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Abstract
Squeezing is a crucial resource for quantum information processing and quantum sensing. In
levitated nanomechanics, squeezed states of motion can be generated via temporal control of the
trapping frequency of a massive particle. However, the amount of achievable squeezing typically
suffers from detrimental environmental effects. We propose a scheme for the generation of
significant levels of mechanical squeezing in the motional state of a levitated nanoparticle by
leveraging on the careful temporal control of the trapping potential. We analyse the performance of
such a scheme by fully accounting for the most relevant sources of noise, including measurement
backaction. The feasibility of our proposal, which is close to experimental state-of-the-art, makes it
a valuable tool for quantum state engineering.

Quantum sensing, which aims at achieving the efficient probing of the properties of a quantum system and
through quantum resources, is a task of key relevance in applications such as thermometry [1], environment
characterization [2–5], detection of gravitational waves [6], quantum illumination and quantum radars [7,
8] and being able to detect gravity-induced entanglement [9, 10]. To infer the information about the target
system, quantum sensing uses auxiliary probing systems that can be directly controlled and measured, such
that after the interaction the measurement results of the probing systems reflect the property of the target
system. By suitably engineering the initial state of the probing system, it is often possible to obtain a
significant sensing advantage [11–18]. Specifically, squeezed states of massive particles embody a key
ingredient in tackling many of the above quests [19–25], and the development of simple approaches to
generate such states becomes a pivotal step in the development of the field [26–30].

Levitated nanomechanics offers a promising route to generate highly squeezed states of massive particles.
In such a class of experiments, a nanoparticle is trapped within the waist of a focused laser beam, which
provides a quadratic potential. Such systems have attracted a lot of interest in recent years: as the particle is
levitated, interactions with the environmental phonons are suppressed, resulting in reduced damping and
thermalisation rates. Thus, the mechanical quality factor of the oscillator can reach values up to 1010 when
operating in a high-vacuum chamber [31, 32], allowing these systems to detect forces up to the attoNewton
scale [33]. This makes levitated mechanical systems an excellent platform for various quantum experiments,
ranging from gravitational experiments that require high accuracies [34–37], to possible future generation of
position superpositions with mesoscopic objects [38–42]. Squeezed states are a useful resource for all these
experiments, as reduced position uncertainty enhances the signal-to-noise ratio for the detection, while
states with increased position variance, i.e. large position superposition states, can be used in matter-wave
interferometry [31, 42]. While the generation of squeezed states of light is routinely performed [22, 43], that
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Figure 1. Uncertainty space for the state of a single oscillator. For both squashed and squeezed states, the variance of a quadrature
is smaller than that of its canonically conjugate. However, the smallest of the two variance of a squashed state is above the
corresponding value for the ground state of the oscillator. For a squeezed state, such lower bound does no longer hold (the
ultimate lower bound being set by the Heisenberg–Robertson uncertainty principle, shown by the thick red line in the figure).

for massive levitated particles has proved to be a challenging task, mostly due to the difficulty of preserving
their quantum properties.

For a refined study, here we distinguish squeezed states between ‘squashed’ and genuinely squeezed
states, as illustrated in figure 1. So far, only ‘squashed’ states, i.e. states whose smallest quadrature
uncertainty is larger than that of the ground state, have been achieved in levitation experiments [44, 45].
Such class of states is fundamentally distinct from that of genuinely squeezed ones, where the reduction of
uncertainty in one of the quadratures is below the zero-point fluctuation. Genuine quantum advantage only
stems from genuinely squeezed states, which makes the conditions necessary to generate a truly squeezed
state in a levitation experiment crucial for the purpose of demonstrating quantum advantages.

In this paper, we propose a protocol for the generation of highly squeezed motional states of a massive
levitated particle. Our scheme leverages the dynamical switching between two frequencies of a quantum
oscillator [46–48] that has been employed to experimentally generate squeezed states of atomic systems [49].
Time-modulation of trapping potentials was also used to generate high levels of squeezing between two
position-position coupled oscillators [50] and trapped ions [51]. We apply our protocol to the case of a
continuously monitored levitated nanoparticle exposed to collisional, thermal and photon-recoil noises. We
show that high levels of squeezing are achievable within a range of parameters compatible with current
state-of-the-art setups. We also demonstrate the role of continuous monitoring in achieving squashed states
and its apparent immateriality for the task of generating genuinely squeezed ones. Our analysis also allows to
establish the conditions that need to be achieved in order to quench the disrupting effects of the open
dynamics.

The remainder of the paper is structured as follows. In section 1 we introduce the protocol for dynamical
squeezing, including the implications of a continuous-measurement approach. The solution of the dynamics
is given in section 2, where we discuss the role that each of the experimental parameters has for the protocol
efficiency. Finally, in section 3 we discuss the experimental feasibility of our protocol and its potential
implementation in realistic experimental settings. Section 4 offers our concluding remarks and future
perspectives.

1. The squeezing protocol in open system dynamics

1.1. The squeezing protocol
The energy of the centre-of-mass motion of a nanoparticle trapped in a time-dependent quadratic optical
potential is

ĤS (t) =
p̂2

2m
+

1

2
mω2 (t) x̂2, (1)

where x̂ and p̂ are the position and momentum operators of the quantum harmonic oscillator (QHO),m is
its mass, and ω(t) the trap frequency. The squeezing protocol is performed by switching between two
frequencies, ω1 and ω2, each being kept constant for a time interval t1 and t2 respectively [46]. Assuming
ω1 < ω2, the control protocol reads

ω (t) =

{
ω1, 0+ nτ ⩽ t< t1 + nτ,

ω2, t1 + nτ ⩽ t< t1 + t2 + nτ,
(2)

