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Abstract. We present a method to perform the exact convolution of the model prediction for
bispectrum multipoles in redshift space with the survey window function. We extend a widely
applied method for the power spectrum convolution to the bispectrum, taking advantage of a
2D-FFTlog algorithm. As a preliminary test of its accuracy, we consider the toy model of
a spherical window function in real space. This setup provides an analytical evaluation of
the 3-point function of the window, and therefore it allows to isolate and quantify possible
systematic errors of the method. We find that our implementation of the convolution in terms
of a mixing matrix shows differences at the percent level in comparison to the measurements
from a very large set of mock halo catalogs. It is also able to recover unbiased constraints on
halo bias parameters in a likelihood analysis of a set of numerical simulations with a total
volume of 100h−3 Gpc3. For the level of accuracy required by these tests, the multiplication
with the mixing matrix is performed in the time of one second or less.
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1 Introduction

One particular class of observables to study galaxy clustering is three-dimensional, Fourier-
space summary statistics of the galaxy distribution [1]. For a Gaussian distribution, all
statistical properties are encoded in its power spectrum. However, non-Gaussianity, quantified
in non-vanishing, higher-order correlation functions, is induced by gravitational instability,
nonlinear bias and redshift-space distortions. The measurement of the galaxy bispectrum,
i.e. the three-point function of the galaxy distribution in Fourier space, is therefore expected
to complement a power spectrum-only analysis. Such a combined analysis offers specific
information on the parameters controlling nonlinear corrections to the power spectrum
itself [2–15]. In addition, the galaxy bispectrum can directly probe a primordial non-Gaussian
component, possibly shedding light on the interactions taking place during inflation [16–26].
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Recent efforts using measurements of the galaxy bispectrum in BOSS are the first steps
toward this direction [27, 28].

The analysis of higher-order statistics comes at the price of greater complexity in their
measurement, modelling and estimation of their covariance properties. A specific challenge
comes from the fact that the conventional FKP-like estimator [29–31] (extending the Feldman-
Kaiser-Peacock power spectrum estimator of [32]) used in spectroscopic surveys provides as
output a non trivial convolution of the underlying galaxy bispectrum with the survey footprint
and redshift selection function. The estimator actually computes the three-point function of
the Fourier Transform of the product between the galaxy overdensity δ(x) and the window
function W (x), vanishing outside the observed volume. Consequently, the theoretical model
for the bispectrum B(k1,k2) defined as

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δD(k1 + k2 + k3)B(k1,k2), (1.1)

has be to convolved with the bispectrum of the windowBW (k1,k2) ≡W (k1)W (k2)W ∗(k1+k2)
to obtain

B̃(k1,k2) =
∫

d3p1
(2π)3

∫
d3p2
(2π)3BW (k1 − p1,k2 − p2)B(p1,p2) , (1.2)

that is the quantity to be compared with the measurement. A fast evaluation of this type of
integral (at most of the order of few seconds, comparable to a single evaluation of the linear
power spectrum by a Boltzmann code), is required for a likelihood analysis, where the matrix
multiplication relating B(k1,k2) to B̃(k1,k2) has to be done for each point sampled in the
parameter space.

In the case of the power spectrum, a formulation that turns the convolution integral
into a series of one-dimensional Hankel transforms has been proposed by [33]. This was later
expanded by [34] to the case of the local plane-parallel estimator of [31, 35, 36] and to include
wide-angle and general-relativistic effects [37–39]. The core technique of this method relies
on the FFTLog algorithm [40], an implementation of the Fast-Fourier Tranform algorithm
on logarithmically-spaced points. The Hankel-transform formulation speeds-up the process
considerably, as it amounts to evaluating a one-dimensional FFT, scaling as N logN for N
FFT-sample points, instead of the full three-dimensional FFTs required to do power spectrum
window convolution via convolution theorem. However, the FFTLog algorithm suffers from
the typical FFT problems such as aliasing and ringing, which might give spurious effects if not
treated carefully. The formulation in terms of a matrix multiplication, schematically written
as P̃`(k) = W``′(k, p)P`′(p) [10, 41, 42] transfers the FFTLog calculation into the matrix
W``′(k, p) that can be pre-computed and tested carefully. Although the matrix multiplication
scales, for a single multipole, as Nk ×N , where Nk is the number of k-modes and N is the
number of FFT-sample points, it is still comparable, in complexity, to the Hankel transform
formulation since typically Nk � N .

The bispectrum convolution received so far, understandably, less attention. Refer-
ences [43–45] considered, for a galaxy bispectrum monopole measured according to [31], an
approximation that ignores the effect of the convolution of the nonlinear kernel characterizing
the tree-level prediction for the bispectrum. This approach works quite well on most triangle
shapes, except for squeezed configurations where one side is comparable to the inverse of the
characteristic size of the window, 1/R. This could lead to discarding potentially valuable
information on large scales, as we can expect, for instance, in models with local primordial
non-Gaussianity [46].
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An alternative is to consider an entirely different estimator. An example is the tri-polar
spherical harmonics (TripoSH) estimator proposed by [47], that uses the tensor product of
three spherical harmonics as a basis for a bispectrum decomposition. This estimator is the
natural extension of the real-space bispectrum estimator for the quantity B`(k1, k2), function
of the two wavevectors (k1, k2) and the multipole index ` characterizing the angle between k1
and k2. This decomposition has been shown to be computable via two-dimensional Hankel
transforms of its three point function multipoles [48]. However, this estimator requires special
care with the truncation for the multipoles expansion of bispectrum, since in general this
decomposition requires an infinite number of multipoles [49].

Another type of estimator recently proposed is the cubic estimator of [50], which bypasses
the need of the window convolution of the theoretical modelling altogether. This estimator falls
under the class of maximum-likelihood estimators [51–54] which, by construction, approach
the Cramér-Rao bound on the information content of a given bandpower. This is certainly a
very promising way to measure the bispectrum, but it still lacks an analytical understanding
of why such estimators, even for the power spectrum, are unbiased in wide-field galaxy surveys,
since in principle wide-angle effects are also coupled to the window effects [55, 56].

Our approach in this work is to provide a theoretical prediction for the redshift-space
bispectrum multipoles estimator of [31], which is a natural extension of the FFT-based,
variable line-of-sight estimator of the power spectrum estimator [5, 31, 32, 36]. Our goal is to
write such a convolution as a matrix multiplication, with the mixing matrix computable via a
multidimensional Hankel transform.

This work is organized as follows. A description of the bispectrum estimator that we
adopt is presented in section 2. The bispectrum-window convolution formulation in terms of
Hankel transform is laid out in section 3. We present the setup of an ideal test in terms of a
spherical window in real space in section 4 while we show the results of the test in section 5.
Finally, we present our conclusions in section 6.

2 Bispectrum multipoles estimator

We consider the definition of the redshift-space bispectrum multipoles introduced by [29]
where the orientation of the triangle formed by the wavenumbers k1, k2, k3, is parameterized
in terms of the angle θ between k1 and the line-of-sight and of the angle φ describing the
rotation of k2 around k1 (see [57] for an alternative choice). Expanding this angle-dependence
in spherical harmonics YLM (θ, φ), the corresponding multipoles are given by

BLM (k1, k2, k3) =
∫
dcos θ

∫
dφB(k1, k2, k3, θ, φ)YLM (θ, φ) . (2.1)

In practice, we restrict our attention to an expansion in Legendre polynomials LL(cos θ) of
the bispectrum averaged over the angle φ, as it is often the case (see [8] for motivation).
These are defined as

BL(k1, k2, k3) =

√
2L+ 1

4π BL0(k1, k2, k3)

= 2L+ 1
4π

∫
dcos θ

∫
dφB(k1, k2, k3, θ, φ)LL(cos θ) . (2.2)
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The estimator proposed by [31] can be written as

B̂L(k1, k2, k3) = 2L+ 1
VB

∫
k1
d3q1

∫
k2
d3q2

∫
k3
d3q3 δD(q123)

∫
V

d3x

V
B̂local(q1,q2; x)LL(q̂1 · x̂) ,

(2.3)
where the integration

∫
k d

3q is taken over the spherical shell of radius in the range k−∆k/2 ≤
q ≤ k + ∆k/2 for the bin width ∆k and where

VB(k1, k2, k3) ≡
∫
k1
d3q1

∫
k2
d3q2

∫
k3
d3q3 δD(q123) , (2.4)

adopting the notation for wavevector sums qij ≡ qi + qj . The local bispectrum estimator

B̂local(q1,q2; x) =
∫
V
d3x13

∫
V
d3x23 e

−iq1·x13e−iq2·x23δ(x1)δ(x2)δ(x3) (2.5)

with xij = xi − xj , corresponds to the Fourier Transform of the product δ(x1)δ(x2)δ(x3)
where the mean point x = (x1 + x2 + x3)/3 provides the direction of the line-of-sight n̂, so
that cos θ ≡ q̂1 · x̂.

