
Astronomy
&Astrophysics

A&A, 687, A1 (2024)
https://doi.org/10.1051/0004-6361/202346683
© The Authors 2024

Cosmology with galaxy cluster properties using
machine learning

Lanlan Qiu1,2 , Nicola R. Napolitano1,2,3 , Stefano Borgani4,5,6,7,8 , Fucheng Zhong1,2,
Xiaodong Li1,2 , Mario Radovich9 , Weipeng Lin1,2 , Klaus Dolag10,11 , Crescenzo Tortora12 ,

Yang Wang2,13 , Rhea-Silvia Remus10 , Sirui Wu1,2 , and Giuseppe Longo3

1 School of Physics and Astronomy, Sun Yat-sen University Zhuhai Campus, 2 Daxue Road, Tangjia, Zhuhai 519082, PR China
e-mail: zhongfch@mail2.sysu.edu.cn; napolitano@mail.sysu.edu.cn

2 CSST Science Center for Guangdong-Hong Kong-Macau Great Bay Area, Zhuhai 519082, PR China
3 Department of Physics E. Pancini, University Federico II, Via Cinthia 6, 80126 Naples, Italy
4 Astronomy Unit, Department of Physics, University of Trieste, via Tiepolo 11, 34131 Trieste, Italy
5 INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34143 Trieste, Italy
6 IFPU, Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
7 INFN, Instituto Nazionale di Fisica Nucleare, Via Valerio 2, 34127 Trieste, Italy
8 ICSC – Italian Research Center on High Performance Computing, Big Data, and Quantum Computing, Via Magnanelli 2, Bologna,

Italy
9 INAF – Osservatorio Astronomico di Padova, via dell’Osservatorio 5, 35122 Padova, Italy

10 Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstr.1, 81679 München,
Germany

11 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85741 Garching, Germany
12 INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
13 Peng Cheng Laboratory, No. 2, Xingke 1st Street, Shenzhen, 518000, PR China

Received 17 April 2023 / Accepted 12 February 2024

ABSTRACT

Context. Galaxy clusters are the largest gravitating structures in the universe, and their mass assembly is sensitive to the underly-
ing cosmology. Their mass function, baryon fraction, and mass distribution have been used to infer cosmological parameters despite
the presence of systematics. However, the complexity of the scaling relations among galaxy cluster properties has never been fully
exploited, limiting their potential as a cosmological probe.
Aims. We propose the first machine learning (ML) method using galaxy cluster properties from hydrodynamical simulations in dif-
ferent cosmologies to predict cosmological parameters combining a series of canonical cluster observables, such as gas mass, gas
bolometric luminosity, gas temperature, stellar mass, cluster radius, total mass, and velocity dispersion at different redshifts.
Methods. The ML model was trained on mock “measurements” of these observable quantities from Magneticum multi-cosmology
simulations to derive unbiased constraints on a set of cosmological parameters. These include the mass density parameter, Ωm, the
power spectrum normalization, σ8, the baryonic density parameter, Ωb, and the reduced Hubble constant, h0.
Results. We tested the ML model on catalogs of a few hundred clusters taken, in turn, from each simulation and found that the ML
model can correctly predict the cosmology from where they have been picked. The cumulative accuracy depends on the cosmology,
ranging from 21% to 75%. We demonstrate that this is sufficient to derive unbiased constraints on the main cosmological parameters
with errors on the order of ∼14% for Ωm, ∼8% for σ8, ∼6% for Ωb, and ∼3% for h0.
Conclusions. This proof-of-concept analysis, though based on a limited variety of multi-cosmology simulations, shows that ML can
efficiently map the correlations in the multidimensional space of the observed quantities to the cosmological parameter space and
narrow down the probability that a given sample belongs to a given cosmological parameter combination. More large-volume, mid-
resolution, multi-cosmology hydro-simulations need to be produced to expand the applicability to a wider cosmological parameter
range. However, this first test is exceptionally promising, as it shows that these ML tools can be applied to cluster samples from
multiwavelength observations from surveys such as Rubin/LSST, CSST, Euclid, and Roman in optical and near-infrared bands, and
eROSITA in X-rays, to the constrain cosmology and effect of baryonic feedback.

Key words. methods: numerical – galaxies: clusters: general – galaxies: luminosity function, mass function –
cosmological parameters – X-rays: galaxies – X-rays: galaxies: clusters

1. Introduction

According to the hierarchical clustering scenario, galaxy clus-
ters are the largest and the most massive collapsed objects in
the universe, typically residing in the nodes of the cosmic web.
The virial mass of a typical rich cluster is about 1014−1015M⊙,
consisting of approximately 2% galaxies, 12% hot gas, and 86%
dark matter. Due to their spatial distribution in the universe and

specific mass composition, they have been widely investigated,
both as an effective cosmological probe and a natural astrophysi-
cal laboratory (Allen et al. 2011; Kravtsov & Borgani 2012; Lesci
et al. 2022a,b; Ingoglia et al. 2022).

With respect to their cosmological application, cluster
masses and, in particular, the cluster mass function can be used
to constrain both the universe mean matter density Ωm and the
density fluctuation amplitude σ8. However, their constraining
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capacity is inevitably limited by the difficulty of deriving accu-
rate mass estimates from observations (Pratt et al. 2019). The
most precise mass estimates come from weak gravitational lens-
ing. This has been widely exploited to calibrate mass estimations
from other methods, but the cluster triaxiality and projection
effects of lensing measurements limit the precision of individ-
ual cluster mass to about 5% (e.g., Hoekstra et al. 2015; Umetsu
et al. 2016; Hildebrandt et al. 2017; Melchior et al. 2017; Henson
et al. 2017; Euclid Collaboration 2024). Besides, weak lensing is
also observationally difficult to perform, and yet today there is
a rather limited statistics of clusters having accurate weak lens-
ing mass (e.g., Sereno & Umetsu 2011; Sereno 2015; Umetsu
et al. 2020; Giocoli et al. 2021). Other direct mass estimates
are obtained through the virial theorem, i.e., by measuring the
velocity field of galaxy members (e.g., Abdullah et al. 2020),
or via Jeans analysis (e.g., Łokas et al. 2006; Falco et al. 2013;
Biviano et al. 2013; Munari et al. 2014). However, the applica-
tion of the virial theorem and Jeans analysis is also limited by
the difficulty in measuring a large number of redshifts in indi-
vidual clusters and the presence of systematics such as outliers
and underlying modeling assumptions that are hard to control.
Customarily, to overcome at least the observational difficulties,
cluster masses are widely estimated indirectly by various means.
For instance, some multi-band integrated observables of galaxy
clusters are generally expected to scale with cluster masses and
be used as mass proxies. Typical observables may come from
the X-ray emission (e.g., Borgani & Guzzo 2001; Vikhlinin et al.
2009b; Mantz et al. 2010; Chiu et al. 2023), optical richness (e.g.,
Borgani et al. 1999; Rykoff et al. 2016; Maturi et al. 2019; Abbott
et al. 2020), and millimeter-wave thermal Sunyaev-Zel’dovich
signal (e.g., Bleem et al. 2015; Planck Collaboration XXIV 2016;
Bocquet et al. 2019; Hilton et al. 2021). However, the scaling
relations connecting these quantities with mass are generally
very noisy and not bias-free (Mantz et al. 2016; Dietrich et al.
2019; Bahar et al. 2022). In general, cluster masses based on
various methods tend to be rather scattered, leaving the con-
straints based on these systems under-exploited, despite the large
potential (Abdullah et al. 2020; Lesci et al. 2022a).

Recent studies have shown the potential of using artificial
intelligence (AI) based methods to cluster science, e.g., for mass
estimation using tools trained on simulations. These studies
have used a variety of cluster features, such as the velocity dis-
tribution of the cluster members (Ntampaka et al. 2015), the
velocity distribution along with mock X-ray and weak-lensing
analyses (Armitage et al. 2019), richness, velocity distribution,
and other simulated multiwavelength measurements (Cohn &
Battaglia 2020), or directly emulating the richness-mass rela-
tion (Ragagnin et al. 2023). Other studies have also considered
the cluster phase space distribution (e.g., Ho et al. 2019; Kodi
Ramanah et al. 2020, 2021), and stellar mass, X-ray flux, or the
Compton y parameter (e.g., Yan et al. 2020; de Andres et al.
2022). These simulation-based AI schemes have been found very
promising as alternatives to classical methods of cluster mass
estimation.

Despite these many efforts to enhance the cosmological
application of galaxy clusters by improving the accuracy of mass
estimates, very little has been done to exploit the potential of all
other direct observables connected to the baryonic components,
which, being tightly correlated with masses, can also keep sig-
nificant cosmological information. The one-to-one correlations
among some typical observables, such as the stellar mass, gas
mass, and X-ray flux, i.e., the so-called scaling relations, rep-
resent a viable approach to constrain cosmology (Singh et al.
2020). In principle, to fully exploit the cosmological potential

of the cluster properties, one could combine the information
encoded in all of the existing scaling relations among various
mass-related quantities. ML is the ideal tool to extract valu-
able scientific information and execute a joint analysis out of
such a multidimensional feature space and help establish internal
links between these features and their environmental informa-
tion. To be linked to cosmology and baryonic physics, these need
to be trained using realistic mock data samples for which the
ground truths are given. Cosmological simulations can provide
such training samples as they have currently reached a rather
advanced technological and theoretical level to predict the effect
of cosmology (and feedback) on the baryonic + dark scaling rela-
tions over different scales, from galaxies to clusters (see e.g.,
Wechsler & Tinker 2018 for a review). Modern hydrodynamical
simulations can capture most of this physics with a fair accuracy
and study the effect of the complex baryon processes over the
dark matter distribution (e.g., Borgani et al. 2004; Dolag et al.
2009; Cui et al. 2012; Vogelsberger et al. 2014; Remus et al. 2017;
Pillepich et al. 2018b), though, they mostly focus on one single
cosmological model.

On the other hand, multi-cosmology hydrodynamical simu-
lations would be of paramount importance to combine cosmol-
ogy and baryonic physics and possibly solve the degeneracies
coming from the interplay of the dark and baryonic components
(Wechsler & Tinker 2018; Villaescusa-Navarro et al. 2022).
An effective strategy is to fully explore the multidimension
parameter space where, on one side, one can change the cosmol-
ogy, meaning the cosmological parameters and the dark matter
(DM) flavors, and, on the other side, one can explore differ-
ent galaxy formation models, including the stellar initial mass
function, the duration, power, and location of star formation, the
stellar feedback including the supernova explosions, the AGN
effect, etc.