2
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Figure 2. Illustration of the squeezing protocol and the proposed setting. Panel (a): Squeezing protocol via frequency jump
between ω1 and ω2 for a quantum harmonic oscillator (QHO). The time for a single squeezing cycle is τ = t1 + t2, while each ωj

is maintained for the time interval tj ( j = 1,2). The full process might require multiple cycles to obtain the desired degree of
squeezing. Panel (b): Illustration of the potential sources of noises to the system. The levitated particle interacts with spurious
optical modes, undergoes scattering from the residual gas in the vacuum chamber, and measurement backaction induced by the
continuous monitoring system. The corresponding mechanisms are formally described by the dissipators in equation (3).

with tj = π/2ωj ( j = 1,2), τ = t1 + t2 and n labelling the number of squeezing cycles. We assume the system
is initially prepared in the quadratic potential with ω(t) = ω2. The effect of the squeezing protocol is
illustrated in figure 2(a) and detailed in appendix A. In particular, the squeezing amplitude after N cycles is
approximately r= N ln(ω1/ω2)/2. Needless to say, such growth will not continue indefinitely, and the system
variance will eventually stabilise due to the decoherence processes that we now address.

1.2. Open dynamics under continuous measurement
In a levitated nanoparticle experiment, the system is optically trapped by a laser and placed in a cold vacuum
chamber. The levitated particle interacts with both the laser and the residual gas of the vacuum chamber,
resulting in an open system dynamics, which therefore impacts the performance of the squeezing protocol.
In particular, we consider the following dissipators (cf figure 2(b))

Dcl [ρ̂] =− iγ

2h̄
[x̂,{p̂, ρ̂}]− γmkBTcl

h̄2
[x̂, [x̂, ρ̂]]− γ

16mkBTcl
[p̂, [p̂, ρ̂]] , (3a)

Dth [ρ̂] =
iλ

4h̄
([p̂,{x̂, ρ̂}]− [x̂,{p̂, ρ̂}])− λ(2n+ 1)

4h̄mω

(
m2ω2 [x̂, [x̂, ρ̂]] + [p̂, [p̂, ρ̂]]

)
, (3b)

Dlc [ρ̂] =−Λ[x̂, [x̂, ρ̂]] , (3c)

where Dcl is the modified Caldeira–Leggett dissipator for the collisional noise that arises from the interaction
between the system and surrounding residual gas [52, 53],Dth is the thermalisation dissipator that arises from
the interaction between the system and the optical modes from the laser, and Dlc describes the decoherence
in position due to photon recoils. Here γ,λ,Λ> 0 are the respective coupling strengths,m is the mass of the
nanoparticle, Tcl is the temperature of the chamber, and n is the mean excitation number of the particle.

We assume that the position of the nanoparticle is continuously monitored. Experimentally, this can be
achieved through homodyne detection, i.e. the collection of back-scattered photons that produces the
photocurrent [54–57]

I(t)dt=
√
4ηΛ〈x̂〉dt+ dW. (4)

This quantity is proportional to the mean position of the system, shifted by the stochastic term dW. We
assume the latter to be a Gaussian random variable (corresponding to white noise), and model it as a Wiener
increment. The process of acquiring position information causes a backaction effect to the system that is
accounted for by the innovation term

√
2ηΛHx̂[ρ̂]dW, where Hx̂[ρ̂] = {x̂, ρ̂}− 2Tr [x̂ρ̂] ρ̂ describes the effect

of the continuous position measurement, and η is the measurement efficiency. By combining the conditional
dynamics with the dissipators as addressed above, the full stochastic master equation reads

dρ̂=− i

h̄

[
ĤS, ρ̂

]
dt+

∑
ν

Dν [ρ̂]dt+
√
2ηΛHx̂ [ρ̂]dW, (5)

where the label ν = cl, th, lc refers to the superoperators in equation (3).

3
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1.3. Description of the dynamics
The process described in equation (5) preserves the Gaussian nature of the input state throughout the time
evolution. The evolved state can thus be fully characterised by first and second moments of the quadratures x̂
and p̂ of the system. We define the mean vector r= (〈x̂〉,〈p̂〉)T and the covariance matrix (CM) σ such that
σrk,rj =

1
2

(
〈r̂kr̂j〉+ 〈r̂jr̂k〉

)
−〈r̂k〉〈r̂j〉. The dynamics of the first moments is stochastic, and depends on the

measured photocurrent I(t). However, such moments can be displaced to the origin of the phase space
through a linear feedback control, a strategy that will be implicitly assumed henceforth. On the other hand,
the CM of the conditional system satisfies the quantum Riccati equation [58]

σ̇ = Aσ+σAT +D−σBBTσ, (6)

where we have introduced the drift, diffusion, and backaction matrices

A=

(
−a1 1/m
−mω2 −a2

)
, D=

(
d1 0
0 d2

)
, B=

(
0 b
0 0

)
, (7)

with

a1 =
1

2
λ, a2 = a1 + γ, b=

√
8ηΛ

2n̄+ 1
, (8a)

d1 =
h̄2γ

8kBmTcl
+

h̄λ

2mω
(2n+ 1) , (8b)

d2 = 2γkBmTcl +
1

2
λh̄mω (2n+ 1)+ 2h̄2Λ. (8c)

In the drift matrix A, the off-diagonal terms characterise the QHO system in equation (1) given the mass
and the trap frequency, while the diagonal terms characterise the damping rates in the mean position and
momentum of the system. Characterising the drifting matrix A, we find the time periods in equation (2)

need to be modified for the open system dynamics, such that tj = π/2Ωj with Ωj =
√
ω2
j − (a1 − a2)2/4. The

diagonal terms of the diffusion matrix D are determined by the dissipation defined in equation (3). The
continuous measurement leads to an additional term in the dynamics that is characterised by the matrix B,
which contains the efficiency η of the continuous measurement. For η= 0, equation (6) reduces to the
quantum Lyapunov equation. The connection between the master equation and the Gaussian formalism is
discussed in appendix B.