By replacing x → x3, the integrand in eq. (2.3) becomes separable, thus enabling an
efficient computation via linear combination of Fast Fourier Transforms. The differences
induced in the measurements (and hence in the predictions) between these two definitions of
the line-of-sight, the so-called wide-angle effects, are usually negligible in the modelling of the
power spectrum multipoles in a typical galaxy survey [37, 38, 58].1 We will assume the same
is true for the bispectrum, although we acknowledge that a quantitative study of wide-angle
effects in the bispectrum is missing.

3 Window convolution via Hankel Transform

In a cosmological analysis we need to compare the measurements of the estimator in eq. (2.3) to
the corresponding theoretical prediction, that is the ensemble average B̃L ≡ 〈B̂L〉. Replacing
δ(x) → δ(x)W (x), with W (x) representing here the window as a purely geometrical step
function taking values 0 or 1, we obtain

B̃L(k1, k2, k3) = 2L+ 1
VB

∫
k1
d3q1

∫
k2
d3q2

∫
k3
d3q3 δD(q123)

×
∫
V

d3x3
V

∫
V
d3x13

∫
V
d3x23 e

−iq1·x13e−iq2·x23ζ(x13,x23, x̂3)

×W (x1)W (x2)W (x3)LL(q̂1 · x̂3) , (3.1)

where ζ(x13,x23, x̂3) is the galaxy three-point correlation function (3PCF), and its orientation
is defined w.r.t. the line-of-sight direction x̂3.

First, we rewrite the Dirac delta distribution by its integral representation eq. (E.2).
Then, by repeated use of the Rayleigh expansion of a plane wave eq. (E.3), the addition of

1Note that although wide-angle corrections might be important in the case of a primordial non-Gaussianity
analysis where the signal is coming from the large scale, it has been neglected in recent power spectrum multipoles
analysis of eBOSS quasars, given the high redshift and small observational volume of the sample [55, 56].
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spherical harmonics eq. (E.4), and the orthogonality of Legendre polynomials eq. (E.5), we
can perform the angular integration of the wavevector modes to get

B̃L(k1, k2, k3) = 8(4π)2

VB

∫
k1
dq1q

2
1

∫
k2
dq2q

2
2

∫
k3
dq3q

2
3

∫
d3x

V

∫
V
d3x3

∫
V
d3x13

∫
V
d3x23

×
∑
`,`1,`2
m,m1,M

i`−`1(2`2 + 1)j0(q3x)j`(q1x)j`2(q2x)j`1(q1x13)j`2(q2x23)

× GMm1m
L`1`

Y ∗`1m1(x̂13)Y ∗`m(x̂)Y ∗LM (x̂3)L`2(x̂ · x̂23)
× ζ(x13,x23, x̂3) W (x1)W (x2)W (x3) , (3.2)

where we have also used the integration of the product of three spherical harmonics eq. (E.9)
resulting in a Gaunt coefficient, eq. (E.11). Performing the angular integration of the dummy
variable x̂ using the addition and orthogonality of spherical harmonics, eqs. (E.4) and (E.7),
we arrive at

B̃L(k1,k2,k3) = 8(4π)2

VB

∫
k1
dq1q

2
1

∫
k2
dq2q

2
2

∫
k3
dq3q

2
3

∫
V

d3x3
V

∫
V
d3x13

∫
V
d3x23

×
∑
`1,`2

M,m1,m2

i`2−`1I`2`20(q1, q2, q3)j`1(q1x13)j`2(q2x23)

×GMm1m2
L`1`2

Y ∗LM (x̂3)Y ∗`1m1(x̂13)Y ∗`2m2(x̂23)ζ(x13,x23, x̂3)W (x1)W (x2)W (x3) ,
(3.3)

where we introduce the integral

I`1`2`3(q1, q2, q3) ≡ 4π
∫
dxx2j`1(q1x)j`2(q2x)j`3(q3x). (3.4)

The formulation that we seek is a window convolution expressed in terms of a matrix
multiplication of the unconvolved bispectrum with a mixing matrix computable via Hankel
transforms. Therefore, we need to transform back, and write the 3PCF in terms of the
unconvolved, redshift-space bispectrum B(p1,p2, x̂3). In turn, the latter can be expanded in
spherical harmonics as

B(p1,p2, x̂3) =
∑
L′M ′

B̄L′M ′(p1, p2, p3)YL′M ′(p̂1 · x̂3, ϕ) , (3.5)

where now we consider the azimuthal angle ϕ describing the rotation of x̂3 around p̂1. The
two azimuthal coordinates is related by ϕ = −φ (see also figure 1). It can be easily shown
that the coefficients B̄LM of this expansion are related to those defined in eq. (2.1) via
B̄LM = (−1)MBL,−M so that

B(p1,p2, x̂3) =
∑
L′M ′

BL′,−M ′(p1, p2, p3)(−1)M ′YL′M ′(p̂1 · x̂3, ϕ) . (3.6)

Note that with a fixed x̂3, in this new coordinate definition YLM (p̂1 · x̂3, ϕ) = YLM (p̂1), which
is completely specified by the orientation of a single unit vector p̂1 with respect to x̂3, without
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the need to mention the orientation of p̂2 as in eq. (2.1). We can therefore write

ζ(x13,x23, x̂3) =
∫
d3p1
(2π)3

∫
d3p2
(2π)3

∫
d3p3
(2π)3 e

ip1·x13eip2·x23B(p1, p2, p3, x̂3)(2π)3δD(p123)

=
∫
d3p1
(2π)3

∫
d3p2
(2π)3

∫
dp3
2π2 p

2
3 e

ip1·x13eip2·x23B(p1, p2, p3, x̂3)

×
∑
`

4π(−1)`(2`+ 1)
∫
dx x2j`(p1x)j`(p2x)j0(p3x)L`(p̂1 · p̂2)

=
∫
dp1
2π2 p

2
1

∫
dp2
2π2 p

2
2

∫
dp3
2π2 p

2
3
∑
L′M ′

BL′,−M ′(p1, p2, p3)(−1)M ′

×
∑
`

I``0(p1, p2, p3)
∑
mm′`′

4πi`′−` GM ′mm′L′``′

× j`′(p1x13)j`(p2x23)Y ∗`′m′(x̂13)Y ∗`m(x̂23) , (3.7)

where we have used the addition of spherical harmonics identity eq. (E.4), the contraction of
spherical harmonics eq. (E.13) and the integration of spherical harmonics along solid angle
eq. (E.8) to simplify the integral. Plugging back eq. (3.7) into eq. (3.3) gives us our final
expression for window convolution of the bispectrum as a matrix multiplication

B̃L(k1, k2, k3) =
∫
dp1
2π2 p

2
1

∫
dp2
2π2 p

2
2

∫
dp3
2π2 p

2
3
∑
L′M ′

BL′M ′(p1, p2, p3)

×
∑
`

I``0(p1, p2, p3)QLL′,−M ′,`(k1, k2, k3; p1, p2) , (3.8)

where the matrix elements are intended to be the triplets {p1, p2, p3}. The mixing matrix is
given in terms of a product where the first factor is the I``0(p1, p2, p3) function of eq. (3.4)
that enforces the triangle condition on {p1, p2, p3} [59]. This can be written as

I``0(x, y, z) = (−1)` π
2

xyz
ϑ(|x̂ · ŷ|)L`

(
z2 − x2 − y2

2xy

)
, (3.9)

where ϑ(∆) is the (modified) Heaviside step function that takes value of 1 for ∆ < 1, 1/2 for
∆ = 1 while vanishing everywhere else. The window function contribution is accounted for by
the second factor, defined as follows

QLL′M ′`(k1, k2, k3; p1, p2) ≡
∑

`1,`2,`′

128π2

VB

∫
k1
dq1q

2
1

∫
k2
dq2q

2
2

∫
k3
dq3q

2
3 I`2`20(q1, q2, q3)

×WL
L′M ′``′`1`2(q1, q2; p1, p2) , (3.10)

where we introduce the function

WL
L′M ′``′`1`2(q1, q2; p1, p2) ≡ (4π)2

∫
dx13 x

2
13

∫
dx23 x

2
23 j`′(p1x13) j`(p2x23)

×
[
j`1(q1x13) j`2(q2x23)QLL′M ′``′`1`2(x13, x23)

]
, (3.11)
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x̂

ŷ

ẑ

p̂1

x̂3

p̂2

θ

φ

x̂′

ŷ′

p̂1

p̂2
x̂3

θ

ϕ

ẑ′

(a) (b)