By combining Machine Learning and multi-cosmology
hydrodynamical simulations, we have the possibility to build a
new effective model to predict the cosmology and the forma-
tion scenario from catalogs of astronomical observables. Among
the first attempts to collect predictions from a different combina-
tion of cosmology and baryonic physics scenarios, the CAMELS
project1 (Villaescusa-Navarro et al. 2021) is designed for galaxy
scales while Magneticum project2 (Singh et al. 2020) is tailored
for galaxy cluster scales. The bottleneck of these applications
is the availability of sufficiently large volume simulations with
enough mass resolution to investigate the widest range of the
systems under exams. For galaxy scales, simulation samples are
sufficient to directly test the application to mock galaxy sam-
ples (e.g., Villaescusa-Navarro et al. 2022; Chawak et al. 2023;
Echeverri-Rojas et al. 2023). For cluster scales, on the other
hand, there are still limited multi-cosmological samples to use.
One way to expand the simulation library can be the adoption
of emulators or generative models, that have been already used
to reproduce cosmological statistics such as galaxy clustering
(e.g., Storey-Fisher et al. 2024), galaxy power spectrum (e.g.,
Kobayashi et al. 2022) and halo mass function (e.g., Bocquet
et al. 2020).

In this first article, we start by testing the predictive power
encoded in the galaxy clusters’ multiwavelength and spectro-
scopic data of next-generation surveys to constrain the cosmol-
ogy testing a suite of ML tools on Magneticum multi-cosmology
simulations (Singh et al. 2020). We postpone the constraints of
the feedback in this analysis because of the limited variety of

1 https://www.camel-simulations.org/
2 http://magneticum.org/
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Table 1. Cosmological parameter values for 13 cosmological models.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

Ωm 0.200 0.204 0.222 0.232 0.268 0.272 0.301 0.304 0.342 0.363 0.400 0.406 0.428
σ8 0.850 0.739 0.793 0.687 0.721 0.809 0.824 0.886 0.834 0.884 0.650 0.867 0.830
h0 0.730 0.689 0.676 0.670 0.699 0.704 0.707 0.740 0.708 0.729 0.675 0.712 0.732
Ωb 0.0415 0.0437 0.0421 0.413 0.0449 0.0456 0.0460 0.0504 0.0462 0.0490 0.0485 0.0466 0.0492

feedback models currently available for these simulations. The
observables available in simulations are gas mass, gas bolo-
metric luminosity, gas temperature, stellar mass, cluster size,
total mass, and velocity dispersion at different redshifts. In
particular, we aim to demonstrate that ML can be trained on
multi-cosmology simulations to recognize the correct universe a
given cluster catalog belongs to. Then, by defining the probabil-
ity for each cluster of being drawn by a cosmology with a series
of cosmological parameters, we will derive the posterior prob-
ability distribution of any given cosmological parameter. Albeit
we make this proof-of-concept experiment realistic enough, by
including observationally motivated measurement errors, this
remains a “toy model” approach. To move to real data appli-
cations, it will need a more methodical derivation of fiducial
observables from simulations, in order to minimize the system-
atics due to the “observational realism.” The inclusions of these
aspects, as well as the study of the impact of other sources of
systematics that can be introduced by simulation set-ups (e.g.,
resolution, numerical methods, etc.), are beyond the scope of
this paper and will be only touched here but fully addressed in
the second phase of the project, where we will investigate the
application to real cluster catalogs.

This paper is organized as follows. Section 2 introduces the
data we use to check this idea and the algorithm for getting
the preprocessed data and preparing training and test samples.
Section 3 illustrates all the ML algorithms and evaluation met-
rics involved to quantify the constraining power of each exper-
iment. Section 4 lists all the results about the proper classifier,
the classification of cosmological models, and the cosmologi-
cal parameter inferences. In Sect. 5, we discuss the robustness
of our results and some sources of systematics. Finally, we draw
conclusions and outline future perspectives in Sect. 6.

2. Data

In the previous section, we have anticipated that the main aim of
this work is to demonstrate the ability of a ML method to pre-
dict cosmological parameters, starting from the observables of
a set of galaxy clusters. In this section, we introduce the set of
multi-cosmology simulations adopted to train such a tool. The
galaxy cluster catalogs derived from these simulations represent
the “observational-like” data (the features) to start from, to first
train the ML method and then test the predictions of the cosmo-
logical parameters (the targets). In particular, we explain how we
define the training and the test samples used to train and evalu-
ate the performances of the proposed ML tool. We also briefly
discuss the limitations of the current simulation set and the need
to expand the coverage of the cosmological parameter space for
real applications.

2.1. Multi-cosmology simulations

Magneticum simulations are based on the N-body code
P-GADGET3, which is the successor of the code P-GADGET2

(Springel et al. 2005b; Springel 2005; Boylan-Kolchin et al.
2009), from which it differs for a space-filling curve aware neigh-
bor search (Ragagnin et al. 2016) and an improved Smoothed
Particle Hydrodynamics (SPH) solver (Beck et al. 2016). The
physics of these simulations are presented in a series of separate
method papers: for example, Springel et al. (2005a) discusses
the treatment of radiative cooling, heating, ultraviolet (UV) back-
ground, star formation, and stellar feedback processes; Tornatore
et al. (2007) describes in details the chemical evolution and
enrichment model, while Fabjan et al. (2010); and Hirschmann
et al. (2014) present the prescriptions for the black hole growth
and active galactic nuclei (AGNs) feedback.

Haloes are identified using the friends-of-friends (FOF)
algorithm with linking length b = 0.16. The spherical overden-
sity (SO) virial masses (Bryan & Norman 1998) are computed
using the SUBFIND algorithm (Springel et al. 2001; Dolag et al.
2009).

In this paper, we focus on the multi-cosmology simulations
of the Magneticum project (Dolag et al. 2016; Singh et al. 2020,
S+20 hereafter). The original simulation set includes 15 flat
ΛCDM cosmological models (C1, C2, ..., C15) that run with
the same initial conditions, and same feedback circumstances,
but different configurations of four cosmological parameters,
namely, the mass density parameter Ωm, the power spectrum
normalization σ8, the “reduced” Hubble constant h0, defined
as H0/100 km s−1 Mpc−1, and the baryon density parameter
Ωb (see S+20, Table 1). Each simulation uses a large size
(∼896 h−1

0 Mpc) box, containing 15123 dark matter particles and
an equal number of gas particles. The mass of the dark matter
particles is 1.3× 1010 h−1M⊙ and the initial mass of gas particles
is 2.6 × 109 h−1M⊙.

For each simulation, only haloes with Mvir > 2 × 1014 M⊙
are selected to avoid spurious detections due to resolution and
other numerical effects. The catalogs of the selected clus-
ters are obtained for different redshift snapshots, i.e., z =
0.00, 0.14, 0.29, 0.47, 0.67, 0.90. Taken as a whole, the numbers
of identified haloes vary significantly among these 15 cosmo-
logical models due to different configurations of cosmological
parameters (see S+20, Table 2). Considering that the identi-
fied haloes generated by C1 and C2 are too few (i.e., 1245 and
4810, respectively) to construct an informative sample for the
ML training process, we decide to use only the other 13 cosmo-
logical models, C3, C4, ..., C15, and denote them as M1, M2, ...,
M13 in this paper and consider M6, the one with the WMAP7
best-fitting configuration (Komatsu et al. 2011), as the fiducial
cosmology consistently with the Magneticum project.

The cosmological parameters of M1 ∼ M13 are specified
in Table 1 and shown in Fig. 1, together with cosmological
constraints obtained by different surveys and methods: CMB
power spectra constraints (Planck Collaboration VI 2020), 3 ×
2 pt analysis from DES Y1(Abbott et al. 2018), 3 × 2 pt anal-
yses from KiDS-1000 with BOSS and 2dFLenS (Heymans
et al. 2021), KiDS-1000 spec-z fiducial constraints (van den
Busch et al. 2022), XMM-XXL C1 cluster abundance alone
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Fig. 1. Cosmological parameters’ map for the 13 cosmological models. Blue points show the flat ΛCDM models in the multi-cosmology runs.
For comparison, the error bars show the constraints from the XMM-XXL C1 cluster abundance alone (Pacaud et al. 2018) and plus the Kilo-
Degree Survey (KiDS) tomographic weak lensing (Hildebrandt et al. 2017) joint analysis, the SDSS RedMaPPer cluster abundance alone and plus
BAO joint analysis (Costanzi et al. 2019), the GalWCal19 cluster abundance (Abdullah et al. 2020). Contours show the marginalized posterior
distributions of cosmic microwave background (CMB) constraints (Planck Collaboration VI 2020), 3 × 2 pt analysis from the Dark Energy Survey
(DES) Y1 (Abbott et al. 2018), 3 × 2 pt analyses from KiDS-1000 with Baryon Oscillation Spectroscopic Survey (BOSS) and the 2-degree Frield
Lensing Survey (2dFLenS; Heymans et al. 2021), and KiDS-1000 spec-z fiducial constraints (van den Busch et al. 2022) – see legend bottom left,
in each panel.

(Pacaud et al. 2018) and adding KiDS tomographic weak lens-
ing joint analysis (Hildebrandt et al. 2017), SDSS RedMaPPer
cluster abundance alone and adding baryonic acoustic oscillation
(BAO) joint analysis (Costanzi et al. 2019), GalWCal19 clus-
ter abundance (Abdullah et al. 2020). From Fig. 1, we can see
that the cosmological parameter ranges covered by the M1 ∼
M13 simulations, i.e., 0.200 < Ωm < 0.428, 0.650 < σ8 < 0.886,
0.670 < h0 < 0.740 and 0.0413 < Ωb < 0.0504, embrace the
core of the confidence contours of most of the constraints of the
above-mentioned experiments, especially in the Ωm − σ8 space,
while the constraints on h0 andΩb are sometimes more scattered.
This means that, in principle, the current Magneticum set of sim-
ulations is not fully representative of the overall variation of the
cosmological parameters compatible with all observations. This
limitation, together with the sparse coverage of the parameter
space allowed by the current simulation set, does not make it
optimal for applications to real data. However, with this paper,
we want to make a first step toward the application to real data
and test the suitability of the method for the kind of catalogs
we expect to collect from current and future observations (see
e.g., eFEDS, Chiu et al. 2023). On the other hand, if we demon-
strate that with such a limited sample of simulations, ML is able
to make predictions on the cosmological parameters underlying
some cluster observations, then we can expect that the method
will be even more effective when the simulation sample will be
expanded to a wider range of parameters and a more fine coarse
coverage of the parameter space. Hence, besides testing the suit-
ability of this novel approach to infer cosmology from cluster
observations, another outcome of the proof-of-concept test, dis-
cussed in this work, is to concretely motivate the investment in
more extended simulation set-ups to offer flexible and accurate
inferences.

