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Manipulating quantum systems undergoing non-Gaussian dynamics in a fast and accurate manner is becoming
fundamental to many quantum applications. Here, we focus on classical and quantum protocols transferring a
state across a double-well potential. The classical protocols are achieved by deforming the potential, while the
quantum ones are assisted by a counterdiabatic driving. We show that quantum protocols perform more quickly
and accurately. Finally, we design a figure of merit for the performance of the transfer protocols—namely, the
protocol grading—that depends only on fundamental physical quantities, and which accounts for the quantum
speed limit, the fidelity, and the thermodynamics of the process. We test the protocol grading with classical and
quantum protocols, and show that quantum protocols have higher protocol grading than the classical ones.
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I. INTRODUCTION

Advances in the manipulation of Gaussian states and
dynamics [1–5] have enabled experimental achievement in
quantum sensing [6,7], communication, and computation
[8–10]. However, a framework based only on Gaussian states
is inadequate for universal quantum computation [11,12], for
instance, with the availability of suitable non-Gaussian re-
sources being a necessary ingredient to unlock the potential of
continuous-variable quantum information processing [13–17].
Recent improvements have demonstrated the viability of
generation and manipulation of non-Gaussian systems in plat-
forms such as nonlinear optics, ultracold atoms [18], (opto-
and electro)mechanical systems [19,20], and superconducting
systems [21]. A simple, nearly platform-agnostic paradigm
for the engineering of non-Gaussian states is embodied by the
double-well potential [22,23], whose richness and effective-
ness have been proven key in applications of quantum infor-
mation processing and quantum thermodynamics [24,25].

Quantum control can be successfully deployed in the quest
for the generation [26–28] and manipulation [29,30] of non-
Gaussian systems. Well-known techniques, from feedback
control [31–33] to optimal control [34] and shortcut-to-
adiabaticity (STA) [35,36] are generally designed to optimize
different aspects of a quantum process, while the possibil-
ity to achieve enhanced performances—above and beyond
those characterizing their classical counterparts [9,37–39]—
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through the combination of multiple techniques has been
investigated [40–42]. Among them, STA protocols aim at
minimizing the leakage into high-excitation subspaces that
would be inevitably entailed by the fast dynamics of a quan-
tum system, thus mimicking an adiabatic process that would
otherwise be unachievable. A relevant form of STA pro-
tocols is counterdiabatic driving (CD) [43,44], which has
acquired popularity owing to its simple structure that makes
it readily implementable in problems of system translation
[45,46], state engineering [47,48], and open systems dynam-
ics [49,50].

The development of effective control techniques has not
been accompanied by a concomitant effort aimed at the
identification of comprehensive quantifiers to measure the
advantages and costs of implementing quantum control. Yet,
the availability of such a figure of merit—which should al-
low the characterization of the quality of a protocol—would
allow the comparison of performances of different processes
implemented with different approaches.

Motivated by the need to provide a physically motivated
figure of merit that is able to capture the facets of a quan-
tum control protocol and inform against relevant performance
indicators, here we put forward a quantifier, which we dub
the protocol grading parameter, built around fundamental
quantities such as speed of performance of a protocol, fidelity
of implementation, and entropic cost. Our proposed tool is
able to holistically assess the implications of embedding quan-
tum control approaches into a given dynamical process, thus
informing the selection of the best protocol to apply to a given
problem among different ones that might be available. We
benchmark our proposal by applying a CD scheme to a quan-
tum system trapped in a double-well potential and addressing
the performance of (accelerated) quantum-control-enhanced
state transfer. The choice of our paradigm problem is rele-
vant from a number of viewpoints. First, by reinterpreting
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TABLE I. Definitions of the terms entering the protocol grad-
ing G that is defined in Eq. (1): gS describes the energetic cost,
gQ expresses the experimental quality, while gT accounts for the
thermodynamical cost. Details on their construction are reported in
Secs. II A, II B, and II C, respectively.

Quantity Definition

gS max
{
0, 1 − 0.1 × log10

(
τ

τQSL

)}
gQ Fexpt(ρf, ρTG)

gT exp (−�ir )

the process of transferring a quantum mechanical system
across a double well as the backbone of a logical resetting
mechanism, our analysis can provide a characterization of any
logical operation that does not rely explicitly on Landauer-like
arguments but focuses on an inherently dynamical approach.
Second, by assessing speed, reliability, and energetic cost of
dynamical switching, our figure of merit and study will be
instrumental to the furthering of the current effort dedicated to
the characterization of quantum memories [51–53], providing
key information for their experimental implementation.

The remainder of this paper is structured as follows. In
Sec. II, we design the protocol grading to quantify the per-
formances of such protocols, and discuss the fundamental
quantities used as its building blocks. In Sec. III, we define
the task of transferring the state of a quantum system across
a double-well potential, and introduce four protocols for its
implementation. In Sec. IV, we simulate the protocols using
methods developed in Ref. [54], while we discuss their perfor-
mance in Sec. V. Finally, in Sec. VI we draw our conclusions.

II. PROTOCOL GRADING

The main aim of this work is to grade the protocols through
the newly introduced protocol grading parameter, which we
will indicate with G, based on the following idea. If the state
transfer protocol (1) performs quickly, (2) consumes a small
amount of energy, (3) produces faithful results, and (4) has
a low degree of irreversibility, it would be considered suc-
cessful. Correspondingly, G would achieve its largest possible
value (in the following, we will normalize our figure of merit
so that G ∈ [0, 1]). Conversely, if the above performance indi-
cators are not met, the protocol will be considered to perform
poorly, and we associate it to a low value of G (close to
zero). Our analysis thus explicitly takes into consideration
the quantum speed limit gS, experimental quality gQ, and
thermodynamic cost gT of the protocol. It is thus natural to
construct the quantity

G = gSgQgT. (1)

The form of gS, gQ, and gT are summarized in Table I, and
they are explicitly discussed below. We can anticipate that
they depend only on universal fundamental quantities, and
thus G can be employed to quantify the quality of the transfer
protocol independently from the scheme and the platform
where it is performed.