2. Features of the asymptotic state to the protocol

Before investigating the performance of the squeezing protocol in a realistic experimental setting, we first
study the asymptotic state of the squeezing protocol, whose dynamics are governed by equation (6) for the
cases with and without continuous measurement, respectively. In particular, we denote the position

variances for the asymptotic CM without the squeezing protocol σL(R)
∞ as σL(R)

xx , that with the squeezing

protocol σL(R),sq
∞ as σL(R),sq

xx . The superscript L(R) stands for the case without (with) continuous
measurement, described by a Lyapunov (Riccati) equation for the CM.

2.1. Asymptotic state without continuous measurement
Given the initial system CM σ0, the evolved system CM σL

t for η= 0 is the solution of the quantum
Lyapunov equation resulting from setting B= 0 in equation (6). This can be cast as

σL
t = etA (σ0 −X)etA

T

+X, (9a)

where the characteristic matrix X is the solution to the homogeneous equation

AX+XAT +D= 0. (9b)

For a time-independent problem with constant drift and diffusion matrices A and D, we have the
asymptotic solution

σL
t→∞ = X. (10)

Under the action of the squeezing protocol in equation (2), we are led to the time-evolved CM after n
squeezing loops

σ
L,sq
t=nτ =

(
SL2 ◦ SL1 (σ0)

)n
, (11)

4
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with SLj (σ) = etjAj(σ−Xj)e
tjA

T
j +Xj ( j = 1,2) describing the squeezing operation when the trap frequency is

set to ωj, matrices Aj and X j the drift and characteristic matrices in equations (7) and (9b), and ◦ standing for
the composition of operations. Based on equation (11), the dynamics switches depending on the trap
frequency, and corresponding asymptotic state with the squeezing protocol σL,sq

∞ can be computed
numerically.

2.2. Asymptotic state with continuous measurement
The case with continuous measurement is studied in a similar manner as that without it. Given the initial
system variance σ0, the evolved system variance σR

t following the quantum Riccati equation in equation (6)
can be solved analytically. The solution σR

t can be obtained via [59]

δt −X 2 = e−tAT

(δ0 −X 2)e
−tA, (12)

where we define δt = (σR
t −X 1)

−1,A= A−X 1BB
T. The characteristic matricesX 1 andX 2 satisfy the

conditions

AX 1 +X 1A
T +D−X 1BB

TX 1 = 0,

ATX 2 +X 2A−BBT = 0.
(13)

The derivation of such solution is shown in appendix C. For a time-independent QHO system with fixed
matrices A, D and B, the system variance govern by equation (12) converges at t→∞, such that

σR
t→∞ =X 1 +X−1

2 . (14)

When the squeezing protocol is performed, the dynamics of the system variance is characterised by an
expression similar to equation (11), namely

σ
R,sq
t=nτ =

(
SR2 ◦ SR1 (σ0)

)n
, (15)

where the squeezing process SRi is given by equation (12) for the respective frequency ωi. The corresponding
asymptotic state (which we compute numerically) is denoted as σR,sq

∞ .

2.3. Features of the asymptotic states
The squeezing process described by equation (11) may cause an unstable asymptotic state due to the
expansion of one quadrature during the squeezing of the other quadrature. This issue can be circumvented
by applying continuous measurement along with the squeezing protocol as the dynamics described by
equation (15). Indeed, suppose the variance of a system’s quadrature σn follows the relation σn+1 = esrσn +χ
at nth squeezing cycle, where sr is the squeezing parameter and χ> 0 is the amount of diffusion over one
squeezing cycle. The quadrature variance σ∞ approaches to a steady point χ/(1− esr) if sr< 0 and to the
infinity if sr⩾ 0. Experimentally, the infinity variance means that the system can become unstable after a
number of squeezing cycles, when one quadrature of the system expands too much to be well contained by
the trap.

We demonstrate this issue with the system’s momentum variance, when the system is squeezed in its
position. Without applying the continuous measurement, equation (11) gives the squeezing parameters for
each term in the CM, where for the momentum spread one has

srpp ≈−π (a1 + a2)(Ω1 +Ω2)

2Ω1Ω2
+ ln

(
Ω2
2

Ω2
1

+O(∆a)

)
, (16)

with∆a= a2 − a1 > 0 and Ωi =
√
ω2
i − (a1 − a2)2/4. The full expressions for all squeezing parameters are

given in appendix D. Given the definition ω1 < ω2 (hence Ω1 < Ω2), and the small damping regime∆a→ 0,
we notice it is possible to have srpp > 0 when the damping rate a1 is small, while the other two parameters srxx
and srxp remain negative for any setting of Ω1,2 and a1,2, as illustrated by figure 3(a). This leads to the
explosion of the system momentum variance (whose asymptotic value goes to infinity) in the regime of high
quality factors Q∼ ω2/a1. This issue can be circumvented when the continuous measurement is applied to
the system, as shown by the open and filled diamonds in figure 3(b), representing the cases without and with
continuous measurement (b= 2), respectively. Therefore, we conclude that continuous measurement is
crucial for applying the squeezing protocol in the high-quality regime, since it guarantees that the system
under the squeezing protocol will always reach a stable state with a finite position and momentum variances.

5
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Figure 3. Analysis of the asymptotic states. Panel (a) shows the squeezing parameters given by equation (16) against the damping
rate a1. Here we set 2ω1 = ω2 = 3π/2,m= a2 = 1 and d1 = d2 = 2, from which we compute a1 ≈ 0.39. Panel (b) shows the
asymptotic momentum variance without continuous measurement (open diamonds, computed from equation (11)) and with
continuous measurement (filled diamonds, b= 2, computed from equation (15)).