Figure 1. Comparison of (a) Scoccimaro’s coordinate definition used in eq. (2.1) with (b) coordinate
used to define the bispectrum multipoles in eq. (3.5). The relation between the two azimuthal
coordinates definition is ϕ = −φ, which can be proven by taking ẑ′ = ẑ, x̂′ = cosφ x̂ + sinφ ŷ and
ŷ′ = − sinφ x̂+ cosφ ŷ.

that can be evaluated as a two-dimensional Hankel Transform of the product of two spherical
Bessel functions with the 3PCF multipoles of the window function defined as follows

QLL′M ′``′`1`2(x13,x23)≡ (−1)M ′
∑
˜̀1,˜̀2

∑
M,m1,m2

m,m′,m̃1,m̃2

4πi`′−`+`2−`1 GMm1m2
L`1`2

GM ′mm′L′``′ Gm1m′m̃1
`1`′ ˜̀1

Gm2mm̃2
`2`˜̀2

×
∫
V

d3x3
V

∫
d2x̂13

4π

∫
d2x̂23

4π Y ∗LM (x̂3)Y˜̀1m̃1
(x̂13)Y˜̀2m̃2

(x̂23)

×W (x3+x13)W (x3+x23)W (x3), (3.12)

where we have used eq. (E.13) to simplify the expression. We will leave to future work the
investigation of the best method to measure the window 3PCF multipoles, but see appendix C
for some possible directions.

So far we derived our results including the full integrals over the wavenumbers bins
characterising the estimator of eq. (2.3). For k � ∆k we can consider a simplified expression
in the thin-shell approximation (we estimate in section 4.5 the errors associated with this
choice). This amounts to assume the integrand a slowly-varying function of {q1, q2, q3} so that

∫
k1
dq1 q

2
1

∫
k2
dq2 q

2
2

∫
k3
dq3 q

2
3 F (q1, q2, q3)'F (k1,k2,k3)

∫
k1
dq1 q

2
1

∫
k2
dq2 q

2
2

∫
k3
dq3 q

2
3 , (3.13)

simplifying eq. (3.10) into

QLL′M ′`(k1, k2, k3; p1, p2) '
∑

`1,`2,`′
16π2 I`2`20(k1, k2, k3)

I000(k1, k2, k3) W
L
L′M ′``′`1`2(k1, k2; p1, p2) . (3.14)
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4 Ideal test set-up

In the previous section, we have laid out an expression that works for general window functions
in redshift space. Here we want to test the performance of our formulation. We work with
measurements of the bispectrum monopole in real space in the ideal case of a spherical window
applied to a distribution of particles (halos) of constant density. This allows us to work out
an analytical description of the window and thereby to disentangle possible systematic and
numerical errors related to the convolution and its implementation, from those affecting the
estimation of the window 3PCF from a random catalog. We leave the application to more
realistic survey geometries in redshift space to future work.

4.1 Data

We test our model on the Minerva set of N-body simulations (first presented in [60]), comprising
298 realizations each evolving 10003 dark-matter particles in a box of a side 1500h−1 Mpc
assuming a flat ΛCDM cosmology with h = 0.695, Ωm = 0.285, Ωb = 0.046, ns = 0.9632,
σ8 = 0.828. In particular, we focus on the halo distribution at z = 1, taking advantage of
several measurements and results already obtained in [61] and [62].

Alongside the N-body simulations, we make use of a much larger set of 10,000 realisations
of mock halo catalogs obtained with the Pinocchio code [63–65] based on third-order
Lagrangian perturbation theory. The mocks are run on the same box and assume the same
cosmology and their mass threshold is defined in order to match the amplitude of the Minerva
halo power spectrum at large-scales, including shot-noise (see [61] for further details). This
very large set of mocks serves two purposes. On one hand it provides a robust estimate of the
bispectrum covariance matrix. On the other hand, it offers an illustration of the window effects
on the average of bispectrum measurements where statistical errors are severely suppressed,
below the level of the systematic errors under study.

4.2 Measurements

All the bispectrum measurements performed on the full box with periodic boundary conditions
take advantage of the estimator already introduced in eq. (2.3). Its implementation follows
the efficient approach of [31] based on the FFT of the halo density obtained by fourth-order
interpolation on a grid and the interlacing technique to reduce aliasing [66].

The measurements accounting for the window function adopt the same estimator but
with the density field δ(x) replaced by the auxiliary field

F (x) = 1
n̄

[n(x)− αnr(x)] , (4.1)

where n(x) is the density of the halo catalog, with mean n̄, while nr(x) is the density of a
random catalogs of points with no spatial correlation. The constant α represents the inverse
of the ratio between the total number of random points to the total number of halos in the
given realisation, a number close to 50. The estimator for the bispectrum of F corresponds
therefore to the usual FKP estimator in the simplified situation of a constant density, which
implies FKP weights are also constant and can therefore be ignored. For these measurements
both the halo and the random catalogs are distributed over a sphere of volume 7003 h−3 Mpc3

extracted from the same realisations used for the full-box measurements, producing 298
and 10, 000 bispectra respectively for the Minerva simulations and the Pinocchio mocks.
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Figure 2. Top panels: mean of the bispectrum equilateral configurations, B̂0(k, k, k), as a function
of k for both the box (blue) and spherical window (orange) measurements and for both the Minerva
simulations (left) and Pinocchio box (right). Bottom panels: ratio of the sphere to box measurements
for simulations and mocks. The vertical dashed line indicates the effective fundamental frequency of
the sphere ksphere

f = 2π/V 1/3
sphere. The typical suppression induced by the window on large scales is only

detectable in the case of the very large set of Pinocchio mocks.

The enclosing box where the FT is defined for the window measurement is the same as the
simulation box, that is of side 1500h−1 Mpc.

We consider all triangular configurations that one can define from wavenumber bins of
size ∆k = 2kf , kf ≡ 2π/L being the fundamental frequency of the box of size L, starting
with the first bin centered at 1.5 kf . This results in a total of 360 triangles up to kmax ≈
0.12hMpc−1, ordered such that k1 ≥ k2 ≥ k3 to avoid redundancy. We include the so-called
“open triangles”, that is those configurations where the bin centers {k1, k2, k3} satisfy the
inequalities 0 < k1 − k2 − k3 ≤ 1.5∆k which allow the fundamental triangle {q1,q2,q3},
with ki −∆k/2 ≤ |qi| < ki + ∆k/2 to satisfy the triangle condition q1 − q2 − q3 ≤ 0. The
360 triangles exclude instead all configurations involving a side smaller than the effective
fundamental frequency of the spherical window, defined as ksphere

f = 2π/700hMpc−1 ' 2.14kf .
These wavenumbers are in fact not relevant as they correspond to wavelengths larger than
the effective size of the sphere.

The top panels of figure 2 show the mean of the measured bispectrum equilateral
configurations, B̂0(k, k, k), as a function of k for both the box (blue) and spherical window
(orange) and for both the Minerva simulations (left) and Pinocchio box (right). The bottom
panels show the ratio of the sphere to box measurements for simulations and mocks. The
typical suppression induced by the window on large scales is only detectable in the case of
the very large set of mocks: for the even relatively large set of simulations (∼ 1000h−3 Gpc3

of total volume), the statistical errors are larger than any window effect. We stress, in this
respect, that in the bispectrum case, where the signal is distributed over a large number
of configurations, a systematic effect equally distributed over all configurations can have a
sizable effect, even if small when compared to the statistical error for the single triangle.
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In what follows we refer to the bispectrum monopole measurements B̂0 simply as B̂,
dropping the subscript for simplicity.

4.3 Theoretical model

The theoretical model that we adopt for the real-space bispectrum is the usual tree-level
model in Standard Perturbation Theory (SPT), see e.g. [67] and [68, 69] for the inclusion of a
term due to nonlocal bias. This is the same model already employed in [61] to whom we refer
the reader for its detailed description and its fit to the same box bispectrum measurements
considered here. We briefly summarise the full expression, given by

B(p1,p2) = b3
1BTL(p1,p2) + b2b

2
1Σ(p1,p2) + 2bG2b

2
1K(p1,p2) +BSN(p1,p2) , (4.2)

where
BTL(p1,p2) = 2F2(p1,p2)PL(p1)PL(p2) + 2 perms. , (4.3)

represents the tree-level matter bispectrum, F2 being the standard quadratic PT kernel
and PL(p) the linear matter power spectrum, while the quadratic local and nonlocal bias
contributions are given by

Σ(p1,p2) = PL(p1)PL(p2) + 2 perms. (4.4)

K(p1,p2) =
[
(p̂1 · p̂2)2 − 1

]
PL(p1)PL(p2) + 2 perms. . (4.5)

Finally, the shot-noise contribution is

BSN(p1,p2) = 1
n̄

(1 + α1)b2
1 [PL(p1) + PL(p2) + PL(p3)] + 1

n̄2 (1 + α2) , (4.6)

with the α1 and α2 parameters allowing deviations from the Poisson prediction. We assume
all cosmological parameters are known, thus the model depends only on five, free bias and
shot-noise parameters: b1, b2, bG2 , α1 and α2.