A. Quantum speed limit gS

We consider as the first quality the protocol time. Here,
inspired from information processing, the shorter the better.
Shorter timescales are also beneficial for having reduced in-
teraction with the environment, and thus lower decoherence
[55,56]. The time to implement the protocol has a fundamental
lower bound determined by the quantum speed limit (QSL)
[57], which imposes a minimum time τQSL to be able to
distinguish two states during an evolution. For a closed dy-
namics with time-independent Hamiltonian, the QSL imposes
the following bound on a quantum evolution [57]:

τ � max

{
h̄

�Eτ

L(ρi, ρ f ),
2h̄

π 〈E〉τ
L(ρi, ρ f )2

}
, (2)

where 〈E〉τ is the time-averaged mean energy, and �Eτ is the
time-averaged energy variance. L(ρi, ρ f ) is the Bures angle
between the initial state ρi and the final state ρ f , and it is
defined as

L(ρi, ρ f ) = arccos (
√

F (ρi, ρ f )), (3)

where F (ρi, ρ f ) is the quantum fidelity, which reads

F (ρi, ρ f ) = Tr
{√√

ρiρ f
√

ρi
}2

. (4)

The Bures angle serves to quantify the distance between
two states. The two expressions compared in Eq. (2)
are respectively the Mandelstam-Tamm limit [58] and the
Margolus-Levitin limit [59]. It can be shown that the maxi-
mum between these limits provides the proper upper bound
to the QSL [60]. A generalization of the QSL in Eq. (2)
has been introduced to generic open positive dynamics with
time-dependent Hamiltonian [61], such that

τ � max

{
1

�
op
τ

,
1

�hs
τ

,
1

�tr
τ

}
h̄ sin2[L(ρi, ρ f )], (5)

where {�op
τ ,�hs

τ ,�tr
τ } are the time-averaged operator, and

Hilbert-Schmidt and trace norms, respectively. Here, we de-
cide to use the bound tightened by the Hilbert-Schmidt norm
‖A‖hs =

√
Tr{A†A}, which is linked to the Mandelstam-Tamm

limit in closed dynamics, due to its connection to the energetic
cost associated with implementing the shortcut in Hamilto-
nian H1(t ) [62,63]; namely, we take

τQSL = h̄

�hs
τ

sin2[L(ρi, ρ f )], (6)

where �hs
τ = 1

τ

∫ τ

0 dt‖L[ρt ]‖hs and L[ρt ] is the generator of
the dynamics [this will be eventually the right-hand side of
Eq. (12)].

Given that τ � τQSL, we quantify the speed gS with the
following coarse-grained function,

gS = max

{
0,

(
1 − 0.1 × log10

τ

τQSL

)}
, (7)

which measures the magnitude of the ratio between τ and
τQSL. In particular, we make the speed quality decrease by 0.1
when the ratio increases one order of magnitude. To make an
explicit example, if τ/τQSL ∼ 1 then gS ≈ 1; if τ/τQSL ∼ 10
then gS ≈ 0.9, etc. The definition of gS we consider automat-
ically sets gS to zero for any protocol requiring a time τ being
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equal to or larger than 1010τQSL. This can be considered a
flaw of the definition. However, alternative definitions of gS,
such as τQSL/τ , would not give proper weight to really good
protocols (e.g., τ = 102τQSL). Notice that τQSL is determined
by the generalized time-averaged energy variance (i.e., �hs

τ )
and the distance between the initial and final states (i.e.,
sin2[L(ρi, ρ f )]). This means that for an efficient protocol, one
needs to have a small value of �hs

τ τ/ sin2[L(ρi, ρ f )].

B. Experimental quality gQ

The goal of the protocol is to transfer a state from one
to the other well of a double-well potential. The quality of
the protocol is reflected by how much the final state ρ f after
having run the protocol is near the target state ρTG of the
protocol task. Thus, we choose to quantify the experimental
quality gQ with the fidelity F between these two states:

gQ = Fexpt(ρ f , ρTG). (8)

We add the subscript expt to stress that such a fidelity is also
subject to experimental imperfections (such as those imposed
by the statistical and systematic errors), and performing these
protocols in real experiments would usually result in states
with lower fidelity compared to the theoretical one. Here, we
focus only on the later fidelity, which is given by the action of
the protocol.

The protocol task and its target state ρTG are defined as
follows. We consider the double-well potential as divided into
two local potentials, and we denote respectively with {| j(t )〉L}
and {| j(t )〉R} the corresponding instantaneous eigenstates at
time t localized in the left and right wells. We assume that
the initial state of the problem is localized in the right well,
and thus can be described as a linear superposition of the right
instantaneous eigenstates, i.e.,

|ψ (0)〉 =
∑

j

α j | j(0)〉R . (9)

In the case where one does not apply the transfer protocol,
such a state evolves as

|ψ (t )〉 =
∑

j

α je
−iER

j t/h̄ | j(0)〉R , (10)

where ER
j are the eigenvalues of H0(0) corresponding to

the eigenstate | j(0)〉R in the right well. Now, this is the state
one would like to have but transferred in the left well. Then,
the target state is given by

ρTG = |φ(τ )〉 〈φ(τ )| ,
where

|φ(τ )〉 =
∑

j

α je
−iER

j τ/h̄ | j(0)〉L , (11)

where the relative weights α j and the energies ER
j are the same

as in Eq. (10), but its decomposition is done on the left
instantaneous eigenstates | j(0)〉L. In such a way, the state
|φ(τ )〉 in Eq. (11) has the same information content of the
state |ψ (t = τ )〉 in Eq. (10), and one can say that the state has
been perfectly transferred.

C. Thermodynamic cost gT

In experiments, the system is always under the influence
of environment, and unavoidably undergoes nonequilibrium
processes if the protocol is performed in a finite time. To
account for such effects, we consider the following master
equation:

ρ̇ = − i

h̄
[Hsys, ρ] + Dlc[ρ] + Dth[ρ], (12)

where Dlc[ρ] and Dth[ρ] are respectively the localization and
thermal dissipators. The first one describes the decoherence
due to photon recoil [64], which has the form [65]

Dlc[ρ] = −�[x, [x, ρ]], (13)

where � is the corresponding diffusion constant. The ther-
mal effects of the interactions with an environment with a
temperature T are instead accounted by Dth[ρ], which is a
complete positive version of the Caldeira-Leggett dissipator
reading [66–69]

Dth[ρ] = − iγ

2h̄
[x, {p, ρ}] −

∑
q=x,p

γq[q, [q, ρ]] (14)

with γx = γ mkBT /h̄2 and γp = γ /(16mkBT ). Here γ is the
coupling strength with the environment, m is the mass of the
particle, and kB is the Boltzmann constant.