2.4. Features of the squeezing protocol
Here we explain our squeezing protocol using a toy model. To keep the outcomes meaningful, we examine
the state of the system at any time with the conditions [60, 61]

σ ⩾ 0, σ+ iΩ⩾ 0, and
(
2
√
Det [σ]

)−1
∈ [0,1] . (17)

The first corresponds to the positivity of the state, the second is the verification of the Heisenberg-Robertson
uncertainty principle, while the last measures the purity of the state of the system, where the symplectic
matrix readsΩ=

(
0 1
−1 0

)
. We take dimensionless units h̄=m= 1 with setting 1: a1,2 = 0.5, d1,2 = 1;

setting 2: a1,2 = d1,2 = 0.3, and choose b= bmax (the maximum value allowed by equation (17)) for the
matrices A, D and B given by equation (8). We take two oscillating frequencies to be 2ω1 = ω2 = 3π/2 and
show all the results in figure 4.

In the preparation stage, we assume the system is not continuously measured. The system is initially
stabilised at a fixed trap frequency ω (i.e. the frequency appearing in equation (1)), whose position variance
Xω
xx is shown by figure 4(a). In our toy model, the state of the system is initially stabilised at frequency ω2

with the initial position variance X1,2 for settings 1,2 (blue dots) and the corresponding ground state
position variance σg

xx = h̄/(2mω2) = 1/3π (dot-dashed black line). Clearly, the position variance for the
stabilised state X1 (X2) is far above that of the ground state σ

g
xx.

The performance of the squeezing protocol addressed in this paper is demonstrated in figures 4(b) and
(c), where we oscillate between the trap frequencies ω1 and ω2 and the time for one squeezing loop
t1 + t2 = 1. Starting from an arbitrary state, the system is initially stabilised (no measurement) at the fixed
frequency ω2 with the position variance X1 (X2) at t< 0. Then, we perform the squeezing protocol starting at
t= 0, with and without the continuous measurement. Here, the continuous gray line represents the case
without continuous measurement, and the gray dashed line represents the case with continuous
measurement (b= bmax allowed by equation (17)). The minimal position variance without continuous
measurement is labelled by σL,sq

xx , that with continuous measurement is labelled by σR,sq
xx , and the

ground-state variance is given by σg
xx. In setting 1 (bmax = 1.9, figure 4(b)), we only achieve quantum

squashing for both cases, i.e. σg
xx < σ

R,sq
xx < σ

L,sq
xx , due to large damping and diffusion terms a1,2 and d1,2. In

setting 2 (bmax = 0.7, figure 4(c)) we see that quantum squeezing can be achieved in both cases. We can
observe the effects of the continuous measurement here. Other than the improvement to the squashing

6
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Figure 4. Investigation on the position variances for the asymptotic states and the capability of the squeezing protocol given
different experimental settings. Panel (a) shows the asymptotic position variance before the squeezing protocol Xω

xx in
equation (10) against the trap frequency ω in equation (1). Here the ground state variance at frequency ω2 is σ

g
xx = 1/3π.

Panels (b) and (c) demonstrate the dynamics of the system position variance when the squeezing protocol is performed. Here the
system starts from an arbitrary state and equilibrates to X1 (X2) at the time t= 0. Then, the squeezing protocols without
continuous measurement (solid gray line) and with continuous measurement (dashed gray line, b= bmax) are applied, where

σ
L,sq
xx and σ

R,sq
xx are the corresponding minimum position variances. Here, we say that the system is squashed if

σ
g
xx < σ

L(R),sq
xx < X1 (X2) (shaded blue region), and that it is squeezed if σ

L(R),sq
xx < σ

g
xx (shaded red region). Panel (d) shows the

ratio between the variances for the squeezed asymptotic state and the ground state, i.e. σ
L(R),sq
xx /σ

g
xx, given different values of a, d

with the gray region forbidden by equation (17). Here the blue region indicates the settings that only achieve squashing, while the

red region those that achieve squeezing. The borders between two regions (i.e. when σ
L(R),sq
xx = σ

g
xx) are indicated by the black

dotted line (in the case without measurement, b= 0) and gray dashed lines (in the case with measurement with b= bmax).

σ
R,sq
xx < σ

L,sq
xx , we find the overall amplitude of the oscillation of the system is reduced when continuous

measurement is performed. This is due to the noise reduction from the continuous measurement, which is
characterised by a larger purity in the case under continuous measurement. This could be advantageous as it
suggests that in this case the system remains localised in a smaller region.

Stringent conditions are required to achieve a truly quantum squeezing, and such conditions for our toy
model is shown in figure 4(c). Here the colour represents the ratio between the position variances for the
asymptotic state without continuous measurement and the ground state, i.e. σL,sq

xx /σ
g
xx, under different

settings (we take a1 = a2 = a and d1 = d2 = d constrained by equation (17)). For the values of the
parameters in the blue region, the protocol can only squash the system. Conversely, for those in the red
region, the protocol can squeeze the system below the ground state variance. The border between the blue
and red regions is indicated by the black dotted line, on which one has σL,sq

xx = σ
g
xx. The continuous

measurement can slightly improve the squeezing, as indicated by the border of σR,sq
xx = σ

g
xx (dashed gray lines,

bmax = 1.9) moving towards the blue region.