2.2. Features and labels

Each of the selected clusters has corresponding features and a
label. The labels are the cosmological models they come from,
i.e., M1 ∼ M13. The features are the physical properties of the
identified clusters in each simulation, namely:
1. R: the radius of the cluster, i.e., the comoving radius of a

sphere centered at the minimum of the potential encompass-
ing a given mean overdensity, in h−1(1 + z)−1 kpc.

2. M∗: the stellar mass of the cluster, i.e., the sum of the mass
of all star particles within the mean overdensity radius, R,
defined above, in h−1M⊙.

3. Mg: the gas mass of the cluster, i.e., the sum of the mass of
all gas particles within R, in h−1M⊙.

4. Mt: the total mass of the cluster, i.e., the sum of the mass of
all star, gas, and dark matter particles within R, in h−1M⊙.

5. Lg: the gas luminosity of the cluster, i.e., the X-ray bolomet-
ric gas luminosity within R, in 1044 erg s−1.

6. Tg: the gas temperature of the cluster, i.e., the mass-weighted
gas temperature within R, in keV.

7. σv: the velocity dispersion of the cluster, i.e., the mass-
weighted velocity dispersion of all particles belonging to a
FOF halo, in km s−1.

8. z: the redshift of the cluster.
All these features are continuous variables except for z, which
only has six discrete values (0, 0.14, 0.29, 0.47, 0.67, 0.9). From
the definitions above, we see that M∗, Mg, Mt, Lg and Tg are
R-dependent quantities, i.e., they are integrated within a given
overdensity radius, while σv is independent of R and has one
value per halo (S+20). Magneticum simulations provide six typi-
cal definitions for radius. In addition to the standard virial radius,
Rvir, at which the mean density crosses the one of a theoretical
virialized homogeneous top-hat overdensity (Bryan & Norman
1998), there are radii corresponding to cluster densities which
are 200 times (R200M) and 500 times (R500M) the mean matter
density of the Universe at the cluster’s redshift. Furthermore,
there are the R200C and R500C radii that are similar to R200M and
R500M , but based on the critical density of the Universe. In prin-
ciple, we could use any of these radius definitions, as we can
find a mapping of the values of cluster features between different
definitions of characteristic radii by assuming a theoretical halo
density profile (e.g., NFW profile, Navarro et al. 1996). However,
to be consistent with the usual choices in previous literature (e.g.,
Liu et al. 2022), we adopt R500C as the reference radius, and all
quantities related to this radius in the rest of this analysis.

2.3. Preprocessed data

Data preprocessing refers to cleaning, transformation, integra-
tion, normalization, and other operations on the raw data before
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Fig. 2. Cluster count in each cosmological model and at each redshift. All of these clusters have already undergone the data preprocessing described
in Sect. 2.3. The y-axis lists the different cosmological models, while the cluster counts are displayed in horizontal bars. The different redshifts are
represented by different colors, as shown in the legend. As can be seen, the number of galaxy clusters in these 13 models varies significantly, with
M12 (70,799) having almost nine times as many clusters as M4 (8,113). To balance the training sample among different cosmologies, we adopt an
undersampling, as described in Sect. 3.1.

using ML algorithms to make the data more suitable for the
training and testing of ML models. Through the inspection of
the original data, we found that there are problems such as out-
liers and heavy-tailed distribution that, if not cleaned, can affect
the training and prediction of the model to a certain extent.
Hence, we decided to select all quantities defined within R500C
and deleted clusters with obviously nonphysical properties, such
as negative M∗ or σv, likely coming from artifacts of the FOF
algorithm (0.2% over all simulations).

After this first cleaning step, being the features in simulations
quite idealistic as, for instance, they do not have measurement
errors, we decided to implement some “rough” observational
realism. We artificially add Gaussian errors to mock a mea-
surement process and make the quantities extracted from the
simulation more similar to real cluster observations. As for the
measurement errors, we have checked typical cluster observables
from the literature and used eFEDS for reference. For example,
in Bahar et al. (2022), Mg, Lg, and Tg, have typical relative errors
of the order of 1%, 2%, and 4% or less, respectively. For Mt, Liu
et al. (2022) provides errors of the order of 1%, which might
be a little optimistic if compared to typical mass errors from
weak lensing. To be conservative, we decided to adopt 5% rela-
tive errors as a reference experiment over all cataloged features
discussed in Sect. 2 except for z which are assumed here to be
spectroscopic redshift with negligible errors. However, we will
also consider more conservative errors of the order of 10% for
all features and up to 30% for the total mass. This latter takes
into account the largest errors obtained in weak lensing anal-
yses of mid-low mass clusters (see e.g., Sereno et al. 2018).
After adding Gaussian noise to features other than z, we fur-
ther performed logarithmic processing to solve the heavy-tailed
distribution problem and make the predictive performance of
subsequent ML models more stable.

The “mock” observations have been implemented by re-
assigning, to each cluster, the “observed” physical quantities
(R,M∗,Mg,Mt, Lg,Tg, σV ), assuming Gaussian errors. This is
done by randomly drawing the observed quantities from a Nor-
mal distribution centered in their original (true) value and with
standard deviation corresponding to the adopted relative errors

(in turn, 5%, for the reference experiment, as discussed above).
This produces catalogs of observable-like features we will use
for training and testing the ML tool (see Sect. 3.2). To give
an overview of the final catalogs provided by the Magneticum
multi-cosmology sample, we first visualize the cluster count as
the function of both the cosmological model and redshift, in
Fig. 2. The different cosmological models are listed on the y-
axis, and for each horizontal bar showing the cluster counts,
different colors represent different redshifts as in the legend. As
expected, we see that the total number of galaxy clusters in dif-
ferent universes varies greatly due to cosmological parameters.
For example, M12 and M13 reach more than 60 000 clusters up
to z = 0.9, while M2 and M4 have fewer than 9000 galaxy clus-
ters in a volume of the same size. As the M1 ∼M13 models are
listed with increasing Ωmvalues, this is mainly the impact of the
mass density of the Universe making the cluster collapse more
effective.

In Fig. 3, we also show all possible correlations (scaling rela-
tions) among the seven features for three cosmologies at redshift
z = 0 (left), and as a function of the redshift for M6 (right),
with M6 being the reference cosmology for Magneticum (see
Sect. 2.1). This “cluster feature map” gives an impression of
the scatter and the variation the ML method needs to be sen-
sitive to, to distinguish different cosmologies and make correct
predictions. Overall, from the figure we can see that some of
the correlations are clearly distinguishable as a function of the
cosmology at a fixed redshift (e.g., the correlations with M∗ or
the Mg–Mt in the left panel), while other correlations are rather
mixed (e.g., the correlations involving the size, R). However,
besides correlations, we can see that the expected distributions
are different (see corner histograms), meaning that also the clus-
ter densities in the parameter space can be used to distinguish
cosmologies. We can also see that, for a given cosmology, there
is a clear evolution of almost correlations with redshift (right
panel). We expect the ML tools we intend to develop here can
efficiently capture these features in the cluster catalogs.

It is worth noting that most of these features are standard
products of cluster surveys, e.g., M∗, Mg, Lg, and Tg (Pratt
et al. 2009; Vikhlinin et al. 2009a; Böhringer et al. 2013;

A1, page 5 of 18



Qiu, L., et al.: A&A, 687, A1 (2024)

Fig. 3. Cluster features with 5% measurement errors. The panels show all possible correlations (i.e., scaling relations) among the seven features for
three cosmologies (M1, M6, and M12) at redshift z = 0 (left), and as a function of the redshift (z = 0, 0.14, 0.29, 0.47, 0.67, 0.9) for M6 (right). Left
panel: for a fixed redshift, we use a random sample of 7000 clusters from each cosmology to show how the slope of the scaling relations is affected
by cosmology. This is particular clear for the scaling relation related to the stellar mass, M∗, and gas mass Mg, while all other scaling relations are
more mixed. The corner histogram also shows the normalized distribution of the features in a given cosmological volume. Right panel: for a given
cosmological model, apart from the differences in number counts, the galaxy clusters at different redshifts show similar power-law structures but
with offsets driven by redshifts. This “cluster feature map” gives an overall impression of scatters and variations of cluster features among different
cosmologies, which is the cornerstone of the method that uses galaxy cluster features to predict cosmology based on machine learning. For more
details on definitions and accessibility of these cluster features, see Sects. 2.2 and 2.3, respectively.

Bulbul et al. 2019), while some other quantities are harder to get
in real observations. For example, with respect to imaging and
X-ray observations, only the most massive clusters can be used
to derive precise total mass Mt (e.g., with weak lensing mea-
surements). Similarly, σv needs time-consuming spectroscopical
campaigns, and generally, these are also limited to a few tens of
cluster members, although upcoming large all-sky redshift sur-
veys (DESI: DESI Collaboration 2016, WEAVE: Dalton et al.
2012, 4MOST: de Jong et al. 2019) will soon produce rather large
catalogs of clusters internal kinematics.

Hence, in this work, we have the chance to optimize the num-
ber of observables that are needed to constrain the cosmology.
By performing a “feature importance” analysis, we can check if
ML can fully exploit the cosmological information encoded in
some features, and their scaling relations, with respect to oth-
ers, for example, checking the impact of the quantities that are
observationally more difficult to obtain, e.g., Mt and σv.

3. The Machine Learning Cluster Cosmology
Algorithm

In Sect. 2, we have introduced the multi-cosmological sim-
ulation data and related cosmology labels and described the
eight observational-like cluster features. In this section, we
present the full Machine Learning Cluster Cosmology Algo-
rithm (MLCCA), which we train to predict the best cosmology
given a set of cluster observations (mock catalog). As antici-
pated, for this proof-of-concept we want to first demonstrate if
an ML tool can recognize what cosmological simulation a given
dataset has been extracted from. The basic idea is to produce
random mock catalogs extracted from one of the M1 ∼ M13
simulations (including clusters from different redshifts) and let
the MLCCA decide from which simulation this has been picked,
on the basis of the correlations among the features (scaling rela-
tions as in Fig. 3). This can be treated as a typical classification
problem, where a ML classifier can predict the probability that
a dataset belongs to different cosmological models. This is the

most obvious choice, given the limited number of cosmologies,
although we will test also regression algorithms in the near
future.

