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We analyze the L1-mixing of a generalization of the averaging process
introduced by Aldous (2011). The process takes place on a growing sequence
of graphs which we assume to be finite-dimensional, in the sense that the
random walk on those geometries satisfies a family of Nash inequalities. As a
byproduct of our analysis, we provide a complete picture of the total variation
mixing of a discrete dual of the averaging process, which we call binomial
splitting process. A single particle of this process is essentially the random
walk on the underlying graph. When several particles evolve together, they
interact by synchronizing their jumps when placed on neighboring sites. We
show that, given k the number of particles and n the (growing) size of the
underlying graph, the system exhibits cutoff in total variation if k → ∞ and
k = O(n2). Finally, we exploit the duality between the two processes to show
that the binomial splitting process satisfies a version of Aldous’ spectral gap
identity, namely, the relaxation time of the process is independent of the num-
ber of particles.

1. Introduction. Introduced in a series of lectures and expository articles by Aldous
([1, 2, 4]), the averaging process is a Markovian model of mass redistribution among nearest-
neighboring sites of a graph. Informally, the averaging process may be described as follows:
after initially assigning some real values to each site, at exponentially-distributed times neigh-
boring sites are selected and, then, split equally among themselves their total mass.

Originally proposed as a basic mathematical model for social dynamics, the averaging
process naturally fits into the growing class of opinion exchange models (see, e.g., the recent
survey [44]). In this context sites and edges represent agents together with their connections,
while the sites’ values measure their opinions. Such stochastic models are employed with
the scope of quantitatively studying, for example, the conditions and timescales leading to
consensus as well as the role of the underlying graph topology in this.

The averaging process is also closely related to a large number of models of mass redis-
tribution from statistical physics, economics and computer science, see, for example, [14],
Section 1.1. Moreover, this and other Markovian models with a continuous state space serve
as constituent examples to extend the geometric theory of discrete Markov chains (see, e.g.,
[37, 40, 50]) to the continuous setting. Among the recent works in this direction, we mention
[6, 10, 11, 14, 46, 54, 55] as those being concerned with the study of convergence rates and
spectral gap’s identities for continuous mass redistribution models.

Despite the several analogies with statistical mechanics models, the averaging process
shares the distinguishing feature of reaching equilibrium at a single absorbing state with
most examples in opinion exchange dynamics. This singularity, together with the continuous
nature of the state space and the heterogeneity of the underlying social network, is what
makes these Markovian models mathematically interesting and challenging.
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In this paper we enhance the analysis of the L1-transportation metric mixing of an in-
homogeneous “unfair” generalization of the averaging process. The setting is that of large
undirected graphs satisfying finite-dimensional Nash inequalities; the latter encompasses, for
example, the segment, the circle, the discrete d-dimensional torus and all discrete approxima-
tions of “nice” Euclidean domains (see Section 2.3 below for further details and examples).
We analyze the distance-to-equilibrium at different scales. In particular, we show that the pro-
cess gradually mixes on the scale �(1), while it exhibits an abrupt behavior when zooming
in on finer scales. Furthermore, the bounds that we obtain allow us to carry out a complete
analysis of the mixing of a discrete analogue of the averaging process, which we refer to as
binomial splitting process. This model is an interacting particle system with a conservation
law, and a significant part of this paper is devoted to the study of its spectral gap and total
variation (TV) cutoff.

The last decade has registered important breakthroughs on the understanding of the sharp
mixing behavior for conservative particle systems. Among the most influential works, we
mention those by Caputo et al. [12] on the Aldous’ spectral gap conjecture, and by Lacoin
[34] on the TV cutoff on one-dimensional domains, both for the Symmetric Simple Exclusion
process (SSEP). More recently, versions of Aldous’ spectral gap identity have been shown
for other models, for example, the Zero Range process (ZRP) [27], Beta and Gibbs samplers
on the segment [10, 11], Wright–Fisher and Fleming–Viot processes and multi-allelic Moran
models [17, 26, 49, 53]. Similarly, we refer, among others, to [28, 29, 32, 33, 35, 42, 51, 52]
for recent developments on the cutoff for SSEP, its asymmetric variants and ZRP.

The binomial splitting process shares some features with some symmetric particle systems
mentioned above. Among these, the presence of dualities and intertwinings play a prominent
role in our work. By means of dual descriptions, on the one hand we derive sharp upper
bounds for the averaging process from properties of a-few-particle binomial splitting; on
the other hand, we also deduce results on the many-particle binomial splitting through the
analysis of the averaging dynamics.

2. Models and main results. We devote this section to the rigorous description of
the Markovian models and to the corresponding main results. The underlying common ge-
ometry for the two models is represented by a weighted, connected and undirected graph
G = (V ,E, (cxy)xy∈E) and site-weights π = (π(x))x∈V , a nondegenerate probability mea-
sure on V , that is, π(x) > 0 for all x ∈ V . Moreover, for all p ∈ [1,∞], we let Lp(V,π)

denote the Banach space of functions ψ : V → R endowed with the norm ‖ · ‖p (‖ψ‖p
p :=∑

x∈V π(x)|ψ(x)|p for p ∈ [1,∞) and ‖ψ‖∞ := maxx∈V |ψ(x)| for p = ∞). For the case
p = 2, we use the shorthand notation H for L2(V ,π) and 〈·, ·〉 for the corresponding inner
product.

2.1. Binomial splitting process. The binomial splitting process is a natural discrete ana-
logue of the averaging process, in which pairs of sites split particles rather than mass, accord-
ing to a binomial distribution rather than deterministically. More precisely, for each k ∈ N,
the binomial splitting process with k particles, Bin(k), is the continuous-time Markov process
(ξt )t≥0 on the finite configuration space

(2.1) �k :=
{
ξ ∈ N

V
0

∣∣∣ ∑
x∈V

ξ(x) = k

}
,

whose evolution is described by the infinitesimal generator

(2.2) LBin(k)f = ∑
xy∈E

cxy

(
PBin(k)

xy − 1
)
f, f : �k →R.



1138 M. QUATTROPANI AND F. SAU

In the above formula,

(2.3) PBin(k)
xy f (ξ) := E�

xy
ξ

[f ],
where the �k-valued r.v. �

xy
ξ is defined as

(2.4) �
xy
ξ (z) :=

⎧⎪⎪⎨
⎪⎪⎩

Y if z = x,

ξ(x) + ξ(y) − Y if z = y,

ξ(z) otherwise

with

(2.5) Y ∼ binomial
(
ξ(x) + ξ(y),

π(x)

π(x) + π(y)

)
.

Here and in what follows, if not stated otherwise, Eν denotes the expectation with respect
to the probability law ν; if ν = Law(X), for some r.v. X, we abbreviate ELaw(X) by EX . In
equation (2.4), notice the symmetry of the r.v. �

xy
ξ with respect to the sites x, y ∈ V .

As a straightforward detailed balance computation shows, the unique invariant and re-
versible measure for the process (ξt )t≥0 is multinomial with parameters (k,π), which is
denoted by

μk,π (ξ) = k! ∏
x∈V

π(x)ξ(x)

ξ(x)! ,

and the binomial splitting dynamics acts as a local instantaneous thermalization at pairs of
sites with rates (cxy)xy∈E . It is worth to observe that, while the binomial redistribution rule
corresponds to an i.i.d. sampling of the particles’ new locations, interaction enters only when
forcing them to jump simultaneously. A quantitative analysis of the effects of such a weak
dependence lies at the core of our work.

Notice that if the system consists of a single particle, it can be equivalently described
through its position (Xt)t≥0 on V , its reversible measure coinciding with π ; we call PBin(1)

the law of such a Markov chain.

2.2. Aldous’ spectral gap identity. The first result we present is a spectral gap identity
for the binomial splitting process. In words, we show that the k-particle system’s spectral gap
coincides with the spectral gap of the single-particle system on any graph.

While the literature on spectral gap estimates is too vast to be all mentioned here, the un-
derstanding of the exact correspondence between many- and single-particle systems’ spectral
gaps is limited, besides the trivial case of independent particles, to a few more examples
[9–12, 17, 27]. The next theorem adds a further model to the previous list.

Let us first introduce some terminology. Due to reversibility of the multinomial(k,π),
denoted below by μk,π , with respect to the Bin(k) dynamics, the Rayleigh quotient represen-
tation for the spectral gap holds, that is, the smallest positive eigenvalue of −LBin(k) can be
equivalently defined by

(2.6) gapk := inf
f 
=0:Eμk,π

[f ]=0

Eμk,π
[f (−LBin(k)f )]
Eμk,π

[f 2] .

THEOREM 2.1. For all graphs G = (V ,E, (cxy)xy∈E), nondegenerate site-weights
(π(x))x∈V and k ∈N,

(2.7) gapk = gap1 =: gap .

The proof of this result is deferred to Section 4 below.
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2.3. Asymptotic framework and examples. In contrast with the spectral gap result in The-
orem 2.1, which holds for every fixed (weighted) graph G and nondegenerate site-weights π ,
all results presented in the forthcoming subsections are framed—in analogy with most of
the literature on Markov chains’ mixing times—in an asymptotic setting. More in detail, we
will consider a growing sequence of weighted graphs Gn = (Vn,En, (cxy)xy∈En) with cor-
responding site weights (π(x))x∈Vn . The size of the vertex set |Vn| = n will play the role of
the diverging parameter and all the asymptotic notation will refer to the limit n → ∞; more-
over, the dependence on n will be usually omitted. In what follows we use the usual Landau
asymptotic notation: given two nonnegative sequences (fn)n∈N, (gn)n∈N, we write

fn = O(gn) ⇐⇒ lim sup
n→∞

fn

gn

< ∞,

fn = o(gn) ⇐⇒ lim sup
n→∞

fn

gn

= 0,

fn = �(gn) ⇐⇒ lim inf
n→∞

fn

gn

> 0,

fn = ω(gn) ⇐⇒ lim inf
n→∞

fn

gn

= ∞,

fn = �(gn) ⇐⇒ 0 < lim inf
n→∞

fn

gn

≤ lim sup
n→∞

fn

gn

< ∞.

The main assumption that we require is that the growing graphs are, roughly speaking,
finite-dimensional. Nash inequalities will be the analytical tool which encodes the finite-
dimensionality of our geometries. One of the strengths of such integral inequalities is that
they imply the ultracontractivity of the random walk’s Markov semigroup or, in other words,
pointwise heat kernel “on-diagonal” upper bounds. This property, combined with tensoriza-
tion and comparison results, will turn out to be extremely useful also in our setting of many
interacting particles.

Originally developed in the context of parabolic PDEs by Nash ([45], see also [24]), this
class of functional inequalities has been first exploited in the context of finite-state Markov
chains in [23]. In the reversible setting, [13] established the equivalence between Nash in-
equalities and ultracontractivity (see also [18]). Several other conditions are known to imply
Nash inequalities, for instance: isoperimetry (see, e.g., [50], Section 3.3.2); moderate growth
conditions in combination with local Poincaré inequalities ([23], Theorem 5.2); upper and
lower Gaussian-like heat kernel bounds or parabolic Harnack inequalities ([7], Section 5.2).
Moreover, as most of these conditions, Nash inequalities transfer from infinite graphs to se-
quences of uniformly roughly isometric finite graphs, see [20], Corollary 2.10 and Proposi-
tion 3.1.

Let us now formally present our assumption concerning Nash inequality for the single-
particle system, that is, Bin(1) with law P

Bin(1) as defined in the end of Section 2.1. For
all n ∈ N, we say that Bin(1) satisfies a Nash inequality with (positive) constants d = d(n),
tNash = tNash(n) and T = T (n) if

(2.8) ‖ψ‖2(1+ 2
d
)

2 ≤ tNash
(
EBin(1)(ψ) + T −1‖ψ‖2

2
)‖ψ‖

4
d

1 , ψ ∈ H,

holds, where EBin(1) denotes the Dirichlet form of the single-particle system, namely

(2.9) EBin(1)(ψ) := ∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
ψ(x) − ψ(y)

)2
.
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For every fixed n ∈ N, a Nash inequality for some positive constants (d, tNash, T ) always
holds; hence, in an asymptotic setting the point lies in finding a sequence of constants
(d, tNash, T )n∈N with a suitable asymptotic behavior as, for instance, in the forthcoming
Assumption 1. Furthermore, as mentioned in the paragraph above, the integral inequality
in equation (2.8) can be translated into a pointwise upper bound for the heat kernel of the
single-particle process. More precisely, calling

(2.10) hx
t (y) := P

Bin(1)(Xt = y | X0 = x)

π(y)
, x, y ∈ V, t ≥ 0,

equation (2.8) implies that (see [50], Theorem 2.3.4)

(2.11) max
x,y∈V

hx
t (y) ≤ e

(
dtNash

2t

) d
2
, t ≤ T .

