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a b s t r a c t

This paper presents new methods for set-valued state estimation of discrete-time nonlinear systems
whose trajectories are known to satisfy nonlinear equality constraints, called invariants (e.g., conser-
vation laws). Set-valued estimation aims to compute tight enclosures of the possible system states
in each time step subject to unknown-but-bounded uncertainties. Most existing methods employ a
standard prediction-update framework with set-based prediction and update steps based on various
set representations and techniques. However, achieving accurate enclosures for nonlinear systems
remains a significant challenge. This paper presents new methods based on constrained zonotopes that
improve the standard prediction-update framework for systems with invariants by adding a consistency
step. This new step uses invariants to reduce conservatism and is enabled by new algorithms for
refining constrained zonotopes based on nonlinear constraints. This paper also presents significant
improvements to existing prediction and update steps for constrained zonotopes. Specifically, new
update algorithms are developed that allow nonlinear measurement equations for the first time, and
existing prediction methods based on conservative approximation techniques are modified to allow a
more flexible choice of the approximation point, which can lead to tighter enclosures. Numerical results
demonstrate that the resulting methods can provide significantly tighter enclosures than existing
zonotope-based methods while maintaining comparable efficiency.
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1. Introduction

In recent decades, the importance of state estimation has
ained attention in many fields of research (Simon, 2006). This
ncludes a wide range of applications such as state-feedback con-
rol (Goodarzi & Lee, 2017; Jaulin, 2009; Rego & Raffo, 2019), fault
etection and isolation (Combastel, 2015; Raimondo et al., 2016;
hang & Jiang, 2008), and robot localization (Saeedi et al., 2016).

In contrast to Bayesian strategies such as Kalman filtering (Si-
mon, 2010; Teixeira et al., 2009), set-valued state estimation
methods aim to provide guaranteed enclosures of the system
trajectories in applications affected by unknown-but-bounded
uncertainties, without assuming knowledge of their stochastic
properties (Chisci et al., 1996; Schweppe, 1968). To date, most
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tudies on set-valued state estimation have addressed linear sys-
ems (Chabane et al., 2014; Girard & Guernic, 2008; Le et al.,
013; Scott et al., 2016), and accurate set-valued estimation of
onlinear systems remains a significant challenge (Alamo et al.,
005; Jaulin, 2016; Rego et al., 2020).
Even for linear discrete-time systems, the exact set of states

onsistent with the system model and measurements up to a
iven time k can become arbitrarily complex as k increases.
herefore, to avoid a dramatic increase in computational time
Shamma & Tu, 1997), set-based estimation methods must en-
lose these sets with simpler set representations of limited com-
lexity, such as intervals (Jaulin, 2009, 2016; Rego et al., 2018b;
ang & Scott, 2020), ellipsoids (Durieu et al., 2001; Polyak et al.,
004), parallelotopes (Chisci et al., 1996), or zonotopes (Alamo
t al., 2005, 2008; Combastel, 2005). Unfortunately, for nonlinear
ystems of practical complexity, such enclosures often become
ery conservative. There are multiple reasons for this, includ-
ng the inability of the set representation to capture key fea-
ures of the sets of interest (e.g., nonconvexity and asymmetry),
hallenges associated with propagating sets through nonlinear
ynamics (e.g., the dependency problem, the wrapping effect,
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conservative linearization errors, etc.), and challenges associated
with refining sets based on new measurements (e.g., the fact
that intersections cannot be enclosed both accurately and effi-
ciently for any of the sets mentioned above save intervals). As a
consequence, existing set-based state estimation algorithms have
only been applied to relatively simple nonlinear models, and
most methods assume linear measurement equations (Combas-
tel, 2005; Rego et al., 2020, 2018b) although the measurements
vailable in many practical examples are nonlinear (Rego et al.,
018a; Teixeira et al., 2009).
In this paper, we present new set-based state estimation algo-

ithms with improved accuracy for the specific case of nonlinear
ystems whose solutions satisfy a set of potentially nonlinear
quality constraints, referred to as invariants. The trajectories of
uch systems evolve on a lower-dimensional manifold embedded
n the state space. This is true for many systems of practical inter-
st, including models of (bio)chemical reaction networks (Shen &
cott, 2017), attitude estimation in aircraft systems (Goodarzi &
ee, 2017), and the pose of the body frame in humanoids (Rotella
t al., 2014). In the stochastic state estimation framework, invari-
nts have previously been used to force the estimated states to
ie on the embedded manifold (Eras-Herrera et al., 2019; Julier &
LaViola, 2010; Simon, 2010; Teixeira et al., 2009; Yang & Blash,
009). In the set-based estimation framework considered here,
he aim is to use invariants to reduce the conservatism of the
nclosure computed in each time step by eliminating enclosed
egions that can be proven to violate the invariants, and hence
annot contain real trajectories. Such refinement is known to be
ery effective at reducing conservatism in interval-based non-
inear reachability calculations (Scott et al., 2013; Shen & Scott,
017; Yang & Scott, 2020). To the best of the authors’ knowledge,
he only prior studies that have used invariants in set-based state
stimation are Yang and Li (2009) and Yang and Scott (2018a).
n Yang and Li (2009), the authors propose a set-valued state
stimator using ellipsoids. A linear matrix inequality approach is
sed to design the estimator taking into account the nonlinear
tate equality constraints. However, the method only applies to
inear dynamics, and the nonlinear state constraints must be
onservatively linearized. Moreover, an effective procedure for
omputing rigorous and accurate linearization error bounds is not
rovided. In Yang and Scott (2018a), the authors propose an effec-
ive method for using invariants to reduce the conservatism of a
et-based state estimation method based on differential inequal-
ties and interval analysis. However, the method is limited to
ystems that have been discretized by Euler approximation with
sufficiently small step size, which can be restrictive in some
ases. Moreover, although the theory is general, the provided al-
orithm only applies to linear invariants and linear measurement
quations.
This paper proposes two new methods for set-valued state

stimation of discrete-time nonlinear systems with nonlinear
easurements and invariants. These algorithms represent enclo-
ures using constrained zonotopes (Scott et al., 2016) and are
ased on two different methods for propagating these enclosures
hrough nonlinear mappings called the mean value extension
nd first-order Taylor extension, respectively. Both algorithms
re based on the standard prediction-update framework used in
ost existing approaches in which an enclosure of the system
tates at time k is first propagated through the dynamics to obtain
n enclosure of the possible states at time k + 1 (prediction),
nd this enclosure is subsequently refined based on the new
easurement at k + 1 (update). We generalize both the mean
alue and first-order Taylor-based prediction-update algorithms
ecently proposed in Rego et al. (2020), which are based on con-
ervative approximation techniques. These generalizations allow

or a more flexible choice of the approximation point used in the

2

prediction step and also enable new update algorithms applicable
to nonlinear measurement equations, which were not considered
in Rego et al. (2020). Furthermore, we add a new step to this
framework, referred to as the consistency step, which further
refines the enclosure at k + 1 using the nonlinear invariants,
leading to improved accuracy. The new nonlinear update and
consistency steps are specifically enabled by new mean value
and first-order Taylor-based algorithms for effectively refining
a constrained zonotope based on nonlinear constraints. Finally,
we provide numerical results demonstrating that the proposed
methods can provide significantly tighter enclosures than exist-
ing zonotope-based methods for systems with invariants while
maintaining comparable efficiency.