4.4 Window convolution

Reducing eq. (3.8) to the case of the bispectrum monopole, i.e. L = 0, and in real-space,
L′ = 0, M ′ = 0 in eq. (3.12), to describe the measurements of our test, gives the following
expression for B̃ = B̃0 (see section D for the derivation)

B̃(q1, q2, q3) =
∫
dp1
2π2 p

2
1

∫
dp2
2π2 p

2
2

∫
dp3
2π2 p

2
3 B(p1, p2, p3)

∑
`

I``0(p1, p2, p3)Q`(q1, q2, q3; p1, p2),

(4.7)
with

Q`(q1, q2, q3; p1, p2) ≡
∑
`′,`′′

(2`′′ + 1)(−1)`′′
(
` `′ `′′

0 0 0

)2

W``′`′′(q1, q2; p1, p2), (4.8)

and

W``′`′′(q1, q2; p1, p2) ≡ (4π)2(2`+ 1)
∫
dx13x

2
13

∫
dx23x

2
23 j`(p1x13)j`(p2x23)

×
[
L`′′(q̂1 · q̂2)j`′′(q1x13)j`′′(q2x23)Q`′(x13, x23)

]
, (4.9)
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where Q`(x13, x23) is the 3PCF multipoles of the window function

Q`(x13, x23) ≡ (2`+ 1)
∫
d2x̂13

4π

∫
d2x̂23

4π Q(x13,x23)L`(x̂13 · x̂23), (4.10)

with

Q(x13,x23) ≡
∫
V

d3x3
V

W (x3)W (x3 + x13)W (x3 + x23). (4.11)

Note that to derive eq. (4.8), we have used the thin-shell approximation eq. (3.13) and eq. (3.9).
In addition to our approach to the convolution we also consider, for comparison, the

approximation adopted in the analysis of [43–45] (see also [10, 28] for more recent work), which
ignores the effect of the window convolution on the nonlinear kernel of the tree-level prediction
while describing it in terms of a convolution of the power spectra. Symbolically we have

B̃[PL] ' B[P̃L] , (4.12)

where P̃L(k) is the window convolution of the linear power spectrum, evaluated by the usual
one-dimensional FFTLog method [33, 34, 37, 38]. This is given by

P̃ (k) =
∫

dp

2π2 p
2 W00(k, p)P (p), (4.13)

where W00(k, p) is the mixing matrix

W00(k, p) ≡ 4π
∫
dx x2j0(kx)j0(px)Q(x), (4.14)

with Q(x) being the 2PCF of the window. We refer to this approach as “1DFFTLog approx-
imation”. In this case the analysis is usually limited to those triangles where all sides are
much larger than 1/R, R being the typical size of the window.

The two options described above apply to the tree-level bispectrum with the exception
of the shot-noise contribution. The convolution of the latter is simply given by

B̃SN(p1,p2) = 1
n̄

(1 + α1)b2
1

[
P̃L(p1) + P̃L(p2) + P̃L(p3)

]
+ 1
n̄2 (1 + α2), (4.15)

where P̃L(p) is the window-convolved linear power spectrum, while it can be shown that the
last constant term is not affected by the convolution.

As already mentioned, the ideal spherical geometry allows the window 3PCF to be
evaluated analytically. The window function in configuration space can be written as

W (x) = θ(R− x), (4.16)

where R is the radius of the sphere. The normalization is chosen such that the window
3PCF (4.11) is normalized to one for a uniform window function. The 3PCF multipoles
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Q`(x13, x23) of the window function, assuming x13 < x23, have the following form

Q` =



[∫ R−x23

0
dx3x

2
3

∫ 1

−1
dµ1

∫ 1

−1
dµ2+

∫ R−x13

R−x23
dx3x

2
3

∫ 1

−1
dµ1

∫ µ2+

−1
dµ2+

∫ R

R−x13
dx3x

2
3

∫ µ1+

−1
dµ1

∫ µ2+

−1
dµ2

]∫ 2π

0
dφG`

for x13≤x23≤R,[∫ R−x13

x23−R
dx3x

2
3

∫ 1

−1
dµ1

∫ µ2+

−1
dµ2+

∫ R

R−x13
dx3x

2
3

∫ µ1+

−1
dµ1

∫ µ2+

−1
dµ2

]∫ 2π

0
dφG`

for x23>R & x13+x23≤ 2R,∫ R

x23−R
dx3x

2
3

∫ µ1+

−1
dµ1

∫ µ2+

−1
dµ2

∫ 2π

0
dφG` for x23>R & x13+x23> 2R,

0 for x23> 2R,
(4.17)

where
G`(µ1, µ2, φ) ≡ 2`+ 1

2V L`
[
(1− µ2

1)1/2(1− µ2
2)1/2 cosφ+ µ1µ2

]
, (4.18)

while

µ1+ ≡ (R2 − x2
3 − x2

13)/(2x3x13) , and µ2+ ≡ (R2 − x2
3 − x2

23)/(2x3x23) . (4.19)

Slices of the window 3PCF multipoles Q`(x13, x23), eq. (4.17), are shown in figure 3. By
construction, from the choice of normalization in eq. (4.16), we see the monopole amplitude is
always smaller than one. Note that the lower-order multipoles dominate over the higher-order
ones. In practice, as we will see later we only need to consider multipoles of Q`(x13, x23) up
to ` = 2 (see also figure 9).

The two-dimensional Hankel transform that is required to compute (4.9) makes use of
the public code 2DFFTLog2 [70]. We assume a bias ν(`) = 1.1, a window filter of width =
0.25, without additional extrapolation nor padding. The details of the 2DFFTLog algorithm
implementation are described in appendix A, where we show how variations with respect
to the reference set-up only induce . 2% differences on the output. For the 1DFFTLog
approximation, we implement the one-dimensional Hankel transform in the mixing matrix of
eq. (4.14) using the code mcfit3 with a sampling of 10000 log-spaced points from pmin = 10−4

h/Mpc to pmax = 1 h/Mpc that is further constantly padded using end-point of both sides,
up to 215 number of points.

4.5 Binning effect

The measured B̂(k1, k2, k3) is the average over all fundamental triangles {q1,q2,q3} that fall
in the bins qi ∈ [ki −∆k/2, ki + ∆k/2]. Therefore our theoretical prediction for a given bin
center {k1, k2, k3} should be binned in the same way.

In addition, a proper comparison with simulations should account as well for the discrete
nature of Fourier-space wavenumbers, taking values q = nkf , an aspect that, for simplicity,
we have not explicitly included in our definition of the estimator, eq. (2.3).

A binning operator acting on some function F (q1,q2,q3) should therefore be written as〈
F (q1,q2,q3)

〉
4
≡ 1
NT

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

F (q1,q2,q3)δK(q123) , (4.20)

2https://github.com/xfangcosmo/2DFFTLog.
3https://github.com/eelregit/mcfit.
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Figure 3. Spherical window 3PCF multipoles Q`(x13, x23) plotted as a function of x13 at different,
constant values of x23. It is evident that the relative contribution of higher-order Q` becomes quickly
less significant as ` increases.

where NT (k1, k2, k3) is the total number of “fundamental” triplets {q1,q2,q3} satisfying the
condition q123 = 0 enforced by the Kronecker symbol δK(q123), that fall in the triangle bin
{k1, k2, k3}

NT (k1, k2, k3) ≡
∑

q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) . (4.21)

In the case of our 2DFFTLog approach, eq. (4.7), the effect of binning can be taken into
account by applying such operator on the mixing matrix, eq. (4.9) as follows

W``′`′′(k1, k2; p1, p2) ≡ (4π)2(2`+ 1)
∫
dx13x

2
13

∫
dx23x

2
23 j`(p1x13)j`(p2x23)

×
[〈
L`′′(q̂1 · q̂2)j`′′(q1x13)j`′′(q2x23)

〉
4
Q`′(x13, x23)

]
. (4.22)

The high dimensionality of the matrix makes this procedure very expensive to compute exactly
according to eq. (4.20). For this reason we consider two approximations explored already
in [61, 62] (see also [71] and [15] for alternative approaches).
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The first approximation amounts to simply evaluate our function

F (q1,q2,q3) ≡ L`(q̂1 · q̂2)j`(q1x13)j`(q2x23) (4.23)

on the sorted, effective triplet (k1, k2, k3)〈
F (q1, q2, q3)

〉
4
' F (k1, k2, k3), (4.24)

where

k1 ≡
〈

max{q1, q2, q3}
〉
4
,

k2 ≡
〈

med{q1, q2, q3}
〉
4
, (4.25)

k3 ≡
〈

min{q1, q2, q3}
〉
4
,

such that max{q1, q2, q3} ≥ med{q1, q2, q3} ≥ min{q1, q2, q3}. A better approximation can
be obtained including higher-order corrections in a Taylor-expansion about the effective
wavenumbers [62]. This corresponds to〈

F (q1, q2, q3)
〉
4
' F (k1, k2, k3) + 1

2
∑
i,j

∂2

∂qi∂qj
F (k1, k2, k3)

〈
(qi − ki)(qj − kj)

〉
4
. (4.26)

On the other hand, the binning of the prediction in the 1DFFTLog approximation
approach is closer to the procedure in [62] for the unconvolved bispectrum. For a generic
tree-level expression such as B(q1, q2, q3) = K(q1,q2)PL(q1)PL(q1) + perm., we evaluate the
Taylor expansion around the ki as〈
B̃(q1, q2, q3)

〉
4
'

∑
n+m≤2

1
n!m!