3. Testing in experimental settings

To infer the capability of our squeezing protocol in a real experiment, we substitute the parameters in
equation (7) with those that can be found in recent experiments [44, 45, 56, 62–65]. As a reference, we
consider the following setting. Suppose a silica nanoparticle of radius R= 50 nm and mass 1 fg (ρ=
2200kg m−3) is levitated in an optical trap, which can oscillate between two frequencies ω1/2π = 50 kHz
and ω2/2π = 100 kHz. The experiment can be performed in a cryostat and ultra-high-vacuum environment,
such that the environment temperature Tcl = 50K, and the quality factor Q= ω/γ can be as high as 1010

[65]. Thus, the damping rates (from the collisional and thermal noises) are weak and they can be estimated
by γ ∼ λ∼ 103(P/mbar)Hz, where we assume that the chamber pressure can go as low as P⩾ 10−10mbar
[65]. The photon-recoil rate can be estimated by the equation [66–68]

Λ =
7πε0
30h̄

(
ϵcVEt
2π

)2

k50, (18)

where ε0 is the vacuum permittivity, ϵc = 3(ε− 1)/(ε+ 2) is written in terms of the relative dielectric
constant ε of the nanoparticle, whose volume is V, k0 = ω0/c with c the speed of light and ω0 = 2π c/λ the
laser beam frequency. Following the analysis in appendix E, we estimate Λ∼ 1026m−2Hz [68–70]. We take
the mean occupation number of the particle at temperature 50K to be n= 107. However, the occupation
number can be further reduced to∼ 0.5 with specific cooling techniques [71], which further reduce the effect
of the thermal noise. We estimate that the efficiency of the measurement is no more than 30% [72], and
summarise these values in table 1.

We first investigate the contributions of the noises given the setting discussed above. In particular, we
scrutinize d2 in equation (7) and compare the order of magnitudes for each terms. We find the following
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Table 1. Collection of the experimental parameters and their values for the discussion in section 3. The connection of the parameter to
the respective environmental noise is illustrated in figure 2(b).

m ω/2π γ λ Λ Tcl

(fg) (kHz) (Hz) (Hz) (m−2Hz) (K) n η

1 50− 100 ⩾ 10−7 1023 − 1026 50 107 ⩽ 0.3

Figure 5. Contributions of the noises and the squeezing ratio. Panel (a) shows the quality factor Q= ω/γ(λ) dependence of the
noise contributions from equation (19), which rise from the collisional noise (dγ2 ), the thermal noise (dλ2 ) and the photon-recoil

noise (dΛ2 ). Panel (b) shows the logarithmic relation of the squeezing ratio ζsq =
√

σ
sq
xx(τ)/σ

g
xx against the quality factor Q. The

blue (red dashed) line represents the cases for Λ = 1026 (1023)m−2Hz with η= 0, and the square (triangle) represents the

corresponding case with η= 0.3. Panel (c) shows the amount of squeezing 10 log10(ζsq) = 10 log10(
√

σ
sq
xx(τ)/σ

g
xx) in decibel

against the photon-recoil noise rate Λ for different quality factors Q.

values (in unit m2kg2Hz3)

dγ2 = 2γkBmTcl ∼ 10−45, (19a)

dλ2 = nλh̄mω ∼ 10−46, (19b)

dΛ2 = 2h̄2Λ∼ 10−42, (19c)

where we have taken γ = λ= 10−6Hz, Λ = 1026m−2Hz, and n= 107. This suggests that the strength of
collisional and thermal noises are comparable at Tcl = 50K, and they can be smaller than the photon-recoil
noise for large enough qualify factor Q. Indeed, collisional, thermal and photon-recoil noises are comparable
when Q∼ 108, as shown by figure 5(a). On the other hand, if the photon-recoil rate is reduced by 3 orders,
i.e. Λ∼ 1023m−2Hz, collisional and photon-recoil noises are comparable when Q∼ 1011.

We then consider the following squeezing experiment (cf figure 4(b)). The levitated particle firstly
equilibrates at trap frequency ω2, such that the centre of motion of the particle is a QHO system in the

8
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asymptotic state given by equation (10). Then, the squeezing protocol is applied to the system at t= 0, and
we measure its position variance at the end of the protocol when t= τ . We denote the position variance of
the system at time t to be σsq

xx(t), and take the position variance of the ground state σg
xx at frequency ω2 as the

reference. In the best scenario (corresponding to γ = λ= 10−6Hz, Λ = 1023m−2Hz, n= 107), we have for
the initial system

σsq
xx (0) = Xω2

xx ≈ 3.1× 103nm2, (20a)

σg
xx =

h̄

2mω2
≈ 8.4× 10−5nm2. (20b)

Hence, the system has an initial position spread being a factor ζsq(0) =
√

σ
sq
xx(0)/σ

g
xx ∼ 104 larger than

the ground state. In the worst scenario (Λ = 1026m−2Hz), such a factor becomes ζ ′
sq(0)∼ 105. After applying

the squeezing protocol, the degree of squeezing in a realistic experimental settings is demonstrated by the
ratio ζsq =

√
σ
sq
xx(τ)/σ

g
xx in figure 5(b), where a value of ζsq < 1 means the position variance of the system is

squeezed below that of the ground state. We consider two cases for the photon-recoil rate, i.e. Λ = 1026 and
1023m−2Hz, without continuous measurement (η= 0). For small quality factors Q, we see that the ratio ζsq
coincides in both cases (blue continuous and red dashed lines), since here the dynamics is dominated by the
collisional and thermal noises. Conversely, we see a plateau (at Q> 108 for Λ = 1026m−2Hz, and at Q> 1011

for Λ = 1023m−2Hz) when the photon recoils becomes the dominant noise contribution (cf figure 5(a)). In
both cases, the squeezing ratio ζsq at high quality factor is below 1, indicating that one can achieve genuine
squeezing in a levitation experiment at ultrahigh vacuum. Based on our model, we have ζsq ≈ 0.58 at
Q= 1012 for Λ = 1026m−2Hz and ζsq ≈ 0.02 at Q= 1012 for Λ = 1023m−2Hz.