The remainder of the manuscript is organized as follows. The
set-based state estimation problem and the class of nonlinear
systems considered are described in Section 2. Section 3 presents
mathematical background on constrained zonotopes and other
topics. The main results are given in Section 4, including the
new consistency and update algorithms and the improvements
of the prediction algorithms from Rego et al. (2020). Numerical
xamples are presented in Section 5, and Section 6 concludes the
anuscript.

. Problem formulation

Let f : Rn
× Rnu × Rnw → Rn and g : Rn

× Rnu × Rnv → Rny

be of class C2 and consider the nonlinear discrete-time system

xk = f(xk−1,uk−1,wk−1), k ≥ 1,
yk = g(xk,uk, vk), k ≥ 0,

(1)

where xk ∈ Rn denotes the system state, uk ∈ Rnu is the kno-
wn input, wk ∈ Rnw is the process uncertainty, yk ∈ Rny is
the measured output, and vk ∈ Rnv is the measurement uncer-
tainty. The initial condition and uncertainties are assumed to be
unknown-but-bounded, i.e., x0 ∈ X̄0, wk ∈ W , and vk ∈ V , where
X̄0, W , and V are known polytopic sets.

This paper presents an improved set-valued state estimation
method for systems satisfying known invariants, as defined in the
following assumption.

Assumption 1. There exists a C2 function h : Rn
→ Rnh such

that, for every solution of (1) with x0 ∈ X̄0, wk ∈ W , and vk ∈ V ,

h(x0) = 0 H⇒ h(xk) = 0, ∀k ≥ 0. (2)

We refer to the elements of h as invariants.

Remark 1. A sufficient condition for (2) is that h(f(xk,uk,wk)) =
0 for all xk such that h(xk) = 0, for all wk ∈ W , and uk with k ≥ 0.

Many systems of practical interest obey invariants describing,
e.g., material conservation laws in chemical systems, conservation
of energy or momentum in mechanical systems, or the isome-
try inherent to orientation dynamics in aerospace and robotic
systems (Goodarzi & Lee, 2017; Rotella et al., 2014; Shen &
Scott, 2017). Prior work on nonlinear reachability analysis has
shown that, if used properly, even simple physical information
in the form of invariants can dramatically improve the accu-
racy of reachability bounds computed by interval methods (Scott
et al., 2013; Shen & Scott, 2017; Yang & Scott, 2020). Similarly,
our aim here is to develop new algorithms for effectively using
invariants to improve the accuracy of the state-of-the-art state
estimation algorithms based on constrained zonotopes from Rego
et al. (2020).

For any k ≥ 0, let Xk denote the set of all states xk that are

consistent with (i) the nonlinear model (1), (ii) the measured
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output sequence up to time k, (y0, . . . , yk), and (iii) the unknown-
but-bounded uncertainties x0 ∈ {x ∈ X̄0 : h(x) = 0}, wk ∈ W ,
nd vk ∈ W , ∀k ≥ 0. Since exact characterization of Xk is
enerally intractable (Kühn, 1998; Platzer & Clarke, 2007), the
bjective of set-valued state estimation is to approximate Xk

as accurately as possible by a guaranteed enclosure X̃k ⊇ Xk.
We accomplish this here by extending the standard prediction-
update estimation framework with a new consistency step for
tightening the enclosures using invariants. The general scheme
is given by the following recursion:

X̄k ⊇ {f(xk−1,uk−1,wk−1) : xk−1 ∈ X̃k−1, wk−1 ∈ W }, (3)

X̂k ⊇ {xk ∈ X̄k : g(xk,uk, vk) = yk, vk ∈ V }, (4)

X̃k ⊇ {xk ∈ X̂k : h(xk) = 0}, (5)

where (3) is the prediction step, (4) is the update step, (5) is
the consistency step, and the scheme is initialized with X̄0 in
the update step. According to the definition of Xk, we have that
X0 = {x0 ∈ X̄0 : h(x0) = 0, g(x0,u0, v0) = y0, v0 ∈ V }. This
immediately implies that X̃0 ⊇ X0. If X̃k−1 is a valid enclosure of
Xk−1 for some k ≥ 1, then standard results in set-valued state
estimation show that X̂k ⊇ Xk (Chisci et al., 1996; Le et al., 2013).
Since any xk−1 ∈ Xk−1 emanates from some x0 ∈ X̄0 satisfying
h(x0) = 0 by definition, Assumption 1 implies that h(xk) = 0,
and it follows that X̃k ⊇ Xk as well. By induction, we conclude
that X̃k ⊇ Xk for all k ≥ 0 as desired.

In the remainder of the paper, our goal is to develop methods
for computing accurate enclosures for each of the three steps
(3)–(5). Building on prior results in Rego et al. (2020), the main
results include generalizations of the prediction methods in Rego
et al. (2020) with improved accuracy, new update methods that
are applicable to nonlinear measurement equations, and methods
for the new consistency step to make effective use of invariants.

3. Preliminaries

The methods in this article use constrained zonotopes, which
are an extension of zonotopes proposed in Scott et al. (2016)
capable of describing asymmetric convex polytopes, while main-
taining many of the well-known computational benefits of zono-
topes.

Definition 1. A set Z ⊂ Rn is a constrained zonotope if there exists
(Gz, cz,Az, bz) ∈ Rn×ng × Rn

× Rnc×ng × Rnc such that

Z = {cz + Gzξ : ∥ξ∥∞ ≤ 1,Azξ = bz} . (6)

We refer to (6) as the constrained generator representation
(CG-rep). Each column of Gz is a generator, cz is the center, and
Azξ = bz are the constraints. We use the shorthand notation
Z = {Gz, cz,Az, bz}. Similarly, we denote standard zonotopes by
Z = {Gz, cz} ≜ {cz + Gzξ : ∥ξ∥∞ ≤ 1}. In addition, we denote by
B∞(Az, bz) ≜ {ξ ∈ Rng : ∥ξ∥∞ ≤ 1, Azξ = bz} and Bng

∞ ≜ {ξ ∈
Rng : ∥ξ∥∞ ≤ 1}, respectively, the ng-dimensional constrained
and unconstrained unitary hypercubes1.