The interaction with the environment results in an irre-
versible entropy production �ir � 0 [70], which would be
redeemed with exchanging heat between the system and the
environment during the thermalization. Usually this indicates
that the process is no longer time reversible and that the
system information is lost. To quantify such a thermodynamic
cost, we use

gT = e−�ir , (15)

which resembles the expression from fluctuation theorems
[71–74], and it favors the process with small irreversible en-
tropy production.

By building on the results of our previous work [54], we
use the Wehrl entropy to measure the above quantity, which
reads [75]

SQ = −
∫

dα

∫
dα∗ Qρ (α, α∗) lnQρ (α, α∗), (16)

where Qρ (α, α∗) is the Husimi Q function being defined in
terms of the coherent state |α〉:

Qρ (α, α∗) = 1

π
〈α| ρ |α〉 . (17)

In the case under study, one does not have a harmonic po-
tential and thus the coherent states |α〉 are more difficult to
define. Nevertheless, for low energies, one can approximate
the single well as a harmonic oscillator with frequency ω =
(E1 − E0)/h̄, where E0 and E1 are respectively the ground and
first-excited-state energies of one of the two wells. In such a
way, one can define the creation and annihilation operators a†

and a through x =
√

h̄
2mω

(a + a†), p = −i
√

h̄mω
2 (a − a†); the

corresponding coherent states |α〉 follow straightforwardly.
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We note that the final result for the irreversible entropy pro-
duction does not depend on the choice of ω, underlying the
strength of this reasoning.

Conversely to the von Neumann entropy, the Wehrl entropy
has well-defined decomposed rates at the zero-temperature
limit, and is the upper bound to the von Neumann entropy
[75–78]. To compute the irreversible entropy production �ir,
we first take the time derivative of the Wehrl entropy. Given
the master equation in Eq. (12), we can decompose the latter
as

dSQ
dt

= dSU
dt

+ dSDlc

dt
+ dSDth

dt
, (18)

where the first term is the Wehrl entropy rate for the unitary
process, and the two other terms are the rates for the dissi-
pative processes. In general, one can decompose the rate of a
dissipative process as

dSD
dt

=  − �, (19)

where the first term  is the irreversible entropy production
rate, and the second term � is the entropy flux rate. It fol-
lows that the total irreversible entropy production during the
process is

�ir =
∫ τ

0
dt (t ). (20)

Here, the irreversible entropy production rate  comes from
the component that is even to the time reversal of the entropy
rate, and the entropy flux rate � comes from the component
that is odd [79]. It has been shown [78] that for a dissipator of
the form

D[ρ] = −[O, [O, ρ]], (21)

with O = x or p, one has solely the irreversible entropy pro-
duction rate, which is given by

 =
∫

dα

∫
dα∗ |CO(Q)|2

Q , (22)

and depends on the even power of the current CO(Q) =
〈α|[O, ρ]|α〉. In this way, one can account for the dissipator
Dlc[ρ] and the last two terms of Dth[ρ] as defined in Eq. (14).
On the other hand, the first term of Dth[ρ] needs to be tackled
in a different way. We show in Appendix B that it can be
decomposed in two parts as

− iγ

2h̄
[x, {p, ρ}] = − γ

2h̄
[x, [x, ρ]] − γ√

2h̄
[x, ρa − a†ρ].

(23)

In particular, the first part has the form appearing in Eq. (21)
and thus it contributes to the irreversible entropy production
rate  only. The second part contributes instead to the entropy
flux rate, since it corresponds a contribution to the entropy
rate � that is odd in the current (cf. Appendix B). There-
fore, the explicit expressions of the total irreversible entropy

1) 2)

4) 3)

STA

FIG. 1. Schematic illustration of the classical and the quantum
state-transfer protocols. The classical protocol follows the frame se-
quence 1 → 2 → 3 → 4, while the quantum protocol goes directly
from 1 → 4 with the help of STA.

production and the flux rates of the model in Eq. (12) are

 =
( γ

2h̄
+ γx + �

) ∫
dα

∫
dα∗ |Cx(Q)|2

Q

+ γp

∫
dα

∫
dα∗ |Cp(Q)|2

Q ,

� = γ√
2h̄

∫
dα

∫
dα∗ |α|2 Cx(Q),

(24)

from which one can calculate the irreversible entropy produc-
tion through Eq. (20).

III. PROTOCOLS FOR THE STATE TRANSFER

In order to showcase the use of the protocol grading that
we defined in Sec. II, here we consider the specific problem of
transferring a state from one side to the other of a double-well
potential. We consider a one-dimensional system in a double-
well potential, whose corresponding Hamiltonian reads

Hfree = p2

2m
+ c1x2 + c2x4, (25)

where the coefficients c1 < 0 and c2 > 0 determine the shape
of the double-well potential. Next, we will introduce two par-
ticular classical protocols and two quantum ones for the state
transfer. The classical protocols only deform the potential,
and the state must go over the barrier to reach the other side.
Conversely, the quantum protocols harness genuine quantum
effects, namely, the quantum tunneling, such that the state
transfers through the barrier between the two wells with the
help of the counterdiabatic term. A schematic illustration of
the protocols is shown in Fig. 1.

A. Classical state transfer

In order to switch the state of a trapped particle from the
left to the right well, we allow an external agent to modify the
potential through an external control term that is added up to
Hfree as

H0(t ) = Hfree + f (x, t ). (26)
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FIG. 2. (a) The shapes of the trapping potentials for the two classical protocols implemented with f C
1 (x, t ) and f C

2 (x, t ), respectively shown
as blue and red lines, compared to the initial potential at t = 0 represented with a black dashed line. Here, we set xzpf = √

h̄/2mω, with ω ≈ 2.3,
c1 = −1.5, c2 = 0.05, δ = 0.001, and aC

1 = 5, aC
2 = bC

2 = 1; the time t is set to that maximizing the change in the potential. (b) The dynamics
of the ground (blue line) and first-excited (red line) energies of H0(t ) with the control parameter f Q

2 (x, t ), whose value changes from −δx to
δx over a time window t ∈ [0, τ ]. As one can see, their distance is of the order of 10−9 in the central part of the protocol (see inset). (c) The
difference between the first-excited and ground state when applying the STA protocol [in particular that with the control parameter described
in Eq. (32) below]. The energy difference in the center of the protocol (t = τ/2) is now big, ∼107. Two minima of such a difference appear
on the sides of the center with a value of the order of 10−2, which is still seven orders of magnitude larger than the absolute minimum of the
energy difference in the classical protocol.