Notice that, for the purpose of deriving equation (2.11) above, it suffices to check Nash in-
equality in equation (2.8) for all ψ ∈ Pπ ⊆H, the subset of probability densities with respect
to π . Moreover, as the above inequality shows, in an asymptotic framework Nash inequalities
as in equation (2.8) are most useful when d is small, T = �(tNash) and tNash is at most of the
same order of the relaxation time, that is,

(2.12) trel := gap−1 .

In this case, tNash plays the role of burn-in time around which all Lp-norms of the Markov
chain’s probability density become uniformly bounded and Bin(1) mixes gradually at times
�(trel). This discussion motivates the following assumption on the underlying geometries
satisfying a “good” family of Nash inequalities.

ASSUMPTION 1 (Finite-dimensional geometries). For all n ∈ N, we assume that Nash
inequality for Bin(1) holds with positive constants d = d(n), T = T (n) and tNash = tNash(n)

satisfying

(2.13) d = O(1), tNash = O(trel), T = �(tNash).

Notice that Assumption 1 implies that there exist cdim and cratio ∈ (0,∞) such that

(2.14) sup
n∈N

d ≤ cdim and sup
n∈N

tNash

trel
≤ cratio.

Moreover, the assumption of nondegeneracy of the site-weights used in the proof of Theo-
rem 2.1 is replaced in the current asymptotic setting by the following uniform nondegeneracy
assumption.

ASSUMPTION 2 (Uniformly elliptic site-weights). We assume that the sequence of site-
weights satisfies

(2.15) sup
n∈N

maxx∈V π(x)

miny∈V π(y)
≤ cell

for some cell ∈ [1,∞).

REMARK 2.2. If Assumption 1 holds for some uniformly elliptic probability distribution
π on V , then, just by simple comparison of norms and Dirichlet forms in equation (2.8), it
holds for any other uniformly elliptic π ′, with t ′Nash = �(tNash), t ′rel = �(trel), etc.

We conclude this section with a list of examples of sequences of graphs satisfying As-
sumption 1 for every uniformly elliptic π as in Assumption 2 (in all the following examples,
we omit to remark that T = �(tNash) holds):
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• Lattice discretizations of m-dimensional tori and Euclidean bounded Lipschitz domains
A ⊂ R

m, m ≥ 1, where G = Gn is a lattice approximation of A with nearest-neighbor
jumps and uniformly elliptic conductances, see [16]:

(2.16) d = m, trel = �
(
n2/d), tNash = �

(
n2/d).

As special cases, one recovers the circle and the segment with uniformly elliptic conduc-
tances. Notice that, by a comparison argument, the restriction to nearest-neighbor jumps
may be relaxed up to include finite-range jumps. Moreover, instances of random walks on
finite groups with moderate growth also belong to this same class, see [22, 23].

• Random walks on large finite m-dimensional boxes on the supercritical percolation clus-
ter, see [41], equation (6) and Theorem 1.3:

(2.17) d = m + o(1), trel = �
(
n2/d), tNash = �

(
n2/d).

• The “n-dog” from [50], Examples 3.3.2 and 3.3.5, namely the lattice discretization of two
boxes of R2 intersecting only in one corner:

(2.18) d = 2, trel = �(n logn), tNash = �(n).

• Finite fractal graphs with bounded walk-dimension dw > 2 and volume growth exponent
df > 0:

(2.19) d = 2df /dw, trel = �
(
n2/d), tNash = �

(
n2/d).

Heat kernel estimates for several examples of this kind have been extensively studied on
infinite graphs, see, for example, [7, 30, 31]; finite-graph examples, including Sierpiński
gasket and carpet graphs, are thoroughly discussed in [20].

It is rather straightforward to construct examples of geometries for which our Assumption 1
does not hold. For instance, any sequence constructed from the list above with diverging d

(e.g., m-dimensional Euclidean boxes with m = mn → ∞) belongs to this class. Another
example is that of the (homogeneous) complete graphs with n vertices as in Theorem 2.7
below; as a simple computation shows, trel = 2

n
→ 0, while, for all possible choices of d =

O(1) and T = �(tNash), tNash → ∞.

2.4. Mixing of the binomial splitting. This section is devoted to the presentation of
the results concerning the TV mixing of the binomial splitting process. For all k ∈ N, we
let (SBin(k)

t )t≥0 denote the Markov semigroup associated to the generator LBin(k) in equa-
tion (2.2) and, for every initial distribution ν on �k , we adopt the matrix notation νSBin(k)

t to
refer to the corresponding distribution at time t ≥ 0.

Recall the definition of TV distance to equilibrium at time t ≥ 0 when starting from some
probability distribution ν over �k

(2.20) d(ν)
k (t) := ∥∥νSBin(k)

t − μk,π

∥∥
TV = sup

A⊂�k

∣∣νSBin(k)
t (A) − μk,π(A)

∣∣,
where μk,π is the multinomial distribution of parameters (k,π).

In Theorem 2.3 below, we show that, in the asymptotic setting of Section 2.3, the worst-
case TV distance exhibits the so-called cutoff phenomenon. Discovered in the 80’s by Aldous
and Diaconis, [3], the expression cutoff refers, in the context of Markov chains, to an abrupt
convergence to equilibrium measured with a given distance. In recent years, several systems
of interacting particles have been shown to exhibit cutoff in TV distance, see, for example,
[8, 10, 11, 28, 34, 36, 39] and references therein.

In analogy with this literature, we consider the worst-case mixing, namely, we will take
the supremum of the quantity in equation (2.20) over the set of initial distributions which, in
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turn, is equivalent to take the maximum over the set �k . For this reason, letting δξ denote the
Dirac’ distribution at ξ ∈ �k , we define

(2.21) dk(t) := sup
ξ∈�k

d
(δξ )

k (t).

We will show that, when k → ∞, cutoff for the worst-case TV distance in equation (2.21)
occurs around the time

(2.22) tmix := trel

2
log(k),

thus, rightfully referred to as the mixing time. Moreover, the quantity in equation (2.21) is
bounded away from 0 and 1 in a window of size �(trel) around tmix. In order to quantify the
latter statement, for every C > 0 we will consider the quantity

(2.23) tw(C) := Ctrel,

which will play the role of the so-called cutoff window in the forthcoming Theorem 2.3. In
addition, we further define

(2.24) t±(C) := tmix ± tw(C).

THEOREM 2.3 (Cutoff). Consider a sequence of graphs and site-weights such that As-
sumptions 1 and 2 hold. Let us further assume that the total number of particles k = kn is
such that k → ∞ and there exists some cvol ∈ [0,∞) for which

(2.25) lim sup
n→∞

k

n2 ≤ cvol.

Then, for all δ ∈ (0,1) there exists some C = C(δ) > 0 such that

(2.26) lim sup
n→∞

dk

(
t+(C)

)≤ δ, lim inf
n→∞ dk

(
t−(C)

)≥ 1 − δ

hold.

The assumption k → ∞ is necessary for the validity of Theorem 2.3. Indeed, when
k = 1, the so-called product condition (see, e.g., [37], Proposition 18.4) together with equa-
tion (2.11) impose that in order for the cutoff to occur we need tNash � trel, which contrasts
our Assumption 1. The next proposition shows that, in our setting, the absence of cutoff holds
for any sequence k = O(1).

PROPOSITION 2.4. In the same setting of Theorem 2.3, if k = kn = O(1), then, there
exist a, b > 0 independent of n such that

(2.27) e
− t

trel ≤ dk(t) ≤ ae
− t

trel , t ≥ btrel.

REMARK 2.5 (High-density regime). In the regime in which k → ∞ and k = O(n2) the
cutoff time tmix in equation (2.22) coincides with the cutoff time for other recently studied
symmetric interacting systems (mostly in 1D), e.g., [10, 11, 34]. While the assumption k →
∞ is necessary for the validity of Theorem 2.3 (cf. Proposition 2.4), this is not clear for the
requirement k = O(n2). In fact, our techniques break down when dropping that assumption.
Hence, determining the emergence of the cutoff phenomenon for the Bin(k) in the high-
density regime, that is, when k = ω(n2), remains an open problem. Nonetheless, as we will
show in Proposition 6.8 below, in this regime a timescale �(trel log(k)) is still sufficient for
the system to be well mixed.

The conclusions in Theorem 2.3 and Proposition 2.4—whose proofs are postponed to Sec-
tion 6 below—are drawn from mixing results for the averaging process, presented in the next
two sections.
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2.5. Averaging process. We start by a rigorous definition of the “unfair” averaging pro-
cess in which sites redistribute their mass proportionally to prescribed site-weights. Since the
averaging dynamics conserves the total mass and it is invariant under dilation, with no loss of
generality we will assume that the initial configuration is some η ∈ �, where � is the set of
probability distributions over V . More precisely, given a nondegenerate π ∈ �, the averaging
process is the Markov process (ηt )t≥0 with state space � and infinitesimal generator

(2.28) LAvgf := ∑
xy∈E

cxy

(
PAvg

xy − 1
)
f, f : � →R,

where

(2.29) PAvg
xy f (η) := f

(
ηxy), ηxy(z) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π(x)

π(x) + π(y)

(
η(x) + η(y)

)
if z = x,

π(y)

π(x) + π(y)

(
η(x) + η(y)

)
if z = y,

η(z) otherwhise.

Let C(�) be the Banach space of continuous functions on the compact metric space (�,‖·‖2)

endowed with the supremum norm. Then, it is easy to check that the operator LAvg is a
bounded linear operator on C(�) and that generates a Feller Markov contraction semigroup
(SAvg

t )t≥0 on the same space. All throughout, PAvg
ν and E

Avg
ν denote the law and correspond-

ing expectation of the averaging process distributed at time t = 0 according to ν; when ν is
a Dirac at η, we simply write P

Avg
η and E

Avg
η . An analogous notation will be adopted for the

k-particle binomial splitting.

2.6. Mixing of the averaging. As it can be read off the definition in equation (2.28),
π ∈ � is the unique absorbing point of the averaging dynamics. Moreover, although the se-
quence of local thermalizations is random, the deterministic nature of the mass redistributions
prevents any other point η ∈ � to be visited more than once, breaking down any reversibil-
ity. In this context, quantifying the convergence to stationarity entails a sensible choice of
distance to equilibrium. Indeed, at any finite time there is a positive probability that only a
fraction of edges has been updated. Thus, the distribution of the averaging process is singular
with respect to the unique stationary measure, the Dirac δπ . Hence, convergence to station-
arity cannot occur in, for example, TV distance, that is, ‖Law(ηt ) − δπ‖TV 
→ 0 as t → ∞.
Therefore, as in other recent works on the averaging process and related mass redistribution
models (see, e.g., [4, 6, 14]), we will employ Wasserstein-type of distances. More precisely,
we will adopt Lp-transportation metrics, namely, for all p ∈ [1,2],
(2.30) E

Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥
p

]
, η ∈ �, t ≥ 0.

These metrics set the ground for a quantitative comparison between the averaging and its
“noiseless” counterpart. Indeed, as it will become clear with the statement on the duality
relations in Proposition 3.3 below, the averaging process (ηt )t≥0 ⊆ � decomposes into two
components: a deterministic part (πt )t≥0 ⊆ � corresponding to the law of the single-particle
binomial splitting system, and a “noise” part (Xt )t≥0 ⊆ R

V , such that

(2.31) ηt = πt +Xt , t ≥ 0,

with X0 = 0 and
∑

x∈V Xt (x) = 0 a.s., E[Xt ] = 0 for all t ≥ 0, as well as Xt → 0 in law as
t → ∞.

In view of these considerations, it comes natural to compare rates of convergence for the
averaging in Lp-transportation distance and for Bin(1) in Lp-distance. This comparison boils
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down to analyze the effect of the noise (Xt )t≥0 at various scales, leading to possible mis-
matches in the behaviors of the two processes. A first instance of this phenomenon is shown
in the next proposition, which generalizes a result taken from [4] to the inhomogeneous con-
text, that is, when π is not uniform.

PROPOSITION 2.6 (Cf. [4], Proposition 2). For all graphs G = (V ,E, (cxy)xy∈E) and
nondegenerate site-weights (π(x))x∈V ,

(2.32) E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
≤ e

− t
trel

∥∥∥∥ η

π
− 1

∥∥∥∥2

2
, η ∈ �, t ≥ 0.