Let Z,W ⊂ Rn, R ∈ Rm×n, and Y ⊂ Rm. Define the linear
mapping, Minkowski sum, and generalized intersection as

RZ ≜ {Rz : z ∈ Z}, (7)

Z ⊕W ≜ {z+w : z ∈ Z, w ∈ W }, (8)

Z ∩R Y ≜ {z ∈ Z : Rz ∈ Y }. (9)

With these definitions, Z = {Gz, cz,Az, bz} can be viewed as an
affine transformation of B∞(Az, bz), Z = cz ⊕GzB∞(Az, bz). Given

1 We drop the use of the superscript ng for B∞(Az , bz ) since this dimension
can be inferred from the number of columns of A .
z t
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W and Y also in CG-rep, the results of the operations (7)–(9) are
iven in CG-rep as

RZ = {RGz,Rcz,Az, bz} , (10)

⊕W =
{[

Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]}
, (11)

Z ∩R Y =

{[
Gz 0

]
, cz,

[ Az 0
0 Ay

RGz −Gy

]
,

[ bz
by

cy − Rcz

]}
. (12)

Unlike ellipsoids, parallelotopes, convex polytopes, and zono-
topes, the operations (10)–(12) can be computed trivially and
exactly with constrained zonotopes and result in only a mild
increase in the complexity of the CG-rep (6). In addition, effi-
cient complexity reduction methods are available in Scott et al.
(2016) that enclose a constrained zonotope within another one
with fewer generators and constraints, allowing one to balance
accuracy and computational efficiency.

The methods developed in this paper also require some con-
cepts from interval arithmetic, which are briefly recalled next. Let
the set of compact intervals in R be denoted by IR. An interval
X = [xL, xU] ∈ IR is defined by X ≜ {a ∈ R : xL ≤ a ≤ xU}.
The midpoint and radius are defined by mid(X) ≜ 1

2 (x
U
+ xL) and

rad(X) ≜ 1
2 (x

U
− xL). Interval vectors and matrices are defined by

{a ∈ Rn
: aLi ≤ ai ≤ aUi } and {A ∈ Rn×m

: AL
ij ≤ Aij ≤ AU

ij }, respec-
tively, with the midpoint and radius defined component-wise.
An interval vector X ∈ IRn can be written in generator repre-
sentation as mid(X) ⊕ diag(rad(X))Bn

∞
= {diag(rad(X)),mid(X)}.

For any bounded X ⊂ Rn, let □X refer to the interval hull of
X . See Moore et al. (2009) for a review on basic operations and
classic methods using interval analysis. In this work, the interval
hull □Z of a constrained zonotope Z is computed using linear
programming (Rego et al., 2020; Scott et al., 2016).

Finally, the following theorem defines a useful operation
(J, X) for computing a constrained zonotopic enclosure of the
roduct of an interval matrix J with a constrained zonotope X .

heorem 1 (Rego et al., 2020). Let X = {G, c,A, b} ⊂ Rm be a
onstrained zonotope with ng generators and nc constraints, let J ∈
Rn×m be an interval matrix, and consider the set S = JX ≜ {Ĵx :
∈ J, x ∈ X} ⊂ Rn. Let Ḡ ∈ Rn×n̄g and c̄ ∈ Rn satisfy X ⊆ {Ḡ, c̄},

and let m be an interval vector such that m ⊇ (J − mid(J))c̄ and
mid(m) = 0. Finally, let P ∈ Rn×n be a diagonal matrix defined by
Pii = rad(mi)+

∑n̄g
j=1
∑m

k=1 rad(Jik)|Ḡkj| for all i = 1, 2, . . . , n. Then,
is contained in the CZ-inclusion

⊆ ◁(J, X) ≜ mid(J)X ⊕ PBn
∞

.

emark 2. In the implementation of ◁(J, X) used in this paper,
Ḡ, c̄} ⊇ X is obtained by eliminating all constraints from X using
he constraint elimination algorithm in Scott et al. (2016), and m
is obtained by evaluating (J−mid(J))c̄ in interval arithmetic.

4. Nonlinear state estimation

This section presents new methods for computing enclosures
for each step in the extended prediction-update-consistency al-
gorithm (3)–(5) using constrained zonotopes. The proposed re-
ursive scheme is summarized in Algorithm 1. In this algorithm,
omplexity reduction methods can be used after each step to limit
he set complexity increase. We begin with two core lemmas
equired for all three steps.

emma 1. Let α : Rn
×Rnw → Rnα be of class C1 and let ∇xα denote

he gradient of α with respect to its first argument. Let X ⊂ Rn and
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Algorithm 1 Proposed recursive algorithm

1: (Prediction step) Given the constrained zonotopes X̃k−1×W ⊂
Rn
× Rnw , and input uk−1 ∈ Rnu , compute the predicted

constrained zonotope X̄k satisfying (3).
2: (Update step) Given the constrained zonotopes X̄k × V ⊂

Rn
×Rnv , input uk ∈ Rnu , and measurement yk ∈ Rny , compute

a refined constrained zonotope X̂k satisfying (4).
3: (Consistency step) Given the constrained zonotope X̂k ⊂ Rn,

compute a refined constrained zonotope X̃k satisfying (5).

W ⊂ Rnw be constrained zonotopes, and let J ∈ IRn×n be an interval
atrix satisfying
T
x α(□X,W ) ≜ {∇T

x α(x,w) : x ∈ □X, w ∈ W } ⊆ J. (13)

or every x ∈ X, w ∈ W, and γx ∈ □X, there exists Ĵ ∈ J such that

α(x,w) = α(γx,w)+ Ĵ(x− γx).

Proof. Choose any (x,w) ∈ X ×W . Since x ∈ X ⊆ □X and γx ∈

□X , the Mean Value Theorem ensures that, for any i = 1, 2, . . . , n,
∃δ[i] ∈ □X such that αi(x,w) = αi(γx,w)+ ∇T

x αi(δ[i],w)(x− γx).
But ∇T

x αi(δ[i],w) is contained in the ith row of J by hypothesis,
and since this is true for all i = 1, 2, . . . , n, ∃Ĵ ∈ J such that
α(x,w) = α(γx,w)+ Ĵ(x− γx). ■

Remark 3. As with ∇T
x α(□X,W ) in (13), real-valued functions

written with set-valued arguments will henceforth always denote
the true image set, rather than, e.g. an interval extension or other
enclosure.

Lemma 1 provides an exact linear representation of the non-
linear function α between two points based on the Mean Value
Theorem, which is useful for computations with constrained
zonotopes. This lemma is very similar to Theorem 2 in Rego
et al. (2020). The only difference is that Theorem 2 in Rego et al.
(2020) requires the approximation point γx to lie in X , while
Lemma 1 allows γx to be chosen from the larger set □X . This
is important because obtaining a point in X (or testing a given
point for membership) requires solving a linear program, whereas
obtaining point in □X is trivial. The proof of Lemma 1 is given
above for completeness, but it follows easily from the proof of
Theorem 2 in Rego et al. (2020) by replacing the condition γx ∈ X
with γx ∈ □X throughout.2

The next lemma provides an alternative method for obtaining
an exact linear representation of a nonlinear function between
two points based on Taylor’s Theorem. This lemma is similar to
Theorem 3 in Rego et al. (2020), with the difference again that
the approximation point is chosen from □Z rather than Z . The
following notation is required. For a function β : Rm

→ Rn of
class C2 with qth component βq and argument z, let Hβq denote
the upper triangular matrix describing half of the Hessian of βq.
Specifically, Hiiβq = (1/2)∂2βq/∂z2i , Hijβq = ∂2βq/∂zi∂zj for i < j,
and Hijβq = 0 for i > j.