The role of f (x, t ) is to deform the potential. We consider two
classical transfer protocols, which correspond to the following
control functions:

f C
1 (x, t ) = αC

1 (t )x, (27)

f C
2 (x, t ) = αC

2 (t )x − βC
2 (t )

(
c2

1

4c2
+ c1x2 + c2x4

)

× θ

(
− c1

2c2
− x2

)
. (28)

The first control function simply tilts the potential by adding
a linear term αC

1 (t )x to the potential. We choose the parameter
αC

1 (t ) to change linearly in time from −δ < 0 to A1 > 0. Here,
the positive value of δ is small but nonzero which is needed to
make the initial potential asymmetric (slightly tilted towards
the right side), so that the ground state of the system is initially
localized in the right well. The value of A1 determines the
degree of the maximal tilting. The second considered control
function, in addition to the linear tilting process controlled
by αC

2 (t ) ∈ [−δ, A2], adds another term that linearly flattens
the central part of the double-well potential (namely, the
wall between the two wells), and it is controlled by βC

2 (t ) ∈
[0, 1]. Such a choice has already been experimentally real-
ized with trapped underdamped nano- and microparticles in
the classical, stochastic regime [80–82]. These two protocols
implement the transfer in two structurally different ways. In
short, the first classical protocol just tilts the potential, while
the second one tilts it and flattens its central part. In Fig. 2(a),
we compare the two potentials at the time of the correspond-
ing strongest imposed tilting.

The first classical protocol (dubbed classical protocol 1) is
illustrated in Fig. 1 with the frame sequence 1 → 2 → 3 → 4
and it is implemented as follows. We assume that the system
is initially localized in the ground state in the right well (cf.
frame 1) and we want to transfer it to the ground state of the
left well (cf. frame 4). When acting on the system with the
control function f1(x, t ), the energy of the system unavoidably
grows due to the nonadiabatic deformation of the potential,

and thus high-energy states of system get populated (cf. frame
2). Since the high-energy wavefunctions extend over the entire
potential, the position of the system is no longer localized, as
shown by the red wave packet in frame 2. To drive the system
back to the ground state (which is now in the left well) (cf.
frame 3), we need to cool down the system. This can be done
by attaching it to an environment at low temperatures, so that
after some time the system will dissipate heat to the environ-
ment. In particular, we attach the latter to the system already
at the beginning of the protocol at time t = 0. In general,
the energy increase is large when a fast tilting is performed,
while in an adiabatic (infinite time) process it is smaller al-
though lower bounded by a generalized Landauer principle
[80,83,84]. A fast tilting process is usually not desired due
to the large energy increase and the consequent long-time
cooling needed. Finally, one can reverse the protocol, namely,
run the control functions backwards, and restore the initial
potential (cf. frame 4), which completes the classical transfer
protocol.

The second classical protocol (which we refer to as clas-
sical protocol 2) works in a similar manner as the first one.
Again, the frame sequence the system will follow is given
by 1 → 2 → 3 → 4, with the only difference being that the
potential is not only tilted but also flattened in its central part
[see, for instance, the red line in Fig. 2(a)]. Again, there will be
a heating of the system due to the tilting and flattening, which
will lead to a spread of the wave packet and it will require a
cooling process.

B. Quantum state transfer

To construct the quantum state transfer protocol, we start
from the Hamiltonian H0(t ) considered for the classical proto-
col in Eq. (26). For the sake of simplicity, here we consider the
application of STA only to the first classical protocol. Indeed,
STA does not apply well to the second protocol due to the
degeneracy between the energies of the left and right wells
appearing when the potential is flattened [36,85].
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The quantum part of classical protocol 1 is implemented
through the assistance of STA. In particular, a CD driving such
as the one defined in Refs. [36,43] is introduced through the
following:

H1(t ) = H0(t ) + HSTA(t ), (29)

where we included the counterdiabatic term, which reads
HSTA(t ) = ih̄

∑
i [|∂t i〉 〈i| , |i〉 〈i|], where |i〉 = |i(t )〉 are the

instantaneous eigenstates of the Hamiltonian H0 with cor-
responding energies Ei = Ei(t ), such that H0(t ) |i(t )〉 =
Ei(t ) |i(t )〉. The explicit form of |∂t i〉 can be computed with
the Schrödinger equation [43] and thus HSTA can be recast as

HSTA(t ) = ih̄
∑
i �= j

〈i| Ḣ0 | j〉
Ej − Ei

|i〉 〈 j| . (30)

In order to ensure that the initial and final potentials are those
of the original Hamiltonian H0, we impose the STA conditions
HSTA(0) = HSTA(τ ) = 0 on the CD term.

The quantum protocol we consider here is similar to that in
Ref. [86], where the protocol exploits the tunneling effect in
a double-well potential. Here, we adopt the STA to achieve
and accelerate the state transfer. In particular, the protocol
works due to the following reasons: (i) the sign change of
the control parameter f (x, t ) ∈ [−δx, δx] flips the asymmetry
of the potential in Eq. (26), switching the ground state from
being in right well to the left well (see a simple application
to the Landau-Zener model in Appendix A), and (ii) the so-
lutions of the new Hamiltonian H1(t ) follow, in finite time
τ , the adiabatic trajectory of the original Hamiltonian H0. In
Fig. 2(b), we plot the dynamics of the eigenvalues for the
ground state (in blue) and first-excited state (in red) of H0. In
the classical protocol, when starting from the ground state in
the right well |0〉R and moving towards that in the left |0〉L,
due to the energy increase, the system will jump from the
ground state to the first-excited one (i.e., from the blue to the
red line) when the energy gap is small enough (this happens
at t/τ = 0.5). To prevent this, the quantum protocol increases
the energy gap between the ground and the first-excited state,
as depicted in Fig. 2(c). In such a way, it is more difficult to
excite the system [62], at the cost of extra energy input given
by the CD term. Therefore, the quantum protocol works as
follows: we prepare the system in the ground state in the right
well |0〉R, then the system evolves with the new Hamiltonian
H1(t ) and will follow the blue line, resulting in the ground
state in the left well |0〉L (as depicted by the frame sequence
1 → 4 in Fig. 1).