The above proposition is key to the proof of Theorem 2.1 and, for completeness, its proof
is reported in Section 4 below. In words, Proposition 2.6 above shows that the contraction rate
for the averaging’s L2-transportation metrics is, in general, off by a factor 2 from the standard
L2-contraction rate prescribed by Poincaré inequality for Bin(1). In fact, [14], Corollary 2.2,
proves that the lack of this pre-factor is exact in the specific context of the homogeneous
complete graph.

The result in Proposition 2.6 required no hypothesis other than the nondegeneracy of
π ∈ �. When turning to the analysis of the asymptotic behaviors, different assumptions on
the underlying geometry may lead to dissimilar outcomes. To the best of our knowledge, [14]
is the only work so far establishing sharp results on the mixing of the averaging process in an
asymptotic setting. As some of their findings directly relate to our results, we schematically
report them below, referring the interested reader to [14] for further details.

THEOREM 2.7 ([14], Theorems 1.1 and 1.2). Consider a sequence of growing complete
graphs with n vertices, unitary conductances and uniform site-weights. Then, calling

(2.33) tCDSZ := 1

log(2)

log(n)

n
, tCDSZ,w(C) := C

√
log(n)

n

and

(2.34) t±CDSZ(C) := tCDSZ ± tCDSZ,w(C),

for all δ ∈ (0,1) there exists some C = C(δ) > 0 such that

(2.35)

lim sup
n→∞

sup
η∈�

E
Avg
η

[∥∥∥∥ηt+CDSZ(C)

π
− 1

∥∥∥∥
1

]
≤ δ,

lim inf
n→∞ sup

η∈�

E
Avg
η

[∥∥∥∥ηt−CDSZ(C)

π
− 1

∥∥∥∥
1

]
≥ 2 − δ.

The above theorem allows a comparison between the mixing behaviors of the averaging
and of the Bin(1) on the complete graph. Indeed, on the one hand, the L1-Wasserstein dis-
tance to equilibrium for the averaging sharply drops to zero around times ( 1

log(2)
+o(1))

log(n)
n

;
on the other hand, as a simple computation shows, the law of the single Bin-particle reaches
equilibrium in TV distance on a strictly shorter timescale, namely tmix = �(trel) = �( 1

n
). In

other words, mixing of these two processes differ both qualitatively (i.e., abrupt vs. grad-
ual) and quantitatively (i.e., on different timescales) on the “infinite-dimensional” example
of growing complete graphs.

A natural question is whether this disagreement occurs also on finite-dimensional ge-
ometries, namely those for which our Assumption 1 holds and, thus, the Bin(1) mixes on
a timescale �(trel) without cutoff. As our next result shows, in such a framework, the mixing
behaviors of the averaging and of the Bin(1) match, both occurring gradually at times �(trel).
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PROPOSITION 2.8 (No cutoff). Consider a sequence of graphs and site-weights such
that Assumption 1 holds. Then, there exist a, b > 0 independent of n such that

(2.36) e
− t

trel ≤ E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥
p

]
≤ ae

− t
trel , t ≥ btrel,

for all p ∈ [1,2].

Pushing further the analogy between averaging dynamics and the “noiseless” Bin(1), we
ask whether cutoff occurs on a “finer scale”, that is, when measuring the Lp-transportation
metrics on scales of the order of k−1/2, for some diverging k = kn → ∞. In the forthcoming
theorem we prove that, in our asymptotic framework, the averaging process abruptly mixes
just like the single particle on finer scales as long as k = O(n2). An extension similar to that
highlighted for the binomial splitting in Remark 2.5 holds for the averaging in the regime in
which k = ω(n2); see Proposition 5.6 below for further details.

THEOREM 2.9 (Cutoff on a finer scale). Consider a sequence of graphs and site-weights
such that Assumptions 1 and 2 hold. Fix also a sequence k = kn such that k → ∞ and there
exists some cvol ∈ [0,∞) for which equation (2.25) holds. Then, for all δ ∈ (0,1) there exists
some C = C(δ) > 0 such that

(2.37) lim sup
n→∞

√
k sup

η∈�

E
Avg
η

[∥∥∥∥ηt+

π
− 1

∥∥∥∥
p

]
≤ δ, lim inf

n→∞
√

k sup
η∈�

E
Avg
η

[∥∥∥∥ηt−

π
− 1

∥∥∥∥
p

]
≥ 1

δ
,

for all p ∈ [1,2], where t±(C) are defined as in equation (2.24).

As it will be shown in Section 6 below, the results in Proposition 2.8 and Theorem 2.9
will be instrumental for the proofs of the upper bounds in Proposition 2.4 and Theorem 2.3,
respectively.

2.7. Organization of the paper. The rest of the paper is organized as follows. Section 3 is
devoted to the introduction of several dualities and intertwining relations involving the pro-
cesses under analysis. In Section 4 we prove the spectral gap identity presented in Section 2.2.
The proofs of the mixing results for the averaging are presented in Section 5, while those for
the binomial splitting in Section 6.

3. Intertwining and duality relations. In this section, we present the intertwining and
(self-)duality relations involving the averaging and the binomial splitting which will be used
all throughout. For a general account on these two probabilistic tools in the context of Markov
processes and interacting particle systems, the interested reader may refer, for example, to
[25, 38, 43] and references therein.

PROPOSITION 3.1 (Multinomial intertwining). For all k ∈ N and functions f : �k →R,
we have

(3.1) SAvg
t Λkf = ΛkSBin(k)

t f, t ≥ 0

where, for all η ∈ �,

(3.2) Λkf (η) := Eμk,η
[f ],

and μk,η stands for multinomial(k, η).
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PROOF. Recall Eqs. (2.3) and (2.29). We prove

(3.3) PAvg
xy Λkf (η) = ΛkPBin(k)

xy f (η), η ∈ �,

for all xy ∈ E and f : �k →R; this yields the analogue of equation (3.1) for the correspond-
ing generators, from which equation (3.1) follows due to the boundedness of the generators
involved. (For notational convenience, in this proof we will write, for example, ξx for ξ(x).)
From now on the proof follows by an elementary direct computation. Starting with the term
on the right-hand side in equation (3.3), we rewrite it as

(3.4)

ΛkPBin(k)
xy f (η) = ∑

ξ∈�k

μk,η(ξ)PBin(k)
xy f (ξ)

=
k∑

�=0

∑
ξ∈�k

P
({

Multinomial(k, η) = ξ
}∩ {ξx + ξy = �})PBin(k)

xy f (ξ).

Notice that, for all � = 0,1, . . . , k, we have∑
ξ∈�k

P
({

Multinomial(k, η) = ξ
}∩ {ξx + ξy = �})PBin(k)

xy f (ξ)

= ∑
ξ∈�k

k!
( ∏

z 
=x,y

η
ξz
z

ξz!
)

η
ξx
x

ξx !
η

ξy
y

ξy !
∑

ξ ′∈�k

�!
(

1{ξ ′
x+ξ ′

y=�}
∏

z 
=x,y

1{ξ ′
z=ξz}

)

×
( πx

πx+πy
)ξ

′
x

ξ ′
x !

(
πy

πx+πy
)ξ

′
y

ξ ′
y !

f
(
ξ ′)

= ∑
ξ ′∈�k

k!
( ∏

z 
=x,y

η
ξ ′
z

z

ξ ′
z!
)( πx

πx+πy
)ξ

′
x

ξ ′
x !

(
πy

πx+πy
)ξ

′
y

ξ ′
y !

1{ξ ′
x+ξ ′

y=�}(ηx + ηy)
�f
(
ξ ′)

= ∑
ξ ′∈�k

k!
( ∏

z 
=x,y

η
ξ ′
z

z

ξ ′
z!
)( πx

πx+πy
(ηx + ηy))

ξ ′
x

ξ ′
x !

(
πy

πx+πy
(ηx + ηy))

ξ ′
y

ξ ′
y !

1{ξ ′
x+ξ ′

y=�}f
(
ξ ′).

Plugging this expression back into equation (3.4), we obtain

ΛkPBin(k)
xy f (η) =

k∑
�=0

∑
ξ∈�k

P
({

multinomial(k, η) = ξ
}∩ {ξx + ξy = �})PBin(k)

xy f (ξ)

= ∑
ξ ′∈�k

μk,ηxy

(
ξ ′)f (ξ ′),

which coincides with

PAvg
xy Λkf (η) = Λkf

(
ηxy)= Eμk,ηxy [f ],

where ηxy and PAvg
xy are defined as in equation (2.29). Hence, the equality in equation (3.3)

follows. �

Before presenting the duality relations, it turns out to be convenient to introduce a labeled
version of the binomial splitting described in Section 2.1. For this reason, for all k ∈ N,
we define the labeled binomial splitting process with k particles as the irreducible Markov
chain (Xt )t≥0 on V k whose dynamics is described as follows: start with k labeled particles at
positions x = (x1, . . . , xk) ∈ V k ; as soon as the Poisson clock of rate cxy rings, the particles
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whose position is either x or y ∈ V , independently of each other, place themselves in x ∈ V

with probability π(x)
π(x)+π(y)

, in y ∈ V otherwise. Clearly, this Markov process coincides with
the process (ξt )t≥0 described in Section 2.1 when the labels of the particles are ignored. More
precisely, the corresponding infinitesimal generator

(3.5) LBin(k) = ∑
xy∈E

cxyL
Bin(k)
xy ,

which is self-adjoint in the k-fold tensor space H⊗k := H ⊗ · · · ⊗H, where H = L2(V ,π),
maps symmetric functions into symmetric functions, since the particle dynamics does not
depend on the particles labels. Rigorously,

(3.6) LBin(k)Symk = SymkL
Bin(k),

where Symk : H⊗k → H⊗k denotes the orthogonal projector

(3.7) Symkψ(x1, . . . , xk) := 1

k!
∑

σ∈�k

ψ(xσ(1), . . . , xσ(k)), Sym2
k = Symk

and �k the symmetric group on k symbols. We let (S
Bin(k)
t )t≥0 denote the semigroup asso-

ciated to the labeled k-particle binomial splitting. Moreover, for notational convenience, we
will adopt the following shorthand:

π(x) = π⊗k(x) := π(x1) · · ·π(xk), x = (x1, . . . , xk) ∈ V k.

The next two results are not new and variants of them may be found scattered in the liter-
ature in several places for related models, using different techniques, from probabily to Lie
algebra. For more details about these techniques, we refer the interested reader to, for exam-
ple, [4, 25, 47, 48]; below, we provide sketches of their proofs for the reader’s convenience.

PROPOSITION 3.2 (Self-duality for the binomial splitting). Let, for all k, � ∈ N, x =
(x1, . . . , xk) ∈ V k and ξ ∈ ��,

(3.8) [ξ ]x := ξ(x1)
(
ξ(x2) − 1x2=x1

) · · ·
(
ξ(xk) −

k−1∑
i=1

1xk=xi

)

denote the x-falling factorial of ξ . Then, for all x ∈ V k , ξ ∈ �� and t ≥ 0, we have

(3.9) E
Bin(�)
ξ

[ [ξt ]x

π(x)

]
= S

Bin(k)
t

( [ξ ]·
π(·)

)
(x).

SKETCH OF PROOF. As mentioned above, there are several approaches one might follow
to prove this assertion. One option is to proceed by the following two-step argument: first, the
self-duality relation between two systems of independent Bin(1) particles, see, for example,
[19], Proposition 2.9.4; second, recovering the binomial splitting processes by “instantaneous
thermalization”, see [25], Section 6.3. �

PROPOSITION 3.3 (Duality between averaging and binomial splitting). Let, for all x ∈
V k and η ∈ �,

(3.10) D(x, η) :=
k∏

i=1

D(xi, η) :=
k∏

i=1

η(xi)

π(xi)

and

(3.11) D̄(x, η) :=
k∏

i=1

D̄(xi, η) :=
k∏

i=1

(
η(xi)

π(xi)
− 1

)
.
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Then, the following duality relations hold: for all x ∈ V k , η ∈ �, and t ≥ 0,

(3.12) E
Avg
η

[
D(x, ηt )

]= S
Bin(k)
t D(·, η)(x)

and

(3.13) E
Avg
η

[
D̄(x, ηt )

]= S
Bin(k)
t D̄(·, η)(x).

REMARK 3.4 (Moment vs. orthogonal duality functions). Functions of the joint sys-
tem satisfying relations as in Eqs. (3.9), (3.12) and (3.13) are usually referred to as duality
functions; more specifically, functions as in equation (3.10) are also known as “moment” or
“classical” duality functions, while those as in equation (3.11) take the name of “orthogonal”
duality functions, due to their relation with orthogonal polynomials (see, e.g., [48]).

