze

how the direct and indirect morphology encodings affect plasticity, namely, the ability

to learn. To do so, we measure the trend for speed of learning, i.e., how quickly a

phenotype travels in the epigenetic space, but also how much the agent can learn,

measured as the radius of the epigenetic space.

Our results highlight differences: the direct encoding results in increased learn-

ing ability, while the same is not always true for the indirect encoding. We link these

results to the Baldwin effect: apparently, direct encoding is better suited to facilitat-

ing it. We attribute the reason to the lower locality (Rothlauf, 2006) and heritability

(De Carlo et al., 2021) of the indirect encoding: since similar genotypes do not al-

ways correspond to similar phenotypes, it is more difficult for evolution to select for

morphological traits that reduce the cost of learning.

We believe our work to be a stepping stone on the road toward a better un-

derstanding of the interactions between evolution and learning. In particular, our

work can reveal insights into the choice of morphology encoding when co-optimizing

agents’ bodies and brains with evolution and learning.

5.2.2 Related work

Hinton et al. (1987) first exposed how evolution and learning can complement

each other. In their seminal study, learning made it possible for evolution to search

on a deceptive fitness landscape. Since then, researchers have investigated the mar-

riage between the two for—among the others—evolving reward functions (Niekum
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et al., 2010), population-based training (Jaderberg et al., 2017), evolving instinctive

behaviors for RL (Hallawa et al., 2021), and optimizing neural networks (Stork et al.,

2021).

However far-reaching they might be, only a few of those works considered the

interaction between evolution and learning in the case of embodied agents. Those

that do usually embed a learning loop inside an outer evolutionary loop, as happened

with RL (Gupta et al., 2021), inherited controller archives (Goff and Hart, 2021),

inner evolutionary optimization (Miras et al., 2020a), adaptive weights (Ferigo et al.,

2022a; Pigozzi et al., 2022), or even Lamarckian evolution (Jelisavcic et al., 2019),

and these works are undoubtedly groundbreaking. Still, there are even fewer works

that consider how evolution impacts plasticity; and even fewer considering explicitly

the ability to learn. Gupta et al. (2021) detected signs of a Baldwin effect in tree-

based robots and Luo et al. (2021) in modular robots. Kriegman et al. (2018) studied

how morphological development leads to differential canalization of morphological and

behavioral traits. Thus, to the best of our knowledge, no other work has explored how

phenotypic plasticity changes according to the encoding of the morphology, that is

precisely the aim of this work. Less recently, Veenstra et al. (2017) compared a direct

and a generative encoding for a different kinds of modular robots, in particular in

terms of their ability to foster the evolution of robots composed of different numbers

of modules.

5.2.3 Agent model

We employ the open-source discrete-time and continuous-space simulator Evo-

lution Gym (EvoGym) (Bhatia et al., 2021), which also provides a number of bench-

mark tasks. Contrary to other chapters, we rely on EvoGym since it is a Python

software, thus easing the integration of RL algorithms. In EvoGym, agents are 2D

VSRs, composed as aggregations of elastic squared blocks, the voxels. EvoGym mod-

els each voxel as a spring-and-mass system, with point masses at the vertices and

springs to join them. Each voxel can be of one of four different materials :
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Figure 5.11: An EvoGym VSR. The voxel color stands for the material: black is rigid
inactive, gray is soft inactive, orange is a horizontal actuator, and cyan is a vertical
actuator.

(a) Rigid inactive, that does not change its area;

(b) Soft inactive, that passively contracts or expands under the contact with exter-

nal bodies;

(c) Horizontal actuator, that actively contracts or expands horizontally according

to an actuation signal;

(d) Vertical actuator, that actively contracts or expands vertically according to an

actuation signal.

Figure 5.11 depicts one of the EvoGym agents. For an agent, we denote the total

number of voxels made of one of the materials as npass-rigid, npass-soft, nact-h, and nact-v.

Moreover, a morphology has a total of n point masses.

An agent has a morphology (i.e., a body), described by a matrix M ∈ {∅, pass-rigid, pass-soft, act-h

where w and h are the width and height of the largest grid enclosing the morphology.

M ij, the element at position i, j, tells which of the four materials the voxel at position

i, j is made of, or takes the value ∅ if no voxels are present at that position.

An agent also has a controller (i.e., a brain), described by a function taking as

input o(k) and outputting a(k), where o(k) ∈ R
p is an observation vector at time step

k, with p task-specific inputs, while a(k) ∈ [0.4, 1.6]nact-h+nact-v is an action vector at

time step k, with one action for every actuator. a(k)i corresponds to the action for the

i-th actuator at k and instructs an instantaneous change in springs that is ai times

their resting length, thus causing the actuator to contract or expand accordingly.
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Finally, the agent performs a task, described by the environment (including

terrain and objects). EvoGym models terrain and objects as aggregations of inactive

voxels (either rigid or soft). The task provides a reward signal r(k) ∈ R
1 that is task-

specific and captures the completeness of the task by the agent. The task also defines

what observation o(k) to feed the controller with. Observations are task-specific and

can be sensor readings (e.g., velocity), terrain information (e.g., distance from cave

ceiling), or goal information (e.g., distance from an object to manipulate).

We instantiate the controller using an MLP, having as many input neurons as

the number of observations for the task and as many output neurons as the number

of actuators; in this way, the controller is closed-loop and can exploit sensor readings,

that are fundamental for complex tasks like walking on uneven terrain or object

manipulation (Talamini et al., 2019). Following (Bhatia et al., 2021), we set the

architecture to have two hidden layers with 64 neurons each, and tanh as the activation

function for all neurons (we then rescale the output to [0.6, 1.6]).

5.2.4 Co-optimization of morphology and controller

Since we focus on the interaction between learning and evolution, we cast the

problem of optimizing an agent for a task as a co-optimization problem: an outer

optimization loop searches in the space of morphologies, and an inner optimization

loop searches in the space of controllers (for a given morphology). We resort to EAs

for the outer optimization, as they are gradient-free algorithms and can effectively

handle discrete spaces (De Jong, 2006), as well as generating emergent patterns for

the morphology of virtual creatures (Cheney et al., 2013; Corucci et al., 2018). Since

we have access to a reward signal over the agent’s lifetime, we resort to RL for the

inner optimization; moreover, RL has achieved state-of-the-art results with neural

controllers (Mnih et al., 2015) and there is evidence it mimics learning in the animal

1r previously indicated other objects in the text; with a slight abuse of notation, we repurpose it
to be a reward.
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Figure 5.12: Overview of the co-optimization.
brain (Neftci and Averbeck, 2019).

In particular, the EA optimizes a fixed-size population of npop genotypes by

iterating over generations. At every generation, we map genotypes to morphologies

and optimize the controller of each morphology for nRL-iters iterations of RL. After

ranking and selecting the parent morphologies with a fitness function, we beget an

offspring. We use as fitness function the mean reward of an episode (i.e., a simulation

of the agent in the environment starting from a task-specific initial condition) of nsim

time steps, done “off-line” at the end of RL:

f =
1

nsim

nsim
∑

k=1

r(k) (5.7)

We iterate until nevals fitness evaluations have been done. Figure 5.12 is a schematic

view of our co-optimization.

To investigate how morphology encoding affects plasticity, we experiment with

two variants of encoding (a direct and an indirect encoding), while employing the same

outer-inner optimization scheme.

5.2.4.1 Evolution

For the morphology, ER researchers usually resort to either direct encodings,

where there is a one-to-one mapping between the genotype and the phenotype, or

indirect (also known as generative) encodings, where the mapping is non-trivial. Al-

beit less intuitive, indirect encodings can allow for the emergence of complex patterns

(e.g., “tissues” in (Cheney et al., 2013)); moreover, they strive to emulate the biological
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genome (Tang et al., 2020; Pedersen and Risi, 2021), which is capable of compressing

a whole phenotype with just a “few” genes (generally, in the order of thousands (Gre-

gory et al., 2007; Pellicer and Leitch, 2019)) while still fostering phenotypic variation

(Gerhart and Kirschner, 2007). We experiment with one variant for each type.

5.2.4.2 Direct encoding

Our direct encoding represents a morphology with the matrix M of Sec-

tion 5.2.3 as genotype; then, each matrix entry encodes one voxel of the morphology.

For evolving M , we employ a simple genetic algorithm (De Jong, 2006). It

evolves a fixed-size population of npop individuals iterating the following two steps

until nevals have been done. First, it initializes the first population with randomly

generated matrices, where each element is chosen with uniform probability in the

proper domain. Then, at every generation, (i) it takes the best 0.2npop individuals

(i.e., those with the best fitness), selects them as parents and (ii) it builds the offspring,

i.e., the population for the next generation, by copying the parents to the offspring (a

form of elitism) and by generating 0.8npop individuals by mutating randomly chosen

(with uniform probability) parents. For the mutation, we change each element of

the matrix to another material, with 0.1 probability. To decode the genotype into

a morphology, we retain the largest connected component of non-empty voxels. We

used the implementation of (Bhatia et al., 2021).

5.2.4.3 Indirect encoding

Several indirect encodings exist in the literature that are suitable for VSRs,

e.g., L-systems (Hornby et al., 2001), gene regulatory networks (Joachimczak et al.,

2016), and Gaussian mixtures (Hiller and Lipson, 2012), but we rely on the work of

Cheney et al. (2013) as it proved very effective at evolving morphologies specifically

for multi-material VSRs.

The genotype is a Compositional Pattern Producing Network (CPPN) (Stan-
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ley, 2007), a feed-forward neural network with three input neurons and four output

neurons. To map a CPPN to morphology, we query the CPPN for every voxel (in the

maximum enclosing grid of the morphology) by inputting the x- and y-coordinates of

the voxel as well as its Euclidean distance from the center of mass of the maximum

enclosing grid. The output of the CPPN is a one-hot encoding telling which material

to fill the voxel with (5 output neurons, one for the no-material case). Finally, we

retain the largest connected component of non-empty voxels.

We evolve CPPNs with the NeuroEvolution of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen, 2002) algorithm, an established EA that incrementally

evolves the topology, the weights, and the activation functions of neural networks,

begetting CPPN-NEAT. NEAT employs speciation to protect innovations and over-

come the “competing conventions” problem (Branke, 1995) of evolving neural net-

works. NEAT also employs genetic operators specific for network structures (e.g.,

crossover with innovation); we refer the reader to Stanley and Miikkulainen (2002)

for details. We used elitist selection as with GA. We used the implementation of

(McIntyre et al.) and the same hyperparameters of (Bhatia et al., 2021), with the ex-

ceptions of npop and nevals, for which we use the same values as for the direct encoding

case.

5.2.4.4 Learning

For the controller, we resort to RL in order to explore a rich search space for

the policy (i.e., the controller) and allow the agent to perform complex behaviors,

that would hardly be achievable with other approaches (Cheney et al., 2013).

In particular, we employ the Proximal Policy Optimization (PPO) (Schulman

et al., 2017) algorithm, a policy gradient method that has reached state-of-the-art

performance in many continuous control tasks (OpenAI et al., 2019) while being

simple to implement. PPO iterates for nRL-iters iterations. At each iteration:

(1) it collects environment interactions (i.e., triplets including the observation, the
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action, and the reward) with the current policy;

(2) it updates the policy by minimizing a cost function, that takes into account

the observed reward and ensures that the deviation from the current policy is

relatively small, in order to eschew the high variance of other policy gradient

methods.

In detail, PPO performs nRL-episodes episodes in parallel, each lasting nsim time steps,

and interrupting them every nsim-RL-iter time steps to perform an iteration—this way,

nRL-episodesnsim-RL-iter interactions are available for updating the policy. When the

episodes reach the end, PPO restarts a batch of nRL-episodes until nRL-iters iterations

have been performed. We used the implementation of (Kostrikov, 2018) and the same

hyperparameter settings of (Bhatia et al., 2021): in particular, we set nRL-episodes = 32

and nsim-RL-iter = 128.

5.2.5 Experiments

We carried out an experimental campaign aimed at answering the following

research question: how do a direct and an indirect encoding for the morphology affect

the agent’s ability to learn?

We perform a set of experiments, i.e., optimizations of VSRs, with both the

direct and indirect encoding and three different EvoGym tasks, differing by scope and

hardness: BridgeWalker, BeamToppler, and CaveCrawler.

For both encodings, we set w = 5, h = 5, npop = 25, nRL-iters = 1000, and

nevals = 500; for CaveCrawler, which turned out more difficult to solve, we set nevals =

1000. Pure evolutionary optimization would rely on more fitness evaluations; still,

we remark that, in our co-optimization, every fitness evaluation amounts to a full

RL inner optimization, increasing not only the computational burden but also the

likelihood of discovering effective solutions earlier in evolution. We thus found the

above values to work well, in line with (Bhatia et al., 2021).
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For each experiment, we performed 10 evolutionary runs varying the random

seed for the EA and PPO. For a given agent, all simulations are deterministic. We

performed statistical tests with the Mann-Whitney U rank test for independent sam-

ples.

We made the code to repeat and reproduce the experiments publicly available

at https://github.com/federico-camerota/evogym/tree/baldwin.

5.2.5.1 Tasks

In the following sections, we briefly describe the environments used in our

experiments, we refer the reader to (Bhatia et al., 2021, Appendix B) for more details.

5.2.5.2 BridgeWalker

The agent learns a locomotion pattern that allows it to travel as far as possible

on a soft rope bridge made up of several sections with different lengths. Let x(k)
a and

y
(k)
a be the x and y positions of the agent’s center of mass at time step k. The reward

scheme provides a positive reward equal to the agent movement in the positive x-axis:

r(k) = x(k)
a − x(k−1)

a , (5.8)

and a final reward of 1 upon reaching the end of the bridge. Figure 5.13a is a sample

frame from the task. We adopted this task to be a test of basic cognition, while not

as trivial as walking on flat terrain.