Squares and triangles in figure 5(b) represent the cases taking the continuous measurement with η= 0.3,
which only provide a small improvement to the squeezing (e.g. ζη=0.3

sq ≈ 0.57 at Q= 1012 for
Λ = 1026m−2Hz), which cannot be seen using the logarithmic scale. Indeed, the effect of the continuous
measurement becomes prominent only when the photon-recoil noise is large (Λ = 1026m−2Hz) and the
qualify factor is low (Q< 108), thus enhancing the squashing effect. If the photon-recoil noise can be
reduced (e.g. when Λ = 1023m−2Hz), the continuous measurement would not produce any improvement
in the squeezing even for the low qualify factor (cf red line and triangles in the figure). Indeed, the
continuous measurement effect described by equation (5) is proportional to the photon-recoil noise Λ.

The achievable values for the state-of-art optical levitation experiment are Q∼ 1010 and
Λ∼ 1026m−2Hz. Figure 5(c) shows the relation between the degree of squeezing and the photon-recoil noise
around this region. We measure the squeezing in decibel (dB) by 10 log10(ζsq), such that squeezing below the
ground-state variance gives negative values. We see that squeezing is only possible when Q⩾ 108, and the
maximal achievable squeezing is approximately−2.5 dB. We can see that, at the current noise level
(Λ∼ 1026m−2Hz), improving the quality factor Q from 109 to 1010 only slightly improves the amount of
squeezing. Therefore, it is more prominent to reduce the photon-recoil noise level in order to acquire more
below-the-ground-state squeezing (e.g. 10 log10(ζsq)≈−7.35 dB at Λ∼ 1025m−2Hz and Q∼ 1010).

4. Conclusions

We have proposed a squeezing protocol (via frequency jumps) applied to a levitated nanoparticle subjected
to continuous monitoring of its position. The dynamics of the system is influenced by the collisional,
thermal, and photon-recoil noises, and influenced by the stochastic noise caused by the continuous
measurement. We have estimated the potential for achieving large squeezing of the considered massive
quantum system, considering parameters from recent experiments. We have found that while the
photon-recoil noise plays a dominant role, in the high quality-factor regime, the position spread of the
system can still be squeezed below the ground state variance. The backaction from continuous measurement
does not help squeezing performances. Our study addresses the engineering of genuine quantum resources
for sensing and metrology in levitated optomechanics, while also providing a route to the achievement of
states that will be crucial for investigations on the foundations of quantum mechanics. The method
illustrated here will benefit of the combination with control methods based on the modulation of the
environmental properties as proposed in [73]. Another possible direction of exploration goes along the line
of embedding the oscillator in a continuously monitored optical cavity, as in [74]. The closeness of our
assessment to experimental reality paves the way to a ready implementation of the scheme.
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Appendix A. The squeezing protocol

Squeezing of the motion of a harmonic oscillator through the dynamical switching of frequency has been
proposed in [46–48], and has been employed to experimentally generate squeezing in atomic systems [49].
This operation is based on the Bogoliubov transformation which describes the effect of switching the
frequency of the oscillator. Given the Hamiltonian in equation (1), we call {â, â†} ({b̂, b̂†}) the ladder
operators corresponding to frequency ω1 (ω2). They satisfy the relations

b̂= µâ+ νâ†, b̂† = µâ† + νâ, (A1)

where µ= cosh(r) = (ω1 +ω2)/2
√
ω1ω2, ν = sinh(r) = (ω1 −ω2)/2

√
ω1ω2 and r= 1

2 ln(ω2/ω1). The

Bogoliubov transformation is linked to the squeezing operation such that b̂= Ŝ†(r)âŜ(r) with

Ŝ(r) = exp

[
1

2

(
râ2 − râ†2

)]
. (A2)

Therefore, switching the frequency of the oscillator leads to a squeezing operation on the system.
To achieve squeezing in the position of the system, a squeezing protocol is defined by equation (2) in the

main text, which gives the equations for the expectation values of the quadrature operators x̂ and p̂ as

d

dt
〈x̂〉= 〈p̂〉

m
, (A3a)

d

dt
〈p̂〉=−mω2〈x̂〉. (A3b)

Indeed, in each time period tj, the dynamics of the quadratures in equation (A3) can be solved
analytically with ω = ωj. By defining the initial mean position and momentum of the system as x0 = 〈x̂(0)〉
and p0 = 〈p̂(0)〉, the evolution results in the transformation (x0,p0)T 7→Mj(t)(x0,p0)T with

Mj (t) =

(
cos
(
ωjt
)

sin
(
ωjt
)
/mωj

−mωj sin
(
ωjt
)

cos
(
ωjt
) )

. (A4)

This transformation leads to the combined action of rotation and squeezing of the system. In particular, the
protocol defined in equation (2) acts on the system in the following way (cf figure 2 where the protocol is
illustrated): when ω = ω1, the system is squeezed along the x̂ quadrature. When ω = ω2, the system is
squeezed along the p̂ quadrature. However, after the first part of squeezing t⩾ t1 = π/2ω1, the quadratures
of the system swap due to the rotation of the system, x̂↔ p̂. Therefore, the second part of the protocol acts
on the same quadrature as the first part does. After time τ , this gives the transformation of the average values
of the quadratures xτ = 〈x̂(τ)〉 and pτ = 〈p̂(τ)〉 as

(xτ ,pτ )
T
=M2 (t2) ◦M1 (t1) (x0,p0)

T

=−
(
erx0,e

−rp0
)
,

(A5)

where we have defined er ≡ ω1/ω2, and the squeezing parameter r= lnω1/ω2. Equation (A5) results in
squeezing of the position quadrature, so that the variance σxx(0) = 〈x̂2(0)〉 transforms to

σxx (τ) = e2rσxx (0) , (A6)

where we set 〈x̂(0)〉= 0. Thus, a total degree of squeezing e2r is achieved after a time τ = π/2ω1 +π/2ω2.
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Appendix B. Connection between the matrix and the Gaussian formalism