〈
K(q1,q2)(q1 − k1)n(q2 − k2)m

〉
4
P̃

(n)
L (k1)P̃ (m)

L (k2) + perm. ,

(4.27)
where P̃ (n)

L is the n-derivative of the convolved linear power spectrum. The n = m = 0 term
represent the leading contribution, corresponding to the first approximation of eq. (4.24).

4.6 Likelihood analysis and covariance

In the next section we test our convolution expression against measurements both from the
Minerva simulations and from the Pinocchio mocks. In both cases, the theoretical prediction
is evaluated as the posterior-averaged convolved tree-level model by performing a likelihood
analysis in terms of the five bias and shot-noise parameters, fixing the cosmological parameters.
This consists in practice in averaging the model over the corresponding Markov chains.

We consider a total log-likelihood function given by the sum of the log-likelihood of each
individual realisation, so that

lnLtot =
NR∑
α=1

lnLα , (4.28)

where NR is the total number of realisations of either mocks or simulations. For the single
realisation we assume a Gaussian likelihood defined as

lnLα = −1
2
∑
i,j

∆BiC−1
ij ∆Bj , (4.29)
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Parameters Priors (uniform)
b1 [0.9, 3.5]
b2 [−4, 4]
bG2 [−5, 5]
α1 [−1, 1]
α2 [−1, 1]

Table 1. Prior assumed for the bias and shot-noise parameters in all likelihood evaluations.

where i is the triangle index, ∆Bi = B̂
(α)
i − B̃i is the difference between the measurement and

theoretical prediction, while Cij is the bispectrum covariance matrix estimated numerically
from the 10000 Pinocchio mocks measurements. The large number of mocks provides a
robust estimate of the covariance where residual statistical errors can be ignored [61]. For
the maximum scale that we considered in our analysis kmax ≈ 0.09hMpc−1, we have 143
triangles corresponding to a Hartlap factor [72] of ' 0.985, implying an underestimation of
variance of about 1%.

The correlation matrix, defined as

rij ≡
Cij√
CiiCjj

, (4.30)

estimated from the spherical window measurements is shown in figure 4 (top right panel),
where it is compared to the analogous quantity corresponding to the box measurements
(top left panel). The correlation among different modes induced by the window results
clearly in larger off-diagonal elements. The middle panel of figure 4 shows the elements of
rij corresponding to the i = 150 triangle, as a function of j, while the bottom panel shows
the ratio of the variance ∆B2

i ≡ Cii from the sphere and box catalogs. Leakage to the
non-diagonal elements likely causes this ratio to be less than the factor one could naively
expect from the volume ratio ∼ (1500/700)3 between the sphere and the box.

We perform the analysis by means of MCMC (Monte Carlo Markov Chain) simulations
using the Python implementation of affine-invariant ensemble sampler emcee [73]. Initially,
the linear power spectrum is obtained from the CAMB code [74] assuming the same cosmology
as the mocks. Each run of the chain, the bias parameter space is explored using 100 walkers.
The chain is assumed to be converged after the number of steps is larger than 100 times
integrated autocorrelation time τ [75]. All the ingredients required to perform this analysis
are compiled in the modified PBJ (P+B Joint analysis) code [61, 62], which we extended to
include the window-convolved bispectrum prediction. Note that in the case of fixed cosmology,
the window-convolution process only needs to be done once, since the bias parameters can
be factored-out. Nevertheless, as we show in figure 11 of appendix B, each evaluation of
the convolved bispectrum is comparable with a typical call of the Boltzmann solver. More
precisely, for bin size ∆k = 2 kf with the total number of triangles NT = 360, using as default
parameters those described in appendix B, the evaluation of the tree-level model and the
matrix multiplication take each ∼ 1 second.

In all our fits, the free parameters are {b1, b2, bG2 , α1, α2} with the priors given in table 1.
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Figure 4. The correlation matrix rij for ∆k = 2 kf bin size, estimated from 10000 Pinocchio mocks.
Mode-coupling from the window-bispectrum convolution induces a significant contribution from the
non-diagonal term in the correlation matrix of the sphere data. The middle panel highlights the
elements of rij corresponding to the i = 150 triangle. The bottom panel shows the ratio of the variance
∆B2

i ≡ Cii from the sphere and box catalogs. Leakage to the non-diagonal elements is the possible
cause for this ratio to be less than the factor expected from the volume ratio ∼ (1500/700)3 between
the sphere and the box. In particular, the effect is most severe for some of the open configurations,
where the ratio of the variance is in the minimum. It is also interesting to note that the maximum of
the ratio happens to be in the squeezed configurations.

5 Results

5.1 Comparison with mocks measurements

In this section we compare the prediction of the 2DFFTLog-based approach (4.7) and the
approximation using 1DFFTLog (4.12) to the average of bispectrum measurements from the
full set of Pinocchio mocks. This extremely large set of measurements allows to keep the
statistical noise below the systematic errors under investigation.
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Theoretical predictions are defined as the posterior-averaged bispectrum 〈B̃(k1,k2,k3)〉post
from the likelihood analysis of the 10000 Pinocchio box mocks including all triangles up
to kmax = 0.09hMpc−1, using the same data set to estimate the covariance. Nota bene: all
theoretical predictions in this section, either for box or sphere measurements, are averaged
over the same Markov chain corresponding to the likelihood analysis of the box measurements:
this ensures that differences induced by systematic errors on the convolution are not reduced
by fitting the free parameters. In other terms, we are comparing the different convolution
methods adopting the model parameters determined, in both cases, from the analysis of the
mocks bispectrum measured in the box according to the likelihood of eq’s (4.28) and (4.29).

The prediction for the unconvolved bispectrum is binned using the exact expression of
eq. (4.20) (see also [61]), while the convolved prediction for both 2DFFTLog and 1DFFTLog
approximation adopts the expansion method of eq. (4.26) and eq. (4.27), respectively. We
have checked on a limited subset of configurations that even in the convolved bispectrum
case, the difference between the expansion and the exact binning is below 0.5%, more than
an order of magnitude smaller than the effect of the window.

We note in passing that the integral constraints correction in our setup is rather negligible.
The correction term considered in [33, 76] for the power spectrum, that would read here
for the bispectrum as B̃(0, 0, 0)W (k1)W (k1)W (k3), where W (k) is the Fourier Transform
of the properly normalized window function (4.16), is less than 4 · 10−4B̃(0, 0, 0) for all the
configurations considered. This is also due to the fact that the we excluded triangles with
sides smaller than the fundamental frequency of the sphere ksphere

f .
Figure 5 shows the ratio of the measurements to the convolved model for all configurations

up to kmax = 0.09hMpc−1, with the top panel corresponding to the 2DFFTlog approach and
the bottom panel to the 1DFFTlog approximation. The error bars correspond to the error on
the mean of ratios of the 10000 Pinocchio data and the prediction. The 2DFFTLog-based
method matches the data fairly well with . 2−3% errors and a marginal, residual dependence
on shape. The discrepancy becomes slightly worse on large scales but is still within . 5% error
level. Here we observe a scatter among the very first points slightly larger then the estimated
error bars. This could be due to the finite density of the random catalog adopted in the
bispectrum estimator and to the fact that a single random has been used for all measurements.

In the case of the 1DFFTLog approximation we notice differences with the measurements
up to 6–7% and a similar but larger shape-dependence. We also notice that at large scale, in
addition to the scatter mentioned above, the 1DFFTLog method tends to underestimate the
usual suppression of power. It should be noted, on the other hand, that the 1D approximation
fares relatively well, despite the crude simplification.