The observation vector o(k) ∈ R
n+3 contains the current x and y positions

of the n point masses (relative to the center of mass), the x and y velocities of the

center of mass, and the orientation of the center of mass. Episodes in this environment

consist of nsim = 500 steps.
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(a) BridgeWalker (b) BeamToppler (c) CaveCrawler

Figure 5.13: Three frames of agents performing the three tasks we considered in this
chapter.
5.2.5.3 BeamToppler

The second task consists of flat terrain with a beam placed over two pegs.

The agent’s goal is to push the beam until it falls. Let x
(k)
b and y

(k)
b be the x and y

positions of the beam’s center of mass at time step k. The reward is the sum of three

components:

r(k) = r
(k)
1 + r

(k)
2 + r

(k)
3 , (5.9)

with:

r
(k)
1 = |x(k−1)

b − x(k−1)
a | − |x(k)

b − x(k)
a | (5.10)

r
(k)
2 = |x(k−1)

b − x
(k)
b |+ 3|y(k−1)

b − y
(k)
b | (5.11)

r
(k)
2 = y

(k−1)
b − y

(k−1)
b , (5.12)

where r1 rewards the agent for getting closer to the beam, r2 for moving the beam,

and r3 for toppling the beam. Figure 5.13b is a sample frame from the task. We

adopted this task as a relevant instance of object manipulation.

The observation vector o(k) ∈ R
n+7 contains the same positional information

about the point masses as in BridgeWalker, plus the x and y velocities of the beam,

the orientation of the beam, and the distance of the agent’s center of mass from the

beam’s center of mass. This environment runs for nsim = 1000 steps.

5.2.5.4 CaveCrawler

The last task is the most difficult of the three and requires the agent to both

learn a locomotion pattern and to adapt its shape to traverse caves with non-flat
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terrain while avoiding obstacles hanging from above. The reward function is the

same as in BridgeWalker. Figure 5.13c is a sample frame from the task. We adopted

this task as it is among those classified as challenging in (Bhatia et al., 2021).

The observation vector o(k) ∈ R
n+24 contains the same positional informa-

tion about the point masses as in the previous tasks as well as the agent’s velocity,

plus the lowest y positions of the ceiling and the highest y positions of the floor

at [x, x + 1] voxels of distance from the agent’s center of mass along the x-axis,

x ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. As in BeamToppler, also CaveCrawler con-

sists of nsim = 1000 simulation steps.

5.2.5.5 Results

Our evolutionary reinforcement learning setting co-optimizes effective solu-

tions for the three tasks. We also analyze how the learning (in terms of duration and

extent) and the morphologies (using a few morphological descriptors) vary throughout

evolution for the two encodings; witnessing different trends, we link them to the Bald-

win effect and discuss the implications for designing encodings in the co-optimization

of virtual agents with evolution and learning.

As a first step, we verify whether both encodings are capable of co-optimizing

effective solutions. As the performance index, we use fitness f that, we recall, cor-

responds to the average reward of the evolved agent in a single episode. We plot in

Figure 5.14 the fitness for the best individual of each generation throughout evolution,

in terms of median ± standard deviation across the evolutionary runs.

Figure 5.14 confirms that co-optimization succeeds in finding effective solutions

with both encodings and in all three task environments and that most experiments

succeed in converging to a stable minimum. Direct and indirect encodings perform

comparatively on BridgeWalker and CaveCrawler (p-values not significant), while

the direct encoding outperforms the indirect in BeamToppler with p < 0.1. Last but

not least, we notice that fitness curves follow radically different paths: the direct
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Figure 5.14: Median ± standard deviation across the evolutionary runs for the fitness
f of the best individual throughout evolution. Both encodings optimize effective
solutions.
encoding co-optimizes monotonously, stepping from one local minimum to a better

one; on the other side, the indirect encoding shows more erratic performance.

We visually inspected the co-optimized solutions and found them to be highly

adapted to the tasks: a video of the best individuals can be found at https://youtu.

be/jlbBOoprnPA. Not only do individuals learn adaptive and life-like behaviors, but

they also evolve morphologies that are suited to the task at hand. For example, the

best individuals for the CaveCrawler task always have oblong morphologies, ideal for

squeezing through tight spaces. In BeamToppler, champions usually rely on extrusions

of their upper body to effectively topple the beam, such extrusion proving a limb

evolved ad-hoc for the task of object manipulation. With the indirect encoding, an

outstanding individual jumped high onto the pegs to hit the beam and cause it to

slide. BridgeWalker, on the other side, saw a greater variety of solutions, being less

“constrained” than the other tasks. We showcase a sample of the evolved morphologies

in Figure 5.15 for the direct encoding and Figure 5.16 for the indirect one. As observed

in (Cheney et al., 2013) and (Ferigo et al., 2022b), the indirect encoding evolves much

more regular material patterns and shapes than the direct one.

While the visual inspection and the fitness values achieved by the best indi-

viduals support the claim that our co-optimization was indeed successful, the trend

of the curves of Figure 5.14 might be interpreted as a poor convergence or, from an-
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(a) BridgeWalker (b) BeamToppler (c) CaveCrawler

Figure 5.15: Sample morphologies evolved over three tasks with direct encoding.

(a) BridgeWalker (b) BeamToppler (c) CaveCrawler

Figure 5.16: Sample morphologies evolved over three tasks with indirect encoding.
other point of view, as an ineffective evolution. However, we remark that the inner

optimization loop with RL allows sampling a neighborhood in the phenotype space,

greatly increasing the likelihood of discovering an effective solution during the lifetime

of an individual, to the point that even initial generations can achieve decent fitness.

To answer our main research question, in the next sections we analyze more

closely the learning ability of the evolved agents, both qualitatively and quantitatively.

From the qualitative point of view, we plot the learning curves, showing how the

reward achieved by one individual changes over the iterations performed by PPO,

and compare them at different generations. From the quantitative point of view,

we measure the learning radius, i.e., the difference between the reward at the end

of learning and the reward at the beginning, to get an estimate of the radius of the

epigenetic space and, intuitively, a measure of how much a given morphology allows to

learn. Finally, to get more insights and to attempt to explain our findings, we analyze

systematically the morphologies being evolved, by computing a few morphological

descriptors and plotting them throughout evolution.

5.2.5.6 Qualitative analysis: learning curves

To have an overview of how individuals learn at different stages of evolution,

we proceeded as follows. For each task and each evolutionary run, we took the entire

population at four evolution stages: at the beginning, i.e., just after initialization,
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Figure 5.17: Moving average r(k) as a function of PPO iterations, taken at different
generations, for three tasks and two encodings. Median ± standard deviation across
evolutionary runs. Speed of learning increases for the direct encoding, while the same
is not always true for the indirect.
at 1

3
nevals, at 2

3
nevals, and the end of the evolution. Then, for each individual in the

population, we instrumented the PPO learning procedure to compute the average

reward r̄(j) = 1
nsim

∑nsim

k=1 r
(k) obtained in one “off-line” simulation performed with the

policy available after each j-th PPO iteration; intuitively, hence, we computed the

“fitness” during the learning, instead of just at the end of the learning. Finally, we took

a moving average in a window of 10 PPO iterations, obtaining r̄′(j) = 1
10

∑9
i=0 r̄

(j+i),

and computed the median r̄′(j) across all the individuals in the population. Figure 5.17

shows the curves of r′ vs. the PPO iteration, briefly learning curves, at different

evolution stages (line color), for the different tasks (columns of plots), and different

morphology encodings (rows of plots).

By observing Figure 5.17, it can be seen that the learning curves differ among

tasks, encodings, and evolution stages. While for the BridgeWalker task r′ clearly

increases more steeply as evolution progresses—evolution does matter—for both en-

codings, probably due to the task being more basic, the same is not true for the

other tasks. For BeamToppler, learning succeeds in converging very quickly for both
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encodings and at every generation; nevertheless, learning curves flatten towards the

same local minimum for the indirect encoding, whereas there is a positive trend for

the direct encoding. In CaveCrawler, the indirect encoding shows the same trend

as in BeamToppler. The direct encoding, on the other side, succeeds in converging

faster as evolution progresses: more in detail, the initial r′, i.e., the one at the begin-

ning of the PPO learning, increases over the evolution; moreover, only at the latest

stages of the evolution, the learning appears to be able to escape the local minimum

corresponding to the value of 2 for r′. Interestingly, for BeamToppler and the direct

encoding the evolution ends up (violet line) favoring agents that learn a lot at the

beginning of the learning and stop learning after ≈ 100 PPO iterations; in a previous

stage, namely at 2
3
nevals fitness evaluations (green line), the learning is slower at the

beginning but then slowly continues for all the 1000 PPO iterations.

In summary, the qualitative analysis of the learning curves shows that (a) the

two encodings do differ in how they impact the ability to learn of the agents and, in

particular, that (b) with the direct encoding, the evolution increases the ability to

learn in two on three cases.

5.2.5.7 Quantitative analysis: learning radius

While one aspect of phenotypic plasticity is how a phenotype travels across

the epigenetic space, another is the radius (or, more generally, the size) of such space:

arguably, one can travel very fast if the radius of the space to be covered is very small,

and vice versa.

We compute the radius ρ as the difference r′(nRL-iters) − r′(0) of the reward r′

at the end of learning and the beginning of learning; we measured ρ at the end of

the evolution. While a more sophisticated measure might be found in the behavior

space, we believe our notion of reward effectively captures enough about an agent’s

phenotype and we leave other measures as future work. Figure 5.18 visualizes the

results as the distribution of ρ across evolutionary runs for the three tasks and the
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Figure 5.18: Distribution of learning radius ρ across evolutionary runs. There is no
significant difference between the two encodings.
two encodings. Above each pair of boxplots, the brackets report the p-value for the

statistical test against the null hypothesis of equality between the medians.

Indeed, there is no clear difference in Figure 5.18 between each pair of boxplots

and the p-values are not significant for all the tasks. We can thus argue that the size

of the epigenetic space is mostly the same across the two encodings and that the

higher speed of learning observed for the direct encoding is not the result of shorter

trajectories for the agents.

5.2.5.8 Morphological descriptors

To corroborate our analysis, we quantitatively investigate how morphologies

change over the course of evolution by visualizing a set of morphological descriptors.

For each morphology, we consider the fraction of non-empty voxels dsize, the fraction

of rigid inactive voxels drigid, the fraction of soft inactive voxels dsoft, the fraction of

horizontal actuators dh, and the fraction of vertical actuators dv. Then, we compute

the average of each descriptor across all the individuals in the population and look at

how the values change during the evolution. We summarize the results in Figure 5.19,
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Figure 5.19: Median ± standard deviation across evolutionary runs for the morpho-
logical descriptors (fraction of non-empty voxels, rigid material voxels, soft material
voxels, horizontal actuators, vertical actuators) of the population over the course
of evolution. Paths of morphological descriptors are mostly monotonous for direct
encoding but erratic for indirect encoding.
in terms of median ± standard deviation across evolutionary runs.

From Figure 5.19, we find that the two encodings radically differ in the trend

of the descriptors. Morphological descriptors for direct encoding mostly follow either

decreasing or increasing paths, signaling there is a tendency towards some morpho-

logical traits. Morphological descriptors for the indirect encoding, on the other side,

show erratic and less clear paths and exhibit, in general, a larger variability (y-axis

extent of shaded area in the plots). Albeit exhibiting some trends over the long run,

most of the descriptors oscillate between increasing or decreasing.

We look at Figure 5.19 also to appreciate how different tasks differ in terms

of selective pressure on the morphologies. For example, morphologies evolve to be

smaller and more “muscular” (i.e., with less inactive material) for the CaveCrawler

task, where every excess voxel might turn out a hindrance when squeezing through

tight spaces. In the BeamToppler task, morphologies evolve to have more vertical

actuators, as the task requires stretching vertically to topple the beam.
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Moreover, Figure 5.19 also suggests that the two morphological encodings

induce different biases. With the direct encoding the evolution starts with an even

distribution of materials across voxels and then slowly favors materials which make

morphologies more adapted to the task. With the indirect encoding, the morphologies

tend to be larger and, in general, composed mostly of active materials already at

the beginning of the evolution (similar observations have been done by Ferigo et al.

(2022b) with other indirect encodings): this can be explained by the very nature

of the encoding itself, for which a uniform distribution in the CPPN space does not

necessarily correspond to a uniform distribution in the morphology space. Clearly, big

and strong (since composed of many active voxels) morphologies are favored and tend

to fill the entire population starting from the beginning of the evolution. However,

they appear to be harder to control and, hence, make the learning less efficient, as

visible in Figure 5.17 and previously discussed.

5.2.6 Discussion

The above results suggest that when co-optimizing virtual agents by evolution

and learning, the degree of plasticity of the learned controllers differs across our direct

and indirect encodings. In particular, we find that, in the case of direct encodings,

effective controllers emerge more and more quickly and morphologies converge. In

other words, morphologies “canalize” (Waddington, 1942) towards designs that allow

for learning to take place more swiftly (Waddington, 2014). Recalling Figure 5.10,

we interpret this canalization as evolution that selects for morphologies that allow for

phenotypes to “roll” over canals in the epigenetic space (Waddington, 2014).