We start with the system prepared in the ground state in the
right well with the control parameter set to f Q

i (x, 0) = −δx.
The state transfer is performed with the new Hamiltonian
H1(t ) and modifying the control parameter to a positive value
f Q
i (x, τ ) = δx. The way that f Q

i (x, t ) is changed is determined
by the STA conditions. Here we consider the control parame-
ter to be proportional to the position operator as in Eq. (27):

f Q
i (x, t ) = α

Q
i (t )x. (31)

The substitution of the latter expression in Eq. (26) gives Ḣ0 =
α̇i(t )x which is then merged with Eq. (30). Eventually, HSTA(t )
will be computed numerically (cf. Sec. IV). To the best of our

FIG. 3. Schematic illustration of changes of all the functions
in the proposed control parameters f k

i (x, t ) with i = 1, 2, for the
classical k = C and quantum k = Q protocols.

knowledge, an analytical expression of such a counterdiabatic
term in a tilting double-well potential is still unknown, while
preliminary studies to attain its analytical expression in a
similar double-well potential can be found in Refs. [87,88].
The STA conditions impose α̇i(0) = α̇i(τ ) = 0. This consid-
ered, one can construct different interpolation of the control
parameter connecting α

Q
i (0) = −δ to α

Q
i (τ ) = δ. Indeed, it

has been shown that the energy cost of the counterdiabatic
term HSTA can be reduced by optimizing the control parameter
[89]. The first option we consider is a control parameter that
is cubic in time and it is described by

α
Q
1 (t ) = −δ + 6δt2

τ 2
− 4δt3

τ 3
. (32)

We indicate this control scheme to be linear as it grows
linearly at t = τ/2; this is when the energy gaps of H0(t ) are
the smallest [e.g., when the potential of H0 is symmetric, and
the denominator in Eq. (30) is smallest, making at that time the
contribution of HSTA the largest]. In the second quantum pro-
tocol, we further require that α̇

Q
2 (τ/2) = 0. In contrast with

the linear interpolation in Eq. (32), this gives the following
nonlinear behavior of the control parameter:

α
Q
2 (t ) = −δ + 30δt2

τ 2
− 100δt3

τ 3
+ 120δt4

τ 4
− 48δt5

τ 5
. (33)

In summary, we have introduced two options for classical
state transfer, namely, f C

1 (x, t ) and f C
2 (x, t ), and two options

for quantum state transfer, f Q
1 (x, t ) and f Q

2 (x, t ). In particular,
f C
1 (x, t ) and f Q

1 (x, t ) are the simple linear protocols, while
f C
2 (x, t ) and f Q

2 (x, t ) are nonlinear protocols. We show a
sketch of the changes for all control parameters in Fig. 3.

IV. NUMERICAL SIMULATIONS OF TWO PROTOCOLS

In this section, we lay down the basis for corroborating
the theoretical framework with numerical simulations, whose
basis was described in Ref. [54]. As a case study, we set
c1 = −1.5 and c2 = 0.05 [see Fig. 2(a)], where the energy
difference between the ground and first-excited states in the
right well is h̄ω ≈ 2.3, and let m = kB = h̄ = 1. We choose
such a potential so that the energetic barrier is high enough to
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prepare well-localized states in either of the two wells, while
still being low enough to highlight the features of the quantum
protocol. Tunable potential landscapes of comparable energy
scales have been realized in semiconductor qubits [90], as well
as proposed in nanomechanical resonators coupled with quan-
tum dots [91]. Recent experiments with optically levitated
nanoparticles provided the necessary toolbox for implement-
ing time-controlled protocols in the quantum regime, as well
as quantum-limited position readout and quantum initial state
preparation [92,93]. We choose to introduce the following nu-
merical values for the coupling parameters, γ /ω = 10−2 and
�/ω = 10−3 from the master equation in Eq. (12), following
typical values in such experiments [54]. With this choice of
the parameters, the energy at the top of the barrier corresponds
to a thermal state with associated temperature T ≈ 12.7 K.
Thus we considered two temperatures, T = 1 and 10 K, where
the corresponding equilibrium systems have energies below
the well potential and are well or loosely localized, respec-
tively. Finally, we consider for all protocols the initial state to
be

|ψ (0)〉 = 0.6 |0〉R + 0.8 |1〉R , (34)

and correspondingly the target state at t = τ given by Eq. (11)
reads

|φ(τ )〉 = 0.6e−iER
0 τ/h̄ |0〉L + 0.8e−iER

1 τ/h̄ |1〉L . (35)

For the simulations, we use the full toolbox developed in
Ref. [54], which is concisely summarized below. The contin-
uous system described by the bosonic field operators {a, a†}
can be approximated by a discrete spin- j system with lad-
der operators {J+, J−} following the Holstein-Primakoff (HP)
transformation, which can be stated as

a ≈ M−1
κ J+ and a† ≈ J−M−1

κ , (36)

where Mκ is the κth − order Taylor expansion of the nonlinear
term in the HP transformation,

h̄
√

2 j − a†a = Mκ + O((a†a)κ+1). (37)

One can define the discretized version of dimensionless
quadrature field operators as [2]

x′ = 1√
2

(
J−M−1

κ + M−1
κ J+

)
,

p′ = i√
2

(
J−M−1

κ − M−1
κ J+

)
,

(38)

and we have the discretized Hamiltonian,

H (t ) = p′2

2m
+ c1x′2 + c2x′4 + f k

i (x′, t ), (39)

and the control term can be chosen from { f k
i (x′, t )}k=C,Q

i=1,2 de-
pending on the specific protocol. Here, the discrete system
reflects the low-energy sector of the original continuous sys-
tem in Eq. (26), which is the sector we focus on. We set the
dimension of the system j, as well as the Taylor expansion
size κ , to be 60. Namely, we have spin- 59

2 .
On the other hand, the coherent state |α〉 in a continuous

system can be replaced with the spin-coherent state for a
discrete system [78],

|�〉 = e−iφJz e−iθJy | j, j〉 , (40)

where | j, j〉 is the angular momentum state with largest quan-
tum number of Jz, and � = {θ, φ} is the set of Euler angles
identifying the direction along which the coherent state points.
The corresponding Husimi Q function is defined as

Q(�) = 〈�| ρ |�〉 , (41)

the Wehrl entropy for a system with N = 2 j + 1 degrees of
freedom reads

SQ = − N

4π

∫
d�Q(�) lnQ(�), (42)

and the irreversible entropy production rate in Eq. (24) be-
comes

 =
(

γ

2h̄
+ γ mkBT

h̄2 + �

)
N

4π

∫
d�

|Jx(Q)|2
Q

+ γ

16mkBT

N

4π

∫
d�

|Jp(Q)|2
Q ,

(43)

where JO(Q) = 〈�| [O, ρ] |�〉 with O = x, p.