SKETCH OF PROOF. Concerning equation (3.12), the equality follows by Poissonizing
the multinomial intertwining in Proposition 3.1 and acting with this new intertwining on the
self-duality functions of Proposition 3.2 as explained in [48], Section 5.2. On the other hand,
the duality relation in equation (3.13) has been proved for the nonthermalized model in, for
example, [48], Section 5.4; since instantaneous thermalization preserves the duality relations,
this concludes the proof. �

4. Proof of the spectral gap identity. This section is completely devoted to the proof
of Theorem 2.1. The main ingredient is the following elementary lemma, showing that the
duality relation in equation (3.13) allows to map eigenfunctions of the labeled k-particle
system to candidate eigenfunctions of the averaging.

LEMMA 4.1. For k ≥ 1, let ψ ∈ H⊗k be an eigenfunction for −LBin(k) associated to the
eigenvalue λ ≥ 0, that is,

(4.1) LBin(k)ψ = −λψ.

Then, fψ ∈ C(�) defined as

(4.2) fψ(η) := ∑
x∈V k

π(x)ψ(x)D̄(x, η),

solves

(4.3) LAvgfψ = −λfψ.

In other words, Lemma 4.1 shows that, for every eigenfunction ψ of −LBin(k), either fψ

is identically zero or fψ is an eigenfunction for −LAvg with the same eigenvalue.

PROOF. By definition, the duality relation equation (3.13) and self-adjointness of LBin(k)

in H⊗k , we have

(4.4)

LAvgfψ(η) = ∑
x∈V k

π(x)ψ(x)LAvgD̄(x, ·)(η)

= ∑
x∈V k

π(x)ψ(x)LBin(k)D̄(·, η)(x)

= ∑
x∈V k

π(x)LBin(k)ψ(x)D̄(x, η) = −λfψ(η).
�

The forthcoming Lemma 4.2 will determine which eigenfunctions ψ give rise to actual
eigenfunctions fψ . To derive such results we introduce two classes of operators, which are
referred to as (particle) creation and annihilation operators.
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We start from the simple observation that the labeled binomial spitting is “consistent”,
namely that each subset of k labeled Bin-particles still evolves according to the same Marko-
vian dynamics. More precisely, for all k ∈ N the generators LBin(k) and LBin(k−1) satisfy the
following intertwining relations:

(4.5) LBin(k)ak,i = ak,iL
Bin(k−1),

where, for all i ∈ {1, . . . , k}, ak,i : H⊗(k−1) → H⊗k is called the annihilation operator of the
ith particle for the k-particle system; such an operator is one-to-one and defined by

(4.6) (ak,i)ψ(x) := ψ
(
x̂i), x̂i := (x1, . . . , xi−1, xi+1, . . . , xk).

The adjoint of ak,i is then given by a
†
k−1,i : H⊗k → H⊗(k−1), the so-called creation operator

of the ith particle for the k-particle system; such an operator is onto and can be written as

(4.7)
(
a

†
k−1,i

)
ψ
(
x̂i) := ∑

xi∈V

π(xi)ψ(x1, . . . , xi, . . . , xk), x := (x1, . . . , xk).

Notice further that Im(a1,1) consists of constant functions, while Ker(a†
0,1) consists of zero

mean functions, and that the orthogonal decomposition H = Ker(a†
0,1) ⊕⊥π Im(a1,1) holds.

The latter decomposition generalizes to the tensor product space H⊗k by

(4.8) H⊗k = Ker
(
a

†
k−1

)⊕⊥π Im(ak),

where

(4.9) Ker
(
a

†
k−1

) :=
k⋂

i=1

Ker
(
a

†
k−1,i

)= (
Ker

(
a

†
0,1

))⊗k and Im(ak) :=
k⊕

i=1

Im(ak,i).

As an immediate consequence of the definition in equation (3.13), it follows that, for all
η ∈ �, the function D̄(·, η) : V k →R satisfies, for all 1 ≤ i ≤ k,

(4.10)
(
a

†
k−1,iD̄(·, η)

)
(x̂i ) =

(∑
xi∈V

π(xi)D̄(xi, η)

)
D̄(x̂i , η) = 0, x ∈ V k;

namely, D̄(·, η) ∈ Ker(a†
k−1).

LEMMA 4.2. Fix k ∈ N. Given ψ ∈H⊗k , for fψ ∈ C(�) defined as in equation (4.2), we
have

(4.11) fψ ≡ 0 ⇐⇒ Symkψ ∈ Im(ak).

PROOF. The implication “⇐” is a consequence of the adjointness of ak,i and a
†
k−1,i with

equation (4.10). Indeed, if Symkψ = ak,iφ for some φ ∈H⊗k−1 and i ∈ {1, . . . , k},
fψ(η) = ∑

x∈V k

π(x)ak,iφ(x)D̄(x, η) = ∑
x̂i∈V k−1

π(x̂i )φ(x̂i )a
†
k,iD̄(x̂i , η) = 0.

For the “⇒” part, thanks to the decomposition in equation (4.8), it suffices to show that
fψ 
= 0 for all symmetric and nonzero functions ψ in Ker(a†

k−1), where fψ ∈ C(�) is defined

as in equation (4.2). Thus, fix any such ψ ∈ Ker(a†
k−1) ⊆ H⊗k and consider the corresponding

fψ ∈ C(�). Notice that, by the definition of fψ in equation (4.2) and D̄(·, π) = 0, we have
fψ(π) = 0; thus, the conclusion follows if we show that fψ(η) 
= 0 for some η ∈ � \ {π}.
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By the nondegeneracy of π ∈ �, there exists h > 0 such that

(4.12) π + ζ ∈ �, ζ ∈ Th :=
{
γ : V →R

∣∣∣ ∑
x∈V

γ (x) = 0,‖γ ‖∞ ≤ h

}
.

Arguing by contradiction, let us suppose that

(4.13) fψ(π + ζ ) = ∑
x∈V

π(x)ψ(x)

k∏
i=1

ζ(xi)

π(xi)
= 0

holds for all ζ ∈ Th. Note that in the first identity we only used that, by definition of D̄(x, ·),
we have D̄(x, π + ζ ) =∏k

i=1
ζ(xi)
π(xi)

. Then, by homogeneity, equation (4.13) holds for all ζ ∈
T∞; in other words, ψ is orthogonal to all functions in the linear span of

(4.14)
{
ϕ⊗k := ϕ ⊗ · · · ⊗ ϕ ∈ Ker

(
a

†
k−1

) | ϕ ∈ Ker
(
a

†
0,1

)}
.

By the polarization identity, the linear span of equation (4.14) is dense in the k-fold symmetric
tensor of Ker(a†

0,1), and since ψ ∈ Ker(a†
k−1) = (Ker(a†

0,1))
⊗k was chosen to be symmetric,

ψ must vanish. Hence, the assumption that fψ ≡ 0 yields ψ ≡ 0, a contradiction. �

4.1. Proof of Theorem 2.1. By means of the duality relation in equation (3.13), we con-
structed in Lemmata 4.1 and 4.2 nontrivial eigenfunctions for −LAvg in terms of suitable
symmetric eigenfunctions for −LBin(k). As we show in Lemma 4.3 below, the main feature
of such eigenfunctions for the averaging process is that, as soon as k ≥ 2, the point π ∈ � is a
zero (recall that fψ(π) = 0) of at least the second order with respect to the L2-distance (in the
sense of equation (4.16)) on the simplex �. This property combined with the L2-Wasserstein
contraction result from Proposition 2.6—for which we provide the proof below—completes
the proof of Theorem 2.1.

PROOF OF PROPOSITION 2.6. The variation of ‖ η
π

− 1‖2
2 after a mass exchange among

sites x, y ∈ V equals

(4.15)

(
π(x) + π(y)

)( η(x) + η(y)

π(x) + π(y)
− 1

)2
− π(x)

(
η(x)

π(x)
− 1

)2
− π(y)

(
η(y)

π(y)
− 1

)2

= − π(x)π(y)

π(x) + π(y)

(
η(x)

π(x)
− η(y)

π(y)

)2
.

Therefore, by definition of spectral gap in equation (2.6) and that of Dirichlet form in equa-
tion (2.9), we obtain

LAvg
∥∥∥∥ η

π
− 1

∥∥∥∥2

2
= −EBin(1)

(
η

π

)
≤ −gap1

∥∥∥∥ η

π
− 1

∥∥∥∥2

2
.

An application of Grönwall inequality yields the desired result. �

LEMMA 4.3. Consider k ≥ 2, ψ ∈H⊗k and fψ as in equation (4.2). Then,

(4.16) Cψ := sup
η∈�\{π}

|fψ(η)|
‖ η

π
− 1‖2

2

∈ [0,∞).

PROOF. By Cauchy–Schwarz inequality, we obtain

(4.17)
∣∣fψ(η)

∣∣= ∣∣∣∣ ∑
x∈V k

π(x)ψ(x)D̄(x, η)

∣∣∣∣≤
√∑

x∈V k

π(x)
(
ψ(x)

)2√∑
x∈V k

π(x)
(
D̄(x, η)

)2
.



MIXING OF THE AVERAGING PROCESS AND ITS DISCRETE DUAL 1151

Because of the product structure of both probability measures π = π⊗k : V k →R and duality
functions D̄(·, η), we have

(4.18)
√∑

x∈V k

π(x)
(
D̄(x, η)

)2 =
(∑

x∈V

π(x)
(
D̄(x, η)

)2) k
2 =

∥∥∥∥ η

π
− 1

∥∥∥∥k

2
.

The desired conclusion follows because � is compact and the L2-norm is continuous. �

In view of the above lemmas, we may conclude by employing a well-known argument due
to Chen and Wang ([15]).

PROOF OF THEOREM 2.1. Clearly, we need to consider only the case k ≥ 2. The in-
equality

(4.19) gapk ≤ gap1

follows at once from Eqs. (3.6) and (4.5). Indeed, calling ξx ∈ �k−1 the configura-
tion obtained from ξ ∈ �k by removing one particle at x ∈ V , the linear operator Jk :
L2(�k−1,μk−1,π ) → L2(�k,μk,π ) defined as

(4.20) Jkf (ξ) := ∑
x∈V

ξ(x)f
(
ξx), ξ ∈ �k,

is injective; moreover, since its action corresponds to that of a symmetrized annihilation op-
erator on symmetric functions, Jk satisfies

(4.21) LBin(k)Jk = JkLBin(k−1), k ≥ 2,

see equation (4.5).
As for the reverse inequality, due to self-adjointness of −LBin(k) and the decomposition

of H⊗k in equation (4.8), it suffices to consider symmetric eigenfunctions in Ker(a†
k−1). Let

ψ be such an eigenfunction for −LBin(k) with corresponding eigenvalue λ > 0 and fψ ∈
C(�) defined as in equation (4.2). As already noted in Lemma 4.2, fψ(π) = 0 and fψ 
= 0;
moreover, by Lemma 4.1, LAvgfψ = −λfψ . Then, for all t ≥ 0 and η ∈ � \ {π} such that
fψ(η) 
= 0, we have

(4.22)

e−λt
∣∣fψ(η)

∣∣= ∣∣EAvg
η

[
fψ(ηt )

]∣∣≤ E
Avg
η

[∣∣fψ(ηt )
∣∣]

≤ CψE
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
≤ Cψe−gap1 t

∥∥∥∥ η

π
− 1

∥∥∥∥2

2
,

where Cψ > 0 is the constant introduced in Lemma 4.3, whereas the last step follows from

Proposition 2.6. Since, again by Lemma 4.3, |fψ(η)|
Cψ‖ η

π
−1‖2

2
∈ (0,1], we further obtain

(4.23) λ ≥ gap1 +
log(

|fψ(η)|
Cψ‖ η

π
−1‖2

2
)

t

for all t > 0. Taking t → ∞ yields the desired result. �

5. Proofs from Section 2.6. In this section we prove the mixing results for the averaging
stated in Section 2.6. The section is divided in four parts. First in Section 5.1 we prove an
easy lower bound for the Lp-Wasserstein distance to equilibrium. We then extract two upper
bounds which will be used to estimate the distance from equilibrium at different scales. On
the one hand, in Section 5.2, we show that a time �(trel) suffices to bring the mean L2-
distance arbitrarily close to zero. On the other hand, in Section 5.3, we use this latter bound
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to control the mixing at times (1+o(1))
trel
2 log(k), showing that this is sufficient to shrink the

L2-Wasserstein distance down further to o(k−1/2). For this reason, we are going to refer to
times of order �(trel) as “short times” and to times of order �(trel log(k)) as “longer times”.