In figure 5 we also singled out, as blue points, those triangles where all sides are larger
than 10kf ≈ 0.04hMpc−1. This is approximately equivalent to the triangles selected for the
analysis of [43, 44], where the 1DFFTLog method is applied. The motivation was to exclude
the configurations where the effect of the window is not properly accounted for by the 1D
approximation. Indeed, in the case of our spherical, ideal case, configurations excluding those
pathological triangles have a lower systematic errors and smaller dependence on scale.

In figure 6 we zoom in on the first 34 triangles, roughly up to the largest side of the trian-
gles k1 ≈ 0.05hMpc−1. In the middle panel, we show the gray band corresponding to the 1-σ
uncertainty of the ratio between Pinocchio mocks, box measurement and the unconvolved pre-
diction. This shows that part of the scatter and to some extent, the shape-dependent systematic
error is also present in the box comparison and it is therefore not due to the convolution. We
see as well that the 2DFFTLog method matches the data fairly well, at the level of uncertainty
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Figure 5. Ratio of the average of the bispectrum measurements from the 10000 Pinocchio mocks
with spherical geometry for all configurations (up to k1 ≤ 0.09 h/Mpc) to the theoretical prediction
of the 2DFFTLog method (top panel) and the 1DFFTlog approximation (bottom panel). Both
predictions are the (window-convolved) posterior-averaged bispectrum 〈B̃(k1, k2, k3)〉post from the
likelihood analysis of the box measurements of the 10000 Pinocchio mocks with kmax = 0.09hMpc−1

using the same data set to estimate the covariance. The error bar is the error on the mean from
the mocks. We mark in blue the configurations with the smallest wavenumber k3 > 10kf , in general
showing a better agreement between the prediction and mocks.

present in the box case. The 1DFFTLog approximation is ∼ (1–2)σ worse than the 2DFFTLog
and is consistently underpredicting the data. The third panel shows that the 2DFFTLog pre-
diction is mostly within 2σ (comparable with the unconvolved prediction) with some outliers
still within 5σ. The panel also shows as a gray band the 1-σ uncertainty corresponding to the
measurements from the set of Minerva simulations, that we will consider in the next section.

In the end, in our test, we see that window effect on the bispectrum is a very tiny effect
mainly on large scales which can be only probed by using a very large number of realisations.
We notice that the 1DFFTlog approximation fares rather well, with a small overall offset
that does not present a marked dependence on shape, at least in our spherical, ideal case in
real-space. Still, we will study how such offset, present with the same size and sign on all
configurations, could affect the analysis of data set even of much smaller cumulative volumes
than the extreme case considered here.
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Figure 6. Top panel: the measurements and the predictions, both in the box and the sphere, for the
first 34 triangles of figure 5. All theoretical predictions are the (window-convolved) posterior-averaged
bispectrum from the likelihood analysis of the 10000 Pinocchio box mocks with kmax = 0.09hMpc−1

using the same data set to estimate the covariance. Middle panel: the ratio between Pinocchio
mocks with spherical geometry measurements and the corresponding predictions, with the gray band
corresponding to the 1-σ uncertainty of the same ratio for the box/unconvolved case. Bottom panel:
the relative error with respect to the variance of the 10000 Pinocchio mocks. The 2DFFTLog method
matches the data to a few times the level of uncertainty present in the unconvolved prediction (mostly
within 2σ, with some outliers within 5σ). All theoretical prediction agree with the data within 1σ
corresponding to Minerva volume.
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Figure 7. Left panels: marginalised 1-σ constraints on the bias parameters as a function of kmax from
the box measurements analysis (blue) and from the sphere measurements assuming the 2DFFTlog
(orange) and 1DFFTlog approximation (green) predictions. Top-right panel: marginalised 2-parameters
contours at kmax = 0.09hMpc−1. Bottom-left panel: posterior-averaged, reduced chi-square 〈χ2

ν〉 as a
function of kmax, with the gray band marking the 95% C.L. interval.

5.2 Recovering bias parameters from the N-body measurements

We consider now independent fits to the N-body simulations of the theoretical model with each
of the convolution methods in order to assess their effect on the recovered bias parameters.
Again we fit individually all distinct realisations according to the likelihood function described
in eqs. (4.28) and (4.29).

The sphere measurements from the 298 Minerva simulations correspond to a more
realistic test since the total volume, of about 100h−3 Gpc3, is roughly 1/6 of the blinded
challenge volume presented in [77] and approximately 6 times the volume of the largest
redshift bin of Euclid survey (the (zmin, zmax) = (1.5, 1.8) redshift bin which total volume
is 16.22h−3 Gpc3) considered in the forecasts of [78]. As it can be seen from the bottom
panel of figure 6, both the unconvolved and window-convolved prediction agree with the data
within 1σ of the Minerva measurements. Still, a small systematic effect distributed over a
large number of data-points can affect the determination of cosmological parameters.

The posteriors for the bias parameters are shown in figure 7. The figure provides the 1-σ
constraints as a function of the largest side of the triangle on the left panels while the top-right
panel shows the marginalised 2-parameters contours at kmax = 0.09hMpc−1. Finally, the
bottom-left panel shows the posterior-averaged, reduced chi-square 〈χ2

ν〉 as a function of kmax,
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compared with the 95% C.L. interval shown as a gray band. The larger constraints from
the Minerva sphere analysis with respect to the Minerva box analysis are simply due to the
difference in volume, which a ratio of roughly a factor of 8. All constraints are marginalised
over the shot-noise parameters that we are not showing for clarity.

We can see that bias parameters recovered from Minerva box and sphere analysis (for
both methods) agree within 1σ. This level of agreement is expected since as we have shown
in the previous section, sample variance dominates over window effects on large scales. Yet,
in the contour plots one can notice a purely systematic effect almost at the 2-σ level between
the two convolution methods that could become more relevant at smaller scales, where the
model should be extended to include loop corrections.

We derived all the results presented in this section assuming a different, smaller bin size
(∆k = kf ) for the wavenumber in all bispectrum measurements. Since we do not observe any
relevant difference in our conclusions we do not include them in this presentation.

6 Conclusions

In this work we laid out an expression for the exact convolution with a survey window function
for the redshift-space bispectrum multipoles as defined in [31]. The window convolution
we propose is based on a two-dimensional Hankel transform implemented by means of the
2DFFTlog code of [70], an extension of the 1D FFTlog algorithm by [40]. Our implementation
allows for an efficient computation, via FFTs, of the mixing matrix relating theoretical
predictions to the corresponding observable by means of a matrix multiplication. The mixing
matrix has to be computed only once and it is provided as input to the likelihood analysis.4
The multiplication of the theory bispectrum with the mixing matrix, in the case of a total
number of triangles NT = 360, takes ∼ 1 second which is comparable to the running time of a
typical call to a Boltzmann solver. On the other hand our approach provides an improvement
over the 1D approximation adopted in [10, 28, 43–45] and should provide a benchmark for
alternative bispectrum estimators such as those of [47] and [50].

We test our expression in the ideal setting of a spherical window function where the 3-point
correlation function of the footprint can be computed analytically. We compare our prediction
for the convolved bispectrum monopole in real space to the average of measurements from halo
mock catalogs. The average is taken from an extremely large number of realizations, in order
to keep the statistical noise below the systematic errors under consideration. We notice that,
at least in this example, the effect of the window is quite small. Nevertheless, our 2DFFTlog
approach reduces significantly the errors characterising the 1DFFTLog approximation, with
residuals at the few-percent level and weak dependence on shape. Always within the spherical
window model, we then explored the effect of the two methods on the determination of the
bias (and shot-noise) parameters from the halo catalogs of the Minerva simulations for a total
volume of about 100h−3 Gpc3. We find differences in the determination of the linear and
nonlocal bias parameters at the 2-σ level, suggesting the need of further investigations in a
more realistic context.

The results of this preliminary comparison might quantitatively change in more realistic
setups. For instance, the effect of the window will be more evident for higher multipoles in
redshift-space and for models with a specific signal in squeezed configuration such as local
primordial non-Gaussianity or relativistic effects [24–26, 79–85]. Also, while the overall window
effect should decrease at small scales (k & 0.1hMpc−1), the 1D approximation is expected

4In our case the evaluation of the mixing matrix takes a few hours (see table 2).
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to fail when loop corrections become important: in this respect, again, squeezed configuration
might require particular attention. Finally, the 1D approximation does not take into account
the coupling of different bispectrum multipoles induced by window function effects.

We will explore in future work more realistic scenarios. Here, we limit ourselves to
observe that the implementation of the multiplication by the window matrix introduced here
does not significantly changes the run-time for a typical Markov chain and could therefore
provide a safe and robust approach to the bispectrum convolution for the bispectrum multipole
estimator of [31].
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A Convergence tests and binning systematics

The evaluation of the mixing matrix underlying all the results presented in the main text
adopts a set of default values for several parameters. We explore in section A.1 how our
results depend on their choice, while in section A.2 we quantify the systematic error related
to the binning scheme.