We also find the indirect encoding to be less suited for evolving agents with

increased plasticity. We attribute the reason to be the different locality (Rothlauf,

2003), one of the properties of genetic encodings (Rothlauf, 2006), between the direct

and the indirect encoding. We say an encoding is “local” if it preserves the distances

between individuals when mapping from genotypes to phenotypes. In other words, a

local encoding maps individuals with close genotypes (in the genotype space) to close
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phenotypes (in the phenotype space) and individuals with distant genotypes (in the

genotype space) to distant phenotypes (in the phenotype space). It is likely that our

direct encoding enjoys more locality than the indirect, where the genotype-phenotype

mapping is non-trivial. Moreover, indirect encodings generally have less heritability

(De Carlo et al., 2021), with fit parents begetting poor offspring (and vice-versa) more

frequently than with a direct encoding. Altogether, these facts mean that, with an

indirect encoding, it is more difficult for evolution to select morphologies that lead to

canalization. That is exactly what Mayley (1996) argued: for canalization through

the Baldwin effect to take place, a small distance between two individuals in the

phenotype space must imply a small distance in the genotype space.

5.2.7 Conclusion

The co-optimization of virtual agents, by the evolution of morphologies and

the learning of controllers, despite promising, poses several challenges. One of these

is the choice of the genetic encoding for the morphology. However, no work to date

has ever delved into how that affects phenotypic plasticity.

That is precisely what we set out to answer with this work. We evolve the

morphology of VSRs—whose many degrees of freedom make them ideal testbeds—

with EAs and, for each morphology, learn a controller through RL. For the EA, we

test two encodings, direct and indirect. We experiment with three tasks from the

Evolution Gym (Bhatia et al., 2021) benchmark, consisting of bridge walking, beam

toppling, and cave crawling.

Our results show that the two encodings differ. The direct encoding results in

increased learning ability and selection of morphological traits that reduce the cost

of learning, thus witnessing a Baldwin effect. The indirect encoding does not always

result in increased learning ability and sustains high levels of morphological diversity,

thus it is difficult to argue in favor of a Baldwin effect. We conjecture the reason to be

the different properties of the encodings, in particular, the lower locality (Rothlauf,
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2003) and lower heritability (De Carlo et al., 2021) of the indirect one: since similar

genotypes do not always correspond to similar phenotypes, it is more difficult for

evolution to select for morphological traits that reduce the cost of learning.

We believe our work delivers key insights into the choice of morphology en-

coding, which is crucial for the co-optimization of agents with evolution and learning.

Still, we acknowledge there are limitations to our work that we will address in future

work. For the sake of generality, we will experiment with more variants for both the

direct and the indirect encoding and, possibly, for learning.

5.3 Evolving Hebbian learning rules in VSRs

In this chapter, we answer to question 5.

5.3.1 Introduction

It is not unlikely that future robotic agents would undergo the same stages

of life (birth, maturity, death, or disposal) of biological agents (Eiben et al., 2013).

As such, learning and adaptation should inherently guide “infant” robots towards

maturity (Eiben and Hart, 2020a), just like in animals. Indeed, learning has been

acknowledged as one of the main challenges on the road towards fully autonomous

robotic ecosystems (Eiben, 2021b).

For robotic societies to become a reality, adaptation must take place across all

three timescales: phylogenetic (evolution), ontogenetic (development), and epigenetic

(learning) (Sipper et al., 1997). As of now, the vast majority of robotic systems are

either evolved (Nygaard et al., 2018) or learned (Ha et al., 2021). While some works at

the intersection of evolution and learning do exist (Hallawa et al., 2021), they mostly

rely on a human-assigned reward signal that must be decided by a “supervisor”, and

thus might not be adequate for an autonomous robotic society. On the other side,

biological agents share both an “innate” evolved component and a learned component.

A robot that only evolves, albeit as powerful as evolution might be, can in principle
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beget offspring that are not viable. As a matter of example, when jointly evolving

brain and body, the mismatch can happen between the two (Pagliuca and Nolfi, 2020).

A robot that only learns, without an innate evolved “instinct”, since learning usually

relies on trial-and-error, incurs the risk of damaging itself and the entities surrounding

it (Grbic and Risi, 2021). For instance, an autonomous vehicle can provoke serious

damage if it optimizes a policy by sampling random actions. Then, there is a need

for robotic systems that adapt on more than one timescale, quelling the longstanding

“nature vs. nurture” debate (Moore, 2003).

Among the shapes learning can take, we are concerned with plasticity (Zilles,

1992), since it is “unsupervised” in the sense that it does not require a human-assigned

reward signal. Additionally, plasticity is known to play a key role in the learning

processes of biological agents (Patten et al., 2015) and it is a simple yet effective model.

Hebbian theory (Hebb, 2005), which states that “neurons that fire together, wire

together”, enshrines it. Synapses between neurons are plastic, i.e., they adapt their

strength in response to stimuli, following synapse-specific rules known as “Hebbian

rules”. These rules are in turn expressed through well-defined parameters, according

to the model employed (Soltoggio et al., 2018).

We apply Hebbian learning to an ANN controlling the VSR. We embed Heb-

bian learning inside an EA that optimizes the parameters of the Hebbian rules; in this

sense, there are two scales of adaptation: evolution and learning, the former being

the longer and slower one. To the best of our knowledge, this is the first work on

applying Hebbian learning to VSRs.

We evolve Hebbian learning rules for two fixed VSR morphologies in a loco-

motion task on hilly terrains, and re-assess the VSRs performance on unseen terrains,

in order to quantify their ability to generalize. With experiments, we:

(a) confirm that the Hebbian controller is never worse (and often better) than a

non-Hebbian baseline, and truly shines when adapting to unforeseen damages

in its body;
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(b) verify that Hebbian controllers indeed learn, i.e., improve over the lifetime and

can generalize;

(c) unveil some of the weight dynamics underlying learning.

This work falls in the more general study of the link between learning and

evolution, which is rooted in both biology and artificial intelligence, with fundamental

consequences on robotics. In this regard, a recent position paper (Eiben and Hart,

2020a) argued that evolutionary robot systems should always “contain a learning

component where a newborn robot refines its inherited controller to align with its

body, which will inevitably be different from its parents”. The authors summarized

this concept with the motto: “If it evolves it needs to learn”. As already pointed out

in (Pontes-Filho and Nichele, 2019), this paradigm can be shifted though, as we do

here, where we show that the learning-evolution link is actually bidirectional. In our

experiments, not only the evolved agents need to have a learning phase, but also the

learning strategy (i.e., the parameters of the Hebbian rules) needs to evolve over the

course of the generations. In other words, learning emerges through evolution. We

can summarize this concept by paraphrasing the aforestated motto as follows: if it

evolves it needs to learn, but if it learns, it needs to evolve.

5.3.2 Related works

Neural plasticity (Zilles, 1992), a form of learning, plays a key role in the

development of biological neural networks. Intuitively, it is crucial in adapting to

changes in environmental conditions, as well as in shaping memories (Patten et al.,

2015). Indeed, starting from (Baldwin, 2018), there has been growing evidence about

the Baldwin effect, i.e., an acceleration of evolution when learning happens during a

lifetime. In a seminal computational study, Hinton et al. (1996) showed that learning

can provide a gradient for evolution to follow even on an extremely deceptive fitness

landscape.
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Following (Shaw et al., 2001), we distinguish between structural and functional

plasticity. The former refers to the ability of the nervous system to rewire its neu-

ral connections, creating new pathways among neurons and undoing existing ones.

The latter refers to the ability of the nervous system to alter over time the func-

tional properties of neurons. In this work, we are concerned with functional plasticity

and, in particular, with changes in synaptic strength in response to previous activity

(activity-dependent plasticity) (Ganguly and Poo, 2013). Previous activities can in-

duce persistent strengthening of synapses (long-term potentiation) (Cooke and Bliss,

2006) or persistent weakening (long-term depression) (Massey and Bashir, 2007).

As a result of the well-known benefits of plasticity, there has been a consid-

erable amount of literature devoted to engineering “plastic” ANNs. Schmidhuber

(1993b) first proposed “fast weights”, where a slow-learning ANN learns the weights

of a fast-learning ANN, as a thought experiment. In the last decade, new studies

have taken inspiration from fast weights, including adaptive HyperNEAT (Risi and

Stanley, 2010), fast weights for recurrent neural networks (Ba et al., 2016), and hy-

pernetworks (Ha et al., 2017). Moreover, there is a growing amount of research on

the attention mechanism (Bahdanau et al., 2014; Pigozzi et al., 2022), which can be

seen as a form of “adaptive weights”, and synaptic pruning of ANNs (Hoefler et al.,

2021), which can be seen as a very “sharp” form of structural plasticity.

However creative and ground-breaking these works might have been, they are

still very complex to engineer. Hebbian learning (Soltoggio et al., 2018) provides a

more succinct, yet biologically-plausible representation. According to Hebbian theory

(Hebb, 2005), if a pre-synaptic neuron often stimulates the activation of a post-

synaptic one, then their synapse increases in strength2. Past studies (Nolfi and Parisi,

1996; Floreano and Urzelai, 2001) applied Hebbian learning to evolve ANN controllers

2This statement should be read with a pinch of salt: if two neurons activate at the same time, then
there cannot be causation between the two activations. For causation to subsist, it must happen that
one neuron took part in activating the other (Caporale and Dan, 2008). In this work, we consider
connectionist ANNs, where there is no need to take into account the temporal dimension.
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for mobile robots and found improved performance over non-plastic ANNs. More

recently, several studies have successfully evolved Hebbian learning rules (Miconi

et al., 2018; Najarro and Risi, 2020; Yaman et al., 2021; Jordan et al., 2021) and

achieved competitive results in reinforcement learning scenarios. For these reasons,

we adopt Hebbian learning to model synaptic plasticity

5.3.3 Methods

We present the methods for this work.

5.3.3.1 Hebbian learning

As discussed above, Hebbian learning provides a way to optimize an ANN

while performing a given task. In an ANN, the weights play the role of the synapses,

as each of them modulates the connection between any pair of pre-synaptic and post-

synaptic neurons. From a computational point of view (Brown et al., 1990), the

general formulation of Hebbian learning updates the weights according to:

w
(k+1)
ij = w

(k)
ij +∆w

(k)
ij (5.13)

∆w
(k)
ij = ηx

(k)
i y

(k)
j (5.14)

where x
(k)
i and y

(k)
j are the activation of the pre-synaptic and post-synaptic neurons,

respectively, at time step k, and η is the learning rate. In synthesis, Equation (5.14)

dictates to strengthen the synapse value if x
(k)
i and y

(k)
j are positively correlated,

weaken it if they are negatively correlated, and keep it constant if at least one of

the two is zero. This model takes inspiration from biological systems, in which there

is evidence that plasticity in the frontal-striatal synapses arises from changes in the

concentration of dopamine, which in turn is a function of the difference between

observed and expected outcomes (Averbeck and Costa, 2017; Neftci and Averbeck,

2019).

While several works (Coleman and Blair, 2012; Floreano and Urzelai, 2000;

Yaman et al., 2021) have successfully employed this “generalized” Hebbian learning
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to train ANNs, many variations of it do exist (Soltoggio et al., 2018). In this work, we

use the so-called Hebbian ABCD model (Mattiussi and Floreano, 2007; Niv et al.,

2001; Soltoggio et al., 2007; Najarro and Risi, 2020), which updates the weights

according to:

∆w
(k)
ij = η

(

Ax
(k)
i y

(k)
j +Bx

(k)
i + Cy

(k)
j +D

)

(5.15)

where A,B,C,D ∈ R are the eponymous coefficients and η ∈ R is the learning rate.

The four coefficients determine the local weight dynamics, with A modulating the

relation between the two signals, B and C modulating the pre-synaptic and post-

synaptic values, respectively, and D acting as a bias specific to the synapse.

We call the four ABCD coefficients together a rule, and, in our model, there

exists one separate rule per synapse. In line with uniform plasticity (Schmidhuber,

1993a), all the rules share the same learning rate η (we digress on the non-uniform

case in Section 5.3.4.4); after preliminary experiments, we set η = 0.01. Moreover,

we initialize w
(0)
ij = 0 for every i, j, i.e., at the beginning of the life of the VSR,

every weight is set to 0. The parameters θ that we optimize consist then in the

concatenation of the ABCD coefficients for all the rules. The Hebbian controller has

thus four times the number of free parameters of an MLP with the same architecture.

5.3.3.2 Evolutionary algorithm

We resort to EC for optimization, and, in particular, adopt the ES (Beyer

and Schwefel, 2002) described in Section 3.3.5.2 as our EA. Indeed, EAs have proven

competitive for reinforcement learning problems (Such et al., 2017b); in particular,

ES have achieved state-of-the-art results for continuous control tasks (Salimans et al.,

2017). After preliminary trials, we set npop = 40, ngen = 500 (corresponding to 20 000

fitness evaluations), and σmut = 0.35.
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5.3.4 Experimental analysis

We performed several experiments aimed at answering the following research

questions:

RQ1 Is evolution with Hebbian learning effective? That is, are VSRs

equipped with the Hebbian controller effective in the task of loco-

motion? Are they able to generalize to unseen conditions as new

environments or malfunctions in the morphology?

RQ2 Is there any “true” learning?

RQ3 Why Hebbian learning works?

We anticipate that by “true” learning, here we mean that the agent retains

the ability to accomplish the task even once Hebbian plasticity is disabled, i.e., the

weights are frozen (this will become clearer below).

To answer these questions, we experimented with two different VSR shapes, see

Figure 5.20. In particular, we considered a 4×3 (size of the grid enclosing the voxels)

rectangle with a 2× 1 rectangle of missing voxels at the bottom-center, that we call

biped, and a 7× 1 rectangle, that we call worm. For each shape, we considered three

sensory apparatuses differing in the number and kind of sensors they are composed

of, hence in their complexity. We equipped the high-complexity apparatus as follows:

area sensors for all the voxels, touch sensors for the voxels in the bottom row of the

shape, velocity sensors for the voxels in the top row of the shape, and lidar sensors for

the voxels in the rightmost column of the shape. The medium-complexity apparatus

is equivalent to the high apparatus, with the exception of the lidar sensors, that are

absent. Finally, we equipped the low -complexity apparatus with just the area sensors

for the two top rows in the case of the biped shape, and the three central voxels

in the case of the worm shape. For the three apparatuses respectively, the input

dimension is 48, 36, and 8 for the biped shape, 31, 28, and 3 for the worm shape.
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We experimented with different shapes and sensory apparatuses to get a sense of the

effectiveness of Hebbian learning across a wide array of morphological conditions.