A. Classical protocol

The simulations for the classical protocols are performed
by employing the Hamiltonian in Eq. (26) with two forms
of the control parameter: for protocol 1 we use f C

1 defined
in Eq. (27), while for protocol 2 we employ f C

2 presented in
Eq. (28). The control parameters take the values δ = 0.001,
A1 = 5, and A2 = 1, and we set τω = 300. As A2 < A1, proto-
col 2 tilts the potential less than protocol 1. Indeed, in protocol
2, the central barrier is also lowered; thus the protocol excites
less to the system and because of this is the optimized one.

The results of the open dynamics simulations for the two
classical protocols are shown in Fig. 4. In Figs. 4(a) and 4(b),
we compare the instantaneous numerically solved eigenvalues
of H0(t ) defined in Eq. (39) for the continuous (colored lines)
and discrete (dashed lines) case for protocol 1 [Fig. 4(a)] and
protocol 2 [Fig. 4(b)]. The comparison between the continu-
ous and discrete cases shows that our simulations are accurate
in the low-energy sector encompassing the first 15 energy lev-
els. An exception to this is given by the first classical protocol,
where the system energy goes slightly beyond this regime [cf.
Fig. 4(e)]; then the corresponding results are slightly affected
by the approximation. In Figs. 4(c) and 4(d), we show the
evolution of the system’s position density | 〈x|ψ (t )〉 |2 along
with the time-varying potential undergoing the simple control
at 1 K for protocol 1 and protocol 2, respectively. For protocol
1, the deformation of the potential pushes the system to higher
energies, which can be seen by the fact that the system is de-
localized over the entire potential; i.e., it is not well localized
in just one of the two wells. The system is then cooled down
during the slow restoration of the potential, due to interaction
with the cold environment. In the end, one can see the system
is mainly localized in the left well with a distribution close to
a Gaussian form, which concludes the state-transfer protocol.
For protocol 2 [cf. Fig. 4(d)], the potential is less deformed
than that in protocol 1; thus the system gets less excited.
Consequently, the final state given by protocol 2 has a higher
fidelity to the corresponding thermal state. In the end, one can
see the system is mainly localized in the left well and the state
transfer is completed.
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FIG. 4. Classical state-transfer protocols. [(a), (b)] The accuracy of the simulation, by comparing the evolution of the energy levels of the
system for the two protocols computed with the continuous (colored lines) and with the discretized (dashed black lines) system. [(c), (d)] The
dynamics of the system’s density in position (blue line) as the potential (red line) is changed in time at the temperature of 1 K, respectively for
classical protocols 1 and 2. The main visible difference between the two panels is in the form of the potential for t ∼ τ/3. (e) The system energy
〈H0(t )〉 evolution when the system interacts with the environment of different temperatures (1 K in blue and 10 K in red). The continuous and
dashed lines correspond to protocol 1 and 2s respectively; the dotted lines correspond to the thermal energies and serve as a reference. (f) The
transfer percentage [cf. Eq. (44)] of the system state with respect to the corresponding thermal states. We employed the same color and dashing
as in (e).

To quantify the accuracy of the state transfer, we consider
the system energy and the transfer percentage. In Fig. 4(e), we
show the comparison between the system energies (continu-
ous and dashed lines) and the corresponding thermal energies
(dotted lines) serving as references. The lines in blue and red
correspond to protocols operating respectively at 1 and 10 K.
The continuous lines represent protocol 1, while the dashed
ones identify protocol 2. One can see that the final energy is
close to the thermal one when protocol 2 is operating at 1 K.
This is not the case for protocol 1 when operating at 1 K,
neither is it for both protocols at 10 K, at which temperature
the thermal state energy is just below the tip of the barrier,
and thus the cold bath fails to localize the system in the finite
time τω = 300. On the other hand, one can see that protocol
2 operates better than protocol 1 at both temperatures: the
system energies grow less and are closer to the correspond-
ing thermal ones. In Fig. 4(f), we report the behavior of the
transfer percentage, which is defined as

P(x � 0) =
∫ 0

−∞
dx 〈x|ρ|x〉 , (44)

for protocol 1 and 2 at 1 and 10 K [we use the same color
and dashing as in Fig. 4(e)]. At the end of the protocols
when the potential is restored to its original shape, the transfer
percentage is around 80% for protocol 1 (90% for protocol 2)
at 1 K, while it is below 60% for both protocols at 10 K.

B. Quantum protocol

The simulations for the quantum protocols are performed
with the CD driving introduced in Eq. (29), where we set
δ = 0.001 and τω = 10. We underline the difference of the
latter timescale with that considered for the classical protocols
in Sec. IV A, which was τω = 300. We consider the environ-
mental action as given by the master equation in Eq. (12)
with the values of the parameters being the same as those
considered for the classical protocol.

The simulation results are shown in Fig. 5. In Fig. 5(a),
we compare the energetic costs of the CD term, which are
computed for the quantum protocols [62,63] with

‖HSTA(t )‖ =
√

Tr{H†
STA(t )HSTA(t )}. (45)

One can observe that the majority of the cost using α
Q
1 (t )

(blue line) appears around t = τ/2, i.e., when the potential
is symmetric. At this time, the CD term enlarges the energy
gaps between eigenstates of the system, thus allowing the
system to travel along the trajectories with a high speed and
without jumping from one trajectory to the other [62]. Con-
versely, when employing α

Q
2 (t ) (red line), the requirement of

α̇
Q
2 (τ/2) = 0 imposes a reduction of the instantaneous cost

of the CD term. The evolution of the position density of the
system undergoing to the unitary dynamics with α