A.1 2DFFTLog parameters

The first relevant parameter in the 2DFFTLog evaluation of eq. (4.9) is the number of
sampling points Np for p1 and p2, i.e. the number of points where the theory bispectrum
is evaluated (eq. (4.7)). The prediction for the unconvolved bispectrum is evaluated for
all (closed) triangles one can form based on the Np wavenumber values, so that one of the
dimension of the mixing matrix scales like N3

p . We assume as default value Np = 512. Other
two parameters are the maximum values for the multipoles ` and `′, for which we take
as default `max = 30 and `′max = 2. We have then the range of integration over p, with
{pmin, pmax} = {10−5, 0.5}hMpc−1 as reference.

The effect of varying the number of sampling points Np (fixing the other parameters to
their default values) is shown in figure 8. Interestingly enough, reducing Np to 256 affects
significantly the open configurations, while it only gives a ≤ 2% difference on regular, closed
triangles. Reducing Np has the advantage of reducing the mixing matrix generation time
significantly (see table 2) while also reducing the time required by the matrix multiplication (see
figure 11). A practical approach could be a hybrid method where the 1DFFTLog approximation
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Figure 8. Top panel: the effect of varying the number of sampling points Np in the comparison
of measurements (10000 Pinocchio mocks with spherical geometry) to the theoretical prediction
(window-convolved posterior-averaged from the likelihood analysis of the 10000 Pinocchio box mocks)
evaluated for Np = 512 (the default value, green) and Np = 256 (yellow). “Open” triangles are shown
with circle markers while regular, “closed” triangles are shown with triangles. Bottom panel: ratio
of the two predictions compared to the 1-σ error on the mean of the Pinocchio box measurements
∆B̂pin divided by the posterior-averaged of the unconvolved theory 〈B〉post.

handles the open configurations (where based on figure 5, only induce systematics within 5%)
while the 2DFFTLog is used for the rest.

Figure 9 shows the effects of varying the other four parameters `max, `′max, pmin and
pmax, in terms of ratios to the default evaluation of the prediction. Varying pmin and pmax is
done in such a way that the spacing ∆ ln p is fixed. The variation of all these parameters only
induce . 2% difference with respect to the default case except for pmax = 0.2hMpc−1 which
apparently is too low for our data vector extending to kmax ≈ 0.09 h/Mpc.

A.2 Binning effects

In figure 10, we compare the simpler effective binning of eq. (4.24) with the Taylor expansion
defined in eq. (4.26), which is used for all our results in the main text. The effect of binning for
the window-convolved bispectrum is at the . 2% level, which is smaller than effect of binning
on the typical unconvolved bispectrum [61]. The advantage of the effective binning is again
that it speeds up the computation of the mixing matrix (see table 2). As an additional check,
we also computed the exact binning procedure of eq. (4.22) for a limited set of representative
triangular configurations. We found that the difference with the Taylor expansion approach
is below 0.5% for all triangles considered.
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Figure 10. Top panel: comparison between the simpler effective binning of eq. (4.24) with expansion
binning of eq. (4.26) for ∆k = 2 kf bin size. Predictions are the window-convolved posterior-averaged
bispectrum from the likelihood analysis of the 10000 Pinocchio box mocks, while the measurements
come from the 10000 Pinocchio mocks with spherical geometry. Bottom panel: ratio of the two binning
methods compared to the 1-σ error on the mean of the Pinocchio box measurements ∆B̂pin divided
by the posterior-averaged of the unconvolved theory 〈B〉post. The difference is only at . 2% level.

B Memory and time requirement

In this appendix we describe the performance of the Python implementation of the 2DFFTLog
method for the bispectrum convolution in our test of a real-space, spherical window function.
In table 2 we compare the time and memory requirement to generate the mixing matrix, for
the two binning methods of eqs. (4.24) and (4.26) and for different values of the number of
sampling points Np.5 In general, the expansion method takes a factor 2 or 3 more time to
generate the mixing matrix, while requiring approximately the same amount of memory. The

5The code is run on a single node on the Ulysses cluster v2 at SISSA. The nodes we use are equipped
with 10 Intel(R) Xeon(R) E5-2680 v2 @ 2.80GHz CPUs with 40 GB of RAM in total.
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∆k = 2 kf , NT = 360
Binning method Np Memory (GB) Time (hrs:mins)

Effective
512 29.85 02:01
256 6.55 00:15

Expansion
512 30.08 04:02
256 7.02 00:45

Table 2. Comparison of memory and time required to generate the mixing matrix for different binning
methods and different values of the number of sampling points Np. The code is run on a single node in
Ulysses cluster v2 at SISSA which is equipped with 10 CPU Intel(R) Xeon(R) E5-2680 v2 @ 2.80GHz
and with 40 GB of RAM in total. Our code however doesn’t make use of parallel computing.
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Figure 11. Time required for the matrix multiplication compared to the evaluation of the unconvolved
bispectrum B(p1, p2, p3) as a function of the number of sampled points Np. In all cases the number
of measured triangles is kept fixed at NT = 360. The code is run in the similar infrastructure as in
table 2. Our code doesn’t make use of parallel computing.

time required as a function of Np is also shown in figure 11. The initialization of each chain in
a MCMC run, which consists of generating the triangles {p1, p2, p3} in log-space and loading
the mixing matrix M, takes few minutes. At each sampling of the parameter space that
requires a call for the linear power spectrum, the unconvolved bispectrum has to be evaluated
on the triangles {p1, p2, p3} and then multiplied with the mixing matrix. Both processes
separately take ∼ 1 second for Np ∼ 500. The time taken by the matrix multiplication also
depends linearly, as one can expect, on the number of redshift-space multiples considered and
on the number of triangles NT , which can be reduced by choosing a larger bin size ∆k.

C On the measurement of the window 3PCF multipoles

We are not addressing in this work the problem of the optimal estimator for the window 3PCF
multipoles QLL′M ′``′`1`2(x13, x23) defined in eq. (3.12), and of the systematic errors related to
their measurement. We simply notice that in addition to direct counting (which even for
the case of anisotropic 3PCF multipoles has been shown can be reduced to pair counting
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complexity [86]), one could consider an FFT-based estimator, since

QLL′M ′``′`1`2(x13, x23) = (−1)M ′
∑

M,m1,m2
m,m′

∑
˜̀1,˜̀2
m̃1,m̃2

4πi`′−`+`2−`1 GMm1m2
L`1`2

GM ′mm′L′``′ G
m̃1m1m′

˜̀1`1`′
Gm̃2m2m

˜̀2`2`

×
∫
V
d3x3 W˜̀1m̃1

(x3;x13)W˜̀2m̃2
(x3;x23)WLM (x3) , (C.1)

can be obtained in terms of the Fourier Transform

W`m(x3;xij) ≡ i`
∫

d3q

(2π)3 e
iq·x3j`(qxij)Y`m(q̂)W (q) , (C.2)

and
WLM (x3) ≡W (x3)Y ∗LM (x3) . (C.3)

The window 3PCF

Q(x13,x23, x̂3) ≡ 1
V

∫
dx3x

2
3 W (x13 + x3)W (x23 + x3)W (x3), (C.4)

can also be expanded in TripoSH basis with zero total angular momentum, as follows [47]

Q(x13,x23, x̂3) =
∑

`1,`2,L

Q`1`2L(x13, x23)×
[√

4π
(2`1 + 1)(2`2 + 1)(2L+ 1)

(
`1 `2 L
0 0 0

)−2

×
∑

m1,m2,M

Gm1m2M
`1`2L

Y`1m1(x̂13)Y`2m2(x̂23)YLM (x̂3)
]
,

(C.5)

where then by construction

Q`1`2L(x13), x23) =
∑

m1,m2,M

(
`1 `2 L
0 0 0

)(
`1 `2 L
m1 m2 M

)

×
∫
d2x̂3

∫
d2x̂13

∫
d2x̂23 Q(x13,x23, x̂3)Y ∗`1m1(x̂13)Y ∗`2m2(x̂23)Y ∗LM (x̂3).