Figure 5.20: Frames of the simulation of the two shapes during locomotion on hilly
terrain.

For all the experiments, we considered the task of locomotion. The goal is to

travel on a terrain as fast as possible along the positive x direction, in a fixed amount

of simulated time tfinal. The fitness of a VSR is given by its average velocity vx,

computed considering the x-position of the VSR center of mass at the beginning and

the end of the simulation. We set tfinal = 60 s. Here, we consider the hilly terrain of

Sections 4.1 and 4.2. It consists of a sequence of bumps, having an average height of

3m and an average distance of 30m. Additionally, the random seed for procedurally

generating the bumps is different at every fitness evaluation, to prevent individuals

from “overfitting” to one single terrain profile, making adaptation more challenging.

We implemented the experimental setup in Java, building on top of two frame-

works: JGEA3 for the evolutionary optimization and 2D-VSR-Sim4 (Medvet et al.,

2020b) for the simulation of VSRs. For the simulator, we set the time step to

∆t = 1/60 s and the other parameters to the default values (as a result, all the voxels

share the same mechanical properties). The code to reproduce the experiments is

publicly available at https://github.com/ndr09/VSRevo.

For each experiment, we performed 10 evolutionary runs with different random

3https://github.com/ericmedvet/jgea
4https://github.com/ericmedvet/2dhmsr
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seeds for the EA. We remark that, for a given VSR and terrain, the simulations are

deterministic. After verifying the adequate hypotheses, we carried out statistical

tests with the two-sided Mann-Whitney U rank test (Mann and Whitney, 1947) for

independent samples using α = 0.05 as the confidence level.

5.3.4.1 RQ1: effectiveness of evolution with Hebbian learning

As a starting point, we are interested in investigating the effectiveness of the

Hebbian controller. We measure effectiveness in two different cases: in the same

conditions as evolution, and on a re-assessment procedure with slightly different con-

ditions. In both cases, the performance index is vx, which, in the first case, is the

fitness function itself. The second case aims to test the generalization abilities of

an evolved individual. To this end, we compute vx across 10 unseen hilly terrains,

obtained with 10 different predefined random seeds.

We compare the Hebbian model against a baseline model. In this work, we

used as a baseline a “vanilla” MLP controller, with the same architecture as the

Hebbian controller (see Section 5.3.3.1). The baseline controller is different from the

Hebbian controller in two ways. First, the weights of the MLP of the former stay

the same for the entire simulation, while in the latter they change at every time step

according with Equation (5.15). Second, in the baseline controller, we optimize the

weights, differently than in the Hebbian controller, where we optimize the ABCD

parameters. For the optimization, we use the same EA of Section 5.3.3.2. As for the

Hebbian controller, we couple the baseline controller with the two shapes and the

three sensory apparatuses previously outlined.

We summarize the results in Figure 5.21, which shows vx of the best individuals

at the end of evolution, and Figure 5.22, which shows vx of the best individuals on

the re-assessment terrains. For the same shape and sensory apparatus, we also report

the p-value for the statistical test against the null hypothesis of equality between

the medians. Figure 5.23 plots vx in terms of median ± std. dev. over the course of
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Figure 5.21: Distribution of the velocity vx of the best individuals found in each of the
10 evolutionary runs, obtained with the two controller types on each combination of
shape (the two plots) and sensory apparatus (the three columns). Hebbian learning
is never worse than the baseline.
evolution.

From the figures, we find that Hebbian learning is never worse than the base-

line: in fact, it is either comparable or better. In particular, if we look at the results

shown in Figure 5.21, it turns out that the Hebbian controller consistently outper-

forms the MLP for the low sensory apparatus in both shapes and the high sensory

apparatus in the biped shape, which are the configurations whose p-values are signifi-

cant. Also, the performance gap seems to be particularly abysmal in the low sensory

apparatus; we speculate the reason to be that Hebbian learning is particularly effec-

tive with “scarce” perceptual conditions. When comparing the two shapes, we find

instead that the advantage of Hebbian learning over the MLP is more evident with

the biped shape than with the worm. We hypothesize that this difference may be

due to the fact that, having a much simpler shape, the worm can perform well al-

ready with a simple, “instinctive” controller (i.e., one that maps statically inputs to

outputs, as the MLP), i.e., there is little margin for learning. On the contrary, the

biped shape may benefit from learning since the controller space has an increased
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Figure 5.22: Distribution of the velocity vx across 10 unseen hilly terrains for the
best individuals found in each of the 10 evolutionary runs, obtained with the two
controller types on each combination of shape (the two plots) and sensory apparatus
(the three columns). Hebbian learning is never worse than the baseline.
complexity reflecting the higher complexity of the body. This somehow matches the

previous observation on the increased effectiveness of Hebbian learning with simpler

sensor apparatuses: with less sensors, learning can provide a better way to exploit

the available perceptual information, while with more sensors an instinctive controller

is enough. The results on the re-assessment, shown in Figure 5.22, corroborate and

mirror these effects, indicating that the evolved Hebbian controllers also have gener-

alization abilities. Moreover, Figure 5.23 confirms that, despite having four times the

number of parameters of the MLP, the Hebbian controller succeeds in converging to

a plateau in the fitness landscape.

We visually inspected the robot with the evolved Hebbian controllers and found

their behaviors to be highly adapted for a locomotion task on uneven terrain; bipeds

hop on their legs and worms inch forward as real caterpillars do. Visual inspection

is fundamental since behaviors are a strong indicator of a possible reality gap (van

Diggelen et al., 2021; Salvato et al., 2021). We made sample videos available at:

https://youtu.be/bZ2Ek9ohzXI, https://youtu.be/5tCaQTRXRp8, and https://
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Figure 5.23: Median ± std. dev. (solid line and shaded area) of the velocity vx of
the best individuals found during each of the 10 evolutionary runs, obtained with the
two controller types on each combination of shape and sensory apparatus. Hebbian
learning converges as fast as the baseline even if it has four times the number of
parameters.
youtu.be/q0NrstiF9AQ.

To further investigate the generalization abilities of the Hebbian controllers, we

tested their ability to recover from unforeseen damages affecting the body of the VSR.

In particular, we used the following protocol. After half of the simulation (30 s) has

elapsed, the VSR experiences a trauma, with every voxel having a 0.5 probability of
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Figure 5.24: Distribution of the velocity vx across 10 unseen hilly terrains for the best
individuals found in each of the 10 evolutionary runs (with damages), obtained with
the two controller types on each combination of shape (the two plots) and sensory
apparatus (the three columns). Hebbian learning is decisively better than the baseline.
breaking—thus, every VSR has, on average, 50% of the voxels broken for the second

half of the simulation. Upon breakage, a voxel does not apply anymore the actuation

signal it receives from the controller, and hence its area is determined only by external

forces. We ran an experimental campaign of 10 evolutionary runs for the Hebbian and

MLP controller types, and re-assessed the best individuals on 10 unseen hilly terrains,

as already explained. Note that, during each simulation (either in evolution or re-

assessment), the VSRs experience damages affecting different voxels—this makes the

task of evolving a controller harder than without the damages. We found the results in

these conditions to be not significantly different from those obtained without damages,

and, for the sake of conciseness, we report just the re-assessment results in Figure 5.24.

From the figure, we conclude that the evolved Hebbian controller improves the

systems (recovers), but it also does not make it worse, which would be a possibility if

the adaptivity went in the wrong direction. Taken from this perspective, controllers

with Hebbian plasticity would fit neatly into the design of an autonomous robotic

ecosystem.
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These findings confirm that Hebbian learning is an effective learning paradigm

and that, when coupled with evolution, generalization to unseen conditions is where

it can truly shine. Two questions then arise: is the Hebbian controller really learning?

Furthermore, why does it work, i.e., what are the dynamics of the weights during the

robot’s lifetime? We set out to answer these questions in the following two subsections.

5.3.4.2 RQ2: is there any “true” learning?

We aim to verify whether, in our experiments, a VSR with Hebbian learning

does indeed learn. Intuitively, we say that an individual has “learned” how to perform

a task if (a) it has built some internal representation of the experience collected on the

task while learning and (b) it is able to re-use this experience. That is, we assume that

the outcome of learning is available even after the process of learning has ended. From

this assumption, it follows that if we stop learning once enough experience has been

collected, the individual should still be able to achieve the task; if, instead, we stop

it too early, the individual should not be able to achieve the task. If, at some point

in its life, an individual who is learning is already able to achieve the task and stop

the learning, there could be two outcomes: either (a) the individual retains its ability

to solve the task or (b) it loses its ability. In the latter case, we might conclude

that what was happening inside the individual was not “learning” in the sense we

described above but was instead some form of fast adaptation of the brain that was

itself functional to the ability of the individual. Namely, it is so functional that, if

you stop it, the individual loses its ability to solve the task. Stopping the learning

and looking at what happens can hence be used to verify whether true learning is

happening.

Based on these considerations, we performed the following experiment. Given

a VSR with an evolved Hebbian controller, we take a snapshot of it, along with its

weights, at every second during the simulation. For every such snapshot, we measure

its average velocity vx in a new simulation lasting 60 s over an unseen hilly terrain

with Hebbian learning turned off (i.e., we fix the weights to the frozen values of the
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Figure 5.25: Median ± std. dev. (solid line and shaded area) of the velocity vx of
the best individuals found in each of the 10 evolutionary runs, with weights frozen at
different time steps of the simulation (on x-axis, in s), obtained with the Hebbian con-
troller on the two shapes and the high sensory apparatus. Hebbian learning requires
just ≈ 10 s for the biped and ≈ 5 s for the worm to converge to a high-performing
weight configuration.
snapshot and do not change them anymore during the simulation). We performed this

procedure for the best individual (i.e., set of ABCD parameters) of every evolutionary

run. We report the results of such validation in Figure 5.25, in terms of median ±
std. dev. across the 10 runs. On the x-axis, we report the time (in s) at which we

took the corresponding snapshot. For the sake of conciseness, we report the results

only for the high sensory apparatus since it is the configuration that delivered the

best results for the Hebbian controller. The other cases are qualitatively similar.

From Figure 5.25, we observe that for both shapes the median vx rises very

steeply and then settles around a stable point. It takes about 10 s to 20 s before

stabilizing for the biped shape, while for the worm it converges more rapidly in the

first 5 s. This observation demonstrates that learning does indeed take place: after an

initial settling period (which can be seen as the actual “learning” phase), the robots

are capable of achieving high vx even with the weights frozen—that is, they have
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acquired some experience through learning and they are able to exploit it to run

effectively even after learning has stopped. We speculate that by the time vx settles

into a stable point, the weights have converged to a high-performing attractor in the

weight space. These findings are in line with previous research on Hebbian learning

for robotic agents, in particular, (Najarro and Risi, 2020).

5.3.4.3 RQ3: why Hebbian learning works

We want to understand why Hebbian learning works. In order to do so, we

investigate the weight dynamics underlying locomotion and see whether they disclose

some insights. Also in this case, for the sake of conciseness, we report the results only

for the high sensory apparatus, since it performed the best in terms of effectiveness (see

Section 5.3.4.1). The results are qualitatively the same for the other configurations.

Figure 5.26 plots, separately for two sample best individuals (one per shape),

the histograms of the relative frequency of weights at different time steps of the

simulation.

From the figure, one finding strikes us. By the end of the simulation, weights

diverge to assume a bell-shaped distribution centered on their initial value of 0.0.

Moreover, there are small clusters of values that accumulate on the boundaries and

assume very large values. If we consider that learning takes about 10 s to happen

(see Section 5.3.4.2), weights divergence is interesting since it persists over the entire

simulation. We also visualized the neuron activations and found the corresponding

histograms to be bi-modal, with two peaks at the boundaries (i.e., −1 and +1).

Considering that we employ tanh as an activation function (whose output domain is

indeed [−1,+1]), it is clear that activations become saturated. The divergence of the

weights might hint that evolution is essentially performing a form of synaptic pruning

(Hoefler et al., 2021), and implicitly optimizing not really the weights, but rather

the topology of the neural networks. Figure 5.26 thus led us to believe that Hebbian

plasticity creates some kind of underlying “Boolean” dynamics in the neural networks.
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Figure 5.26: Weight distributions for two sample best individuals (one per shape,
both with high sensory apparatus), at three different time steps of the simulation:
1 s, 15 s, and 60 s. In Hebbian learning, weights do diverge.
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This fact bears similarity to what happens with weight agnostic neural networks

(Gaier and Ha, 2019) and “bang-bang” controllers (Bellman et al., 1956), which are

continuous-action controllers that, when optimized, degenerate to binary controllers.

Inspecting the weights and activations of the other best individuals confirmed these

results. Here, we plotted just two of them for the sake of conciseness.

To better understand the role that weight divergence plays, we introduce, in

the form of an ablation study, a normalized Hebbian model. In this representation,

we normalize weights to [−1,+1] as w′(k+1)
ij = w

(k+1)
ij / ‖ w(k+1)

i ‖2, where w
(k+1)
i is the

vector of pre-synaptic weights for the post-synaptic i-th neuron. In other words, at

each step for every neuron we divide its pre-synaptic weights by their Euclidean norm.