Q
1 and α

Q
2 is

shown respectively in Figs. 5(b) and 5(c), along with the time-
varying potential with the quantum protocol. As one can see,
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FIG. 5. The quantum state-transfer protocol. (a) The trace norm of the counterdiabatic driving term HSTA, which is linked to the energetic
cost [cf. Eq. (45)], in the vicinity of t � τ/2, where the overall dynamics is shown in the inset. [(b), (c)] The dynamics of the position density
distribution of the system under the open dynamics at 1 K temperature, respectively for quantum protocols 1 and 2. (d) The coherence evolution
for quantum protocol 1 (continuous blue line) and 2 (dashed red line) compared to the classical protocols 1 (continuous black) and 2 (dashed
black). (e) The fidelity of the quantum protocols for the unitary dynamics (continuous black line) and for the open dynamics (continuous and
dashed colored lines) at different temperatures. A fidelity smaller than 1 indicates that the state of the system is different from the target state,
and that possibly only part of the system is transferred from one to the other well. This information is corroborated by the transfer percentage
[cf. Eq. (44)], which is shown in (f).

the system is initially well localized in the right well. Then,
at t = τ/2, the state goes in a superposition of left and right
states, and the position density delocalizes over both wells.
Eventually, the system is fully transferred to the left well,
where the system localizes again. In Fig. 5(d), we compare
the dynamics of the coherence Cl1 , which is quantified with
an l1 measure in the basis of x′ [94] as Cl1 (ρ) = ∑

j �=k |ρ jk|,
for the unitary dynamics described by the two quantum pro-
tocols and with the two classical ones. The interaction with
the environment reduces the performances of the protocol in
two manners. First, as it is shown in Fig. 5(e), the fidelity
between the final state ρ f and the target state ρTG changes as a
decreasing function of the temperature. Second, the environ-
ment inhibits the state transfer from one to the other well. In
Fig. 5(f), we show the evolution of the transfer percentage [cf.
Eq. (44)], which is the amount of population of the total state
that has been transferred from the right to the left well. One
can notice that the transfer percentage has a behavior being
similar to that of the fidelity. Both the quantum protocols
perform in a similar way, with negligible differences, under
unitary evolution when it comes to the fidelity and transfer
percentage. When comparing the transfer percentage with that
of the classical protocols shown in Fig. 4f, one clearly sees
that quantum protocols are more effective and faster (indeed
for the quantum protocol τω = 10, while for the classical
protocol one has τω = 300). Moreover, Figs. 5(e) and 5(f)
show that quantum protocol 1 performs, in terms of fidelity
and state transfer, better than protocol 2.

V. QUANTIFICATION OF THE PROTOCOL

Having introduced the classical and quantum protocols for
the state transfer, we now quantify their performances by
employing our protocol grading G defined in Eq. (1). For
simplicity, in the following, we only consider the environment
at the temperature of 1 K. Nevertheless, we report the relevant
quantities to compute G also for the case of 10 K in Table II,
and compare them with those for 1 K.

In Fig. 6(a), we show the energetic cost weighted by the
Bures angle �hs

τ / sin2[L(ρi, ρ f )], which is defined in Eq. (6),
against the timescale ωτ of different protocols. The gray area
identifies the region forbidden by the QSL. Its boundary is
characterized by the value of gS = 1 [cf. Eq. (7)], which corre-
sponds to �hs

τ / sin2[L(ρi, ρ f )] = 1/ωτ . The closer the line of
the protocol is to the gray region, the better gS. In this figure,
we clearly see the advantages of quantum protocols against
the classical ones for small processing times ωτ < 1. This is
due to the fact that classical protocols fail to produce distin-
guishable states (i.e., sin2[L(ρi, ρ f )] ∼ 0), while the quantum
protocols are always able (i.e., sin2[L(ρi, ρ f )] ∼ 1). On the
other hand, for large processing times (ωτ > 40), although
both kind of protocols almost always produce distinguishable
states, the environmental effects become no longer negligi-
ble. Instead, we see that quantum advantages disappear and
the classical protocols behave better than the quantum ones.
Finally, for intermediate processing times (1 < ωτ < 40), the
intertwined behaviors of lines fail to provide any useful infor-
mation on their performances.
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TABLE II. Comparison between the state-transfer protocols here considered and the corresponding protocol grading under the action of
a 1 K and 10 K environment. In particular, we consider the energy cost weighted by Bures angle �hs

τ / sin2[L(ρi, ρ f )], the timescale ωτ , the
irreversible entropy production �ir, the transfer percentage P(x � 0), the speed cost gS, the quality cost gQ, and the thermodynamic cost gT.
Finally, we show the protocol grading G.

Classical 1 Classical 2 Quantum 1 Quantum 2

T 1 K 10 K 1 K 10 K 1 K 10 K 1 K 10 K
ωτ 300 300 10 10
�hs

τ / sin2[L(ρi, ρ f )] 0.13 0.08 0.20 0.07 2.20 1.72 2.06 1.33

�ir 1.37 2.36 2.23 4.33 0.10 0.47 0.10 0.46

P(x � 0) 82.39% 57.80% 91.54% 56.32% 99.98% 96.10% 95.45% 68.28%

gS 0.88 0.90 0.86 0.90 0.90 0.91 0.90 0.92

gQ 0.27 0.09 0.36 0.10 0.94 0.59 0.89 0.40

gT 0.25 0.09 0.11 0.01 0.90 0.63 0.90 0.63

G 0.06 0.007 0.03 0.0009 0.76 0.34 0.72 0.23

In Fig. 6(b), we show the fidelity F (ρτ , ρTG) between the
final state ρτ to the target state ρTG [cf. Eq. (11)] against the
processing time ωτ . As it is expected, for short processing
times, the quantum protocols can achieve the task perfectly,
i.e., transferring the state while preserving the correct infor-
mation, while the classical protocols fail completely. For long
processing times, both quantum and classical protocols result
in similar fidelity due to thermalization. One can notice that
quantum protocol 1 performs better than quantum protocol 2
[where we imposed that Ḣ0(τ/2) = 0], while classical proto-
col 2 performs better than classical protocol 1 (since there is
less tilting involved).

In Fig. 6(c), we show the irreversible entropy production
�ir [cf. Eq. (20)] against ωτ . It indicates how far the system
is driven away from the reversible dynamics and it quantifies
the thermodynamic cost gT. We see that the effects of the
environment become prominent when ωτ > 1.

Having computed all terms in the protocol grading G given
by Eq. (1), we show in Fig. 7 the values of G for both the quan-
tum and the classical protocols. For ωτ < 1, we see a strong
difference between the classical (G ∼ 0) and the quantum
(G ∼ 1) protocols, which narrows for larger values of ωτ . This
is due to the fact that quantum protocols well perform for time
smaller that the decoherence time (τdec ∼ h̄2/γ mkBT �2

x ∼
0.7, where we took �x as the distance between the two

minima of double-well potential), while the classical proto-
cols perform better with a more adiabatic timescale (ωτ � 1).