The Gaussian process described by equation (5) can be fully characterised by the first and second moments

of the quadratures by taking d〈Ô〉= Tr
[
Ôdρ̂

]
and using the invariance of trace under cyclic permutation of

its arguments [75]. Given the definitions r̂= {x̂, p̂} and σrk,rj =
1
2

(
〈r̂kr̂j〉+ 〈r̂jr̂k〉

)
−〈r̂k〉〈r̂j〉, we can write

the equation for the system variances as

σ̇x,x =
2

m
σx,p −λσx,x +

γh̄2

8kBmTcl
+

λh̄

2mω
(2n+ 1)− 8ηΛσ2

x,x, (B1a)

σ̇p,p =−2mω2σx,p +(2γ−λ)σp,p + 2γkBmTcl +
1

2
λh̄mω (2n+ 1)+ 2Λh̄2 − 8ηΛσ2

x,p, (B1b)

σ̇x,p =
1

m
σp,p −mω2σx,x − (λ− γ)σx,p −

ih̄

2
(λ+ γ)− 8ηΛσx,xσx,p. (B1c)

The original Riccati equation (6) reads [58]

σ̇ = Ãσ+σÃ
T
+ D̃−σBBTσ, (B2a)

where

Ã= B−ΩCσB
1

σB +σM
ΩCT, (B2b)

D̃= D+ΩCσB
1

σB +σM
σBC

TΩ, (B2c)

B= CΩ

√
1

σB +σM
, (B2d)

Ω=

(
0 1
−1 0

)
, C= 2

√
Λ

(
1 0
0 0

)
, (B2e)

with A being the drift matrix, D the diffusion matrix,Ω the symplectic matrix, C the coupling matrix
between the system and the light mode, σB and σM the CMs for the light mode and the measurement,
respectively. When the continuous measurement is considered, and assuming no thermal photon, the CM for
the light mode is

σB =

(
n̄+

1

2

)
12, (B3)

where 12 is the identity matrix. For a perfectly efficient measurement (η= 1), the CM for the Gaussian
measurement reads

σM =

(
s 0
0 1/s

)
σB. (B4)

Here, the factor s ∈ (0,∞) characterises the type of the general-dyne detection: the choice s= 1 (s→∞) is
for a heterodyne (detection and gives the (homodyne) measurement. For an inefficient Gaussian
measurement (η ∈]0,1[), the resulting CM is that of a mixture [58, 76]

σ∗
M =

1

η
σM +

1− η

η
σB. (B5)

Considering the homodyne detection, and taking σ∗
M instead of σM in equation (6), one has

Ã= A, D̃= D, B=

(
0 b
0 0

)
(B6)

with b=
√
8ηΛ/(2n̄+ 1). By comparing equation (6), (B1) and (B6), one can get the values for

a1,a2,d1,d2,b in equation (7) that link equation (6) to the stochastic master equation (5) in the main text.
This reduces to the Lyapunov equation in equation (6) for η= 0.

Appendix C. Investigation on the squeezing protocol in open dynamics

Here we derive the solution of equation (6) following the method in [59, 77].
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C.1. Quantum Lyapunov equation
For η= 0, equation (6) can be transformed to a first-order linear differential equation

d

dt

(
Nt

Ψt

)
=H

(
Nt

Ψt

)
,withH=

(
−AT 0
D A

)
, (C1)

where we introduce

Ψt = σtNt, and Ṅt =−ATNt, (C2)

and let N0 to be the identity matrix 1. The linear different equation given by equation (C1) can be solved by
making the matrixH diagonal. Consider the similarity transformation

T=

(
1 0
X 1

)
, (C3)

such that TT−1 = T−1T= 1, and define X as the solution to the equation

AX+XAT +D= 0. (C4)

Apply the transformation onH, such that

H̃≡ T−1HT=

(
−AT 0
0 A

)
. (C5)

where the transformed matrixH becomes diagonal. Correspondingly, equation (C1) is transformed to

d

dt

(
Ñt

Ψ̃t

)
= H̃

(
Ñt

Ψ̃t

)
, (C6)

with the transformed vector defined as(
Ñt

Ψ̃t

)
≡ T−1

(
Nt

Ψt

)
=

(
Nt

Ψt −XNt

)
. (C7)

The transformed differential equation has the solution(
Ñt

Ψ̃t

)
= etH̃

(
Ñ0

Ψ̃0

)
, (C8)

which in details reads

Nt = Ñt = e−tAT

Ñ0 = e−tAT

X0 = e−tAT

,

Ψt −XNt = Ψ̃t = etAΨ̃0 = etA (σ0 −X) .
(C9)

By applying equations (C2)–(C9), one can get the solution to the CM for the system σt as in equation (9) for
the quantum Lyapunov equation. If the squeezing protocol is not performed, i.e. a time-independent QHO
with constant drifting and diffusion matrices A and D, the asymptotic state for equation (9) can be easily
shown to be the characteristic matrix X given by equation (C4), such that σt→∞ = X.