We remark that, in the previous experiments, weights were unbounded. In doing so,

we tap into the body of evidence on local synaptic competition between neurons

in vivo (El-Boustani et al., 2018), according to which adjacent synapses modulate

their strength so as to specialize and not be subdued by the others. Moreover, the

relative relevance of weights of a given neuron does not change, and so there is no

bias introduced in the EA. The rationale behind the normalized Hebbian model is

clearly that, since we are preventing the weights from diverging, we want to see

whether it unveils more insights about the original, non-normalized model whose

weights diverged.

We ran an experimental campaign of 10 independent runs for the normalized

Hebbian model, using the same parameters of the non-normalized Hebbian model. We

report the results in Figure 5.27 in terms of the fitness vx of the best individuals at

the end of evolution, and compare it with the non-normalized Hebbian model results

from Section 5.3.4.1. Figure 5.28 plots the histograms of the relative frequency of

weights at different time steps of the simulation, for two sample best individuals.

From Figure 5.27, we first notice that normalizing the weights does not impact

performance and that the normalized Hebbian model reaches fitness vx comparable

(or even better) to the non-normalized Hebbian model. Also, Figure 5.28 proves very
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Figure 5.27: Distribution of the velocity vx of the best individuals found in each of
the 10 evolutionary runs, obtained with the Hebbian controller (with and without
weight normalization to [−1,+1]) on the two shapes and the high sensory apparatus.
insightful. As expected, weights do not diverge outside of the [−1,+1] range and

distribute more uniformly in that range. We also visualized the neuron activations

over time and, in contrast with the non-normalized Hebbian model, they display a

clear recurrent cyclical pattern. We conjectured the reason for this to be that the nor-

malized Hebbian model evolves to exploit the dynamics of the underlying soft body;

intuitively, soft materials are so powerful that, in order to produce a gait, everything

the controller is left to do is to instill a cyclical recurring pattern. This hypothesis

appears even more grounded if we consider that the frequency of activation “cycles”

corresponds to the frequency of the real gait for the two shapes, being higher and

more regular for the biped (bipeds gait has a period of ≈ 1.5 s), whereas lower and

less regular for the worm (worms gait has a period of ≈ 2 s). Under this light, the

dynamical system of the soft body coupled with the dynamical system of the nor-

malized Hebbian controller can be seen as an instance of morphological computation

(Paul, 2006), according to which the brain offloads part of the computation to the

body.

To test this hypothesis, we repeated the same validation used in Section 5.3.4.2,
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Figure 5.28: Weight distributions for two sample best individuals (one per shape,
both with high sensory apparatus), at three different time steps of the simulation:
1 s, 15 s, and 60 s. In Hebbian learning with normalization, weights do not diverge.
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Figure 5.29: Median ± std. dev. (solid line and shaded area) of the velocity vx of
the best individuals found in each of the 10 evolutionary runs, with weights frozen at
different time steps of the simulation (on x-axis, in s), obtained with the Hebbian con-
troller on the two shapes and the high sensory apparatus, with weight normalization
to [−1,+1]. Hebbian learning with weight normalization does not stabilize.
and report the results in Figure 5.29 using the same semantics of Figure 5.25. We

remark that, during the simulation of a snapshot, we freeze the corresponding weights.

Surprisingly, the results are quite different from what was observed for the non-

normalized Hebbian model in Section 5.3.4.2. In fact, the median average velocity vx

hovers above 0m/s, meaning that individuals are not producing any useful locomotion

at all. In the non-normalized case, see Figure 5.25, vx climbed up very quickly. This

analysis holds for both shapes.

Our interpretation is that, while it is possible to freeze Hebbian learning (after

a settling period) in the non-normalized case, the same is not true for the normalized

case. It is likely that the dynamical system of the Hebbian controller and the dy-

namical system of the soft body act in unison as a single dynamical system. Hebbian

plasticity—in the normalized case—concurs to instill the correct gait dynamics for

locomotion, but this is not “true” learning (as specified in Section 5.3.4.2), since freez-
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ing Hebbian learning results in extinguishing an entangled portion of the dynamical

system.

We conclude that unbounded weights are a necessary component in the orig-

inal formulation. We speculate the reason why weight divergence does not affect

performance may be explained in two different ways. As mentioned earlier, one hy-

pothesis is that a sort of “Boolean” dynamics emerges in the Hebbian model. This

hypothesis sounds alluring if we consider that, in theory, the action space for each

voxel (which is continuous) might be shrunk to a binary space with just contraction

or expansion. To test this hypothesis it would be necessary, as a matter of example,

to switch from the foundational task of locomotion to more complex ones that cannot

be solved by a mere recurring pattern. We leave this investigation for future work.

Another hypothesis is that those synapses that diverge are in fact synapses that do

not contribute much to the output and we could, in theory, prune them. This hypoth-

esis seems even more intriguing if we parallel it with the recently introduced “lottery

ticket hypothesis” (Frankle and Carbin, 2018), according to which optimizing a dense

neural network boils down to optimizing the most effectively initialized sub-networks.

However, our setting is slightly different, as weights are initialized at the same value

and develop over time through Hebbian plasticity. Future work will consider how

to extend the lottery ticket hypothesis to our setting. Finally, for the sake of this

study, we were not concerned with other physiological processes other than Hebbian

plasticity. There is evidence that other processes, e.g., homeostatic plasticity (Turri-

giano and Nelson, 2004), complement it to maintain the overall activity of a neuron

within the network, and might balance unconstrained synaptic growth. We leave this

investigation as future work.

5.3.4.4 Additional experiments

In the following, we list experiments that we carried out, but delivered less

interesting results.
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First, we tried to evolve η alongside the ABCD coefficients. The motivation

for this is that the joint space of η and the ABCD coefficients is, potentially, a more

expressive representation. In particular, it might allow evolution to find learning

rates that are tailored to specific Hebbian rules, in parallel with what happens in the

human brain, where plasticity is known to operate on a different timescale for the

striatum and the amygdala (Costa et al., 2016). The results turned out to be not

significantly different than searching in the sole ABCD space. So, for the sake of

this chapter, we resorted to the more compact representation between the two, i.e.,

the one evolving only the ABCD coefficients. The reason for this might be that the

EA searches more effectively in the more compact ABCD space, or that differing η

values do not benefit the Hebbian learning model.

Second, we experimented with different Hebbian models than the one pre-

sented in Section 5.3.3 having a different Hebbian rule for every synapse, that we will

hereon label full. In particular, we tested:

(a) a single model, where all the synapses share a single Hebbian rule;

(b) a sensors model, where pre-synaptic connections of input neurons corresponding

to sensors of the same type share the same Hebbian rule and there is a unique

rule for each one of the other two layers;

(c) a post-synaptic model, where the post-synaptic connections of a given neuron

share the same Hebbian rule;

(d) a pre-synaptic model, where the pre-synaptic connections of a given neuron

share the same Hebbian rule.

We ran an experimental campaign for each of the models above, using the

same setup of the full model. The single, sensors, and input models turned out to

be ineffective for all shapes and sensory apparatuses. The pre-synaptic model, on the
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other side, managed to evolve and settle on a plateau. Nevertheless, it still under-

performed the full model. Since what distinguishes these models is the number of

parameters to optimize, they present different compactness-expressivity trade-offs.

We then believe these results are a consequence of expressivity, being the latter, for

this setting, beneficial.

Finally, we experimented with the initialization of the weights at the beginning

of the life of the robot. In addition to the zero initialization adopted in this chapter,

we considered a case with initialization of the weights from U(−1,+1), but we did

not find any statistically significant difference. We thus resorted to zero initialization

since starting from an idle posture is more sensible for a locomotion task and there

is one less causal factor.

5.3.5 Concluding remarks

We observed that the evolved Hebbian controllers are never worse, and often

better, than their counterparts based on MLP with evolved weights. This is true

for all the tested combinations of two VSR shapes and three sensory apparatuses.

Second, we found that the adopted Hebbian learning model does indeed “learn”, i.e.,

the robots perform well even when the weight update is disabled, provided that a

sufficient amount of time was previously allotted to the learning process. Third, we

found that unbounded weights are a necessary element of learning in our model, in

that they lead to an implicit form of pruning. On the contrary, when we normalize

weights, robot performance with learning is still comparable; however, if we disable

the weight update, performance drops dramatically.

Our instantiation of Hebbianism can be seen as a form of self-organization: the

ANN weights collectively self-organize over the course of the robot’s lifetime according

to their individual Hebbian rules. Thus, we believe our work to be relevant in the

study of the time scale of CI.
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Chapter 6: Pressure-based soft agents: towards a

novel soft robotics formalism

Biological agents have bodies that are mostly of soft tissues. Researchers have

resorted to soft bodies to investigate ALife-related questions; similarly, a new era

of soft-bodied robots has just begun. Nevertheless, because of their infinite degrees

of freedom, soft bodies pose unique challenges in terms of simulation, control, and

optimization. We considered VSRs in this thesis, and our choice was motivated;

still, VSRs rely on an internal structure of rigid elements to simulate softness (see

Chapter 2), limiting their shape-change potential. Here we propose a novel soft-

bodied agent formalism, namely Pressure-based Soft Agents (PSAs): they are spring-

mass membranes containing a pressurized medium. Pressure endows the agents with

structure, while springs and masses simulate softness and allow the agents to assume

a large gamut of shapes. PSAs actuate both locally, by changing the resting length

of springs, and globally, by modulating global pressure. We evolve the controller of

PSAs for a locomotion task on hilly terrain, an escape task from a cage, and an object

manipulation task. Our results suggest that PSAs are indeed effective at the tasks,

especially those requiring shape change, thus answering question 6.

6.1 Introduction and related works

Softness is arguably one of the greatest gifts of mother nature. Every living

creature on Earth possesses a body that is mostly made of soft tissues. Soft bodies

can continuously bend, stretch, and twist, achieving adaptation to the environment;

evolution keeps illuminating new ways to exploit softness, from the amazing manip-

ulation feats of cephalopods (Hochner, 2012) to the protozoans of, for example, the

genus Lacrymaria (Mast, 1911) and the genus Erythropsidinium (Guiry and Guiry,

2021), that can contort their soft flagellum to grasp a hard-to-reach prey, allowing
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for complex hunting dynamics to emerge. It is not surprising that researchers have

adopted soft materials to fabricate a new generation of soft robots (Rus and Tolley,

2015). Soft robots promise to achieve shape change, recover from damage (Krieg-

man et al., 2019), and adapt to novel environments (Shah et al., 2021b). Soft bodies

are suitable to investigate ALife-related questions (Joachimczak et al., 2016; Krieg-

man et al., 2018), including ER (Cheney et al., 2014b), by simulating and optimizing

virtual creatures for a task.

At the same time, the simulation and optimization of soft agents pose unique

challenges. No analytical methods exist, as soft bodies have infinite degrees of freedom

and entail, in general, hard-to-simulate dynamics (Laschi et al., 2016). Moreover, the

softness of bodies reinforces the embodied cognition paradigm (Pfeifer and Bongard,

2006), which posits a deep entanglement between the “brain” of an agent and the

“body” that carries it (Pigozzi, 2022a). While promising in terms of morphological

computation (Nakajima et al., 2015; Hauser et al., 2023), i.e., the brain offloading

part of the computation to the body, such entanglement makes any co-optimization

of the brain and soft body arduous (Lipson et al., 2016). Finally, how to effectively

achieve shape change remains an open issue in the literature (Shah et al., 2021a).

We propose a novel formalism to study soft-bodied agents, namely Pressure-

based Soft Agents (PSAs). They are bodies of gas enveloped by a chain of springs and

masses, with pressure pushing on the masses from inside the body. Pressure endows

the agent with structure, while springs and masses simulate softness and allow the

agent morphology to assume a large gamut of shapes, modeling soft bodies’ many

degrees of freedom. PSAs actuate locally, by changing the resting length of springs,

and globally, by modulating global pressure. We thoroughly describe the mechanical

model and how to simulate it. We also equip the agent with sensors and a closed-

loop controller that performs actuation by contracting or stretching the springs and

modulating global pressure. See Figure 6.1a for a snapshot of the simulation.

In the realm of virtual creatures, other soft agents formalisms do exist (Milano
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(a) a PSA (b) escaping from a cage

Figure 6.1: (Left) Pressure-based Soft Agents (PSAs) are spring-mass membranes
containing a pressurized medium. Red squares are masses, white strings are springs,
and blue shapes are other bodies. (Right) PSAs can effectively solve several tasks;
depicted here, achieving shape change to escape from a cage.
and Nolfi, 2022), in particular, the voxel-based (Hiller and Lipson, 2012; Medvet

et al., 2020b; Bhatia et al., 2021; Benureau and Tani, 2022), which achieves softness

through a spring-and-masses system arranged in a grid topology, and the tensegrity-

based (Rieffel et al., 2009; Zappetti et al., 2017), which achieves softness by connecting

cables that are constantly in tension with rods that are constantly under compression.

Albeit far-reaching they might be, these still rely on an internal structure of rigid

elements for the sake of modeling softness, severely limiting their ability to change

shape. Computer graphics, on the other side, employs also pressure-based soft bodies

(Matyka and Ollila, 2003), that rely on internal pressure to maintain structure and

can thus stretch and bend in any possible configuration. Pigozzi (2022b) ported

those to the virtual creatures world and we hereon extend this work. PSAs thus are

not constrained by internal rigid elements that limit the shape change capabilities of

voxel-based and tensegrity-based agents. We ask ourselves whether it is possible to

(a) Attain PSAs by endowing pressure-based soft bodies with a robotic controller;

(b) Effectively exploit shape change for PSAs;

(c) Effectively solve an object manipulation task.