Lemma 2. Let β : Rm
→ Rn be of class C2 and let z ∈ Rm denote

its argument. Let Z = {G, c,A, b} ⊂ Rm be a constrained zonotope
with mg generators and mc constraints. For each q = 1, 2, . . . , n,
let Q[q] ∈ IRm×m and Q̃[q] ∈ IRmg×mg be interval matrices satisfying
Q[q] ⊇ Hβq(□Z) and Q̃[q] ⊇ GTQ[q]G. Moreover, define

c̃q = trace
{
mid(Q̃[q])

}
/2,

2 In Rego et al. (2020) γ was denoted by h.
x
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G̃q,: =
[
· · · mid(Q̃ [q]ii )/2  

∀i

· · ·

(
mid(Q̃ [q]ij )+mid(Q̃ [q]ji )

)
  

∀i<j

· · ·
]
,

G̃d = diag(d), dq =
∑
i,j

⏐⏐⏐rad(Q̃ [q]ij )
⏐⏐⏐ , Ã =

[
Ãζ Ãξ 0mc

2 (1+mc )×n

]
,

Ãζ =

⎡⎢⎢⎣
...

· · ·
1
2AriAsi · · ·

...

⎤⎥⎥⎦
−−−−−−−−−−−→

∀i

⏐⏐⏐⏐⏐⏐⏐↓∀r≤s, b̃ =

⎡⎢⎢⎣
...

brbs − 1
2

∑
i AriAsi

...

⎤⎥⎥⎦
⏐⏐⏐⏐⏐⏐⏐↓∀r≤s,

˜
ξ =

⎡⎢⎢⎣
...

· · · AriAsj + ArjAsi · · ·

...

⎤⎥⎥⎦
−−−−−−−−−−−−−−−−→

∀i<j

⏐⏐⏐⏐⏐⏐⏐↓∀r≤s,

with indices i, j = 1, 2, . . . ,mg and r, s = 1, 2, . . . ,mc . Finally,
hoose any γz ∈ □Z and let L ∈ IRn×m be an interval matrix
satisfying Lq,: ⊇ (c− γz)TQ[q] for all q = 1, . . . , n. For every z ∈ Z,
there exist ξ ∈ B∞(A, b), ξ̃ ∈ B∞(Ã, b̃), and L̂ ∈ L such that

β(z) = β(γz)+∇
Tβ(γz)(z− γz)

+ c̃+ [G̃ G̃d]ξ̃ + L̂((c− γz)+ 2Gξ).

Proof. This follows by replacing γz ∈ Z with γz ∈ □Z in the
proof of Theorem 3 in Rego et al. (2020). ■

4.1. Prediction step

This section presents two different approaches for the pre-
diction step in Algorithm 1. The methods below are improved
versions of the mean value and first-order Taylor extensions
developed in Rego et al. (2020), respectively, which allow for
a more flexible choice of the approximation point enabled by
Lemmas 1 and 2. The proofs can be found in Appendix A.

Proposition 1. Let f : Rn
× Rnu × Rnw → Rn be of class C1 and

let ∇xf denote the gradient of f with respect to its first argument. Let
u ∈ Rnu , and let X ⊂ Rn and W ⊂ Rnw be constrained zonotopes.
Choose any γx ∈ □X. If Zw is a constrained zonotope such that
f(γx,u,W ) ⊆ Zw and J ∈ IRn×n is an interval matrix satisfying
∇

T
x f(□X,u,W ) ⊆ J, then f(X,u,W ) ⊆ Zw ⊕ ◁

(
J, X − γx

)
.

Proposition 2. Let f : Rn
× Rnu × Rnw → Rn be of class C2, let

u ∈ Rnu , and let X = {Gx, cx,Ax, bx} and W = {Gw, cw,Aw, bw}

be constrained zonotopes with (ng , ngw ) generators, and (nc, ncw )
constraints, respectively. Denote z = (x,w) and Z = X × W =

{G, c,A, b} ⊂ Rn+nw . For each q = 1, 2, . . . , n, let Q[q] ∈
IR(n+nw )×(n+nw ) and Q̃[q] ∈ IR(ng+ngw )×(ng+ngw ) be interval matrices
satisfying Q[q] ⊇ Hz fq(□X,u,□W ) and Q̃[q] ⊇ GTQ[q]G. Moreover,
define c̃, G̃, G̃d, Ã, and b̃, as in Lemma 2. Finally, choose any γz =

(γx, γw) ∈ □Z and let L ∈ IRn×m be an interval matrix satisfying
Lq,: ⊇ (c− γz)TQ[q] for all q = 1, . . . , n. Then,

f(X,u,W ) ⊆ f(γx,u, γw)⊕∇
T
z f(γx,u, γw)(Z − γz)⊕ R, (14)

where R = c̃⊕
[
G̃ G̃d

]
B∞(Ã, b̃)⊕ ◁(L, (c− γz)⊕ 2GB∞(A, b)).

Remark 4. The constrained zonotope Zw in Proposition 1 can be
obtained using the mean value extension f(γx,u,W ) ⊆ Zw =

f(γx,u, γw)⊕ ◁
(
Jw,W − γw

)
for a chosen point γw ∈ □W , with

Jw being an interval matrix satisfying Jw ⊇ ∇T
wf(γx,u,□W ). In

this paper, the interval matrices J, J (Proposition 1), Q[q], Q̃[q], L
w
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(Proposition 2), and similar interval matrices in Propositions 3–4
nd Corollaries 1–2, are all computed using interval arithmetic.

emark 5. The complexity of the enclosures obtained by
ropositions 1 and 2 are similar to the methods in Rego et al.
2020). Specifically, if X and W have ng and ngw generators, and
c and ncw constraints, respectively, then Proposition 1 gives ng+

gw + 2n generators and nc + ncw constraints, and Proposition 2
ives 0.5(ng +ngw )

2
+2.5(ng +ngw )+2n generators and 0.5(nc +

cw )
2
+ 2.5(nc + ncw ) constraints.