Classification-wise, due to the similarity of cosmological
scaling relations in adjacent parameter spaces, the classification
itself will have an error. This essentially produces uncertainties
in the inference of cosmological parameters. Also, by sparsely
sampling the cosmological parameter space (see Fig. 1), we can
check whether the MLCCA can learn a pattern among the scal-
ing relations in the cosmological parameter space and interpolate
data coming from a “cosmology” (meaning a simulation) that
is not included in the training. We quantify each of these steps
by proper evaluation metrics defined in Sect. 3.3. The final goal
is to build an algorithm that, starting from cluster catalogs, can
return confidence contours of the four cosmological parameters
(Ωm, σ8, h0,Ωb) used as labels in the ML training.

3.1. Machine learning classifiers

Broadly speaking, the task of the classifier will be to issue the
probability for a given cluster i to belong to a given cosmologi-
cal model j. Machine learning classifiers are mainly divided into
two types: tree models and neural networks. In this work, we
want to use tree models which are generally more robust and pos-
sess better interpretability than neural networks (Breiman 2001).
In particular, we are interested in ensemble learning on tree
models, which is a way to optimize the accuracy of single-tree
models. The improvement of the performance, here, is obtained
by constructing a set of tree models and then classifying new
data points by taking a (weighted) vote on their predictions
(Dietterich 2000), hence overcoming the nonoptimal perfor-
mance (underfitting, overfitting, etc.) of each individual tree
model.

To perform the classification on 13 cosmological models
based on available features, we consider four typical ensem-
ble tree models, i.e., Random Forest (RF, Breiman 2001), Extra
Trees (ET, Geurts et al. 2006), Light Gradient Boosting machine
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(LGB, Qi 2017) and eXtreme Gradient Boosting (XGB, Chen
& Guestrin 2016). To select the most appropriate model for this
project, we evaluated the above four ML models and selected the
best option using appropriate evaluation criteria such as accuracy
and logloss as described in Sect. 3.3.1. We anticipate here that
LGB is the best solution, as it is discussed in detail in Sect. 4.1.

3.2. Training and test samples

For the training phase, we use the cluster features as the input
to obtain the label of the predicted cosmological model as the
output. In particular, we adopt a multi-class classification, which
directly gives the probability that a cluster may belong to any
of 13 available models, and take the model with the highest
probability as the predicted model.

Regarding the construction of the training sample, the num-
ber of galaxy clusters in different cosmologies varies greatly due
to the influence of cosmology itself on large-scale formation,
as shown in Fig. 2. This uneven distribution can likely force
the model prediction to skew toward categories with a higher
number of samples (Prati et al. 2004). To correct this effect, we
apply an under-sampling method, i.e., we reduce the size of the
samples in the majority classes to balance the datasets of the
smaller classes. Since all selected cosmologies have more than
8000 galaxy clusters, we randomly draw 7000 galaxy clusters
for each cosmology as training samples. We stress here that this
is a rather brute-force approach driven by low Ωm cosmologies,
producing a low number of clusters, that strongly penalizes the
predictive power for more populated cosmologies in Fig. 2. We
have decided to accept this drawback in order to keep the largest
number of cosmologies for this first test based on the current
Magneticum sample. For the testing phase, in order to make
full use of the left behind non-training objects for each cos-
mology, we randomly selected 20 times 700 clusters, to obtain
20 different test samples with no overlap with the correspond-
ing 7000 clusters which make up the training sample. Each test
sample (i.e., mock catalog) can be regarded as a sample rep-
resentative of typical observational catalogs currently available
for cosmological tests (see e.g., Adami et al. 2018; Sereno et al.
2020).

3.3. Evaluation metrics

Here, we introduce the metrics to assess the three main tasks of
this paper: 1) selecting the best classifier capable of perform-
ing the multi-class analysis of the mock catalogs; 2) classifying
mock catalogs belonging to different cosmological models; 3)
predicting cosmological parameters for a certain galaxy clus-
ter mock catalog. In all cases, we first train the ML tool using
an ensemble of clusters with the same size from each of m
cosmological models distinguished by their labels (the four cos-
mological parameters). Then, we use a test set that contains n
clusters coming from the same cosmology to finally measure
the performance of the results. All the corresponding quantities
of model j ( j ∈ {1, 2, ...,m}) and cluster i (i ∈ {1, 2, ..., n}) are
defined as follows:
1. {θ j}: cosmological parameters of model j;
2. {Xi}: features of cluster i;
3. yi: true cosmological model of cluster i;
4. ŷi: predicted cosmological model of cluster i;
5. {θi}: true cosmological parameters of cluster i;
6. {µi}: mean values of predicted cosmological parameters of

cluster i;
7. {σi}: standard deviations of predicted cosmological parame-

ters of cluster i;

8. P(θ j|Xi): probability that cluster i belongs to model j, which
is the outcome of the classifier,

where cosmological parameters θ, µ ∈ {Ωm, σ8,Ωb, h0}, cluster
features X ∈ {R,Mt,M∗,Mg, Lg,Tg, σv, z}, model labels y, ŷ ∈
{1, 2, ...,m} and the sum of predicted probabilities for each cluster∑m

j=1 P(θ j|Xi) = 1.

3.3.1. Classifier metrics

For the classifiers’ performances, we include the following eval-
uators: 1) accuracy and 2) logloss. By accuracy we indicate the
proportion of all correctly classified samples (N(ŷi = yi)) in all
samples (n). To estimate that we use the following equation:

Accuracy =
N(ŷi = yi)

n
(1)

ranging from 0 to 1. The closer to 1, the better the classifier
performance on the whole. The logloss represents the average
probability (in logarithm) of a cluster being correctly classified.
The equation defining this is:

Logloss = −
1
n

n∑
i=1

m∑
j=1

δ j,yi log(P(θ j|Xi)), (2)

where δ j,yi equals 1 if j = yi and 0 otherwise. The lower and
upper limits of probability are set as 10−15 and 1, respectively, to
avoid infinity in the logarithm. The Logloss also ranges from 0
to 1, and the closer to 0, the better the classifier performance.

3.3.2. Classification metrics

Once we have defined the best classifier, we can proceed with
assessing the performance of the classification. This will be
based on the recall rate, which represents the ratio of correctly
predicted samples with respect to the total sample.

For each model, the classifier returns a true or false binary
outcome and will produce four different results, in terms of
correct (positive) or incorrect (negative) prediction: (1) TP:
Truly predict positive to be Positive; (2) FP: Falsely predict
negative to be Positive; (3) TN: Truly predict negative to be
Negative; (4) FN: Falsely predict positive to be Negative. The
recall rate of model j ( j ∈ {1, 2, ...,m}) is defined as the frac-
tion of the correctly classified j samples in all real j samples,
as follows:

Recallj =
N(ŷi = yi = j)

N(yi = j)
=

TPj

TPj + FNj
(3)

This ranges from 0 to 1, and the closer it is to 1, the better the
classifier performance on model j is. As we are dealing with a
multi-classification problem, the TP, FP, TN, and FN are defined
in Eq. (3), with respect to the maximum probability received by
each cluster i among the 13 j cosmologies. In principle, we could
use a lower threshold to account for a reasonably significant
probability for the ML tool to “recognize” a cluster to belong to a
given cosmology, but this would alter the final distribution of the
recall and arbitrarily reduce the “errors” on the classification3.
On the other hand, assuming no lower threshold we can stress
test the overall method by minimizing its accuracy and checking
if it can really produce correct classifications and cosmological
parameter estimates.
3 We have tested a series of lower threshold such as 0.1, 0.2, 0.3 and
checked that this would increase the TPs and reduce the FNs, overall
improving the recall rate.
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Fig. 4. Performance comparison
of four classifiers (RF, ET, LGB,
and XGB). From left to right
is the result of mean accuracy,
mean logloss, and relative time
consumption during the cross-
validation process.

3.3.3. Cosmological parameter metrics

After classification, for each cluster i, we use the probability that
cluster i belongs to model j, P(θ j|Xi), to infer its cosmologi-
cal parameters. For each individual cluster, in principle, we can
define the mean and standard deviation of a certain parameter as

µi =

m∑
j=1

P(θ j|Xi) · θ j (4)

σ2
i =

m∑
j=1

P(θ j|Xi) · (θ j − µi)2, (5)

where P(θ j|Xi) is considered as a probability distribution. Using
the same P(θ j|Xi), in order to account for asymmetric errors, we
decide to compute the lower 16% percentile, the median, and the
upper 84% percentile, roughly corresponding to 1σ lower bound,
σl, median θ̂m, and 1σ upper bound, σu, respectively. Then, we
use 1) Bias and 2) Score to evaluate the parameter predictions.
The Bias represents the deviation between the predicted median
and the true value, i.e.,

Bias = θ̂m − θ. (6)

The Score is short for Standard Score, which represents the
magnitude of Bias relative to a confidence interval.

Score =


θ̂m − θ

σl
when θ̂m > θ

θ̂m − θ

σu
when θ̂m < θ.

(7)

We can finally obtain the marginalized 2D 1σ and 2σ con-
fidence contours of all combinations of the four parameters,
as the 68% and 95% enclosed probability of the probabil-
ity distribution function (PDF) of the cluster catalog (see also
Appendix A for more details). This latter can be defined as PDF=∑n

i=1 G(µi, σi) = 1, assuming a Gaussian distribution, G(µ, σ),
for the cluster individual parameter estimates. We stress here that
this returns a conservative estimate of the uncertainties of the
parameter, fully capturing the uncertainties in the classification
encoded in the σi.

4. Results

In this section, we show the results of 1) selecting the best
classifier, 2) mock catalog classification, and 3) cosmological
parameter estimates. We first choose the best classifier for the

MLCCA, according to the performance evaluation discussed
in Sect. 3.3. Then, we apply the MLCCA to the test sample
described in Sect. 3.2 and assess its performance, including the
accuracy and precision of the cosmological parameter estimates,
in the perspective of future applications over real datasets.

4.1. Selecting a proper classifier

We start by using the four classifiers (RF, ET, LGB, and XGB)
to perform a first-round test on the training sample with 5-
fold cross-validation. That is, in five subsequent experiments,
we rotate 4/5 of the sample as a training sample, and the other
1/5 as a test sample to calculate the results, and then take the
mean of the five test experiments as the final result. In Fig. 4,
we show the three indicators discussed in Sect. 3.3.1, i.e., the
mean accuracy and mean logloss. We also show the comput-
ing time needed during the cross-validation process as a further
indicator of the efficiency of the method. We find that the LGB
has the highest mean accuracy and the 2nd lowest mean logloss
with minimal time consumption. Therefore, we identify LGB as
the best ML classifier among the four considered in our anal-
ysis, as it possesses clear advantages due to the fast training,
high accuracy, and low memory footprint. These performances
come from its ability to discretize continuous features through a
histogram-based decision tree algorithm and to use distributed
gradient boosting decision trees (GBDT), which are specifically
efficient to improve training efficiency. To further optimize the
LGB and reach a higher accuracy, we use Optuna (Akiba et al.
2019), which is an automated hyperparameter tuning framework,
to mainly adjust learning rate and n_estimators, that are
strictly related to accuracy. We finally find that the combina-
tion of learning rate = 0.07 and n_estimators = 150 can
improve the accuracy and also reduce the logloss with respect
to the default configuration with learning rate = 0.1 and
n_estimators = 100. However, the mean accuracy of 5-fold
cross-validation for the latter is 0.447 while for the optimized
version is 0.449. Also, the mean logloss for the default configu-
ration is 0.604 while for the optimized version is 0.602. Hence,
from default to optimized LGB, the accuracy has increased by
0.002 and the logloss has decreased by 0.002. These are small
changes, which prove that there is not much freedom in the set-
up of the network and the final performances are fully dominated
by the intrinsic complexity of the data and how these reflect the
cosmological information encoded in them.