As mentioned in Section 2.6, the latter is shown to hold as long as k = O(n2). Finally,
in Section 5.4 we collect all results of these subsections to prove Proposition 2.8 and Theo-
rem 2.9.

5.1. Lower bound. The next lemma follows easily by using the duality relations between
the averaging and the one-particle system in Proposition 3.3. In what follows, in analogy with
equation (2.10), we define

(5.1) h
η
t (x) := S

Bin(1)
t

(
η

π

)
(x) = S

Bin(1)
t D(·, η)(x), x ∈ V,η ∈ �, t ≥ 0.

LEMMA 5.1. For all η ∈ �, p ∈ [1,∞] and t ≥ 0, we have

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥
p

]
≥ ∥∥hη

t − 1
∥∥
p.(5.2)

As a consequence,

sup
η∈�

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥
p

]
≥ sup

η∈�

∥∥hη
t − 1

∥∥
p ≥ e

− t
trel .(5.3)

PROOF. Let q := q(p) ∈ [1,∞] denote the conjugate exponent of p ∈ [1,∞]. Then, by
the dual formulation of ‖ · ‖p and Proposition 3.3 with k = 1, we have

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥
p

]
= E

Avg
η

[
sup

‖ψ‖q=1

∑
x∈V

π(x)D̄(x, ηt )ψ(x)

]

≥ sup
‖ψ‖q=1

∑
x∈V

π(x)S
Bin(1)
t D̄(·, η)(x)ψ(x) = ∥∥hη

t − 1
∥∥
p.

This shows equation (5.2). Then equation (5.3) follows by passing to the supremum in η ∈ �,
and using the monotonicity of Lp-norms and [37], Lemma 20.11, with p = 1. �

5.2. Upper bound for short times. Let us start by noting that, by the duality relation
between the averaging and the two-particle system we have, for all t ≥ 0 and η ∈ �,

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
= ∑

x∈V

π(x)EAvg
η

[(
ηt (x)

π(x)

)2
− 1

]
(5.4)

= ∑
x∈V

π(x)
(
S

Bin(2)
t D(·, η)(x, x) − 1

)
(5.5)

= ∑
x∈V

π(x)

( ∑
y,z∈V

p
Bin(2)
t

(
(y, z), (x, x)

)η(y)η(z)

π(x)2 − 1
)

(5.6)

= ∑
y,z∈V

η(y)η(z)
∑
x∈V

π(x)

(
p

Bin(2)
t ((y, z), (x, x))

π(x)2 − 1
)

(5.7)

≤ max
x,y,z,w∈V

∣∣∣∣p
Bin(2)
t ((x, y), (z,w))

π(z)π(w)
− 1

∣∣∣∣,(5.8)
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where we used the symbol

(5.9) p
Bin(k)
t (x,y) := P

Bin(k)(Xt = y | X0 = x), k ∈ N,x,y ∈ V k, t ≥ 0,

to refer to the transition probabilities of the labeled particle system. We remark that equa-
tion (5.5) follows by equation (3.12), equation (5.6) is just reversibility and to obtain equa-
tion (5.8) we used η,π ∈ �.

In order to control the quantity in equation (5.8) we now derive a Nash inequality for the
two-particle system from the analogous one for Bin(1). The main ingredient is the following
comparison result between the two-particle system, that is, Bin(2), and the product chain of
two one-particle systems, that is, Bin(1) ⊗ Bin(1).

LEMMA 5.2 (Comparison of Dirichlet forms). For all ψ ∈ H⊗2,

(5.10)
1

2
EBin(1)⊗Bin(1)(ψ) ≤ EBin(2)(ψ) ≤ EBin(1)⊗Bin(1)(ψ),

where EBin(2) and EBin(1)⊗Bin(1) denote the Dirichlet forms on H⊗2 of the corresponding
processes.

PROOF. Recall that

(5.11) LBin(2) = ∑
xy∈E

cxyL
Bin(2)
xy and LBin(1)⊗Bin(1) = ∑

xy∈E

cxy

(
LBin(1)

xy ⊕ LBin(1)
xy

)
,

with A ⊕ B := A ⊗ 1 + 1 ⊗ B denoting the Kronecker sum of two operators. For all xy ∈ E

and ψ ∈ H⊗2, it is simple to check that

(5.12)

(
LBin(2)

xy − LBin(1)
xy ⊕ LBin(1)

xy

)
ψ(z,w)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
π(y)

π(x) + π(y)

)2(
ψ(y, y) + ψ(x, x) − ψ(x, y) − ψ(y, x)

)
if z = w = x,(

π(x)

π(x) + π(y)

)2(
ψ(y, y) + ψ(x, x) − ψ(x, y) − ψ(y, x)

)
if z = w = y,

−
(

π(x)

π(x) + π(y)

)(
π(y)

π(x) + π(y)

)(
ψ(y, y) + ψ(x, x) − ψ(x, y) − ψ(y, x)

)
if (z,w) = (x, y) or (y, x),

0 otherwise.

Combining the above two identities, we obtain, for all φ,ϕ ∈ H⊗2,

(5.13)

∑
z,w∈V

π(z)π(w)φ(z,w)
(
LBin(2) − LBin(1)⊗Bin(1))ϕ(z,w)

= ∑
xy∈E

cxy

(
π(x)π(y)

π(x) + π(y)

)2(
ϕ(x, x) + ϕ(y, y) − ϕ(x, y) − ϕ(y, x)

)

× (
φ(x, x) + φ(y, y) − φ(x, y) − φ(y, x)

)
.
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Therefore, for all ψ ∈ H⊗2,

(5.14)

FBin(2)(ψ) := ∑
z,w∈V

π(z)π(w)ψ(z,w)
(
LBin(2) − LBin(1)⊗Bin(1))ψ(z,w)

= ∑
xy∈E

cxy

(
π(x)π(y)

π(x) + π(y)

)2(
ψ(x, x) + ψ(y, y) − ψ(x, y) − ψ(y, x)

)2
≥ 0.

As a consequence of the definition of FBin(2), we get

EBin(2)(ψ) = EBin(1)⊗Bin(1)(ψ) −FBin(2)(ψ),(5.15)

yielding, since FBin(2)(ψ) ≥ 0, the second inequality in equation (5.10). For what concerns
the first inequality in equation (5.10), we show that

(5.16)
1

2
EBin(1)⊗Bin(1)(ψ) −FBin(2)(ψ) ≥ 0

holds for all ψ ∈ H⊗2. For this purpose, let us recall that

EBin(1)⊗Bin(1)(ψ)

= ∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

{∑
z∈V

π(z)
((

ψ(x, z) − ψ(y, z)
)2 + (

ψ(z, x) − ψ(z, y)
)2)}

,

therefore, equation (5.16) is equivalent to show that

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

{∑
z∈V

π(z)
(
ψ(x, z) − ψ(y, z)

)2

− π(x)π(y)

π(x) + π(y)

((
ψ(x, x) − ψ(y, x)

)+ (
ψ(y, y) − ψ(x, y)

))2}

+ ∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

{∑
z∈V

π(z)
(
ψ(z, x) − ψ(z, y)

)2

− π(x)π(y)

π(x) + π(y)

((
ψ(x, x) − ψ(x, y)

)+ (
ψ(y, y) − ψ(y, x)

))2}

is nonnegative. Now, we claim that this holds because each expression between curly brackets
is nonnegative. Indeed, for all xy ∈ E, focusing on the first expression between curly brackets
(the second one can be dealt with analogously) and setting

(5.17)
u := (

ψ(x, x) − ψ(y, x)
)
, p := π(x),

v := (
ψ(y, y) − ψ(x, y)

)
, q := π(y),

we have ∑
z 
=x,y

π(z)
(
ψ(x, z) − ψ(y, z)

)2 +
(
pu2 + qv2 − pq

p + q
(u + v)2

)

≥ pu2 + qv2 − pq

p + q
(u + v)2 ≥ 0.

This concludes the proof. �
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REMARK 5.3. The first inequality in Lemma 5.2 and the intertwining relation equa-
tion (4.5) ensure that not only gap2 = gap, as shown in Theorem 2.1, but also that the spectral
gap of the labeled two-particle system equals gap.

PROPOSITION 5.4. Under Assumption 1, there exist C,c > 0, independent of n, such
that

(5.18) max
x,y,z,w∈V

∣∣∣∣p
Bin(2)
t ((x, y), (z,w))

π(z)π(w)
− 1

∣∣∣∣≤ ce
− t

trel , t ≥ Ctrel.

Therefore, as a consequence of the inequalities in (5.4)–(5.8), we have

(5.19) sup
η∈�

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
≤ ce

− t
trel , t ≥ Ctrel.

PROOF. By [50], Theorem 2.3.4, Assumption 1 implies

(5.20) max
x,y∈V

p
Bin(1)
t (x, y)

π(y)
≤ e

(
dtNash

2t

) d
2
, t ≤ T ,

and an analogous inequality for the product chain Bin(1) ⊗ Bin(1): letting d ′ := 2d ,

(5.21) max
x,y,z,w∈V

p
Bin(1)⊗Bin(1)
t ((x, y), (z,w))

π(z)π(w)
≤ e2

(
d ′tNash

t

) d′
2
, t ≤ T ,

where p
Bin(1)⊗Bin(1)
t is defined in analogy to equation (5.9). Because of reversibility of

Bin(1) ⊗ Bin(1), the converse to Nash’s argument due to [13] (see also [50], Theorem 2.3.7)
ensures that

(5.22) ‖ψ‖2(1+ 2
d′ )

2 ≤ C′tNash

(
EBin(1)⊗Bin(1)(ψ) + 1

2T
‖ψ‖2

2

)
‖ψ‖

4
d′
1 ∀ψ ∈ H⊗2,

for some constant C′ > 0 depending only on d . By combining equation (5.22) with the first
inequality in Lemma 5.2, we further obtain the following integral version of the Nash in-
equality for Bin(2):

(5.23) ‖ψ‖2(1+ 2
d′ )

2 ≤ 2C′tNash

(
EBin(2)(ψ) + 1

4T
‖ψ‖2

2

)
‖ψ‖

4
d′
1 ∀ψ ∈ H⊗2,

which, again by [50], Theorem 2.3.4, implies

(5.24) max
x,y,z,w∈V

p
Bin(2)
t ((x, y), (z,w))

π(z)π(w)
≤ e

(
d ′C′tNash

t

) d′
2
, t ≤ 4T .

By Chapman–Kolmogorov equation, as well as Cauchy–Schwarz and Poincaré inequali-
ties, we obtain, for all t ≥ s ≥ 0,

(5.25)

max
x,y,z,w∈V

∣∣∣∣p
Bin(2)
t ((x, y), (z,w))

π(z)π(w)
− 1

∣∣∣∣
≤ max

x,y∈V

∥∥∥∥p
Bin(2)
t/2 ((x, y), ·)

π ⊗ π
− 1

∥∥∥∥2

H⊗2

≤ exp
{
− t − s

trel

}
max
x,y∈V

∥∥∥∥p
Bin(2)
s/2 ((x, y), ·)

π ⊗ π
− 1

∥∥∥∥2

H⊗2
,
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where the last inequality follows by Remark 5.3. Setting s := 8T = �(tNash) in the last dis-
placement, equation (5.24) yields, for all t ≥ 8T ≥ 0 and some constant c > 0,

(5.26) max
x,y,z,w∈V

∣∣∣∣p
Bin(2)
t ((x, y), (z,w))

π(z)π(w)
− 1

∣∣∣∣≤ c exp
{
− t

trel

}
,

where we used the fact that T = O(trel) thanks to Assumption 1. �

5.3. Upper bound for longer times. The next proposition provides the upper bound
which will turn out to be central for the proof of Theorem 2.9.

PROPOSITION 5.5. Under Assumptions 1 and 2, there exists a constant C′ > 0 such that
for all t > Ctrel, with C as in Proposition 5.4, and η ∈ �,

(5.27) E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
≤ C′

(
1

n
exp

{
− t

trel

}
+ exp

{
− 2t

trel

})∥∥∥∥ η

π
− 1

∥∥∥∥2

2
.