Propositions 1 and 2 permit γx and γz to be chosen from □X
nd □Z , respectively, whereas the corresponding results in Rego
t al. (2020) required these points to be chosen from the smaller
ets X and Z . The following example illustrates the potential
dvantage of these extensions.
Consider the nonlinear mapping f : R2

→ R2 defined by

1(x) = 3x1 −
x21
7
−

4x1x2
4+ x1

, f2(x) = −2x2 +
3x1x2
4+ x1

, (15)

nd the constrained zonotope

=

{[
0.5 1 −0.5
0.5 0.5 0

]
,

[
5
0.5

]
,
[
−1 1 −1

]
, 2
}

.

s shown in Fig. 1, the center c in this CG-rep of X does not
ctually lie in X , but does lie in □X . Therefore, it is a valid
hoice of γx in Proposition 2 here, but not in Theorem 3 in Rego
t al. (2020). Fig. 1 shows the enclosures of f(X) obtained using
roposition 2 with this choice of γx and using Theorem 3 in Rego
t al. (2020) with γx chosen as the closest point in X to c, which
s the best heuristic proposed in Rego et al. (2020). The enclosure
btained using Proposition 2 is tighter. Thus, allowing γx to lie in
X can lead to less conservative results.

.2. Update step

This section presents both mean value and first-order Taylor
ethods for the update step in Algorithm 1, considering nonlin-
ar measurement equations in contrast to the linear update step
sed in Rego et al. (2020). Specifically, Lemmas 1 and 2 are used,
espectively, to formulate the required enclosure in (4) as the
eneralized intersection of two constrained zonotopes.

roposition 3. Let g : Rn
× Rnu × Rnv → Rny be of class C1, let

∈ Rnu , let X ⊂ Rn and V ⊂ Rnv be constrained zonotopes, and
hoose any y ∈ Rny such that y = g(x,u, v) for some (x, v) ∈ X×V .
hoose any γx ∈ □X and any J̃ ∈ Rny×n. If Zv is a constrained
onotope such that −g(γx,u, V ) ⊆ Zv , and J ∈ IRny×n is an interval
atrix satisfying ∇T

x g(□X,u, V ) ⊆ J, then

x ∈ X : g(x,u, v) = y, v ∈ V } ⊆ X ∩C Y ,

here C = J̃, and Y = (y+ J̃γx)⊕ Zv ⊕ ◁(J̃− J, X − γx).

roof. Choose any (x, v) ∈ X × V satisfying g(x,u, v) = y.
emma 1 ensures that there exists a real matrix Ĵ ∈ J such that
(x,u, v) = g(γx,u, v)+ Ĵ(x−γx). Since Ĵ = J̃+ (Ĵ− J̃) holds, then
(x,u, v) = g(γx,u, v)+ J̃(x− γx)+ (Ĵ− J̃)(x− γx). Consequently,

x = g(x,u, v)+ J̃γx − g(γx,u, v)+ (J̃− Ĵ)(x− γx)

= y+ J̃γx − g(γx,u, v)+ (J̃− Ĵ)(x− γx)

∈ (y+ J̃γx)⊕ Zv ⊕ ◁(J̃− J, X − γx) = Y .

hen, we conclude that {x ∈ X : g(x,u, v) = y, v ∈ V } ⊆ {x ∈ X :
x ∈ Y } = X ∩C Y . ■
5

emark 6. The constrained zonotope Zv in Proposition 3 can be
btained as Zv = −g(γx,u, γv)⊕ ◁

(
−Jv, V − γv

)
⊇ −g(γx,u, V )

or some γv ∈ □V and interval matrix Jv ⊇ ∇T
v g(γx,u,□V ). The

atrix J̃ is a free parameter in Proposition 3. Choosing J̃ = mid(J)
ives mid(J̃− J) = 0, and hence ◁(J̃− J, X − γx) = mid(J̃− J)(X −
x)⊕PBny

∞ = PBny
∞, with P defined as in Theorem 1. This choice is

dopted throughout this paper.

roposition 4. Let g : Rn
× Rnu × Rnv → Rny be of class C2,

et u ∈ Rnu , let X = {Gx, cx,Ax, bx} and V = {Gv, cv,Av, bv} be
onstrained zonotopes with (ng , ngv ) generators, and (nc, ncv ) con-
traints, respectively, and choose any y ∈ Rny such that y =
(x,u, v) for some (x, v) ∈ X × V . Denote z = (x, v) and Z =
× V = {G, c,A, b} ⊂ Rn+nv . For each q = 1, 2, . . . , ny, let
[q]
∈ IR(n+nv )×(n+nv ) and Q̃[q] ∈ IR(ng+ngv )×(ng+ngv ) be interval

atrices satisfying Q[q] ⊇ Hzgq(□X,u,□V ) and Q̃[q] ⊇ GTQ[q]G.
oreover, define c̃, G̃, G̃d, Ã, and b̃, as in Lemma 2. Finally, choose
ny γz = (γx, γv) ∈ □Z and let L ∈ IRny×(n+nv ) be an interval
atrix satisfying Lq,: ⊇ (c− γz)TQ[q] for all q = 1, . . . , ny. Then,

x ∈ X : g(x,u, v) = y, v ∈ V } ⊆ X ∩C Y ,

here C = ∇T
x g(γx,u, γv), Y = (y− g(γx,u, γv)+ ∇T

z g(γx,u, γv)
z)⊕ (−∇T

v g(γx,u, γv)V )⊕ (−R), and R = c̃⊕ [G̃ G̃v]B∞(Ã, b̃)⊕
(L, (c− γz)⊕ 2GB∞(A, b)).

roof. Choose (x, v) = z ∈ Z such that g(x,u, v) = y. Lemma 2
nsures that there exist ξ ∈ B∞(A, b), ξ̃ ∈ B∞(Ã, b̃), and L̂ ∈ L,
uch that

(x,u, v) = g(γx,u, γv)+∇
T
x g(γx,u, γv)(x− γx)

+ ∇
T
v g(γx,u, γv)(v− γv)+ L̂(p+ 2Gξ)+ c̃+ [G̃ Ḡv]ξ̄.

here p = c− γz . Since g(x,u, v) = y,

∇
T
x g(γx,u, γv)x = y− g(γx,u, γv)+∇

T
z g(γx,u, γv)γz

−∇
T
v g(γx,u, γv)v− L̂(p+ 2Gξ)− c̃− [G̃ Ḡv]ξ̄

∈ (y− g(γx,u, γv)+∇
T
z g(γx,u, γv)γz)

⊕ (−∇T
v g(γx,u, γv)V )⊕ (−R) = Y

hen, we conclude that {x ∈ X : g(x,u, v) = y, v ∈ V } ⊆ {x ∈ X :
T
x g(γx,u, γv)x ∈ Y } = X ∩C Y . ■

emark 7. If X and V have ng and ngv generators, and nc
nd ncv constraints, respectively, then the enclosure obtained by
roposition 3 has 2ng + ngv + 2ny generators and 2nc + ncv +

y constraints, and the enclosure obtained by Proposition 4 has
.5(ng+ngv )

2
+2.5(ng+ngv )+2ny generators and 0.5(nc+ncv )

2
+

.5(nc + ncv )+ ny constraints.

emark 8. If f and g are affine in w and v (i.e., f(x,u,w) =
(x,u)+Φ(x,u)w and g(x,u, v) = ψ(x,u)+Ψ(x,u)v), then the
onstrained zonotopes Zw ⊇ f(γx,u,W ) and Zv ⊇ −g(γx,u, V ) in
ropositions 1 and 3 can be computed exactly by Zw = φ(γx,u)⊕
(γx,u)W and Zv = −ψ(γx,u)⊕ (−Ψ(γx,u)V ), respectively.