4.2. Classifying cosmological models

We now apply the MLCCA based on the optimized LGB to the
test samples of 13 cosmological models respectively. In Fig. 5,
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Fig. 5. Recall rate of mock catalogs over the 20 test samples in each
cosmological model. The recall rate represents the proportion of galaxy
clusters that are correctly classified into all clusters. The width of the
“violin” is a function of the recall rate, representing the probability dis-
tribution of recall of the 20 test samples. The white dot in the center of
the violin represents the median recall. As can be seen, the median recall
rate displays distinct variations among different cosmological models.

we show the statistics of the overall recall rate over the 20 test
samples used in each cosmology. For each cosmological model,
due to the variance among 20 test sets, the recall distribution
has a certain fluctuation, which we quantify with a violin plot,
where the width of each violin represents the probability at a cer-
tain recall level. The “median” recall rate varies from different
cosmological models, with lower recall rates found for cosmolo-
gies that have more overlap with neighbor cosmological models,
given a larger chance that the classifier assigns a cluster to some
close cosmology.

For each mock test sample from a given cosmology from
the violin diagram above, in Fig. 6 we show the median con-
fusion matrix, showing the median fraction of a given cluster
sample that has been classified on each cosmology, color-coded
by the density of the allocated cluster in a given sample. A per-
fect classifier would return a series of 1 along the diagonal, while
in Fig. 6 we see this is not the case, as the confusion matrix mir-
rors the situation seen in Fig. 5. In particular, we can see that for
simulations with larger overlaps with close cosmologies, there
is a larger spread or recall cluster from each sample. However,
in all cases (except M54), the classifier assigns the plurality of
the cluster of the sample to the correct cosmology (along the
diagonal), while the misclassified clusters still carry on their cos-
mological information. As we will see in the next sections, this
cosmological information remains encoded in the classification
probabilities among all these cosmological models and effec-
tively impacts the recovery of the true cosmological parameters,
as well as their uncertainties.

4.3. Inferring cosmological parameters

We can now check the performance of the MLCCA in the predic-
tion of the cosmological parameters from the test sample, using
the metrics described in Sect. 3.3. In Fig. 7, we start by showing
the score of the predicted cosmological parameters (reported on
the x-axis) for all cosmological models (y-axis). This plot gives
in one glance the accuracy and precision for each cosmological

4 We note that the close off-diagonal bin has a recall rate which is
larger but consistent with the diagonal one within Poissonian noise.
As we will show in Appendix B, this does not impact an unbiased
cosmological parameter prediction.

Fig. 6. Normalized confusion matrix of mock catalogs for test samples.
Each row of this matrix represents a test sample taken from a certain
cosmology (containing 700 galaxy clusters), where each cell represents
the fraction of galaxy clusters classified as belonging to the x-label
cosmology. The diagonal of the matrix represents the recall rate (i.e.,
the fraction of clusters correctly classified) coinciding with the median
recall of each violin in Fig. 5. The non-diagonal elements of the matrix
represent the fraction of clusters that have been misclassified to other
universes. As it can be seen from Fig. 5 and this figure, ML has a low
recall rate and large misclassified fractions for the central models (such
as M5, M6, M7, and M9), indicating that these cosmologies have more
overlap with neighboring cosmologies.

Fig. 7. Score values for the different cosmological models. The figure
shows the distribution of the estimated cosmological parameters repre-
sented with different colors. Negative and positive score values indicate
underprediction and overprediction, respectively. As can be seen, almost
all parameters are predicted by the MLCCA within 1σ from their true
value. Notably, for cosmologies at the center of the parameter space,
such as M5, M6, M7, and M9, the MLCCA method can accurately
recover the four cosmological parameters well within the 1σ level.

parameter as a function of the “true” cosmology the mock cat-
alog is originally extracted from. For instance, for the catalog
extracted from M13 (on the top row), only σ8 is constrained at
less than 1σ level, while the other parameters are off the scale,
i.e., are “biased” by ∼1σ. Similarly for M1 (bottom row) none
of the parameters is constrained with accuracy better than 0.5σ.
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Fig. 8. Cosmological parameters of M6 inferred by the MLCCA. The
contours enclose 1σ and 2σ confidence intervals for the cosmologi-
cal parameters of each 2D projection. The histograms on the diagonal
represent the posterior probability distribution of the four cosmologi-
cal parameters. The gray lines in the figure represent the true values of
the various parameters of M6 cosmology, with the true value of each
parameter shown in the posterior probability diagrams. It can be seen
that all cosmological parameters are within the 1σ confidence interval.

On the other hand, for models such as M5, M6, M7, and M9,
the MLCCA correctly recovers Ωm, σ8, h0, and Ωb with the true
values all well within 1σ confidence intervals of the prediction
ranges. Overall, the models lying in the bulk of the parameter
space covered by the Magneticum multi-cosmology simulations
obtain a |score| < 0.5 for most of the cosmological parameters,
especially Ωm and σ8. Besides, there is a mild trend that the far-
ther a parameter is from the parameter space bulk in Fig. 1, the
larger the probability of being under or overestimated.

We can have a better perception of the remarkable accu-
racy and precision of the recovered parameters from the corner
plot in Fig. 8, where we draw the confidence contours for M6.
As mentioned before, the mock catalog from M6 cosmology,
used to derive these constraints, contains R, M∗, Mg, Mt, Lg,
Tg, σv, and z values for 700 galaxy clusters, having all, except
the redshift, relative error of 5%. The predicted values are
(0.279+0.041

−0.039, 0.806+0.060
−0.066, 0.705+0.021

−0.021, 0.0457+0.0027
−0.0028), respectively.

They are all consistent with the true values of (Ωm, σ8, h0,Ωb)
of M6, which are (0.272, 0.809, 0.704, 0.0456), within the esti-
mated errors. The corresponding 1σ relative precisions are 14%
for Ωm, 8% for σ8, 3% for h0, 6% for Ωb. These constraints are
somehow tighter for Ωm but similar to the ones on σ8 of the ones
obtained by using joint analyses of the cluster abundance and the
weak-lensing mass calibration (22% for Ωm and 8% for σ8 in,
e.g., Chiu et al. 2023). This can be due to the error size adopted
here, which might be optimistic for some parameters, although
they are still more conservative than the ones from Chiu et al.
(2023). In Sect. 5.3, we will check the impact of even more con-
servative errors and see that the parameter precisions are little
affected, except for Ωm.

We finally remark that, for a certain cosmological model,
both the accuracy of the classification and the estimated

parameters are related to its position in the parameter space (i.e.,
the parameter distribution: Fig. 1). Some of the more extreme
cosmologies, such as M1 and M11, are at the edge of the sampled
parameter space, so they are easier to recognize by classifiers
and therefore have higher classification accuracy (see confusion
matrix: Fig. 6). At the same time, though, due to their position
on the edge of the parameter space, the misclassified clusters
are oddly distributed, as they are mixed with cosmology located
more likely on the same side of the parameter space (at least
in some projections), resulting in an overall overestimation or
underestimation of some parameters with a larger overlap. For
instance, M1 and M11 lie in the opposite edges of the Ωm − σ8
and Ωm − h0 projections in Fig. 1, which makes them easy to
classify (recall rate larger than 0.7 in Fig. 6); however, from
Table 1, M1 seats on the minimum of the Ωm range and close
to the maximum of σ8 and these parameters are overestimated
and underestimated5, respectively (see Fig. 7), while M11 has
a minimum in both σ8 and h0, which are overestimated and is
the second ranked in Ωb (see Table 1), which is underestimated
(Fig. 7). For cosmologies in the bulk of the parameter space,
such as M5, M6, M7, and M9, despite a lower classification
accuracy, the misclassified clusters are more evenly distributed
on both sides of the parameter space, hence producing a more
balanced parameter prediction, with a smaller bias. This can be
seen in Fig. 7, where the accuracy of the prediction of the four
parameters of M5, M6, M7, and M9 is obviously better than that
of other models (see also contour plots in Appendix B).

We conclude that the MLCCA algorithm works better for
cosmological predictions in the center of the sampled parame-
ter space. More precisely, for a specific cosmological model, the
MLCCA can efficiently recover the true cosmological parame-
ters, provided that the training set, made by a series of multi-
cosmology hydro-simulations, evenly covers the cosmological
parameter space around the true cosmology. This represents the
main results of this paper as it strongly suggests increasing the
number of cosmologies covered by large-volume, mid-resolution
hydro-simulations, to fully apply this method to real data in the
future.

5. Robustness and systematics

In the previous sections, we demonstrated the ability of the
MLCCA to recover the cosmological parameters by giving a
mock catalog of 700 clusters randomly distributed in redshift,
for which seven specific observational quantities are given. In
this section, we want to check the robustness of this result and
discuss the impact of some assumptions made in our analysis
and by the properties of the simulations adopted. To be more
specific we will consider: 1) the ability of the MLCCA to predict
the cosmology of the test sample in the case this is not covered
in the training sample, in fact by testing the capability to inter-
polate between different cosmologies in a grid of parameters; 2)
the accuracy of the MLCCA predictions excluding some rele-
vant features, in particular, the total mass; 3) the impact of the
size of the measurement errors; 4) the impact of the simulation
resolution.