VI. CONCLUSIONS

In this paper, we design the protocol grading G that de-
pends on a finite set of fundamental physical quantities, and it
is used as a figure of merit of the performances of a process,
by taking into consideration the speed, the fidelity, and the
thermodynamic cost of the transfer process. We compute the
protocol grading for four different state-transfer protocols in a
double-well potential. These transfer a quantum superposition
from one well to the other. Such a process can be successfully
performed by employing a quantum protocol with the help of
the counterdiabatic driving, while with classical processes the
information about the initial superposition is washed away.
Furthermore, quantum processes allow a state transfer that is
quicker and more accurate, which is reflected by higher value
for the protocol grading parameter.
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APPENDIX A: ANALOG WITH LANDAU-ZENER MODEL

The simplest analogy to our proposed model for the quan-
tum protocol of the state transfer is given by the Landau-Zener
model [95,96]. The model considers a two-level system with
a Hamiltonian reading

HLZ = �σz + g(t )σx, (A1)

where � determines the minimal energy gap between the two
energy levels, and g(t ) is a linear control function. In Fig. 8(a),
we plot the eigenvalues of HLZ in terms of g (continuous
lines). As one can see, if we prepare initially the system in its
ground state (|−〉) and then drive the system nonadiabatically
by changing g, the system jumps from the ground state to the
excited one (|+〉). This is most likely to happen when g is
around zero, which corresponds to the minimum energy gap.

To circumvent the issue, we can introduce a counter-
diabatic term to the original Hamiltonian [62,97]. The new
Hamiltonian now reads

Hnew
LZ = HLZ + HSTA, (A2)

where

HSTA = − ġ(t )�

2(�2 + g(t )2)
σy. (A3)

With such a counterdiabatic term, the ground-state trajectory
becomes the finite-time solution of the new Hamiltonian Hnew

LZ .

FIG. 8. Illustration of the state transfer with Landau-Zener model. (a) The change of energy against the tuning parameter g. (b) The change
of energy for states |+〉 and |−〉 as the STA is implemented. (c) Population changes in the σx basis, if we prepare |−〉 as the initial state. Here
we used � = 0.05.
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This is due to the increased energy gap imposed by HSTA, as
indicated by the arrows in Fig. 8(b). The increased energy
gap allows the system to remain in the ground state without
jumping to the excited state as we change g. We underline
that following the ground state (blue continuous line), one
switches the state from |−〉 to |+〉 [dashed lines in Fig. 8(a)].
This is essentially the state transfer we want to simulate in
our model. By changing the value of g in time, the population
of the state |−〉 moves to the state |+〉. This is pictured in
Fig. 8(c), where the dimensions of the colored disks represent
the amount of population of the two states (blue for |−〉 and
red for |+〉).

However, the dynamics looks differently if we consider the
position of the system rather than the spin. Our framework
imposes the relation between the position operator and the
spin operator Jx based on the HP transformation. Taking this
Landau-Zener model as an example, we can take σx as a close
analog of the position operator, and monitor the population
that changes in “positions,” i.e., from −1 to +1 (correspond-
ing to the eigenstates |−〉 and |+〉). If we prepare our initial
state as |−〉, we can see the state transfers from one position
to the other position, as shown in Fig. 8(c).

APPENDIX B: DECOMPOSE THE DISSIPATOR
INTO REVERSIBLE AND IRREVERSIBLE PARTS

In this Appendix, we compute, along the lines of Ref. [78],
the contributions to the entropy rates corresponding to the
following term of the Caldeira-Leggett dissipator in Eq. (14):

D[ρ] = [x, {p, ρ}] = [x, f (ρ)], (B1)

where f [ρ] = f †[ρ] = {p, ρ}. As D[ρ] contains the operator
x, we express the dissipator in the Husimi Q representation.
In particular, the Husimi Q function is defined in Eq. (17) and
we have the following correspondences [98]:

Cx[ρ] = [x, ρ] ↔ Cx(Q) = 1√
2

(∂α∗ − ∂α )Q,

Cp[ρ] = [p, ρ] ↔ Cp(Q) = − i√
2

(∂α∗ + ∂α )Q,

f [ρ] = {p, ρ} ↔ f (Q) = i√
2

(2α∗ − 2α − ∂α∗ + ∂α )Q,

(B2)

where we define two currents Cx(Q) and Cp(Q). One can work
out the reverse correspondences,

∂αQ = − 1√
2

(Cx(Q) − iCp(Q)),

∂α∗Q = 1√
2

(Cx(Q) + iCp(Q)),
(B3)

and thus rewrite f (Q) in terms of currents,

f (Q) = i
√

2(α∗ − α)Q − iCx(Q). (B4)

With these correspondences, we can have the dissipator in
phase space,

D[ρ] ↔ D(Q) = Cx( f (Q)). (B5)

Given the definition of the Wehrl entropy in Eq. (16), we can
rewrite its rate component corresponding to the term D[ρ] as

dS

dt
=

∫
dα

∫
dα∗ 1

Q
f (Q)Cx(Q). (B6)

Employing Eq. (B4), we get

dS

dt
= i

∫
dα

∫
dα∗ √

2(α∗ − α)Cx(Q)︸ ︷︷ ︸
flux

+ 1

Q
|Cx(Q)|2︸ ︷︷ ︸

irreversible

,

(B7)
where we use the correspondences, integrate by parts, and take
Cx(Q) = −Cx(Q)∗. By working backwards, we find the cor-
responding decomposition in density matrix representation,
which is given by

D[ρ] = −i[x, [x, ρ]] − i
√

2[x, ρa − a†ρ], (B8)

being Eq. (23) of the main text.
Now, the irreversible entropy production rate  is asso-

ciated with an even function of the current, and the entropy
flux rate � is associated with an odd function of the current
[70]. According to this argument, we can separate the Wehrl
entropy rate into

 = i
∫

dα

∫
dα∗ 1

Q
|Cx(Q)|2,

� = i
∫

dα

∫
dα∗ √

2(α − α∗)Cx(Q),

(B9)

which are respectively the irreversible entropy production rate
and entropy flux rate.
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