.3. Consistency step

This section presents both mean value and first-order Tay-
or methods for the consistency step in Algorithm 1. As in the
revious section, the obtained enclosure is formulated as the
eneralized intersection of two constrained zonotopes. Since the
roposed methods are direct consequences of Propositions 3 and
, they are presented as corollaries.
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Fig. 1. The sets X (blue), □X (dashed lines), the center of X (×), the enclosures
btained using Proposition 2 with γx as the center of X (green), and using
heorem 3 in Rego et al. (2020) with γx as the closest point in X to its center
red). (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

orollary 1. Let h : Rn
→ Rnh be of class C1 and let X ⊂ Rn be

a constrained zonotope. Choose any γx ∈ □X and any J̃ ∈ Rnh×n.
If J ∈ IRnh×n is an interval matrix satisfying ∇T

x h(□X) ⊆ J, then
{x ∈ X : h(x) = 0} ⊆ X ∩D H, where D = J̃, and H =
(J̃γx − h(γx))⊕ ◁(J̃− J, X − γx).

Proof. See Appendix A. ■

Remark 9. As in the update step, the matrix J̃ is a free parameter
in Corollary 1. If J̃ = mid(J), then mid(J̃− J) = 0, and ◁(J̃− J, X −
x) = mid(J̃− J)(X − γx)⊕ PBny

∞ = PBny
∞. Therefore, this choice is

dopted also for the consistency step.

orollary 2. Let h : Rn
→ Rnh be of class C2 and let X = {G,

,A, b} be a constrained zonotope with ng generators and nc con-
traints. For each q = 1, 2, . . . , nh, let Q[q] ∈ IRn×n and Q̃[q] ∈
Rng×ng be interval matrices satisfying Q[q] ⊇ Hxhq(□X) and Q̃[q] ⊇
TQ[q]G. Moreover, define c̃, G̃, G̃d, Ã, and b̃, as in Lemma 2. Finally,
hoose any γx ∈ □X and let L ∈ IRnh×n be an interval matrix
atisfying Lq,: ⊇ (c− γx)TQ[q] for all q = 1, . . . , nh. Then,

x ∈ X : h(x) = 0} ⊆ X ∩D H,

here D = ∇T
x h(γx), H = (−h(γx) + ∇T

x h(γx)γx) ⊕ (−R), and
= c̃⊕ [G̃ G̃d]B∞(Ã, b̃)⊕ ◁(L, (c− γx)⊕ 2GB∞(A, b)).

roof. See Appendix A. ■

emark 10. If X has ng generators and nc constraints, then the
nclosure obtained from Corollary 1 has 2ng + ny generators and
nc +ny constraints, and the enclosure obtained from Corollary 2
as 0.5n2

g + 2.5ng + 2ny generators and 0.5n2
c + 2.5nc + ny

onstraints.

emark 11. The enclosures in Corollaries 1 and 2 can be tight-
ned if an enclosure XF in CG-rep of the feasible state set {x ∈
n
: h(x) = 0} is known a priori. Such an enclosure can be ob-

ained offline by using, for instance, the contractor programming
ethods in Chabert and Jaulin (2009). In both corollaries, h is
onservatively approximated over X , and the size of the resulting
onstrained zonotope Z is proportional to the size of X . If X is
arge, significant improvement can result from setting X ← X∩XF
rior to applying the corollary. This situation is likely in practice
ecause, within the overall estimation framework (3)–(5), the set
ˆk will play the role of X in Corollaries 1 and 2, and X̂k can be
ery conservative before accounting for the invariant h(xk) = 0
see Section 5.2).
6

emark 12. Various alternative methods have previously been
roposed for intersecting a given set with the solution set of
system of nonlinear equations; e.g., Kochdumper and Althoff

2020). However, none of these existing methods can be applied
o sets described by constrained zonotopes, and the computed
nclosures are generally nonconvex.

emark 13. In practice, nonlinear invariants of the form h(xk) =
may not hold exactly. However, inexact invariants can still be
sed by introducing an additional uncertain variable dk ∈ Rnd ,
ounded in a polytope D ⊂ Rnd , such that h(xk, dk) = 0 holds.
he resulting procedures are very similar to Propositions 3 and 4
ith yk ≜ 0, vk ≜ dk, and g ≜ h.

.4. Selection of γ

The methods proposed in this paper require heuristics to
hoose a point (γx, γw, γv) ∈ □X × □W × □V , where X stands
or either X̃k−1, X̄k, or X̂k depending on the step in (3)–(5). As
iscussed in Rego et al. (2020), the center of the CG-rep. of X ×
× V cannot be chosen in general because it may not belong to

ither X×W×V or □X×□W×□V . However, in contrast to Rego
t al. (2020), the center of the interval □X × □W × □V is a valid
hoice here. This first heuristic is summarized as follows:

(C1) (γx, γw, γv) is given by the center of □X × □W × □V .

Despite its efficiency, C1 is not optimal in any sense and can
ead to conservative enclosures. Following Rego et al. (2020), we
ext present an improved heuristic C2 specifically for use with
he methods based on mean value extensions in Propositions 1
nd 3, and Corollary 1 (the exact heuristic in Rego et al. (2020)
s not optimal here because it restricts (γx, γw, γv) to X × W ×

rather than □X × □W × □V ). Propositions 1 and 3, and
orollary 1 all apply the CZ-inclusion defined in Theorem 1 with
he second argument taking the form X − γx. The idea behind C2
s therefore to choose γx so as to minimize the conservatism of
his CZ-inclusion.