5.1. Excluding a certain cosmology

The cosmological parameters of the real Universe may not be the
same as any of the cosmological models in a given simulation

5 M1 is also close to the minimum of the Ωb and has a large h0, so
these parameters are also biased.
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Fig. 9. Parameter constraints for M6 mock catalog including or exclud-
ing the M6 cosmology. This graph is the same type as Fig. 8. In both
cases, all cosmological parameters are in the 1σ region, indicating that
our method has the potential to be applied to the cosmology where each
cosmological parameter is roughly located in the center of the parameter
space of the training sample, but the specific configuration is unknown.

set. In this case, we need to check if the ML trained with various
existing cosmological models can still accurately predict a model
that has not been directly learned before. In Fig. 9, we show
the distribution of the predicted cosmological parameters from a
mock catalog from M6 using an MLCCA trained on all the cos-
mologies in Table 1, except M6 itself. The predicted values are
(0.281+0.046

−0.044, 0.805+0.070
−0.075, 0.707+0.023

−0.024, 0.0458+0.0030
−0.0032), respectively.

They are all consistent with the true values of (Ωm, σ8, h0,Ωb)
of M6, which are (0.272, 0.809, 0.704, 0.0456), within the esti-
mated errors. This is a remarkable result, showing the ability of
the MLCCA to interpolate even over a sparse grid of simulations
around the true cosmology the test sample belongs.

5.2. Excluding a certain feature

Ensemble algorithms based on tree models are commonly used
to measure the feature importance. This evaluates the influence
of features on the final model accuracy and loss. However, this
does not give any information on how the features are related to
the final prediction results. To measure the impact of the indi-
vidual features in the final predictions, we adopt a more direct
experiment-based approach, by comparing the performance of
the model retrained after excluding a certain feature with the
performance of the model including the full set of features.

In Fig. 10, we report the variation in the percentage of the
mean Accuracy and Logloss over the 5-fold cross-validation pro-
cess, by excluding each of the features in turn. It is evident, that
the “mass features” (i.e., M∗, Mg, and Mt) are the ones most
affecting the results. For example, excluding stellar mass M∗ will
cause a 35% reduction in mean accuracy and a 33% increase
in mean logloss. Excluding the gas mass, Mg, the accuracy is
reduced by 20% and the logloss increased by 18%, while without
the total mass Mt, the accuracy is reduced by 14% and the logloss

Fig. 10. Comparisons between the performance of the model retrained
after excluding a certain feature and the performance of the model
before exclusion. The red bars and purple bars represent the percentage
change in mean accuracy and mean logloss during the 5-fold cross-
validation process respectively. As can be seen, stellar mass, M∗, and
gas mass, Mg, have the most substantial impact on the overall perfor-
mance of the classifier, indicating their crucial importance in MLCCA
inference.

increased 15%. On the other hand, excluding the gas luminos-
ity Lg or the gas temperature Tg would not affect the accuracy
or logloss by more than 3%. The redshift z, the radius R, and
the velocity dispersion σv, surprisingly rank the lowest with the
combined influence on the overall results amounting only to
∼1%. This is likely because most of the information encoded in
these features is also contained in the other features above (e.g.,
σv is a proxy of the total mass). However, we need to remark on
two facts here. First, this feature importance analysis is related
to the simultaneous constraints of all the cosmological param-
eters together, while possibly the individual parameters can be
more sensitive to a certain feature (e.g., h0 being more sensi-
tive to M∗6 and z). This is a test that is beyond the purposes of
the current paper and we will address it in forthcoming analyses.
Second, this feature importance is related to the classification,
which is not related to the ability to constrain the cosmology,
as stressed above. Hence, we need to check if the absence of an
important feature in classification can yet allow us to recover true
cosmology.

In Fig. 11, as an example, we show the results of exclud-
ing total mass Mt from the list of the features used to train
and predict the cosmological parameters for M6 (our reference
cosmology). The reason to check the impact of the absence of
the total mass among the catalog features is that the mass is
among the more uncertain quantities to estimate from obser-
vations (see Sect. 1). In this case, the confidence contours are
still quite similar to the case of including Mt, except for the
Ωm contours and posterior probability, which look more broad-
ened. For M6, again, the predicted values for (Ωm, σ8, h0,Ωb) are
(0.274+0.048

−0.045, 0.802+0.061
−0.065, 0.704+0.021

−0.021, 0.0454+0.0028
−0.0028), against the

true values of M6, that are (0.272, 0.809, 0.704, 0.0456). This
indicates that excluding Mt would somehow affect the accuracy
of classification, but produce a limited impact on the parame-
ter constraints, except for the Ωm precision. This means that the
cosmological information about all parameters is still encoded
in some other features that are directly accessible in observation
(such as stellar mass M∗ and gas mass Mg). Therefore, this exper-
iment shows, specifically, that AI can help extract information

6 Despite stellar ages are not included in the simulation features, it is
possible that the assembly of stellar masses in clusters is tightly corre-
lated with the age of the universe, with stars being cosmological clocks
(see e.g., Jimenez & Loeb 2002).
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Fig. 11. Parameter constraints for M6 mock catalog including or exclud-
ing the total mass feature in the training sample. This graph is the same
type as Fig. 8. In both cases, all cosmological parameters are in the 1σ
region, indicating that our method could achieve high limiting accuracy
for cosmological parameters without using total mass.

from multiwavelength features to infer cosmological parameters
even without the total mass.

5.3. The impact of the measurement errors

To take into account the measurement errors of cluster fea-
tures in the real observation, we added 5% Gaussian errors to
the simulation data. As discussed in Sect. 2.3, this was a con-
servative choice for most of the features, or even optimistic
for others (see e.g., the total mass from weak lensing). Hence,
we are interested to consider a wider range of statistical errors
and check whether, by improving the precision of observations
(smaller errors), one obtains tighter constraints on classification
and cosmological parameter inferences and vice versa for larger
observational errors. The uncertainties on the observed quanti-
ties equally impact traditional methods, e.g., the mass function
of galaxy clusters, where higher or lower accuracy of cluster fea-
tures produces more or less accurate cosmological results. In
Fig. 12, we show the confidence intervals for the prediction of
the four cosmological parameters where we consider the extreme
case of 0% errors for all features, which provides information on
the uncertainties inherent to the ML model. We also consider
the pessimistic cases where we assume 10% errors for all fea-
tures or 30% errors for the Mt and 10% on other observables
(see Sect. 2.3). These are shown against the reference case with
5% errors in overall quantities. The predictions for the peaks are
almost identical in all these cases, implying a rather resilient
accuracy, while the confidence contours are slightly shrunken
in the 0% case and expanded in the 10% case, as expected, for
all parameters. However, the 0% errors allow an improvement
in terms of accuracy of Ωm, by ∼21%, which is reasonably good,
but not significant improvements for the other parameters. On the
other hand, for the case of 10% errors, we observe a significant
degradation of the Ωm precision (∼23% larger than the 5% error
case), but, again, no sensible changes for the other parameters,

Fig. 12. Parameter constraining results for M6 mock catalog with dif-
ferent error setting. This graph is the same type as Fig. 8. The model
was trained by the training sample adding 0% (dash-dot line), 5% (solid
line), and 10% (dashed line) errors on M∗, Mg, Mt, Lg, Tg, R, and σv,
and adding 10% errors on M∗, Mg, Lg, Tg, R, and σv while adding 30%
errors on Mt (dotted line). In these four cases, all cosmological parame-
ters are in the 1σ region, indicating that our method has relatively good
robustness to the error degree of features.

which are recovered with similar precision. Finally, the extreme
case of 30% on the Mt does not show a catastrophic impact on
the size of the contours of Ωm, that increases by ∼38% with
respect to the 5% error case and by ∼12% with respect to the 10%
error case. This is possibly due to the fact that the scaling rela-
tions, to which Ωm is sensitive, are more tightly distributed with
respect to the ones the other parameters are sensitive to. Hence
larger measurement errors increase the overlap among scaling
relations sensitive to Ωm more than the ones of the other param-
eters. Finally, we can also argue that the measurement errors of
Mt have little effect on the cosmological parameter predictions,
because this is a “less important feature” than M∗ and Mg and
the model performs well when M∗ and Mg have 10% errors and
Mt is much noisier than other features. Interestingly, we find that
either including noisy Mt estimates (as just discussed) or exclud-
ing Mt from the catalogs (as discussed in Sect. 5.2), leads to
similar results.

5.4. The impact of the simulation resolution

In the previous section, we discussed measurement errors as a
basic implementation of observational realism. This latter ele-
ment has larger ramifications than simple measurement errors
and it tracks back to the definition of the observational quan-
tities in simulations and how the observational conditions can
affect the inferred physical measurements in synthetic datasets
(see e.g., Bottrell et al. 2019; Tang et al. 2021). However, there
are other profound implications related to the technical aspects
of simulations and the way these are calibrated to observations,
that might affect the proper training of ML tools and impact their
application to real data. For instance, one problem is the “reso-
lution convergence.” It is known that any given property of a
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Fig. 13. Stellar mass ratio M∗/Mt (the upper panel) and gas mass ratio
Mg/Mt (the lower panel) as a function of the total mass Mt. Different
colors represent different simulation boxes and different redshift inter-
vals. Box1a has a medium-resolution, while Box2 and Box2b have a
high-resolution.

simulated halo may not be fully converged at any given mass or
spatial resolution (Weinberger et al. 2017; Pillepich et al. 2018b).
Due to the different impact of the sub-grid physics (e.g., Colín
et al. 2010), both stellar masses and star formation rates can
increase with better resolution for dark matter haloes of a fixed
mass. This has been proven, e.g., in TNG simulations7 (Pillepich
et al. 2018a).

To check this effect in Magneticum simulations, we have
derived the distribution of high-resolution (hr) cluster features
with respect to the mid-resolution (hr) simulations. M1−M13 all
have hr simulations in the hr box, Box1a. For M6 (the fiducial
cosmology considered in Magneticum), additional simulations
are available in hr boxes, for instance, Box2 and Box2b. The
sizes of Box1a/mr, Box2/hr and Box2b/hr are ∼896 h−1

0 Mpc,
∼352 h−1

0 Mpc and ∼640 h−1
0 Mpc, respectively. More details of

these three boxes can be found at the Magneticum website8.
In Fig. 13, we calculate the stellar mass ratio M∗/Mt (top)

and gas mass ratio Mg/Mt (bottom) as the function of total mass
Mt both for the M6 medium-resolution simulations (Box1a/mr)

7 https://www.tng-project.org/
8 http://magneticum.org/simulations.html

and two high-resolution simulation boxes (Box2/hr, Box2b/hr).
We stress here, in particular, that the Box2/hr/M6 simulation not
only shares the same cosmology and feedback but also covers the
same redshift interval of Box1a/mr/M6, while the Box2b/hr/M6
covers a higher redshift range (z ≥ 0.29). As expected, the stel-
lar mass ratios and gas mass ratios are quite sensitive to the
resolution levels. The higher the resolution, the smaller the stel-
lar mass and gas mass at a fixed total mass. Statistically, for
clusters with masses between 2 × 1013 h−1M⊙ and 1015 h−1M⊙
in M6 cosmology, stellar mass averages 3% of the total mass
at high-resolution, while at a medium-resolution, this percent-
age decreases to 1.2%. On the other hand, the gas mass ratio
seems to rise with decreasing resolution with about 10% at high-
resolution and 13% at medium-resolution. This is consistent with
what has been found in TNG simulations for haloes with total
mass log Mt/M⊙ > 14 (Pillepich et al. 2018a). We also observe
that different volumes (Box2/hr and Box2b/hr), show a sensi-
tive tilt. To check if this is due to the lack of low-redshift data
for Box2b (which is limited to z ≥ 0.29) or to cosmic variance,
in Fig. 13 we also add the stellar and gas mass fractions for
Box2/hr for redshifts z ≥ 0.29 only, consistently with Box2b/hr.
As we can see this latter is slightly offset with respect to the case
including clusters down to z = 0, hence we conclude that the tilt
possibly comes from cosmic variance. We notice though that the
larger variance comes from Mt < 1014h−1M⊙ and is of the order
of 1%.