We experiment with a two-dimensional simulation of PSAs and carry out an
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extensive experimental campaign aimed at validating PSAs on three different tasks:

a classic locomotion task on hilly terrain to answer (a), an escape task from within

a cage to answer (b), and a ball carrier task to answer (c). The second and the

third are particularly suitable to this work as they force the agent to shape-shift to

escape through an aperture in the cage or grasp an object. We experiment with

PSAs of three different sizes and evolve their controller with an established numerical

optimizer (Hansen and Ostermeier, 2001).

Our results suggest that PSAs are indeed proficient at solving traditional

tasks—locomotion—, tasks that require changing shape—escape—, and tasks that

a decent level of cognition—carrying. Moreover, we also show that preventing the

controller from modulating pressure (i.e., pressure is the result of only physical inter-

actions) or preventing the controller from changing the resting length of springs (i.e.,

their length depends on external forces only) makes it impossible for PSAs to solve

the tasks.

Looking forward, we believe PSAs can play a role in the simulation of soft-

bodied agents. Indeed, many existing soft robots rely on pressure to shape change,

using pumps (Kriegman et al., 2021; Shah et al., 2021b), inflatable tubes (Hawkes

et al., 2017; Usevitch et al., 2020; Drotman et al., 2021), or jamming technology (Steltz

et al., 2009). Finally, we envision many exciting ALife applications, including the

modeling of biological cells that, similarly to PSAs, consist of a fluid, the cytoplasm,

enveloped by a flexible membrane.

6.2 Proposed agent model

We propose a simple, yet expressive model of soft agents, namely Pressure-

based Soft Agents (PSAs). PSAs are expressive as they can potentially assume a wide

variety of shapes1. They are bodies of gas contained within an envelope (a chain)

1From now on, some elements of the notation (i.e., r, f , d, p, a, and s) appear after having been
previously used in the text; with a slight abuse of notation, we repurpose them for the needs of this
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of springs and masses, with pressure pushing on the masses from inside the body:

actuation takes place

(a) Locally, by contracting or expanding the springs, and

(b) Globally, by changing pressure.

The harmonious execution of these two allows the PSA to assume a large gamut of

shapes. By their many degrees of freedom and the co-existence of local and global

actuation, PSAs are both

1. Expressive, and

2. Challenging to control.

We take inspiration from the work of Matyka and Ollila (2003) on pressure-

based soft bodies for computer graphics, which was adapted for virtual creatures in

Pigozzi (2022b). Such models are particularly suitable for bodies that can bend and

twist in arbitrary shapes, such as balloons and cloth. To ease modeling, we work

with a two-dimensional simulation in discrete time and continuous space. However,

we remark that the representations and algorithms of this work are easily portable to

the three-dimensional setting.

We define a PSA as the combination of an embodiment, which obeys a me-

chanical model and possesses sensing capacities, and a brain, which we implement

with a controller.

6.2.1 Mechanical model

We outline the mechanical model behind the simulation of PSAs.

chapter.
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r

Figure 6.2: The building blocks of a PSA morphology of radius r: yellow squares are
masses, and black strings are springs.
6.2.1.1 Morphology

A PSA morphology consists of a body of gas contained within an envelope. We

define an envelope from a circle of radius r2; for simplicity, let us assume its center

is the origin. We place nmass rectangular masses of rigid material equispaced along

the circumference, i.e., at points r ∗ cos 2πi
nmass

, r ∗ sin 2πi
nmass

, and fix their rotation. We

join each mass with the previous and the following masses along the circumference

with distance joints (i.e., joints fixing the relative position between two masses) of

frequency f (the number of complete oscillations they undergo per unit of time),

damping ratio d, maximum length lmax, minimum length lmin. Moreover, an internal

pressure p (in Pa) acts on the masses; without pressure, the envelope would collapse

because of gravity. The pressure thus endows the body with structure. We remark p

is global, in the sense that it is the same for all masses. We summarize the building

blocks of a PSA morphology in Figure 6.2.

The masses define the boundaries of the morphology and collide with external

bodies. The joints, by choosing appropriate values for f and d, act as springs: they

contract and expand in response to forces acting on the masses they join. As a result,

the envelope is not rigid but soft, and the morphology deforms under forces acting

2We previously employed r in different parts of the text; with a slight abuse of notation, we
repurpose it to be a radius
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on the masses, either exogenous, e.g., contact with other bodies, or endogenous, i.e.,

changes in p.

We remark that, indeed, spring-and-damper systems are at the heart of other

soft agent simulators, including voxel-based (Hiller and Lipson, 2012; Medvet et al.,

2020b) and tensegrity-based (Zappetti et al., 2017). Moreover, springs allow masses

to change their relative position, endowing the mechanical model with many degrees

of freedom; the envelope can stretch and bend, and the body can contract or expand

in limitless configurations. As a result, our model is suitable for approximating the

infinite degrees of freedom of soft bodies, including soft robots. At the same time, such

freedom entails that directly updating the area of the morphology is not tractable:

with PSAs, we solve this problem by indirectly updating the area with p, in a way

that we detail in the next paragraph.

As an aside, PSAs can be seen not only as robotic agents but also as a minimal

model of a cell: the envelope constitutes the cellular membrane (Singleton et al.,

2004), with masses playing the role of membrane proteins and springs the role of

lipids. Being fluid, the gas effectively models the cytoplasm (Shepherd, 2006). Finally,

p closely resembles turgor pressure acting on the membrane (Pritchard, 2001).

6.2.1.2 Simulation

Area a (in cm2, because in 2D the area is that of the contour of the masses)

alters because of pressure p moving the masses; p, in turn, can be the output of a

controller or change according to physical laws. Since pressure is what endows PSAs

with structure, we treat the latter as an ablation study in Section 6.4, and focus on

PSAs that control ∆p (thus affecting p).

At every time step of the simulation, we compute the total pressure acting on

the side of a joint and distribute it over the masses. In detail, we:

(1) Query the controller for ∆p, and sum it to the p of the previous time step.
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(2) For every i-th joint, compute the total pressure acting on its side as pi = lip,

where li is the length of the joint, and the normalized normal vector n̂i ∈ [−1, 1]2

pointing to the outside of the morphology.

(3) For every j-th mass, let i− and i+ be the joints joining it to the previous and

next masses in the envelope, respectively. We transform scalar pressure into

directed pressure forces pj,i− =
p
i−

2
n̂i− and pj,i+ =

p
i+

2
n̂i+ acting on the two

joints. We divide by 2 to equally distribute pressure on the masses that anchor

a joint.

(4) For every j-th mass, we compute pj = pj,i− + pj,i+ and apply it as a force to

the mass center. We remark that pj is indeed in N, as n̂ is dimensionless, li is

in cm, and p is in Pa, with 1Pa = 1Ncm−1.

(5) Step the physics engine.

Thus, a is not a free parameter (as p), but we affect it through pressure, as

higher pressure on the masses implies a larger area, and vice versa. Finally, the

overall shape of the PSA morphology, i.e., the arrangement and relative positions of

the masses, depends on contacts with other bodies, and changes in the resting length

of springs dictated by the controller.

6.2.1.3 Parameters

Masses are squares of side 1 cm and density 2500 kg m−2; we found results

to be consistent also with other sizes and densities. After preliminary experiments

and relying on our previous knowledge, we set f = 8Hz, d = 0.3, lmax = 1.25l,

and lmin = 0.75l, where l is the initial length of a spring. As far as r and nmass are

concerned, they vary according to the morphology to simulate, as we shall see in the

next section.
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6.2.2 Sensing

To implement a closed-loop controller, we equip PSAs with sensors. Indeed,

sensing is an important property for virtual creatures that interact with an environ-

ment (Talamini et al., 2019). In this work, we employ touch, pressure, position, and

velocity sensors. Touch sensors perceive whether masses are touching other bodies

(e.g., the ground) or not, and, for each mass, return 1 if yes, 0 otherwise. The pressure

sensor perceives the current internal pressure p and is thus a proprioceptor. Position

sensors perceive the relative x- and y-position of each mass from the center of mass of

the morphology. Finally, velocity sensors perceive the x- and y-velocity of the center

of mass of the body.

We normalize every sensor reading into [0, 1], and, to introduce sensory mem-

ory, compute its average over the last t time steps (using the normalized values). We

then concatenate all the sensor readings into an observation vector o ∈ [0, 1]3nmass+3.

After preliminary experiments, we set t = 25.

6.2.3 Controller

At every time step of the simulation, we feed the current observation vector o

to a controller that decides two sets of actions:

(a) Local actuation: the resting length of the springs, and

(b) Global actuation: the change in pressure ∆p.

As far as the former is concerned, given a control value s ∈ [−1, 1], we instan-

taneously modify the resting length l of a spring as:

l =











l − s(l − lmin) if s > 0

l if s = 0

l − s(lmax − l) if s < 0

(6.1)

Thus, s = −1 corresponds to the maximum expansion, and s = 1 corresponds to the

maximum contraction, all other values lying in between. This is the same model of
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actuation of other soft robotics simulators, e.g., (Medvet et al., 2020b; Bhatia et al.,

2021).

Change in pressure, on the other side, requires a domain that is morphology-

agnostic, given that different morphologies require different pressure ranges. As a

result, we split the controller into a pressure controller πp and a springs controller

πs. The former takes as input o and outputs ∆p, that we clip to [pmin, pmax] to

remain within meaningful boundaries; the latter takes as input o and outputs s ∈
[−1, 1]nmass+1 (i.e., one control value for every spring).

After preliminary experiments, we implemented πp as a linear model of the

form:

∆p = W po+ bp (6.2)

with weights W p ∈ R
1×|o| and bias bp ∈ R. As a result, ∆p ∈ R and the model can

choose the output most appropriate to its morphology. Similarly, we implemented πs

with a non-linearity to ensure the output lies in [−1, 1]:

s = tanh(W so+ bs) (6.3)

with weight matrix W s ∈ R
(nmass+1)×|o| and bias vector bs ∈ R

nmass+1. Both πp and

πs are shallow neural networks (i.e., with no hidden layers): we found this choice to

be successful in line with (Mania et al., 2018), which proved linear policies to achieve

performance comparable performance to deep neural networks on control tasks.

We focus on optimizing the controller of a PSA for a task. Thus, the param-

eters we optimize are the controller parameters θ = [θp θs], where θp = [W p bp]

are the pressure controller parameters, and θs = [W s bs] are the springs controller

parameters.

6.3 Experimental procedure

We performed an experimental campaign aimed at answering the following

research questions:
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RQ1 Is the mechanical model valid to simulate pressure-based soft bod-

ies?

RQ2 Can we control PSAs? In other words, are PSAs capable of solving

a classic locomotion task?

RQ3 Can we effectively exploit shape change for PSAs?

RQ4 Can PSAs solve an object manipulation task, that is a more com-

plex robotic task?

We design a specific task for each question; we detail the tasks in the next

sub-section.

For all tasks, we evaluate three different PSA morphologies, to get a sense of

the effectiveness of PSAs across a wider array of morphological conditions. For the

large morphology, we set nmass = 20 and r = 10 cm; for the medium morphology, we

set nmass = 15 and r = 7.5 cm; finally, for the small morphology, we set nmass = 10 and

r = 5 cm. For the three morphologies, the input size is 33, 48, and 63, respectively.

As a result, the size of the parameter space |θ| is 408, 833, and 1408, respectively.

Since pressure control is what endows PSAs with structure and joint control

is what endows PSAs with softness, we investigate whether the two are necessary or

not to accomplish the tasks and conduct the following ablation studies in RQ2, RQ3,

and RQ4.

6.3.1 Ablation - w/o pressure control

As a first ablation study, we experiment with a configuration w/o pressure

control, in contrast to the experimental configuration considered so far. To this end,

we dispense with the pressure controller πp and let p be the result of physical laws.

In particular, the pressure of an ideal gas changes according to the ideal gas law of

(Clapeyron, 1834):
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pa = nRT (6.4)

where p (in Pa) is the pressure value, n is the amount of substance (in mol), R is the

ideal gas constant (in cm2Pa mol−1K−1), and T is temperature (in K). We remark

that many real gases do behave as ideal under various temperature and pressure

conditions (Cengel et al., 2011). By fixing T , the right-hand side of Equation (6.4) is

constant: then, p must vary to accommodate changes in a and balance the equation.

At every time step, we compute a by triangulation and plug it into Equation (6.4) to

compute p. The controller is then in charge only of the springs’ resting length.

We set T = 288.15K = 15 °C to simulate room temperature, and the gas

(the PSA is filled with) to be N2 (nitrogen), a cheap and common gas. n is the

ratio between the gas mass m (in kg) and the molar mass (in kg mol−1), that

is 0.028 031 4 kg mol−1 for N2. We set m = 0.05 kg, m = 0.075 kg, and m =

0.1 kg for the small, medium, and large morphologies respectively. As usual, R =

8.314 562 6 cm2Pa mol−1K−1 is the ideal gas constant.

For this configuration, the size of the parameter space |θ| is 374, 784, and

1334, respectively for the three morphologies; thus, disabling pressure control results

not only in (potentially) simpler actuation but also in a smaller search space that

might benefit optimization.

Finally, for the configuration with pressure control, we set pmax = nRT
πr2

, where

πr2 is the area of a perfect circle of radius r and pmin = 0.2pmax to prevent the PSA

from collapsing.

6.3.2 Ablation - w/o spring control

As a further ablation study, we experiment with a configuration w/o spring

control, in contrast to the experimental configuration described in the chapter. To

this end, we dispense with the controller of the springs πs and let the springs keep

their initial resting length throughout the simulation; thus, the actual length of the
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(a) locomotion (b) escape (c) carrier

Figure 6.3: The tasks considered in our experiments. The red circle on the right is a
ball object.
springs depends on external forces and their oscillations only. The controller is then

in charge only of the pressure.