PROOF. We start by rewriting the left-hand side of equation (5.27) as

(5.28)

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
= ∑

x∈V

π(x)EAvg
η

[(
ηt (x)

π(x)

)2
− 1

]

= ∑
x∈V

π(x)

((
E

Avg
η

[
ηt (x)

π(x)

])2
− 1

)

+ ∑
x∈V

π(x)

(
E

Avg
η

[(
ηt (x)

π(x)

)2]
−
(
E

Avg
η

[
ηt (x)

π(x)

])2)

= ∥∥hη
t − 1

∥∥2
2 + ∑

z∈V

π(z)
(
S

Bin(2)
t − S

Bin(1)⊗Bin(1)
t

)( η

π
⊗ η

π

)
(z, z),

where we used the duality in equation (3.12) with k = 1 and k = 2 and the definition in
equation (5.1). The rest of the proof is devoted to estimating equation (5.28): while the bound
for the first term is straightforward (see equation (5.29)), as for the second term, first we
rewrite it in equation (5.30) below, then we split it into two parts in equation (5.37), and
conclude bounding these two expressions in Eqs. (5.37) and (5.40).

The first term in equation (5.28), by Poincaré inequality, can be bounded from above by

(5.29)
∥∥hη

t − 1
∥∥2

2 ≤ exp
{
− 2t

trel

}∥∥∥∥ η

π
− 1

∥∥∥∥2

2
.

As for the second term in equation (5.28), noting that S
Bin(1)⊗Bin(1)
t (

η
π

⊗ η
π
) = h

η
t ⊗ h

η
t , by

the integration by parts formula (see, e.g., [38], Proposition VIII.1.7) we obtain

Nt (η)

:= ∑
z∈V

π(z)
(
S

Bin(2)
t − S

Bin(1)⊗Bin(1)
t

)( η

π
⊗ η

π

)
(z, z)

= ∑
z∈V

π(z)

∫ t

0
S

Bin(2)
t−s

(
LBin(2) − LBin(1)⊗Bin(1))SBin(1)⊗Bin(1)

s

(
η

π
⊗ η

π

)
(z, z)ds

= ∑
z∈V

π(z)

∫ t

0

∑
v,w∈V

p
Bin(2)
t−s

(
(z, z), (v,w)

)(
LBin(2) − LBin(1)⊗Bin(1))(hη

s ⊗ hη
s

)
(v,w)ds.
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Hence, by the explicit computation in equation (5.13) and the duality relation in equa-
tion (3.12) with k = 1,2 we have

Nt (η) =
∫ t

0

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
hη

s (x) − hη
s (y)

)2
�t−s(x, y)ds,(5.30)

where

(5.31)

�t−s(x, y)

:= π(x)π(y)

π(x) + π(y)

∑
z∈V

π(z)E
Avg
δz

[(
D(x,ηt−s) − D(y,ηt−s)

)2]

= π(x)π(y)

π(x) + π(y)

∑
z∈V

π(z)
(
g

x,x
t−s(z, z) + g

y,y
t−s(z, z) − g

x,y
t−s(z, z) − g

y,x
t−s(z, z)

)
,

with

(5.32) g
x,y
t−s(z, z) := p

Bin(2)
t−s ((x, y), (z, z))

π(z)π(z)
= S

Bin(2)
t−s

(
1(z,z)(·, ·)
π ⊗ π

)
(x, y).

Concerning the function t �→ �t(x, y), it is easy to check that

(5.33) �0(x, y) = 1, x, y ∈ V such that xy ∈ E.

Further, Assumption 2 yields

(5.34)
∣∣�t−s(x, y)

∣∣≤ 2cell, t − s ≥ 0.

Indeed, since
∑

z∈V p
Bin(2)
t−s ((a, b), (z, z)) ∈ [0,1] for a, b ∈ V ,

∣∣�t−s(x, y)
∣∣≤ π(x)π(y)

π(x) + π(y)
2 max

{∑
z∈V

p
Bin(2)
t−s ((x, x), (z, z))

π(z)
,

∑
z∈V

p
Bin(2)
t−s ((y, y), (z, z))

π(z)
,
∑
z∈V

p
Bin(2)
t−s ((x, y), (z, z))

π(z)

}
,

and equation (5.34) follows at once estimating the above maximum by (minz∈V π(z))−1,
π(x)

π(x)+π(y)
≤ 1, and Assumption 2.

We now split, for some r ∈ (0, t) to be fixed later, the integral in equation (5.30) as

(5.35)

Nt (η) =
∫ r

0

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
hη

s (x) − hη
s (y)

)2
�t−s(x, y)ds

+
∫ t

r

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
hη

s (x) − hη
s (y)

)2
�t−s(x, y)ds.

The second term on the right-hand side in equation (5.35), thanks to equation (5.34), is
bounded by

(5.36)

∫ t

r

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
hη

s (x) − hη
s (y)

)2
�t−s(x, y)ds

≤ cell

∫ t

r
2EBin(1)

(
hη

s

)
ds ≤ cell

∥∥hη
r − 1

∥∥2
2.
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Hence, by an application of Poincaré inequality we obtain

(5.37)

∫ t

r

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
hη

s (x) − hη
s (y)

)2
�t−s(x, y)ds

≤ cell exp
{
− 2r

trel

}∥∥∥∥ η

π
− 1

∥∥∥∥2

2
.

Recalling that t > Ctrel, we can choose r = t − Ctrel so that, by Proposition 5.4, for all
s ∈ [0, r],

(5.38)
∣∣�t−s(x, y)

∣∣≤ 4cellc

n
exp

{
− t − s

trel

}
,

where the constant c is the same as in Proposition 5.4. Therefore, the first term on the right-
hand side in equation (5.35) can be bounded by

(5.39)

∫ r

0

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
hη

s (x) − hη
s (y)

)2
�t−s(x, y)ds

≤ 2cellc

n

∫ r

0
2EBin(1)

(
hη

s

)
e
− t−s

trel ds.

By an integration by parts and Poincaré inequality, we obtain∫ r

0
2EBin(1)

(
hη

s

)
e
− t−s

trel ds

= e
− t

trel

∥∥∥∥ η

π
− 1

∥∥∥∥2

2
− e

− t−r
trel
∥∥hη

r − 1
∥∥2

2 + 1

trel

∫ r

0
e
− t−s

trel
∥∥hη

s − 1
∥∥2

2 ds

≤ e
− t

trel

∥∥∥∥ η

π
− 1

∥∥∥∥2

2
+ e

− t
trel

∥∥∥∥ η

π
− 1

∥∥∥∥2

2

∫ r

0

1

trel
e
− s

trel ds

≤ 2e
− t

trel

∥∥∥∥ η

π
− 1

∥∥∥∥2

2
,

so that equation (5.39) is bounded above by

(5.40)

∫ r

0

∑
xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
hη

s (x) − hη
s (y)

)2
�t−s(x, y)ds

≤ 4cellc

n
e
− t

trel

∥∥∥∥ η

π
− 1

∥∥∥∥2

2
.

Collecting Eqs. (5.37) and (5.40) and recalling that r = t − Ctrel we conclude that

Nt (η) ≤ cell

(
4c

n
exp

{
− t

trel

}
+ e2C exp

{
− 2t

trel

})∥∥∥∥ η

π
− 1

∥∥∥∥2

2
.(5.41)

By combining Eqs. (5.29) and (5.41) we finally obtain

(5.42) E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
≤ cell

(
4c

n
exp

{
− t

trel

}
+ (

1 + e2C) exp
{
− 2t

trel

})∥∥∥∥ η

π
− 1

∥∥∥∥2

2
,

and defining properly the constant C′ in the statement, we obtain the desired result. �
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5.4. Proofs of Proposition 2.8 and Theorem 2.9.

PROOF OF PROPOSITION 2.8. The lower bound in equation (2.36) follows immediately
by Lemma 5.1. Concerning the upper bound, recall the estimate in equation (5.19) in Propo-
sition 5.4. Then, by setting t = btrel for large enough b and applying Jensen’s inequality,
we conclude the proof of equation (2.36) for p = 2. The corresponding result for p ∈ [1,2)

follows again by Jensen’s inequality. �

PROOF OF THEOREM 2.9. As in the proof of Proposition 2.8, the lower bound is an
immediate consequence of Lemma 5.1. For the upper bound we will exploit Proposition 5.5.
Take t = t+(C) as in equation (2.24) for some sufficiently large C to be fixed later. Fixing
now s = C

2 trel, k → ∞ ensures that t − s > Ctrel for large enough n; hence, we can apply
Proposition 5.5 in the time window [s, t], namely,

(5.43)

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
= E

Avg
η

[
E

Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

∣∣∣ ηs

]]

≤ C′
(

1

n
exp

{
− t − s

trel

}
+ exp

{
−2(t − s)

trel

})
E

Avg
η

[∥∥∥∥ηs

π
− 1

∥∥∥∥2

2

]
,

where we used the Markov property and the estimate in equation (5.27) for the process start-
ing from ηs and evolving for a time t − s. Now, if C is large enough, we can use Proposi-
tion 5.4 to bound the expectation in the right-hand side of equation (5.43), that is,

(5.44) E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
≤ cC′

(
1

n
exp

{
− t

trel

}
+ exp

{
−2t − s

trel

})
.

Multiplying both sides in equation (5.44) by k, and substituting the values of t = tmix + Ctrel

and s = C
2 trel, we obtain

(5.45) kEAvg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
≤ cC′

(√
k

n
e−C + e− 3

2 C

)
.

The upper bound in equation (2.37) follows for all p ∈ [1,2] by applications of Jensen’s in-
equality.

�

We conclude this section by showing that when the assumption k = O(n2) in equa-
tion (2.25) is dropped, the arguments used so far show that a weaker version of Theorem 2.3
still holds.

PROPOSITION 5.6 (Pre-cutoff). Consider a sequence of graphs and site-weights such
that Assumptions 1 and 2 hold. Then, if k/n2 → ∞, for all δ ∈ (0,1),

(5.46)

lim sup
n→∞

√
k sup

η∈�

E
Avg
η

[∥∥∥∥ηT +

π
− 1

∥∥∥∥
p

]
≤ δ,

lim inf
n→∞

√
k sup

η∈�

E
Avg
η

[∥∥∥∥ηT −

π
− 1

∥∥∥∥
p

]
≥ 1

δ
,

for all p ∈ [1,2], where

T + := a
trel

2
log(k) + Ctrel, T − := trel

2
log(k) − Ctrel,(5.47)

a := 2
log(k/n)

log(k)
∈ [1,2],(5.48)

and some C = C(δ) > 0.
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PROOF. The upper bound (for p = 2) follows directly by equation (5.44). The lower
bound (for p = 1) follows by Lemma 5.1. �

Notice that, as soon as k = �(n2+ε) for some ε > 0, then T + − T − = �(trel log(k)),
namely, their first order terms do not coincide. On the other hand, Proposition 5.6 implies a
cutoff also for all those k = n2+o(1), but with a larger window having size ω(trel).

6. Proofs from Section 2.4. In this section, we provide the proofs of the results from
Section 2.4. More specifically, in Sections 6.1–6.3 below we derive some intermediate re-
sults needed for such proofs, which are then presented in Section 6.4 below. In particular,
in Section 6.1 we provide an upper bound for the TV-distance of the binomial splitting pro-
cess when the initial distribution of particles is multinomial in terms of the L2-distance of
the averaging process. The crucial ingredient in this step is the multinomial intertwining in
Proposition 3.1. In Section 6.2 we extend this bound to all possible initial distribution by
means of “multi-colored” auxiliary processes defined therein. Finally, in Section 6.3 we use
Wilson’s method, originally introduced in [56], to show a matching lower bound.

6.1. Upper bound for multinomial initial distributions.

LEMMA 6.1. For all k ∈ N and η ∈ �, recall the definition of μk,η as the multinomial
distribution with parameters (k, η). Then,

(6.1)
∥∥μk,ηSBin(k)

t − μk,π

∥∥
TV ≤

√
ekE

Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
, t ≥ 0.

We defer its proof after the following preliminary result, in which we derive an upper
bound on the TV distance between two multinomial distributions with the same sample size.

LEMMA 6.2. For all k ∈ N and η,π ∈ �,

(6.2) ‖μk,η − μk,π‖TV ≤ 1 ∧
∥∥∥∥μk,η

μk,π

− 1
∥∥∥∥
L2(�k,μk,π )

≤ √
ek

∥∥∥∥ η

π
− 1

∥∥∥∥
2
.

PROOF. Jensen’s inequality yields the first inequality. As for the second one, by simple
manipulations with multinomial distributions, we have∥∥∥∥μk,η

μk,π

− 1
∥∥∥∥2

L2(�k,μk,π )

= ∑
ξ∈�k

μk,π (ξ)

((
μk,η(ξ)

μk,π (ξ)

)2
− 1

)

=
(∑

ξ∈�k

μk,π (ξ)
∏
x∈V

(
η(x)

π(x)

)2ξ(x))
− 1

=
(∑

x∈V k

π(x)
(
D(x, η)

)2)− 1

=
(∑

x∈V

π(x)
(
D(x,η)

)2)k

− 1

=
(

1 +
∥∥∥∥ η

π
− 1

∥∥∥∥2

2

)k

− 1.