In general, other features in hr, such as gas luminosity and
temperature, also show deviations from those in hr. This raises
the question of which resolution should be taken as the best rep-
resentation of reality. This is certainly a question we will need
to address when applying the MLCCA to real data, as we will
need to ensure that the algorithm is trained over simulations for
which the calibration of the relevant scaling relations and reso-
lution do conspire to match observations. We anticipate here that
this is not a simple task as observations do not provide an obvi-
ous indication about the “ground truth,” having clusters a stellar
mass fraction varying from 0.5% to 3% (see e.g., Chiu et al.
2018), i.e., a scatter well beyond either the hr or hr relations in
Fig. 13. The obvious warning emerging from the question above
is that we need to keep the subgrid-physics under control in sim-
ulations to produce predictions, given a baryon physics recipe,
resolution-independent (see e.g., Murante et al. 2015). However,
in the perspective of our proof-of-concept experiment, this yet
important “realism” aspect is irrelevant as long as the training
and the test sample are extracted from the same knowledge base
provided by the same simulations with the same stellar mass or
gas mass fraction. While it becomes relevant if one needs to train
on a simulation with a resolution different from the one from
which the test sample is extracted. In this case, one can use a
“rescaling procedure” (see e.g., Pillepich et al. 2018a) by apply-
ing a resolution correction factor to align the physical quantities
from different resolution boxes. Of course, this is a workaround
needed in order to compensate resolution effect and make the
simulation predictions consistent at all resolution levels. From
the point of view of this work, there is no particular reason why
one wants to mix simulations of different resolutions, however, it
can still be useful to check if the naif rescaling procedure makes
the MLCCA predictions insensitive to the resolution correction.

Indeed, according to the “independent identically distribu-
tion” hypothesis in ML inferences, any model can have reliable
predictions only when the feature distributions of the test sample
are comparable with those of the training sample. Hence, if we
use a test sample from hr simulations, we expect the MLCCA
trained on hr to fail, because the net effect of the resolution is to
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Fig. 14. Mg ∼ Mt and Mg ∼ Mt relationships in the medium-resolution
simulation (Box1a/mr) and high-resolution simulation (Box2/hr). The
subplot in the upper left corner represents the conversion coefficients of
stellar mass (blue) and gas mass (orange) between medium-resolution
and high-resolution for a fixed total mass, corresponding to Eq. (8).

scale up or down the M∗ − Mt and the Mg − Mt relations, simi-
larly to what the different cosmology do at a fixed resolution (see
Fig. 3). This is a general problem that we would also face using
real data where, in the case of the nonuniform definition of the
observed quantities, the real features and the training feature can
have deviations even if they come from the same cosmology, as
the hr and hr mock catalogs do as shown in Fig. 13.

Following Pillepich et al. (2018a), we adopt a heuristic cor-
rection to convert hr cluster features into their hr versions that
approximately reproduce the hr training sample. First, from both
Box1a/mr/M6 and Box2/hr/M6, we select clusters with the total
mass within 1014 ∼ 1015 h−1M⊙ to mitigate the effects of resolu-
tion on a too wide mass range and assume a constant correction.
Second, despite different Box2/hr/M6 features explicitly vary-
ing from those of Box1a/mr/M6, we only adjust two of the
most important features (M∗ and Mg as from Fig. 10), conserva-
tively. In Fig. 14, we can see how the correlation of these two
quantities changes as a function of Mt in the different boxes
and resolutions. We can adopt a mass-modulated conversion
strategy to derive a conversion coefficient that can reflect the
resolution-induced feature drift. For brevity, we assume that the
conversion coefficient is the average of multiples of Mx/mr and
Mx/hr obtained at each fixed Mt. Accordingly, for clusters whose
Mt within 1014 ∼ 1015 h−1M⊙, their hypothetical hr versions of
Mx (M∗ or Mg) can be approximately obtained by multiplying the
conversion coefficient α and their original hr versions as follows:

Mx(Mt; Box2/mr) ≈
〈

Mx(Mt; Box1a/mr)
Mx(Mt; Box2/hr)

〉
· Mx(Mt; Box2/hr)

≈ α · Mx(Mt; Box2/hr). (8)

From Fig. 14, we find that the best fit α is 0.36 and 1.25 for M∗
and Mg, respectively. We further apply these two coefficients to
derive hypothetical Box2/mr clusters and have checked that their
three features (M∗, Mg, and Mt) finally use these features to make
the cosmological parameter predictions.

Figure 15 shows parameter constraints from M∗, Mg, and
Mt for Box1a/mr and Box2/hr (converted to Box2/mr version).

Fig. 15. Parameter constraints for medium-resolution M6 mock cat-
alog (Box1a/mr/M6, solid line) and high-resolution M6 mock cata-
log (Box2/hr/M6, dashed line). The model was trained by medium-
resolution training sample. This graph is the same type as Fig. 8. In
both cases, we guarantee that the total mass of the cluster ranges from
1014 to 1015 h−1 M⊙. It can be seen that the high-resolution prediction
values are higher than the real values, but all cosmological parameters
are still in the 1σ region, indicating that our method has certain appli-
cation potential for different resolution cosmology.

Compared to the true cosmological configuration of M6 (Ωm :
0.272, σ8 : 0.809, h0 : 0.704,Ωb : 0.0456), the predictions for
Box1a/mr and Box2/hr are:

(0.286+0.043
−0.040, 0.818+0.056

−0.068, 0.710+0.020
−0.023, 0.0463+0.0027

−0.0029),
(0.303+0.050

−0.043, 0.832+0.050
−0.063, 0.714+0.017

−0.019, 0.0470+0.0022
−0.0025),

respectively, i.e., yet consistent within the errors.
We find the overall predictions made over Box2/hr are similar

to that of Box1a/mr, especially for h0 and Ωb, which demon-
strates that our conversion strategy maintains most of the inner-
correlations among the three mass quantities (M∗, Mg, and Mt).
However, MLCCA overestimates all parameters of both boxes,
especially the Ωm and σ8. This residual discrepancy might come
from the fact that changing M∗ and Mg, without changing the
total mass, substantially alters the baryon fraction of the sample
and, intrinsically, the underlying cosmology of the cluster cata-
log. This test shows that we cannot straightforwardly generalize
the results, obtained from mid-resolution to high-resolution, as
this would imply corrections on the features that might intro-
duce biases in the predicted cosmology. This suggests that to
avoid systematics, one should train the algorithm using features
from numerically converged simulations.

6. Summary and conclusions

In this paper, we have introduced and tested a first proof-of-
concept ML pipeline which is able to predict the cosmological
parameters starting from mock catalogs of galaxy clusters’ phys-
ical parameters, namely the stellar mass, M∗, gas mass, Mg, total
mass, Mt, gas luminosity, Lg, and temperature, Tg, sizes, R500c,
velocity dispersion, σv, and redshift, z. These are typical observ-
ables (or features) we expect to collect from current and future
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imaging surveys in optical and NIR (e.g., Rubin/LSST, CSST,
and Euclid), spectroscopical surveys (e.g., DESI and 4MOST),
and X-ray surveys (e.g., eROSITA). We have used the mock
catalogs of galaxy clusters extracted from the multi-cosmology
set of Magneticum hydrodynamical simulations, which spans
a limited volume in the (Ωm, σ8, h0,Ωb) parameter space, cen-
tered around the WMAP7 cosmology. There are 15 different
simulations available, which also include some variations of the
feedback recipe from AGN and supernovae. We used only 13
of them, excluding twocosmologies with too few clusters to use
as training samples, and also skipped the inclusion of multi-
feedback for this first test, as there were onlyfour simulations
with two feedback recipes available. Again, these are too few
to be used for a meaningful test. The mock catalogs, includ-
ing measurement error, are used to train an optimized Light
Gradient Boosting machine (LGB) network to classify the clus-
ter catalogs and predict the cosmological parameters. Based on
this optimized LGB network, we have built a Machine Learn-
ing Cluster Cosmology Pipeline (MLCCA). The MLCCA has
proven to be very effective in predicting the right set of cosmo-
logical parameters although the classification of the individual
clusters to belong to the right cosmology suffers from the simi-
larity of the scaling relations of close cosmologies. Here below,
we summarize the main results of the application of the MLCCA
to mock catalogs of 700 clusters from different cosmologies:
1. The MLCCA can accurately predict the true cosmological

parameters corresponding to the cosmological simulation
the catalogs are drawn from. Despite the limited coverage
in the parameter space, for cosmological models in the cen-
ter of the parameter space, the classification recall rate is
between ∼0.2 and 0.4, but the predictions of the cosmo-
logical parameters are tighter. Typical 1σ level are 14% for
Ωm, 8% for σ8, 3% for h0, 6% for Ωb. For cosmological
models at the edge of parametric space, the classification
accuracy increases because there is not any confusion with
cluster properties from close models, but the cosmologi-
cal parameters are slightly biased. This is clearly a “border
effect” due to the training sample, rather than the true under-
performance of the MLCCA. This leads us to conclude that
more mid-resolution hydro-simulation Magneticum-like are
needed to make the MLCCA effectively applicable to real
data.

2. In order to fully check the performance of the MLCCA and,
in particular, the ability to extrapolate to cosmologies that
are not included in the training sample (this is a situation
that might happen also if one uses a regular grid of cosmolo-
gies), we have tested the ability to recover the cosmology
over a mock catalog taken from a cosmology (specifically
we tried M6 and M7) that was not included in the training
set and found that the MLCCA can recover the cosmo-
logical parameter with comparable accuracy and precision
as the case where the training contains the mock catalog
cosmology.