(C.6)

The window 3PCF multipoles, eq. (3.12), are then related to the Q`1`2L(x13, x23), via the
following linear combination

QLL′M ′``′`1`2(x13, x23) =
∑
˜̀1, ˜̀2

Q˜̀1 ˜̀2L
(x13, x23)M˜̀1 ˜̀2L;L′M ′``′`1`2 , (C.7)

where

M˜̀1 ˜̀2L;L′M ′``′`1`2 ≡
∑

M,m1,m2
m,m′,m̃1,m̃2

(−1)M+m̃1+m̃2 i`
′−`+`2−`1

√
1

4π(2˜̀1+1)(2˜̀2+1)(2L+1)

×
(

˜̀1 ˜̀2 L
0 0 0

)−2

GMm1m2
L`1`2

GM−m̃1−m̃2
L˜̀1 ˜̀2

GM ′mm′L′``′ Gm1m′m̃1
`1`′ ˜̀1

Gm2mm̃2
`2`˜̀2

. (C.8)

Written this way, the corresponding window bispectrum multipoles BW,`1`2L(k1, k2), which
are related to Q`1`2L(x13, x23) through a double Hankel transform [47], can also be used as
an input measurement (see also [87] for similar application of double Hankel transform to
relate the bispectrum multipoles to the 3PCF multipoles).
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D Derivation of the real-space window convolution expressions
in section 4.4

Taking L = 0,M ′ = 0, L′ = 0

Q0
00``′`1`2(x13, x23) ≡ 1√

4π
∑
˜̀1,˜̀2

∑
m1,m2

m,m′,m̃1,m̃2

4πi`′−`+`2−`1 G0m1m2
0`1`2 G0mm′

0``′ G
m1m′m̃1
`1`′ ˜̀1

Gm2mm̃2
`2`˜̀2

×
∫
V
d3x3

∫
d2x̂13

4π

∫
d2x̂23

4π Y˜̀1m̃1
(x̂13)Y˜̀2m̃2

(x̂23)

×W (x3 + x13)W (x3 + x23)W (x3), (D.1)

as Y00(x̂3) = 1/
√

4π in our convention. From G0m1m2
0`1`2 = (−1)m1√

4π δ`1`2δm1,−m2 , we have

Q0
00``′`1`2(x13, x23) ≡ 1√

4π
∑
˜̀1,˜̀2

∑
m1,m′

m̃1,m̃2

(−1)m1+m′δ`1`2δ``′ G
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`1`′ ˜̀1

G−m1,−m′,m̃2
`1`′ ˜̀2

×
∫
V
d3x3

∫
d2x̂13

4π

∫
d2x̂23

4π Y˜̀1m̃1
(x̂13)Y˜̀2m̃2

(x̂23)

×W (x3 + x13)W (x3 + x23)W (x3). (D.2)

From the fact that m1 +m′ + m̃1 = 0 and `1 + `′ + ˜̀2 is even, we have∑
m1,m′

(−1)m1+m′Gm1m′m̃1
`1`′ ˜̀1

G−m1,−m′,m̃2
`1`′ ˜̀2

=
∑
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4π
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(D.3)
where orthogonality of 3j-symbols∑

m1,m′
(2˜̀1 + 1)

(
`1 `′ ˜̀1
m1 m

′ m̃1

)(
`1 `′ ˜̀2
m1 m

′ −m̃2

)
= δ˜̀1 ˜̀2

δm̃1,−m̃2 , (D.4)

has been used, so that

Q0
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×W (x3+x13)W (x3+x23)W (x3)

= 1√
4π
∑
˜̀1

1
(4π)2 δ`1`2δ``′(2`1+1)(2`′+1)(2˜̀1+1)

(
`1 `

′ ˜̀1
0 0 0

)2

×
∫
V
d3x3

∫
d2x̂13

4π

∫
d2x̂23

4π L˜̀1
(x̂13 ·x̂23)W (x3+x13)W (x3+x23)W (x3).

(D.5)
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The matrix QLL′M ′`(q1, q2, q3; p1, p2) then becomes

Q0
00`(q1, q2, q3; p1, p2)

'
∑

`1,`2,`′
16π2 I`2`20(q1, q2, q3)

I000(q1, q2, q3) W
0
00``′`1`2(q1, q2; p1, p2)

= 1√
4π

∑
`1,˜̀1

16π2(−1)`1L`1(q̂1 · q̂2)× 1
(4π)2 (2`1 + 1)(2`+ 1)

(
`1 ` ˜̀1
0 0 0

)2

× (4π)2
∫
dx13x

2
13

∫
dx23x

2
23 j`(p1x13)j`(p2x23)j`1(q1x13)j`1(q2x23)

×
[
(2˜̀1 + 1)

∫
V
d3x3

∫
d2x̂13

4π

∫
d2x̂23

4π W (x3 + x13)W (x3 + x23)W (x3)L˜̀1
(x̂13 · x̂23)

]

= 1√
4π

∑
˜̀1,`1

(2`1 + 1)(−1)`1
(
` ˜̀1 `1
0 0 0

)2

× (4π)2(2`+ 1)
∫
dx13x

2
13

∫
dx23x

2
23 j`(p1x13)j`(p2x23)

×
[
L`1(q̂1 · q̂2)j`1(q1x13)j`1(q2x23)Q˜̀1

(x13, x23)
]
, (D.6)

where

Q˜̀1
(x13, x23) ≡ (2˜̀1+1)

∫
V
d3x3

∫
d2x̂13

4π

∫
d2x̂23

4π W (x3+x13)W (x3+x23)W (x3)L˜̀1
(x̂13·x̂23).

(D.7)
Identifying (`, ˜̀1, `1) = (`, `′, `′′) and defining

Q`(q1, q2, q3; p1, p2) ≡
√

4πQ0
00`(q1, q2, q3; p1, p2), (D.8)

W``′`′′(q1, q2; p1, p2) ≡ (4π)2(2`+ 1)
∫
dx13x

2
13

∫
dx23x

2
23 j`(p1x13)j`(p2x23)

×
[
L`′′(q̂1 · q̂2)j`′′(q1x13)j`′′(q2x23)Q`′(x13, x23)

]
, (D.9)

we recovered the real-space expression by also noting that the real-space bispectrum is
B(p1, p2, p3) = B0(p1, p2, p3) = B00(p1, p2, p3)/

√
4π in our spherical harmonics convention.

E Useful identities

In this appendix we collect several well-known mathematical identities employed in the deriva-
tion of the main results in section 3. Our convention for the spherical harmonics is such that

Y`0(θ, φ) =
√

(2`+ 1)/4π L`(θ) , (E.1)

where L`(θ) is Legendre polynomial of order `.

Integral representation of Dirac delta distribution:

δD(k) =
∫

d3x

(2π)3 e
ik·x. (E.2)
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Rayleigh expansion of a plane wave:

eik·x =
∑
`

i`(2`+ 1)j`(kx)L`(k̂ · x̂) . (E.3)

Addition of spherical harmonics:

L`(x̂ · ŷ) = 4π
2`+ 1

∑
m

Y`m(x̂)Y ∗`m(ŷ) . (E.4)

Orthogonality of Legendre polynomials:

(2`+ 1)
∫
d2k̂

4π L`(k̂ · x̂)L`′(k̂ · ŷ) = δ``′L`(x̂ · ŷ) (E.5)

which implies that ∫
d2k̂

4π e
ik·xL`(k̂ · ŷ) = i`j`(kx)L`(x̂ · ŷ) . (E.6)

Orthogonality of spherical harmonics:∫
d2k̂ Y`m(k̂)Y ∗`′m′(k̂) = δ``′δmm′ , (E.7)

which implies that ∫
d2k̂

4π e
ik·xY`m(k̂) = i`j`(kx)Y`m(x̂) . (E.8)

Gaunt’s integral: ∫
d2k̂ Y`1m1(k̂)Y`2m2(k̂)Y`3m3(k̂) = Gm1m2m3

`1`2`3
, (E.9)

which implies∫
d2k̂ L`1(k̂ · x̂)L`2(k̂ · ŷ)L`3(k̂ · ẑ)

=
∑

m1,m2,m3

(4π)3

(2`1 + 1)(2`2 + 1)(2`3 + 1)G
m1m2m3
`1`2`3

Y ∗`1m1(x̂)Y ∗`2m2(ŷ)Y ∗`3m3(ẑ) ,
(E.10)

with the Gaunt coefficients are given in terms of Wigner 3j symbols as

Gm1m2m3
`1`2`3

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
. (E.11)

Product of Legendre polynomials:

L`1(k̂ · x̂)L`2(k̂ · x̂) =
∑
`3

(
`1 `2 `3
0 0 0

)2

(2`3 + 1)L`3(k̂ · x̂) . (E.12)

Product of spherical harmonics:

Y`1m1(n̂)Y`2m2(n̂) =
∑
`3,m3

Gm1m2m3
`1`2`3

Y ∗`3m3(n̂) . (E.13)
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Orthogonality of Wigner 3j symbols:

∑
m1,m2

(2`3 + 1)
(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `′3
m1 m2 m

′
3

)
= δ`3`′3δm3m′3

. (E.14)
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