For this configuration, the size of the parameter space |θ| is 34, 49, and 64,

respectively for the three morphologies. As with the other ablation study, disabling

springs control results not only in (potentially) simpler actuation but also in a much

smaller search space that might benefit optimization.

6.3.3 Tasks

We evaluate our method on three tasks: locomotion, escape, and object car-

rying. The tasks differ by increasing levels of environmental interaction: while lo-

comotion can potentially be solved by an open-loop controller, escaping from a cage

cannot be solved without the agent sensing its surroundings and making decisions

accordingly. Finally, object carrying requires more fine-grained cognition: not only

the agent must sense the object to be carried, but it also must act on it to modify its

state (i.e., position). See Figure 6.3 for sample frames from these tasks.

6.3.3.1 Locomotion

Locomotion is a classic task in ER (Sims, 1994; Nolfi and Floreano, 2000),

and provides a benchmark of basic control skills. It consists of walking as fast as

possible over a terrain along the x direction, over an amount of simulated time tfinal.

The fitness function is the velocity vx of the center of mass of the PSA over the
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simulation. We set tfinal = 30 s. We consider a hilly terrain similar to Sections 4.1,

4.2 and 5.3, with bumps of different heights and distances. For a given seed, we

randomly procedurally generate the bumps by sampling distance from one bump to

another from N( r
3
, 0.25) (to be then multiplied by r, to account for the size of the

agent) and sampling the height of each bump N(0, r
3
).

6.3.3.2 Escape

Escape is particularly suitable for soft agents (Cheney et al., 2015), as it forces

the agent to change its shape to pass through an aperture radically. At the onset

of each simulation, we place the PSA within a cage. The cage amounts to a roof

and two walls, with one small aperture per side. The task consists of escaping as

fast as possible in any direction over a maximum amount of simulated time tfinal.

The fitness function is the average velocity v of the center of mass of the PSA over

the simulation, regardless of the direction. We set tfinal = 30 s. The cage is rigid,

immobile, and indestructible, forcing the PSA to contort itself and squeeze through

one of the apertures. After preliminary experiments, for a PSA of radius r, we set the

roof height to 2r+1, the walls 3r apart, and the apertures one-third of the roof height.

Escape differs from locomotion in that there is a clear-cut condition for “solving” it,

namely when all of the PSA masses are outside of the cage: if this is the case, we

terminate the simulation.

6.3.3.3 Carrier

The third task is a relevant instance of object manipulation. Object manipu-

lation is not only ubiquitous in robotics research, but it also relates to “fine” motor

control in biology: in contrast to “gross” motor skills (e.g., locomotion and escape),

fine motor skills require muscle coordination at a more fine-grained level and arguably

aids in the development of intelligence (Kelly and Natale, 2020). At the onset of each

simulation, we place the PSA on a flat ground and a round object (the ball) of radius
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r
4

on top of it. The task consists in walking as fast as possible along the x direction,

over an amount of simulated time tfinal. The fitness function is the velocity vx of the

center of mass of the PSA over the simulation. We set tfinal = 30 s. If the ball touches

the ground, we terminate the simulation. Given that we compute the fitness using

tfinal and not the actual simulation time, evolution favors individuals who keep the

ball afloat as long as possible. After preliminary experiments, we set the ball to have

a radius of r
4

and a density of 500 kg cm−2

6.3.4 Optimization

We optimize the controller parameters θ with Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001; Hansen, 2016), an es-

tablished numerical optimizer. While it is possible to use any optimization algorithm,

we found CMA-ES to be stable across the different tasks, also thanks to the small

size of the search space (Müller and Glasmachers, 2018). CMA-ES iteratively opti-

mizes the solution in the form of a multivariate normal distribution, against a given

fitness function. At each iteration, it samples the distribution obtaining a population

of solutions, and then updates the parameters of the distribution based on the best

half of the population. CMA-ES employs non-trivial heuristics while updating the

distribution—we refer the reader to (Hansen and Ostermeier, 2001) for more details.

We use the default parameters suggested in (Hansen, 2006), namely the initial

step size σ = 0.5 and the population size λ = 3⌊log |θ|⌋. We set the initial vector

of means by sampling uniformly the interval [−1, 1] for each vector element. We let

CMA-ES iterate until 10 000 fitness evaluations have been done.

6.3.5 Settings

For each experiment, we performed 10 evolutionary runs by varying the ran-

dom seed for CMA-ES and the terrain generation in locomotion. We carried out all

statistical tests with the Mann-Whitney U rank test for independent samples. We

215



employ as physics engine the Python wrapper3 to Box2D (Catto, 2011), a popular 2D

physics library written in C++. We set the simulation frequency to 60Hz and left all

other parameters unchanged. We remark that, for a given seed and controller, all sim-

ulations are deterministic. For CMA-ES, we used the implementation of (Ha, 2017),

which is a wrapper around the pycma library (Hansen et al., 2019), and, at a given

iteration, parallelize fitness evaluations using multiprocessing. We made the code

publicly available at https://github.com/pigozzif/PressureSoftAgents/tree/

stable-release.

6.4 Results

We present the results of this chapter.

6.4.1 RQ1: validation of the mechanical model

We validate whether the proposed mechanical model is suitable for simulating

pressure-based soft bodies. In particular, for a PSA of radius r, we verify if there

exists a p such that a is that of a perfect circle of radius r; in this way, we assess

whether our model can correctly simulate a balloon—an ideal pressure-based soft

body.

To this end, we conduct the following experiment:

(a) We define a controller that, for a morphology of nmass masses and radius r,

outputs s ∈ 0
nmass+1 and ∆p = pmax

100
at every time step. In other words, it does

not alter the resting length of springs, while constantly increasing the pressure.

(b) For each morphology, we simulate flat terrain using the aforementioned con-

troller, setting p = pmin = 0 at the beginning.

3https://github.com/pybox2d/pybox2d
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Figure 6.4: Ratio φ between the PSA area a and the area of a perfect circle of the same
radius, together with relative pressure p

pmax
, obtained with three sizes. Our proposed

mechanical model effectively simulates pressure-based soft bodies, as φ approaches 1
by constantly increasing pressure.

(c) For each time step of the simulation, we record pressure p and φ = a
πr2

as the

performance indexes, πr2 being the area of a perfect circle of radius r.

If our proposed mechanical model correctly simulates pressure-based soft bodies, there

must exist a value p such that φ = 1.

We report the results in Figure 6.4; being this simulation deterministic, there

is no need to report error bars. According to the figure, the results are qualitatively

similar for the three morphologies. The area starts just above 0, since p = 0 and

there is no pressure supporting the envelope; it then smoothly increases throughout

the simulation, before plateauing at 1 after p = pmax.

Through that evidence, we can answer positively to RQ1: our proposed me-

chanical model is suitable for simulating pressure-based soft bodies.
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Figure 6.5: Median ± standard deviation (solid line and shaded area) of the average
velocity of locomotion for the best individuals found during each evolutionary run,
obtained with three sizes, both experimental and control treatments. Our agent model
is effective at locomotion on hilly terrain.
6.4.2 RQ2: can we control PSAs?

To validate the effectiveness of our proposed agent model, we measure the

performance of PSAs in a classic locomotion task, in three different settings: the ex-

perimental treatment, the control treatment without pressure control, and the control

treatment without springs control. In all cases, we use vx as the performance index.

We summarize the results in Figure 6.5, which plots vx in terms of median

± standard deviation for the best individuals throughout evolution. Moreover, Fig-

ure 6.6 reports boxplots for the distribution of vx of the best individuals. For every

morphology, we also show in Table 6.1 the p-values for the statistical tests against

the null hypothesis of equality between the medians for two cases: the experimen-

tal treatment against the control without pressure actuation and the experimental

treatment against the control without springs actuation.

From the figures, we see that our proposed agent model is effective at the task

of locomotion and succeeds in mastering it, regardless of the morphology. We visually

inspected the behaviors and found them to be highly adapted for a locomotion task
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Figure 6.6: Distribution of the average velocity of locomotion for the best individuals
found for each evolutionary run, obtained with three sizes, both experimental and
control treatments. Dispensing with pressure control generally hampers performance
in locomotion on hilly terrain, while dispensing with springs control always results in
abysmal performance. p-values are significant.

Locomotion Escape Carrier

Size w/o pressure w/o joints w/o pressure w/o joints w/o pressure w/o joints

Small n.s. < 0.001 0.0001 < 0.0001 < 0.0001 < 0.0001

Medium n.s. 0.002 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Large 0.0001 n.s. n.s. < 0.0001 < 0.0001 < 0.0001

Table 6.1: p-values for the two-sided test of significance between the experimental
treatment and the two control treatments (w/o pressure control and w/o springs
control), for each size and task. n.s. stands for a non-significant result (at the 0.05
confidence level and applying Bonferroni’s correction).
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on hilly terrain. PSAs evolve to “roll” over the ground, sliding the masses one after

the other, and modulating pressure to have the right shape at the right moment to

overcome bumps: in fact, we found that decreasing pressure right before a bump

allows the PSA to lower its center of gravity and generate enough momentum to walk

over it. On the other side, increasing pressure on flat portions of terrain allows the

PSA to bounce over it and generate enough momentum to walk faster. Interestingly,

we found some individuals to show life-like behaviors: as a matter of example, when

approaching bumps, some stretched out their front (masses and joints) to reach over

the tip of the bump, grasp it, and finally walk over it. Others appeared to adopt

the same strategy to “probe” the terrain in front of them, and plan future actions

accordingly. We made videos available at https://pressuresoftagents.github.

io.

According to the figures, PSAs evolved without pressure control are not as

effective. In two morphologies out of three, vx barely departs from its initial value,

meaning that no adaptation takes place. To gain further insights into this phe-

nomenon, we visually inspected the evolved behaviors. We found them to be not

adapted to a locomotion task on hilly terrain. In particular, Medium and Large

PSAs often get stuck in hollows of the terrain; other times, they unsuccessfully strug-

gle to walk over a bump. We believe the reason is the lack of pressure control: as

mentioned before, modulating pressure allows the PSA to deform according to the

terrain. Surprisingly, the same is not valid for the Small morphology, which even suc-

ceeds in outperforming its experimental counterpart. We found that Small individu-

als without pressure control evolved to twist their springs until reaching a deformed

configuration with encroaching springs; the pressure force then pushes in the wrong

direction and thrusts outwards as if the robot was a “rocket”. At that point, the

agent starts “flying” over the terrain and unfairly achieves a very high fitness. That is

just one of the ingenious examples of perverse instantiation found in the ALife world

(Lehman et al., 2020). We observed the emergence of the said behavior also for some

Medium individuals (explaining their large variance) and never again. From these ex-
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periments, we can speculate that our model gives rise to a rugged fitness landscape,

with many local minima defined by instances of perverse instantiation that can be

evolved.

Focusing on the ablation treatment without springs control, there is no evolu-

tion taking place at all: the best individuals do not manage to perform better than

the initial fitness. Not surprisingly, these individuals sit idle for the entire simulation

and fail to achieve any behavior due to the lack of spring control. Pressure control is

thus not enough.

We remark that, as shown in Table 6.1, p-values are significant for the majority

of the comparisons.

Through that evidence, we can answer positively to RQ2: we conclude that,

after optimization, it is possible to control PSAs for a task requiring a basic level

of cognition, considering the challenging nature of the hilly terrain. Moreover, ab-

lating the pressure control component of the controller results in worse performance,

especially for bigger (and, we believe, more realistic) morphologies, and ablating the

springs control component results in no evolution at all, suggesting that global control

and local control are inextricable parts of our proposed agent model.

6.4.3 RQ3: can we effectively exploit shape change?

To assess the shape-changing abilities of our proposed agent model, we measure

the performance of PSAs in an escape task, in three different settings: the experi-

mental treatment, the control treatment without pressure control, and the control

treatment without springs control. In all cases, we use v as the performance index.

We summarize the results in Figure 6.7, which plots v in terms of median

± standard deviation for the best individuals throughout evolution. Moreover, Fig-

ure 6.8 reports boxplots for the distribution of v of the best individuals and, as

before, Table 6.1 lists the corresponding p-values for the statistical tests against the

null hypothesis of equality between the medians for two cases: the experimental treat-
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Figure 6.7: Median ± standard deviation (solid line and shaded area) of the aver-
age velocity of escape for the best individuals found during each evolutionary run,
experimental, and control treatments. Dashed lines are thresholds for the task to be
solved (all of the masses are outside of the cage). Our agent model is effective at
shape-changing to escape from a cage.
ment against the control without pressure actuation and the experimental treatment

against the control without springs actuation.

We remark that we say the task to be “solved” once all of the masses of the

PSA are out of the cage; that happens when v ≈ 1.0 for Large, v ≈ 0.75 for Medium,

and v ≈ 0.5 for Small—that is, the dashed lines in Figure 6.3b. From this con-

sideration and the figures, we see that our proposed agent model effectively solves

the task of escape from a cage for the Small and Medium morphologies and almost

manages to solve it for the Large morphology. We visually inspected the behaviors

and found them to be highly adapted for an escape task. Effective individuals de-

creased their internal pressure to reduce their area, almost flattening on the ground

(see Figure 6.1b for a snapshot); then, they slithered through one of the apertures

to successfully exit the cage (we remark that agents cannot evolve their initial pres-

sure). Albeit this turned out to be a recurring pattern, we observed some variations.