(6.3)
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(Note that for the third step, we just used that, for any labeled configuration x ∈ V k and

its corresponding unlabeled one ξ ∈ �k , D(x, η) =∏
x∈V

η(x)
π(x)

ξ(x)
holds for all η ∈ �.) The

inequality 1 ∧ [(1 + a)k − 1] ≤ eka, a ≥ 0, yields the desired result. �

PROOF OF LEMMA 6.1. By using the intertwining relation in Proposition 3.1, we have∥∥μk,ηSBin(k)
t − μk,π

∥∥
TV := max

A⊆�k

∣∣ΛkSBin(k)
t 1A(η) − Λk1A(π)

∣∣
= max

A⊆�k

∣∣SAvg
t Λk1A(η) − Λk1A(π)

∣∣.(6.4)

By moving the maximum within the expectation, the right-hand side above is further bounded
by

(6.5)
∥∥μk,ηSBin(k)

t − μk,π

∥∥
TV ≤ E

Avg
η

[‖μk,ηt − μk,π‖TV
]
.

Finally, applying Lemma 6.2 and Jensen’s inequality concludes the proof. �

6.2. Multicolored processes and upper bound for general initial conditions. The upper
bound in Lemma 6.1 in the previous section was derived only for particle systems initialized
according to multinomial distributions; as a particular case, setting η = δx ∈ �, Lemma 6.1
holds true for μk,η = μk,δx , that is, the Dirac measure on the configuration with all k particles
piled at x ∈ V . Of course, the same upper bound carries over to arbitrary convex combinations
of multinomial distributions: for all probability measures ν on �,

(6.6)
∥∥∥∥
∫
�

ν(dη)μk,ηSBin(k)
t − μk,π

∥∥∥∥
TV

≤ √
ekEAvg

ν

[∥∥∥∥ηt

π
− 1

∥∥∥∥
2

]
, t ≥ 0.

However, while De Finetti’s theorem ensures that such convex combinations would exhaust
the space of probability measures on �k if V were infinite, this is far from being true when V

is finite (see, e.g., [5, 21]). In fact, it is simple to check that there exists a constant γ ∈ (0,1)

such that

(6.7) sup
μ

inf
ν

∥∥∥∥μ −
∫
�

ν(dη)μk,η

∥∥∥∥
TV

≥ γ

holds for all n and k ∈ N large enough, where the above supremum runs over all probability
measures on �k . Hence, multinomial initial distributions do not suffice to approximate via
convex combinations all initial conditions.

In order to bypass this obstacle and derive an upper bound for all initial conditions, we
introduce below what we call multicolored averaging and binomial splitting processes, and
prove a corresponding intertwining relation between them.

Let us start by assigning to each site z ∈ V a different color. For each z ∈ V , consider
a probability measure η(z) ∈ � on V equipped with the corresponding color. We now con-
struct the multicolored averaging (�ηt )t≥0 = ((η

(z)
t )z∈V )t≥0 ⊆ �V started from �η = (η(z))z∈V

by means of the following grand coupling: at time t = 0, each z-coordinate η
(z)
0 is set equal

to η(z) ∈ �; then, at independent exponential times of rates (cxy)xy∈E , let all coordinates

(η
(z)
t )t≥0, z ∈ V , thermalize simultaneously their values at the same edge. In other words,

each colored coordinate evolves as the averaging process, with the constraint that all share
the same random sequence of edge updates. More precisely, recalling the definition in equa-
tion (2.28), the generator of this colored process writes as

(6.8) �LAvgf := ∑
xy∈E

cxy

(⊗
z∈V

(
PAvg

xy − 1
))

f,

for all f ∈ C(�V ) =⊗
z∈V C(�).
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An entirely analogous construction carries over for the multicolored binomial splitting
started from the configuration ξ ∈ �k : at time t = 0, for all sites z ∈ V , the ξ(z) particles
at z ∈ V are given the color assigned to z ∈ V ; then, following the same edge updates, each
colored particle system performs the binomial splitting dynamics. Hence, we write (�ξt )t≥0 =
((ξ

(z)
t )z∈V )t≥0 ⊆∏

z∈V �ξ(z) to indicate the vector of such colored binomial splitting process
started from ξ ∈ �k , with generator given by

(6.9) �LBin(ξ)f := ∑
xy∈E

cxy

(⊗
z∈V

(
PBin(ξ(z))

xy − 1
))

f

for all f :∏z∈V �ξ(z) →R. Notice that choosing ξ ∈ �k with

(6.10) w �→ ξ(w) :=
{
k if w = z,

0 otherwise

as initial configuration, the projection of (�ξt )t≥0 on its z-coordinate corresponds to the Bin(k)

system started with all k particles at z ∈ V .
Having introduced such multicolored processes, the following intertwining relation gener-

alizes Proposition 3.1 to such processes.

PROPOSITION 6.3 (Intertwining for the multicolored processes). For all k ∈ N, ξ ∈ �k

and t ≥ 0,

(6.11) �SAvg
t

�Λξf = �Λξ
�SBin(ξ)
t f, f : ∏

z∈V

�ξ(z) →R,

where

(6.12) �Λξf (�η) := E(
⊗

z∈V μ
ξ(z),η(z) )[f ],

and

(6.13) �SAvg
t := et �LAvg

and �SBin(ξ)
t := et �LBin(ξ)

, t ≥ 0.

PROOF. As in the proof of Proposition 3.1, checking the identity of equation (6.11) for
the corresponding bounded generators, by linearity, it suffices to verify that

(6.14)
(⊗

z∈V

(
PAvg

xy − 1
)) �Λξf = �Λξ

(⊗
z∈V

(
PBin(ξ(z))

xy − 1
))

f

holds for all xy ∈ E, ξ ∈ �k and f :∏z∈V �ξ(z) → R. The rest of the argument goes on as
in the proof of Proposition 3.1 due to the product structure of the operators involved. �

In view of the above intertwining, we are now ready to extend the upper bound in
Lemma 6.1 to all initial conditions.

LEMMA 6.4. For all k ∈ N and t ≥ 0,

(6.15) sup
μ

∥∥μSBin(k)
t − μk,π

∥∥
TV ≤

√√√√ek sup
η∈�

E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
,

where the supremum on the left-hand side runs over all probability measures on �k .
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PROOF. First observe that, since all measures μ write as convex combinations of Dirac
measures (δξ )ξ∈�k

,

(6.16) sup
μ

∥∥μSBin(k)
t − μk,π

∥∥
TV ≤ sup

ξ∈�k

∥∥δξSBin(k)
t − μk,π

∥∥
TV.

Then, since (ξt )t≥0 started from ξ ∈ �k can be obtained as a projection of the multicolored
process (�ξt )t≥0 also started from ξ ∈ �k , we have

(6.17)
∥∥δξSBin(k)

t − μk,π

∥∥
TV ≤

∥∥∥∥
(⊗

z∈V

μξ(z),δz

)
�SBin(ξ)
t −

(⊗
z∈V

μξ(z),π

)∥∥∥∥
TV

.

Arguing as in the proof of Lemma 6.1, by means of the intertwining relation in Proposi-
tion 6.3, it follows that

(6.18)

∥∥∥∥
(⊗

z∈V

μξ(z),δz

)
�SBin(ξ)
t −

(⊗
z∈V

μξ(z),π

)∥∥∥∥
TV

≤ sup
�η∈�V

E
�Avg

�η
[∥∥∥∥
(⊗

z∈V

μ
ξ(z),η

(z)
t

)
−
(⊗

z∈V

μξ(z),π

)∥∥∥∥
TV

]

≤ sup
�η∈�V

E
�Avg

�η
[(

1 ∧ ∑
z∈V

∥∥∥∥μ
ξ(z),η

(z)
t

μξ(z),π

− 1
∥∥∥∥2

L2(�ξ(z),μξ(z),π )

) 1
2
]
,

where in the last inequality we employed [39], Proposition 7, to bound from above the TV

distance between two product measures. (Here, E
�Avg

�η denotes expectation with respect to

the law of the multicolored averaging started from �η ∈ �V .) By Jensen’s inequality and the
observation that each colored marginal of (�ηt )t≥0 ⊆ �V evolves like the averaging process,
Lemma 6.2 further yields

(6.19)

sup
�η∈�V

E
�Avg

�η
[(

1 ∧ ∑
z∈V

∥∥∥∥μ
ξ(z),η

(z)
t

μξ(z),π

− 1
∥∥∥∥2

L2(�ξ(z),μξ(z),π )

) 1
2
]

≤ sup
η∈�

√√√√∑
z∈V

eξ(z)E
Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
= sup

η∈�

√
ekE

Avg
η

[∥∥∥∥ηt

π
− 1

∥∥∥∥2

2

]
.

Combining the inequalities in (6.16)–(6.19) concludes the proof. �

6.3. Lower bound. The lower bound proof is based on Wilson’s method (see, e.g., [37],
Theorem 13.28). Roughly speaking, the method amounts in exhibiting a distinguishing statis-
tics, F , whose knowledge of means and variances in and out of equilibrium suffices to obtain
a lower bound for the TV-distance to equilibrium. Further, as we will now explain, such a
distinguishing statistic is built from an eigenfunction of the Markov generator of the single-
particle system.

Let ψ : V → R be an eigenfunction of −LBin(1) associated to the spectral gap and such
that ‖ψ‖2 = 1; in particular, we have

(6.20)
∑
x∈V

π(x)ψ(x) = 0 and
∑
x∈V

π(x)
(
ψ(x)

)2 = 1.

Wilson’s method will be applied to the observable F : �k →R defined as

(6.21) F(ξ) := ∑
x∈V

ψ(x)ξ(x).
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To the purpose of analyzing F , recall that the mean and covariance of a multinomial distri-
bution are given by

(6.22)
Eμk,η

[
ξ(x)

]= kη(x),

Covμk,η

(
ξ(x), ξ(y)

)= −kη(x)η(y)1{x 
=y} + kη(x)
(
1 − η(x)

)
1{x=y}.

Recall that 〈·, ·〉 denotes the inner product in H = L2(V ,π).

LEMMA 6.5 (Mean and variance at equilibrium). For every sequence k = kn,

(6.23) Eμk,π
[F ] = 0 and Varμk,π

(F ) = k.

PROOF. The proof of Lemma 6.5 follows by the definition of F in equation (6.21), as
well as the identities in Eqs. (6.20) and (6.22). �

LEMMA 6.6 (Mean and variance out of equilibrium). For every sequence k = kn, η ∈ �

and t ≥ Ctrel, where C is as in Proposition 5.4,

(6.24) E
μk,ηSBin(k)

t
[F ] = ke

− t
trel
〈
ψ,D(·, η)

〉
,

and

(6.25) Var
μk,ηSBin(k)

t
(F ) ≤ C′

[
k + k2

n

(
exp

{
− 2t

trel

}∥∥D(·, η)
∥∥2
∞ + exp

{
− t

trel

})]
,

for some absolute constant C′ > 1.

PROOF. To prove the identity in equation (6.24) we use the self-duality in Proposition 3.2
with k = 1,2, the first identity in equation (6.22), self-adjointness of S

Bin(1)
t and the fact that

ψ is an eigenfunction:

(6.26)

E
μk,ηSBin(k)

t
[F ] = ∑

x∈V

π(x)ψ(x)EBin(k)
μk,η

[
ξt (x)

π(x)

]

= ∑
x∈V

π(x)ψ(x)Eμk,η

[
S

Bin(1)
t

(
ξ(·)
π(·)

)
(x)

]

= k
∑
x∈V

π(x)ψ(x)S
Bin(1)
t

(
D(·, η)

)
(x)

= ke
− t

trel
∑
x∈V

π(x)ψ(x)D(x, η).

For what concerns the proof of equation (6.25), we have

Var
μk,ηSBin(k)

t
(F )

= ∑
x∈V

ψ(x)2
E

Bin(k)
μk,η

[
ξt (x)

]

+ ∑
x,y∈V

ψ(x)ψ(y)
{
E

Bin(k)
μk,η

[
ξt (x)

(
ξt (y) − 1x=y

)]−E
Bin(k)
μk,η

[
ξt (x)

]
E

Bin(k)
μk,η

[
ξt (y)

]}
.