In this sense, consider the CZ-inclusion ◁(J, Z−γ) for arbitrary
= {G, c,A, b} ⊂ Rm and J ∈ IRm×n. As per Theorem 1 and

emark 2, computing ◁(J, Z − γ) requires a zonotope {Ḡ, c̄} ⊇
Z−γ) that is computed by eliminating all constraints from (Z−γ)
sing the constraint elimination algorithm in Scott et al. (2016).
ased on that algorithm, Rego et al. (2020) derived a closed form
xpression for the resulting center c̄ as a function of (G, c,A, b)
nd γ , which takes the form

¯ = c− γ + δ(G,A, b).

he definition of δ can be deduced from Lemma 1 in Rego et al.
2020) and is omitted here for brevity. This c̄ is then used to
ompute m ⊃ (J − mid(J))c̄ using interval arithmetic, and the
ize of the final enclosure ◁(J, Z − γ) is proportional to rad(m) =
1/2)diam(m). Thus, the aim is to choose γ so as to minimize
iam(m).

roposition 5. Let Z = {G, c,A, b} ⊂ Rm, J ∈ IRm×n, and [zL,
U
] = □Z. For any choice of γ ∈ □Z, let mγ ⊇ (J − mid(J))c̄γ be

n interval vector computed using interval arithmetic, where c̄γ =
− γ + δ(G,A, b). Then γ∗ ∈ □Z minimizes ∥diam(mγ )∥1 iff it is
he solution to the linear program (LP)

in
γ
∥Θc̄γ∥1, s.t. zL ≤ γ ≤ zU, (16)

here Θjj =
∑m

i=1 diam(Jij) and Θij = 0 for all i ̸= j.

roof. See Appendix A.



o

Q
e
γ

R
c
f
T
d

Table 1
Computational complexity O(·) of the prediction, update, and consistency steps using constrained zonotopes.
Step Mean value extension Simplified

Prediction nmwmgw + (mwmgw +mcw )(mgw +mcw )
3 n5

Update ny(mvmgv + ny)+ (mvmgv +mcv )(mgv +mcv )
3 n5

Consistency nh(nn̂g + nh)+ (nn̂g + n̂c )(n̂g + n̂c )3 n5

Step First-order extension Simplified

Prediction n(m2
wmgw +mwm2

gw )+ (mwmgw +mcw )(mgw +mcw )
3 n5

Update n2
y + ny(m2

vmgv +mvm2
gv )+ (mvmgv +mcv )(mgv +mcv )

3 n5

Consistency n2
h + nh(n2n̂g + nn̂2

g )+ (nn̂g + n̂c )(n̂g + n̂c )3 n5
This heuristic is summarized as follows:

(C2) γx, γw , and γv are given by the points obtained from
Proposition 5 for (J, X−γx) in Proposition 1, (J̃− J, X−γx) in
Proposition 3 and Corollary 1, (Jw,W−γw), and (Jv, V −γv),
respectively.

Next, we present a heuristic specifically for the methods based
n first-order Taylor extensions in Propositions 2 and 4, and

Corollary 2. The conservatism of these methods is directly related
to the conservatism in the remainder R, which is mostly affected
by the size of the interval matrices Q[q], Q̃[q], and L. The matrices
[q] and Q̃[q] are unaffected by the choice of (γx, γw, γv). How-
ver, the radius of L is proportional to the differences cx−γx, cw−

w , and cv − γv . Therefore, we propose the following heuristic:

(C3) (γx, γw, γv) is the closest point to the center of X ×W × V
that belongs to □X × □W × □V , obtained by solving the
respective LPs min {∥γ − cx∥1 : γ ∈ □X}, min {∥γ − cw∥1 :

γ ∈ □W }, and min {∥γ − cv∥1 : γ ∈ □V }.

emark 14. In this section, we propose different heuristics to
hoose (γx, γw, γv) depending if the mean value extension or the
irst-order Taylor extension are used (C2 and C3, respectively).
his is because this choice affects the computed enclosure in
ifferent ways for the different extensions. See Rego et al. (2020)

for a detailed motivation.

4.5. Computational complexity

Table 1 shows the computational complexity of our meth-
ods for the prediction, update, and consistency steps, using the
mean value extension (Propositions 1 and 3, and Corollary 1)
and the first-order Taylor extension (Propositions 2 and 4, and
Corollary 2). To derive these complexities, we consider that the
enclosures (X̃k−1, X̄k, X̂k) have (ñg , n̄g , n̂g ) generators and (ñc , n̄c ,
n̂c) constraints, respectively. Moreover, (W , V ) have (ngw , ngv )
generators and (ncw , ncv ) constraints, and we define (mw,mgw ,
mcw ) ≜ (n + nw, ñg + ngw , ñc + ncw ), and (mv,mgv ,mcv ) ≜ (n +
nv, n̄g + ngv , n̄c + ncv ). As in Rego et al. (2020), we assume that
evaluations of nonlinear real functions and nonlinear inclusion
functions have complexity O(1), and that all LPs (including the
ones necessary to compute the interval hulls) are solved at least
with the performance of the method proposed in Kelner and
Spielman (2006). This method has (simplified) polynomial com-
plexity O(NdN3

c ), with Nd and Nc the number of decision variables
and constraints, respectively.

The complexities of the prediction, update, and consistency
steps, using the mean value and first-order Taylor extensions,
are similar to the previous prediction methods proposed in Rego
et al. (2020). In all the complexities shown in Table 1, the higher
order terms such as (mwmgw +mcw )(mgw +mcw )

3 come from both
the interval hull computations and the constraint elimination
procedure used to obtain the zonotope enclosure required by

Theorem 1. The other terms come from matrix products that O

7

appear in the proposed expressions to compute the respective
CG-rep variables.

Table 1 also shows a simplified complexity analysis of the
proposed methods for each step. In this analysis, we consider that
every variable is proportional to the space dimension n, and that
(X̃k−1, X̄k, X̂k) have the same number of generators and constraints
(this can be achieved by using generator reduction and constraint
elimination methods after each step). Details on the complexities
of the basic operations with constrained zonotopes are found
in Rego et al. (2020).

5. Numerical examples

This section evaluates the accuracy of the set-valued state
estimation methods proposed in Section 4. Let CZMV denote
the method based entirely on the mean value extension, using
Proposition 1 for the prediction step and Proposition 3 for the
update step, but with no consistency step. Moreover, let CZMV+C
denote the method CZMV with the addition the consistency step
using Corollary 1, let CZMV+F denote CZMV with the addition
of an intersection with an enclosure of the feasible state set as
described in Remark 11, and let CZMV+FC denote CZMV with
the addition of both the intersection in Remark 11 and then
the consistency step using Corollary 1. These are referred to
collectively as CZMV-like methods. Analogously, let CZFO denote
the method based entirely on first-order Taylor extensions, us-
ing Proposition 2 for the prediction step and Proposition 4 for
the update step, and let CZFO+C, CZFO+F, and CZFO+FC denote
CZFO with the addition of, respectively, the consistency step
using Corollary 2, the intersection described in Remark 11, and
both the intersection and the consistency step. In CZMV-like
methods, complexity reduction is applied after the consistency
step using the reduction methods in Scott et al. (2016), with
constraint elimination performed prior to generator reduction.
Due to the quadratic complexity increase of the enclosure in
each intermediate step of CZFO-like methods (see Remarks 5, 7
and 9), complexity reduction is applied after all three steps in
these methods. Heuristic C2 is used for choosing (γx, γw, γv) in
CZMV-like methods, and heuristic C3 in CZFO-like methods.