Some individuals, for example, evolved a repulsion for the walls: as soon as any of

their touch sensors perceived a wall, they would contract themselves in the opposite
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Figure 6.8: Distribution of the average velocity of escape for the best individuals
found for each evolutionary run, obtained with three sizes, experimental and control
treatments. Dispensing with pressure control or joint control makes it impossible to
escape from a cage. p-values are significant.
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direction, with a sudden wave that resembled a snail retracting its antennae upon

perceiving a danger. The evolution of this trait might be since, early in the optimiza-

tion, we found many individuals to become tangled up as one of the walls wedged

between two of their masses (joints, having no mass, cannot oppose penetration).

Other individuals, when flattened, would crawl as big cats do when approaching

prey, cautiously stretching out one mass after the other. We made videos available

at https://pressuresoftagents.github.io (after the videos for the locomotion

task).

At the same time, evolution did not find effective individuals in the two abla-

tion treatments. From the plots of Figure 6.7, we see that v barely departs from its

initial value in both cases. We visually inspected the evolved individuals and found

them to be not adapted at all for an escape task: all of them wobbled towards the

walls to gain a little v, but did not attempt squeezing through the apertures. Intu-

itively, the reason is their inability to control pressure, as they cannot shape change

to effectively solve the task. Figure 6.8 corroborates these findings and Table 6.1

shows that p-values are significant for all the comparisons.

Through that evidence, we can answer positively to RQ3: PSAs can effectively

leverage shape change to solve a task that requires squeezing through a small aper-

ture, after optimization. Moreover, ablating the pressure control component of the

controller or the springs control component results in no adaptation. To the best of

our knowledge, other works on soft robots solve this task by joint optimization of mor-

phology and control (Zardini et al., 2021; Bhatia et al., 2021), which is complex, or

morphology alone (Cheney et al., 2015), that might be less feasible than control alone

in a real-world setting. In the future, we envision such escape tasks to be the starting

point of more interesting scenarios, like crawling inside caves with challenging terrain,

as well as navigating “claustrophobic” mazes as cephalopods can do (Moriyama and

Gunji, 1997).
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Figure 6.9: Median ± standard deviation (solid line and shaded area) of the average
velocity of escape for the best medium individuals found during each evolutionary
run, with different aperture sizes. The dashed line is the threshold for the task to be
solved (all of the masses are outside of the cage). There exists a critical aperture size
beyond which PSAs are no longer effective.
6.4.3.1 Critical aperture size

To gain deeper insights into the Escape task, we ask ourselves how the aperture

size affects performance. To answer this question, we repeated the same experimental

campaign of Section 6.4.3; we focused on the Medium morphology (because it is the

middle and was able to accomplish the task) and experimented with three additional

aperture sizes: 3 cm, 4 cm, 6 cm (we recall that 5 cm is the one employed so far for

this morphology). We report the results in Figure 6.9.

PSAs can squeeze even through smaller apertures. Still, performance worsens

monotonically as the aperture becomes smaller, to the point that PSAs can barely

squeeze through the smallest ones, since the blue line barely reaches the threshold

required for the task to be solved.

This experiment suggests that PSAs can achieve shape change for an escape
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task for a range of apertures, but only down to a “critical” aperture size. After

inspecting the videos, we speculate the reason to be that too small an aperture requires

the PSA to flatten to the point of making the “rolling” pattern of walk behavior hard

to achieve.

6.4.4 RQ4: can we solve an object manipulation task?

To assess the cognitive abilities of our proposed agent model, we measure the

performance of PSAs in an object manipulation task requiring the agent to carry a

ball, in three different settings: the experimental treatment, the control treatment

without pressure control, and the control treatment without springs control. In all

cases, we use vx as the performance index.

We summarize the results in Figure 6.10, which plots vx in terms of median

± standard deviation for the best individuals throughout evolution. Moreover, Fig-

ure 6.11 reports boxplots for the distribution of vx of the best individuals and, as

before, Table 6.1 lists the corresponding p-values for the statistical tests against the

null hypothesis of equality between the medians for two cases: the experimental treat-

ment against the control without pressure actuation and the experimental treatment

against the control without springs actuation.

The figures show that our proposed agent model manages to solve the task of

carrying a ball. We visually inspected the behaviors and found the majority of them

to be adapted for the carrier task. The most commonly evolved strategy worked as

follows. First, the PSA waits for the ball to fall on top of it: being the robot body

soft, the ball usually bounces up and down until stabilizing in a few seconds. Once

the ball stabilizes, the PSA starts walking forward with its signature rolling gait (see

Section 6.4.2). One possible way of holding the ball is to get it stuck between two

masses; although successful at the very beginning of the simulation, this stratagem

would prove fatal once the masses start rolling forward as the ball would soon touch

the ground. Instead, the best individuals evolved to stretch their springs on their
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Figure 6.10: Median ± standard deviation (solid line and shaded area) of the average
velocity of object carry for the best individuals found during each evolutionary run,
experimental, and control treatments. Our agent model is effective at carrying an
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Figure 6.11: Distribution of the average velocity of object carrying for the best indi-
viduals found for each evolutionary run, obtained with three sizes, experimental and
control treatments. Dispensing with pressure or joint control makes it impossible to
carry an object. p-values are significant.
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(a) (b)

Figure 6.12: Interesting behaviors evolved for the Carrier task: to prevent the ball
from falling on the ground, the left individual engulfs it, while the right one holds it
inside.
top as if they were a springboard: the ball bounces up and down and, as the robot

moves forward, does not fall on the ground. We found this strategy to last long

enough to achieve decent fitness, as shown by the figures. We made videos available

at https://pressuresoftagents.github.io (at the bottom of the page), including

a case of perverse instantiation (see next paragraph).

Still, that common strategy had its shortcomings. In particular, we witnessed

very few individuals keeping the ball away from the ground until the end of the

simulation. Interestingly, those that managed to last until the end developed an

emergency maneuver to stave off the fall of the ball: as the ball slid away from their

back, they contorted their front springs to engulf the ball as shown in Figure 6.12a:

this halted their locomotion, but also prevented the ball from touching the ground.

Additionally, we found a relevant case of perverse instantiation evolving among Small

individuals. The most successful of them let the ball pass through a gap among their

masses (springs, by definition, have no mass and are thus permeable) to hold it inside

of their body in a “hamster wheel” fashion, as shown in Figure 6.12b. As can be

seen in Figure 6.10 from the upward trend of the Small experimental treatment, this

allowed for faster locomotion, as the ball did not risk falling off to the ground. Albeit

acceptable, we consider this strategy to be perverse instantiation since it is taking

advantage of our simulation formalism and we suppose PSAs to be impermeable in

the real world.

There is a stark contrast between the performance of our experimental treat-
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ment and the performance of the two controls, stressed by the significant p-values of

Table 6.1: PSAs that do not control their pressure or their springs do not manage to

evolve at all. We visualized the behaviors of the control individuals and found them

to sit idle for the entire duration of the simulation, barely keeping the ball on top of

them by inertia.

Through that evidence, we can answer positively to RQ4: after optimization,

it is possible to control PSAs for an object manipulation task that, as commented in

Section 6.3.3, requires a finer-grained level of cognition and environmental interaction

than, e.g., locomotion. Moreover, ablating the pressure control component or the

springs control component of the controller results in no evolution at all, suggesting—

once again—that global control and local control are inextricable parts of our proposed

agent model.

6.5 Conclusion

Because of their infinite degrees of freedom, soft agents pose unique challenges

in terms of simulation, control, and optimization. Here we propose a novel soft-

bodied agents formalism, namely Pressure-based Soft Agents (PSAs): a spring-mass

membrane containing a pressurized medium. Actuation takes place by changing the

length of springs or modulating global pressure. By such a mechanical model, PSAs

can assume a large gamut of shapes.

We experimentally investigate whether it is possible to control PSAs and ex-

ploit their shape change potential. That is what the chapter demonstrates:

(a) We can control PSAs, as optimization finds effective controllers for a locomotion

task on hilly terrain, a task that requires a basic degree of cognition to be solved;

(b) We can effectively exploit shape change for PSAs, as optimization finds effective

controllers for the task of escape from a cage, a task that requires the agent to

contort itself and squeeze through a small aperture;
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(c) We can quite successfully optimize PSAs for an object manipulation task of

carrying a ball, a task that requires a fine-grained level of cognition and envi-

ronmental interaction.

Among the limitations of this work, the manufacturability of PSAs is yet to

be proven. We believe the model to be promising, as many real soft robots do rely

on pressure to achieve shape change (Usevitch et al., 2020; Kriegman et al., 2021)

Future work will address these issues; for the moment, we agree with (Kriegman,

2019) that virtual creatures can be “as beautiful and complex as life itself”. Indeed, we

believe PSAs advance reality by providing a unified framework for soft-bodied agents

that rely on shape change so that several aspects can be tested before experimental

implementation. Other future directions include three-dimensional simulation, as well

as the simulation of phenomena related to biological cells, such as phagocytosis and

mitosis. With this in mind, we may extend this model by linking several envelopes

together (sharing some masses). Thus, a robot will consist of a tissue with several

cavities. Opportunities are indeed many, and we have open-sourced our code with a

gym (Brockman et al., 2016) interface to encourage usage by other researchers.
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Chapter 7: Conclusion

This thesis delves into the realm of Evolutionary Robotics (ER) (Bongard,

2013) and presents a shift in perspective by incorporating insights from Collective

Intelligence (CI) (Ha and Tang, 2022). The stagnation in ER progress, primarily due

to the lack of adaptability in existing approaches, necessitates a paradigm change

(Eiben, 2021a).

We focus on the case of simulated Voxel-based Soft Robots (VSRs) (Hiller and

Lipson, 2012). As a preliminary, we investigate what factors impact the diversity

and effectiveness of VSRs (Pigozzi et al., 2023b). We then showcase the inherent

modularity of VSRs, emphasizing their potential as a substrate for CI. Through ex-

perimentation, we demonstrate a way to foster and control modularity within VSR

controllers (Pigozzi and Medvet, 2022); and also, a way to embed neural networks

within modules with no explicit inter-module communication, enabling our robots to

only implicitly communicate through mechanical interactions (Pigozzi et al., 2022).

We also explore the challenge of enabling modules to reason about global

properties based solely on local information, a previously unexplored dimension in the

field (Pigozzi et al., 2023c). Furthermore, we investigate various levels of adaptation

(Sipper et al., 1997) within the VSR framework. We unravel the impact that the

morphology representation, when evolving robot bodies and learning robot brains,

has on the speed and degree of learning (Pigozzi et al., 2023a). Additionally, we

enhance the generalization abilities of VSRs in unseen environmental conditions (in

the form of damage) with the integration of Hebbian learning, paving the way for

more robust and versatile artificial agents (Ferigo et al., 2022a).

Looking beyond VSRs, we propose a novel soft robot formalism consisting of

a pressurized medium enveloped by a chain of particles and beams, blending local

and global actuation. These robots are effective at shape-changing for various tasks
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(Pigozzi, 2023a).

We believe this thesis marks a milestone at the intersection of ER and CI,

setting the stage for a new era of exploration and innovation. By harnessing the

power of collective systems, this research opens avenues for addressing previously

insurmountable challenges in ER, thereby rejuvenating the realm of ER. As we venture

forward, the integration of CI principles is poised to reshape the landscape of artificial

intelligence, ushering in a future where adaptive and intelligent robotic systems are

not only possible but also increasingly attainable.

7.1 Broader impact

Our results can be applied in ways that may have potential negative impacts on

the broader society. While the experiments of this thesis consider self-contained simu-

lated agents, future—albeit distant—agents may evolve harmful adaptation abilities.

Examples of such abilities include manipulation, physical harm, and even warfare.

We believe this scenario belongs to the world of science fiction for the foreseeable

future, but we still feel obliged to include such a section.

7.2 Limitations

Every research has its limitations, and this thesis is no less. In particular, we

are limited by the capabilities of the main simulators employed, which are 2D and thus

do not faithfully render 3D robots that operate in reality. Real-life robots must also

accomplish a variety of tasks in addition to locomoting. While the locomotion tasks

considered differ by the type of terrain (flat, downhill, uphill, hilly) and the difficulty

(random terrain generation for hilly), and Chapter 6 even added an escape from cage

and an object carrying task, more tasks will enlarge the scope of this thesis and make

the results more generalizable. Examples of additional tasks include phototaxis, food

harvesting, multi-agent cooperation and competition, object manipulation, and many

others (Bhatia et al., 2021).
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Last but not least, this thesis deals exclusively with the simulation of VSRs.

Albeit virtual creatures are noteworthy of study by themselves, as argued by Krieg-

man (2019) for different reasons, the lack of in vivo validation is another limitation

of this work. Indeed, robotic systems notoriously suffer from the “sim-to-real” gap,

the difficulty in porting simulated results to the real world (Mouret and Chatzilyger-

oudis, 2017). Such difficulty creates an asymmetry between the world in silico and

the world in vivo: results we obtained might not replicate well with real robots, either

quantitatively (e.g., effectiveness of a controller design) or qualitatively (e.g., com-

parisons between different encodings). This is especially true for soft robots, whose

many degrees of freedom make their behavior challenging to model and predict (Rus

and Tolley, 2015), although some recent directions seem promising (Kriegman et al.,

2020b). We tweaked our simulations to more closely resemble the real-world, by

adding noise to the sensor readings and introducing elements of randomness in ev-

ery task (with the exception of locomotion on an even surface), but, eventually, the

magnitude of the sim-to-real gap in our work remains yet to be quantified.

7.3 Future work

In the future, we will set out to fabricate VSRs and validate the simulated

results of this thesis in the real world. This can possibly be achieved using soft voxel

actuators of Kriegman et al. (2020b), which introduced a low cost, open source, and

modular soft robot design and construction kit. New developments in stretchable

electronics could enable sim-to-real transfer of the sensing (Liu et al., 2021), by pat-

terning circuits that have light or contact sensors that would act as floor or neighbor

sensors, while IMUs could calculate velocity.
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