As already noticed in equation (6.26), we have, for all x ∈ V ,

(6.27) E
Bin(k)
μk,η

[
ξt (x)

]= kπ(x)S
Bin(1)
t

(
D(·, η)

)
(x);
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analogously, it follows that, for all x, y ∈ V ,

E
Bin(k)
μk,η

[
ξt (x)

]
E

Bin(k)
μk,η

[
ξt (y)

]= k2π(x)π(y)S
Bin(1)⊗Bin(1)
t

(
D(·, η)

)
(x, y),(6.28)

E
Bin(k)
μk,η

[
ξt (x)

(
ξt (y) − 1x=y

)]= k(k − 1)π(x)π(y)S
Bin(2)
t

(
D(·, η)

)
(x, y).(6.29)

Therefore

(6.30)

Var
μk,ηSBin(k)

t
(F )

= k
∑
x∈V

π(x)ψ(x)2S
Bin(1)
t

(
D(·, η)

)
(x) − k

(∑
x∈V

π(x)ψ(x)S
Bin(1)
t

(
D(·, η)

)
(x)

)2

+ k(k − 1)
∑

x,y∈V

π(x)π(y)ψ(x)ψ(y)
(
S

Bin(2)
t − S

Bin(1)⊗Bin(1)
t

)(
D(·, η)

)
(x, y)

= k Var
ηS

Bin(1)
t

(ψ)

+ k(k − 1)
∑

x,y∈V

π(x)π(y)ψ(x)ψ(y)
(
S

Bin(2)
t − S

Bin(1)⊗Bin(1)
t

)(
D(·, η)

)
(x, y).

By Assumption 1, the choice of t > Ctrel and ‖ψ‖2
2 = 1, recalling equation (2.11), we obtain

(6.31) Var
ηS

Bin(1)
t

(ψ) ≤ 〈
ψ2, S

Bin(1)
t D(·, η)

〉= 〈
ψ2, h

η
t

〉≤ c,

for some constant c > 1 independent of n. On the other hand, by the integration by parts
formula, we rewrite∑

x,y∈V

π(x)π(y)ψ(x)ψ(y)
(
S

Bin(2)
t − S

Bin(1)⊗Bin(1)
t

)(
D(·, η)

)
(x, y)

as (L(2) − L(1,1) := LBin(2) − LBin(1)⊗Bin(1))∫ t

0

∑
x,y∈V

π(x)π(y)
(
S

Bin(2)
t−s

(
L(2) − L(1,1))SBin(1)⊗Bin(1)

s

)
(ψ ⊗ ψ)(x, y)D

(
(x, y), η

)
ds

=
∫ t

0

∑
x,y∈V

π(x)π(y)e
− 2s

trel
(
L(2) − L(1,1))(ψ ⊗ ψ)(x, y)S

Bin(2)
t−s D(·, η)(x, y)ds,

where the last identity is an immediate consequence of self-adjointness of the Bin(2)-
semigroup and the fact that ψ is eigenfunction for Bin(1). By performing a change of vari-
ables and using the explicit computation in equation (5.13), we further obtain

(6.32)

∑
x,y∈V

π(x)π(y)ψ(x)ψ(y)
(
S

Bin(2)
t − S

Bin(1)⊗Bin(1)
t

)(
D(·, η)

)
(x, y)

= e
− 2t

trel
∑

xy∈E

cxy

π(x)π(y)

π(x) + π(y)

(
ψ(x) − ψ(y)

)2 ∫ t

0
e

2s
trel

π(x)π(y)

π(x) + π(y)
�s(x, y)ds,

where, for notational convenience, we write, for all s ≥ 0 and x, y ∈ V ,

�s(x, y) := E
Avg
η

[(
ηs(x)

π(x)
− ηs(y)

π(y)

)2]

= ∑
z,w∈V

η(z)η(w)

[
p

Bin(2)
s ((z,w), (x, x))

π(x)2 + p
Bin(2)
s ((z,w), (y, y))

π(y)2

− 2
p

Bin(2)
s ((z,w), (x, y))

π(x)π(y)

]
.
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Let us now provide two upper bounds for �s(x, y) depending on the value of s ≥ 0. On the
one hand, for all s ≥ 0 and x, y ∈ V , by (a − b)2 ≤ 2a2 + 2b2 and the duality in Proposi-
tion 3.3 (in equation (3.12)) with k = 2, we have

(6.33)

�s(x, y) ≤ 2EAvg
η

[(
ηs(x)

π(x)

)2]
+ 2EAvg

η

[(
ηs(y)

π(y)

)2]

≤ 4 max
z∈V

(
η(z)

π(z)

)2
= 4

∥∥D(·, η)
∥∥2
∞.

On the other hand, by Hölder inequality and η ∈ �, Proposition 5.4 ensures that

(6.34) �s(x, y) ≤ 4 max
x,y,z,w∈V

∣∣∣∣p
Bin(2)
s ((x, y), (z,w))

π(z)π(w)
− 1

∣∣∣∣≤ 4ce
− s

trel , s ≥ Ctrel.

As done in the proof of Proposition 5.5, we split the integral in equation (6.32) in two, ob-
taining

(6.35)

∫ t

0
exp

{
2s

trel

}
π(x)π(y)

π(x) + π(y)
�s(x, y)ds

≤ 4cell

n

∥∥D(·, η)
∥∥2
∞
∫ Ctrel

0
exp

{
2s

trel

}
ds + 4ccell

n

∫ t

Ctrel

exp
{

s

trel

}
ds

≤ trel

n

(
2celle

2C
∥∥D(·, η)

∥∥2
∞ + 4ccelle

t
trel
)

≤ C̃
trel

n

(∥∥D(·, η)
∥∥2
∞ + e

t
trel
)
,

where we absorbed all constants in the quantity C̃ > 0. Plugging equation (6.35) into equa-
tion (6.32) and noticing that by our choice of ψ we have EBin(1)(ψ) = 1

trel
, we obtain

(6.36)

∑
x,y∈V

π(x)π(y)ψ(x)ψ(y)
(
S

Bin(2)
t − S

Bin(1)⊗Bin(1)
t

)(
D(·, η)

)
(x, y)

≤ C̃

n

(
exp

{
− 2t

trel

}∥∥D(·, η)
∥∥2
∞ + exp

{
− t

trel

})
.

Collecting the estimates in Eqs. (6.31) and (6.36), and going back to equation (6.30) we
finally obtain equation (6.25). �

The next proposition is a straightforward application of [37], Proposition 7.9, using the
estimates in Lemmata 6.5 and 6.6.

PROPOSITION 6.7. For all k ∈ N, η ∈ � and t ≥ Ctrel,

(6.37)
∥∥μk,ηSBin(k)

t − μk,π

∥∥
TV ≥ 1 − 8

at (k, η)
,

where

(6.38) at (k, η) := k〈ψ,D(·, η)〉2

1 + k
n
(‖D(·, η)‖2∞ + exp{ t

trel
}) ,

where ψ : V →R is an eigenfunction of −LBin(1) associated to the eigenvalue gap such that
‖ψ‖2 = 1.
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6.4. Proofs of Proposition 2.4 and Theorem 2.3.

PROOF OF PROPOSITION 2.4. The upper bound in Proposition 2.4 follows at once from
Lemma 6.4 and the upper bound in Proposition 2.8. Concerning the lower bound, by the in-
jectivity of the operator Jk in equation (4.20) and the relation in equation (4.21), a projection
argument ensures that

(6.39)
∥∥μk,ηSBin(k)

t − μk,π

∥∥
TV ≥ ∥∥ηS

Bin(1)
t − π

∥∥
TV.

Thus, the second inequality in equation (5.3) concludes the proof. �

PROOF OF THEOREM 2.3. The upper bound in Theorem 2.3 follows by Lemma 6.4 and
the upper bound in Theorem 2.9. For what concerns the lower bound, we exploit Proposi-
tion 6.7 by showing that supη∈� at−(k, η), with t− = tmix − tw(C), is increasing to infinity as
C grows. Notice that, with this choice of t = t−, we have

(6.40) at−(k, η) = k〈ψ,D(·, η)〉2

1 + k
n
(‖D(·, η)‖2∞ + e−C

√
k)

.

Concerning the numerator in equation (6.40) we have

(6.41) sup
η∈�

∣∣〈ψ,D(·, η)
〉∣∣≥ sup

η∈�
‖D(·,η)‖∞≤2

∣∣〈ψ,D(·, η)
〉∣∣≥ sup

‖ϕ‖∞≤2
‖ϕ‖1,+=1

〈ψ+, ϕ〉 ∨ sup
‖ϕ‖∞≤2
‖ϕ‖1,−=1

〈ψ−, ϕ〉,

where

V+ := {
x ∈ V : ψ+(x) := max

{
ψ(x),0

}≥ 0
}
,

V− := {
x ∈ V : ψ−(x) := max

{−ψ(x),0
}
> 0

}
,

and

(6.42) ‖ϕ‖1,± := ∑
x∈V±

π(x)
∣∣ϕ(x)

∣∣.
Let us define π(V±) :=∑

x∈V± π(x); then, π(V−) = 1 − π(V+) and, since 〈ψ,1〉 = 0 and by

Assumption 2, π(V±) ∈ [ 1
celln

,1 − 1
celln

] ⊆ (0,1). Hence, for

(6.43) ϕ±(x) := 1V±(x)

π(V±)
, x ∈ V,

we have, by definition, ‖ϕ±‖1,± = 1; moreover, by the fact that π(V−) = 1 − π(V+), for all
n ∈N, we have

(6.44) 1 ≤ ‖ϕ+‖∞ ∧ ‖ϕ−‖∞ ≤ 2.

Hence, for each n ∈ N, at least one between ϕ+ and ϕ− satisfies the constraints on the right-
hand side in equation (6.41); therefore, since 〈ψ+,1〉 = 〈ψ−,1〉 = 1

2‖ψ‖1, this yields

(6.45) sup
η∈�

‖D(·,η)‖∞≤2

∣∣〈ψ,D(·, η)
〉∣∣≥ sup

‖ϕ‖∞≤2
‖ϕ‖1,+=1

〈ψ+, ϕ〉 ∨ sup
‖ϕ‖∞≤2
‖ϕ‖1,−=1

〈ψ−, ϕ〉 ≥ 1

2
‖ψ‖1,

where the first inequality follows from equation (6.41) and the second one follows by the
lower bound in equation (6.44). As a consequence, we obtain

(6.46) sup
η∈�

at−(k, η) ≥ sup
η∈�

‖D(·,η)‖∞≤2

k〈ψ,D(·, η)〉2

1 + k
n
(‖D(·, η)‖2∞ + e−C

√
k)

≥
1
4‖ψ‖2

1
1
k

+ 2
n

+ e−C
√

k
n

.
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In order to conclude, we need to show that the eigenfunction ψ of −LBin(1) satisfies

(6.47) lim inf
n→∞ ‖ψ‖1 > 0,

which, by Hölder inequality and ‖ψ‖2 = 1, holds if we prove that

(6.48) lim sup
n→∞

‖ψ‖∞ < ∞.

The above follows by noting that, for all t ≥ 0 and x ∈ V ,

∣∣ψ(x)
∣∣= e

t
trel
∣∣SBin(1)

t ψ(x)
∣∣= e

t
trel
∣∣〈hx

t ,ψ
〉∣∣≤ e

t
trel
∥∥hx

t

∥∥
2‖ψ‖2,(6.49)

where we used Cauchy–Schwarz inequality. Hence, plugging t = Ctrel into equation (6.49),
using Assumption 1 and recalling that ‖ψ‖2 = 1, equation (6.48) holds and the desired claim
follows. �

Similar to what has been done at the end of Section 5, we show how to use our arguments
to get some quantitative bounds on the TV mixing of the particle system in the case in which
k = ω(n2).

PROPOSITION 6.8 (Pre-cutoff for the binomial splitting). Consider a sequence of graphs
and site-weights such that Assumptions 1 and 2 hold. Then, if k/n2 → ∞, for all δ ∈ (0,1),

(6.50) lim sup
n→∞

dk

(
T +)≤ δ, lim inf

n→∞ dk

(
T −)≥ 1 − δ,

where

T + := a
trel

2
log(k) + Ctrel, T − := b

trel

2
log(k) − Ctrel,(6.51)

a := 2
log(k/n)

log(k)
∈ [1,2], b := 2

log(n)

log(k)
∈ (0,1],(6.52)

and some C = C(cell, cratio, δ) > 0.

Let us observe that, compared to Proposition 5.6, the effect of k = ω(n2) alters not only
the first order of T +, but also that of T −.

PROOF. The lower bound follows directly by Proposition 6.7, while, for the upper bound,
it is enough to combine Lemma 6.4 and the estimate in equation (5.44). �
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