One can attempt to find the asymptotic state of the squeezing dynamics described by equation (11). By
introducing∆X= X1 −X2 and α satisfying

α− et2A2et1A1αet1A
T
1 et2A

T
2 =∆X− et2A2∆Xet2A

T
2 , (C10)

the CM for one round of squeezing, i.e. at time τ = t1 + t2, results from

στ −X1 +α= et2A2et1A1 (σ0 −X1 +α)et1A
T
1 et2A

T
2 , (C11)

and the asymptotic state is given by σsq
t→∞ = X1 −α.
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C.2. Quantum Riccati equation
A similar transformation can be done introducing

Ψt = σtNt, and Ṅt =−ATNt +BBTσtNt, (C12)

such that one has

d

dt

(
Nt

Ψt

)
=H

(
Nt

Ψt

)
,withH=

(
−AT BBT

D A

)
, (C13)

and N0 is given by the identity matrix. Introduce two similarity transformations,

T1 =

(
1 0
X 1 1

)
, T2 =

(
1 X 2

0 1

)
, (C14)

and lettingX 1 andX 2 be the solutions to the equations

AX 1 +X 1A
T +D−X 1BB

TX 1 = 0, (C15a)

ATX 2 +X 2A−BBT = 0, (C15b)

the characterisation matrix is diagonalised such that

H ′ ′ = T−1
2 T−1

1 HT1T2 =

(
−AT 0
0 A

)
, (C16)

where we defineA= A−X 1BB
T. Define the transformed vector(

N ′ ′
t

Ψ ′ ′
t

)
≡ T−1

2 T−1
1

(
Nt

Ψt

)
(C17)

=

(
Nt +X 2X 1Nt −X 2Ψt

Ψt −X 1Nt

)
, (C18)

The differential equation in equation (C13) can be solved as(
N ′ ′

t

Ψ ′ ′
t

)
= etH

′ ′
(
N ′ ′

0

Ψ ′ ′
0

)
, (C19)

and the solution on the CM for the system is then given by

(σt −X 1)ξ
−1
t = etA (σ0 −X 1)ξ

−1
0 etA

T

, (C20)

where we take ξt = 1−X 2(σt −X 1). Take the inverse of equation (C20) and define δt = (σt −X 1)
−1, the

solution gives equation (12) in the main text.
The asymptotic state of equation (12) without the squeezing protocol reads σt→∞ = X1 +X−1

2 . The
asymptotic state with the squeezing protocol is however difficult to attain, therefore we take the numerical
solution instead.

Appendix D. The squeezing protocol

Suppose the quadrature variance follows the relation σn+1 = esrσn +χ after one squeezing process, which
can be recast into the form

σn+1 −
χ

1− esr
= esr

(
σn −

χ

1− esr

)
. (D1)

One can see that, for a finite χ> 0, this dynamics leads the variance to a steady positive value σ∞ → χ
1−esr

when sr< 0, or to the infinity σ∞ →∞ when sr> 0. The squeezing parameters in our protocol can be
acquired by setting the diffusion to be zero in equation (11) (d1,2 → 0 leads to χ→ 0 while leaving esr

unchanged), which read

srxx = f + ln
(
Ω2
1/Ω

2
2

)
, (D2)
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Table 2. Collection of the experimental parameters and their values for the computation of the photon-recoil rate.

Pars (unit) Values Pars (unit) Values

R (nm) 50 λ (nm) 1550
Pt (W) 0.50 Wt (nm) 1000
ε0 (F nm

−1) 8.9× 10−21 ϵ 2
Ax 1 Ay 0.9

srpp = f + ln

(
Ω2
2

Ω2
1

+∆a
m
(
Ω2
2 −Ω2

1

)
Ω2
1

σxp,n

σpp,n
+ ∆a2

m2
(
Ω2
2 −Ω2

1

)2
4Ω2

1Ω
2
2

σxx,n

σpp,n

)
, (D3)

srxp = f + ln

(
1+∆a

m
(
Ω2
2 −Ω2

1

)
2Ω2

2

σxx,n

σxp,n

)
, (D4)

where f = π(a1 + a2)(Ω1 +Ω2)/(2Ω1Ω2) and∆a= a2 − a1. In the limit of∆a→ 0, this gives equation (16).

Appendix E. Range of coefficients

The dissipation due to gas is described by equation (3a) where T is the temperature of the chamber and γ is
the viscous friction that can be calculated from kinetic gas theory [53, 78]:

γ =
64

3

R2P

mvgas
∼ 103

(
Pmbar−1

)
Hz. (E1)

with the mean gas velocity vgas =
√
8kbTcl/(πmgas), andmgas ≈ 10−24 kg is the average of the gas molecules.

R is the radius of the nanoparticle and P is the pressure in the vacuum chamber. Our estimation has been
achieved in the latest experiment [65]. The thermal dissipation due to energy exchange with the laser is
described by equation (3b), where the coupling rate is estimated by λ∼ γ as they contribute equally to the
damping rate in momentum, i.e. a2 ≈ λ+ γ. We set n= (exp(h̄ω/kbT)− 1))−1 ∼ 107 as the mean
occupation of the nanoparticle at ω/2π = 100 kHz and T= 50K. This gives the estimation of the
thermalisation rate such that

λn∼ 108
(
Pmbar−1

)
Hz. (E2)

The position detection due to the measurements of the photons scattered back from the nanoparticle is
described by equation (3c), where the coupling strengths reads [66–68]

Λ =
7πε0
30h̄

(
ϵcVEt
2π

)2

k50 ∼ 7× 1025
(
m−2Hz

)
, (E3)

where ε0 is the vacuum permittivity, ϵc = 3(ε− 1)/(ε+ 2), and ϵ is the relative dielectric constant of the
nanoparticle. V is the volume of the nanoparticle, k0 = ω0/c with c being the speed of light and ω0 = 2π c/λ

the laser beam frequency. We take Et =
√
4Pt/πε0cW2

tAxAy where Pt is the tweezer power,Wt is the tweezer

waist, Ax and Ay are the asymmetry factor [68]. Taking the values in table 2, we give the estimation of the rate
for the photon recoils to be Λ∼ 1026m−2Hz. Reducing the photon-recoil rate by 3 orders seems to be
possible in a future experiment, by reducing the tweezer power to 30mW [79], the particle radius to 40nm
and the tweezer waist to 2µm (or just the particle radius to 35 nm). Based on these estimation we provide
our discussion below equation (18).
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