3. We have tested the impact of the measurement errors, partic-
ularly how the recall rate of the classifier and the uncertain-
ties on the cosmological parameters would be affected. We
have found that for errors of the order of 2%, the 1σ contours
are shrunk by ∼18%, while for larger errors, i.e., 10%, only
Ωm show large degradation of the precision with typical 1σ
contours widened by up to ∼20–40%. We note that the cur-
rent accuracy can be strongly affected by two main factors:
1) the limited size of the training sample, and 2) the limited
number of the it mock catalog sizes, which we need to check
with larger volumes of multi-cosmology simulations.

4. We have tested the resilience of the MLCCA for missing
features, i.e., in case cluster catalogs do not contain one or
more of the observations used for the main experiment as at
point 1) above. Also in this case, the MLCCA can correctly
recover the cosmological parameter even if the mass features
are missing, despite the fact that these are the most impor-
tant features for the classification. We have understood that
by the ability of the ML tool to still extract relevant cosmo-
logical information from the scaling relations involving all
other features. Among all features, stellar mass and gas mass
have the greatest weight on accuracy for the classification.

5. Finally, we have checked the effect of simulation resolution,
as this latter produces a sensitive impact on the stellar and
gas mass of clusters, due to the different effects of the sub-
grid physics (Pillepich et al. 2018a). In particular, we have
tested whether simple “rescaling” of the major cluster fea-
tures can leave the predictions of the MLCCA unaltered and
found that if one limits to only the major baryonic mass
features (stars and gas) without also recorrecting the total
mass, one ends with systematic effects. This calls for effec-
tive strategies to improve the sub-grid physics treatment in
hydrodynamical simulations to make their predictions more
stable toward the change of resolution.

This first application of cosmological inference from ML based
on galaxy clusters shows that these tools have a rather strong
predictive power, by efficiently cross-correlating features among
different cosmological predictions. This is very promising for
future applications making use of finer sampling of the cosmo-
logical and galaxy formation parameter space in future multi-
cosmology hydrodynamical simulation runs. And in the long
term, this could help to fully exploit multiwavelength observa-
tions from current and future surveys, to gain a more profound
understanding of the true universe model.

This work follows a line of experiments trying to extract cos-
mological information from observational data using ML tools
applied to multi-cosmology simulations. Villaescusa-Navarro
et al. (2022) use the internal properties of a single galaxy
simulated by the CAMELS project9 to predict cosmological
parameters, especially Ωm and σ8. Their ML model could infer
the value of Ωm with a precision of δΩm/Ωm ≃ 10–15% (with a
possible explanation that Ωm could affect the dark matter con-
tent of galaxies and then further result in a unique change in the
observables’ manifold). However, they could not infer σ8 due
to the small non scale of galaxies. Further works by CAMELS
include quantifying the robustness of the ML model by test-
ing on galaxies from different codes (Echeverri-Rojas et al.
2023), improving the inference on cosmological parameters by
enlarging the simulation sets (Ni et al. 2023), etc.

In our work, we show that galaxy clusters are very power-
ful in inferring cosmological parameters, mainly because of the
stronger connection with large-scale structure formation, which
is more sensitive to cosmology. Among the cluster features that
we use, the underlying halo mass function has been widely
proved to constrain Ωm and σ8, the gas mass (and baryonic mass
in general) has been proved to sensitively depend on Ωb, while
the stellar mass, velocity dispersion, and gas temperature have
been proved to sensitively depend on h0. In the next analyses, we
expect to apply the MLCCA to upcoming sets of mid-resolution,
large-volume hydrodynamical simulations, considering a wider
range of cosmologies and, for each of them, different feed-
back recipes, to finally test the predictions of the cosmological
parameters and baryonic physics at the same time. This will

9 https://www.camel-simulations.org/
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eventually allow us to move toward the first application to real
data.
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Appendix A: Cosmological parameter estimates
from classification probability

In this Appendix, we summarize the statistical arguments behind
using the classification as a starting point to infer cosmology. In
particular, we use n cluster observables O = {O1,O2, ..Oi...On}

in a series of cosmological models Mi with corresponding cos-
mological parameters θ j = (Ωm, σ8, h0,Ωb). We can start from
the assumption that every single cluster carries the information
of the cosmology behind the universe it lives in. The expectation
of the cosmological parameters for one observation Oi can be
assumed to be
µi =
∑

j

P(θ j|Oi) θ j, (A.1)

where P(θ j|Oi) is the conditional distribution related to the
individual observable Oi. The corresponding error on this expec-
tation is defined by the variance:

σ2
i =
∑

j

(θ j − µi)2P(θ j|Oi). (A.2)

The observation O can be thought of as a series of measuring
processes, then the expectation is

µ =

n∑
i

µi/n, (A.3)

and the error is

σ =

√√
n∑
i

σ2
i /n. (A.4)

Eqs. (A.3), (A.4) represent the main statistics adopted in
Sect. 4.3 to estimate the cosmological parameters estimates from
independent observations of clusters. To fully define them, we
need to define the P(θ j|Oi), i.e., the probability of a single clus-
ter observations i to come from a cosmological model j (see
also Sect. 3.3.3). In principle, it can be estimated by Bayes
probability, as

P(θ j|Oi) = p(θi)
P(Oi|M j)
P(Oi|M)

, (A.5)

where M = M1
⋃

M2...
⋃

Mi...Mm is all your m models, or sim-
ulations. The prior here can be p(θi) = 1/m, which means a
flat distribution in the absence of observations. However, it is
difficult to find a smooth probability distribution function for
P(Oi|M j) or P(Oi|M) under small m and high-dimension output
simulation data.

ML technique provides a good way to find out the best fit
P(Oi|M j). This is possible by training a network with simulation
cluster pair (θ j|M jk), where M jk is one simulation cluster k from
a cosmological simulation j, and the training label are set to be
PML(θ j|M jk) = 1. If a series of simulations cover the real obser-
vations, ML can provide a good approximation of it via the best
likelihood (PML)

P(θ j|Oi) ≈ PML(θ j|Oi). (A.6)

Under the statistical viewpoint of ML, this approximation
does not have to be as accurate as possible (due to the cluster
degeneracy on different simulations with nearly the same param-
eters), as long as the accuracy is greater than the prior p(θi).
The larger the threshold, the more significant the cosmological
information carried out by the individual cluster. Of course, the
precision of the method increases as a function of the size of
the cluster catalog as Eq. (A.4) show. This means that we cannot
perform cosmology with one cluster.

Appendix B: Constraints for other cosmologies

As a continuation of the results presented in Sect. 4.3, we extend
our analysis to three additional cases, namely M5, M7, and M9,
to further demonstrate the parameter prediction power of our
ML method. Our results reveal that the parameter constraints
of M7 (Fig. B.2) are similar to that of M6 (Fig. 8). However,
M5 (Fig. B.1) and M9 (Fig. B.3) are located further away from
the center of the parameter space compared to M6 and M7,
resulting in a relatively poorer parameter prediction effect for
these cases.

Fig. B.1. Cosmological parameters of M5 inferred by the MLCCA. This
graph is the same type as Fig. 8. The true values of all cosmological
parameters are within the 1σ confidence interval.

Fig. B.2. Cosmological parameters of M7 inferred by the MLCCA. This
graph is the same type as Fig. 8. The true values of all cosmological
parameters are within the 1σ confidence interval.
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Fig. B.3. Cosmological parameters of M9 inferred by the MLCCA. This
graph is the same type as Fig. 8. The true values of all cosmological
parameters are within the 1σ confidence interval.

Appendix C: Combination with other methods:
Effect of training size and error propagation

In this section we visually compare the precision of the MLCCA
approach with other methods, to check the ability of the new
approach to compete with standard approaches and possibly help
solve some degeneracies among the cosmological parameters.
This check is not meant to be complete, as we use only the weak
lensing and CMB results shown in Fig. 1, but is meant to put
the results found in Sect. 4.3 in the context of the cosmolog-
ical parameter tensions. In Fig. C.1 we overlap the confidence
contours from weak lensing and CMB as from Fig. 1, which
allows us to compare how the degeneracies among the param-
eters work differently in the different methods. In particular,
the MLCCA contours are more symmetric around the true val-
ues and do not show the classical degeneracy between σ8 and
Ωm parameters found for the weak lensing. The size of the 1σ
and 2σ contours are larger than the ones produced by the CMB
constraints but compatible with the ones from weak lensing. In
principle, we can expect to reduce the size of the MLCCA con-
tours by: 1) increasing the training sample size; 2) assuming a
less conservative choice to propagate the errors on the param-
eters of the individual clusters. For the former, we have tested
the impact of the training sample selecting from Fig. 2 with
cluster counts larger than 20k, and repeated the training of the
MLCCA using 20k clusters and by still testing on the usual
700 over 20 random extractions, with no overlap with the train-
ing sample. We have, thus, excluded cosmologies M1 to M5
and chose to predict the cosmological parameter for the cat-
alog from the most central of the residual cosmology, which
was M9. We have then compared the contours with the one
obtained from the standard training made on the 7000 clus-
ter sample and shown in Fig. B.3 and found that the accuracy
of all cosmological parameters is, in fact, slightly improved.
We go from (0.351+0.047

−0.050, 0.836+0.046
−0.061, 0.714+0.014

−0.016, 0.0473+0.0016
−0.0018)

for Ωm, σ8, h0, Ωb for the 7k training case to the
(0.355+0.041

−0.043, 0.844+0.038
−0.046, 0.715+0.013

−0.014, 0.0474+0.0014
−0.0014) for the 20k

training sample, i.e., with an average 15 ± 5% improvement.

Fig. C.1. Cosmological parameters of M7 inferred by the MLCCA with
error propagation. This diagram is overlaid with cosmology constraints
as in Fig. 1, with modifications mainly to fit the coordinate range.

Fig. C.2. Cosmological parameters of M7 inferred by the MLCCA
without error propagation. This diagram is overlaid with cosmology
constraints as in Fig. 1, with modifications mainly to fit the coordinate
range.

This further motivates the use of larger volumes for future
applications. To test the impact of the error propagation, we
have designed a comparative experiment for M7 cosmology but
bypassed the step of error propagation (see Sect. 3.3.3). This is
shown in Fig. C.2, where we can clearly see that each contour
shrinks after canceling the conservative option we have made
for the error propagation.

We can finally conclude that the MLCCA has the advantage
of fully accounting for the degeneracies among the cosmological
parameters, i.e., providing relatively symmetric confidence con-
tours (especially in the presence of a uniform distribution of prior
cosmologies), and regardless of the choice of error propagation,
it provides comparable precisions on the parameters that can be
eventually improved using considerably larger training samples.
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