We also compare our results with two nonlinear zonotope
methods with prediction steps based on the Mean Value Theo-
rem in Alamo et al. (2005) and Taylor’s Theorem in Combastel
(2005). These are denoted by ZMV and ZFO,3 respectively. In both
zonotope methods, the nonlinear update step is given by the
intersection method in Bravo et al. (2006), with strips computed
as in Alamo et al. (2005). Generator reduction is applied after
the update step using Method 4 in Yang and Scott (2018b). In
addition, we denote by ZMV+F and ZFO+F the methods ZMV and
ZFO with the addition of the intersection discussed in Remark 11.
Since zonotopes are not closed under intersection, this intersec-
tion enclosed by converting the a priori enclosure XF from CG-rep

3 In a simplified analysis, ZMV and ZFO have computational complexities
(n4) and O(n5), respectively. See Rego et al. (2020) for a detailed discussion.
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Fig. 2. The enclosures X̃k from the first four time steps of set-valued state estimation in the example in Section 5.1 using ZMV (yellow), ZFO (blue), CZMV (green),
nd CZFO (orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. The radii of the estimated enclosures X̃k in the example in Section 5.1
obtained using ZMV, ZFO, CZMV, and CZFO.

to half-space representation as described in Scott et al. (2016),
representing XF as an intersection of strips, and then using the
method for bounding the intersection of a zonotope with a set
of strips from Bravo et al. (2006). As with constrained zono-
topes, these are referred to as ZMV-like and ZFO-like methods,
respectively.

5.1. A system with nonlinear measurement equations

To demonstrate the effectiveness of our methods for set-valu-
ed state estimation of systems with nonlinear outputs, we first
consider the nonlinear discrete-time system xk = f(xk−1) +

k−1, where f is defined by (15) and wk ∈ R2 denotes process
ncertainties with ∥wk∥∞ ≤ 0.4. The measurements are given by

y1,k = x1,k − sin
(x2,k

2

)
+ v1,k,

y2,k = −x1,kx2,k + x2,k + v2,k,
(17)

ith ∥vk∥∞ ≤ 0.4. Finally, let

0 =

{[
0.5 1 −0.5
0.5 0.5 0

]
,

[
5
0.5

]}
. (18)

Fig. 2 shows the estimated enclosures X̃k (since there are no
invariants, these are X̃k = X̂k) for k = 0, 1, 2, 3, obtained using
ZMV, ZFO, CZMV, and CZFO. In this case, Zw and Zv are computed
as in Remark 8. The number of generators and constraints is
limited to 8 and 3, respectively. The simulations were run in
MATLAB 9.1 with INTLAB 12 and CPLEX 12.8, on a laptop with
32 GB RAM and an Intel Core i7-9750H processor. The first set X̃0
coincides with X0 for both ZMV and ZFO, which demonstrates that
the update step method using zonotopes can be very conservative
with nonlinear measurements, making the first update ineffective
in this example. On the other hand, the sets X̃0 obtained by CZMV
and CZFO have reduced volume relative to X0, showing that X0
was effectively tightened by the first measurement. In addition, in
contrast to CZMV and CZFO, the size of the enclosures X̃k for both
ZMV and ZFO increases substantially with time. This is corrobo-
rated by Fig. 3, which illustrates the radii of the sets X̃k (half the
length of the longest edge of the interval hull). Note that the radii
8

Table 2
Total and complexity reduction average execution times per time step of the
state estimators for the first example.

ZMV CZMV ZFO CZFO

Total 30.5 ms 65.3 ms 47.4 ms 72.2 ms
Red. 4.4 ms 4.8 ms 6.6 ms 14.2 ms

of the sets obtained by ZMV and ZFO increase to infinity, while
the radii of the sets obtained by CZMV and CZFO remain finite.
This result corroborates the improved accuracy achieved by using
constrained zonotopes for computing the update step with non-
linear measurement equations. Lastly, Table 2 shows the average
computational times per time step of each method, together with
the computational times spent in complexity reduction of the
enclosures. The latter is included to distinguish the computational
burden of the proposed methods from the complexity reduction
procedures, whose analysis is out of the scope of this work. Note
that CZMV and CZFO were able to provide accurate enclosures
with an increase of 114% and 52.3% of the execution times with
respect to ZMV and ZFO, respectively. Nevertheless, as mentioned
above, the sets obtained by ZMV and ZFO increased to infinity in
few steps, and therefore cannot provide any information about
the state trajectories.

5.2. A system with nonlinear measurements and invariants

The second example involves state estimation of the attitude
of a flying robot. The robot is driven by angular velocity ǔk ∈

R3, with attitude expressed as a rotation quaternion xk ∈ R4

satisfying ∥xk∥22 = 1, which defines the invariant h(xk) = ∥xk∥22−
1 = 0 to be used in the consistency step (5). The invariant h(xk) is
a mathematical property of rotation quaternions, which belong to
the group denoted by Spin(3), where the unitary norm ∥xk∥22 = 1
is always satisfied (Selig, 2005). Therefore, even in the presence
of time-varying angular velocities, disturbances and sensor noise,
this invariant is satisfied by xk for all k ≥ 0.

The known value uk of the physical input ǔk is measured
by gyroscopes and therefore is considered to be corrupted by
additive noise wk ∈ R3. Physically, the system is driven by the
uncorrupted signal ǔk = uk − wk. The attitude xk evolves in
discrete time according to (Lefferts et al., 1982; Teixeira et al.,
2009)

xk =
(
cos(p(uk,wk))I4 −

Ts
2

sin(p(uk,wk))
p(uk,wk)

Ω(uk,wk)
)
xk−1, (19)

where Ts is the sampling time and

p(uk,wk) =
Ts
2
∥ǔk∥2, Ω(uk,wk)

=

⎡⎢⎣ 0 ǔ3,k −ǔ2,k ǔ1,k
−ǔ3,k 0 ǔ1,k ǔ2,k
ǔ2,k −ǔ1,k 0 ǔ3,k

⎤⎥⎦ ,
−ǔ1,k −ǔ2,k −ǔ3,k 0
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Fig. 4. The zonotope X0 (yellow), the enclosure X̃0 obtained in the consistency
tep (5) using Corollary 1 with X̂0 = X0 (red), the set X0 ∩ {I2, 0} (blue), and
he enclosure X̃0 obtained in the consistency step (5) using Corollary 1 with
ˆ0 = X0 ∩ {I2, 0} (green). The resulting enclosures contain each other according
o the sequence above. The dashed line denotes the box {I2, 0}. The circle that
escribes the feasible state set of ∥x0∥22 = 1 is also depicted. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

he known value uk is

k = ǔk +wk =

[ 0.3 sin((2π/12)kTs)
0.3 sin((2π/12)kTs − 6)
0.3 sin((2π/12)kTs − 12)

]
+wk, (20)

ith ∥wk∥∞ ≤ 3.0×10−3. The measurement is given by yk =
C(xk)r[1], C(xk)r[2]) + vk, with r[1] = [1 0 0]T , r[2] = [0 1 0]T ,
vk∥∞ ≤ 0.15, and C(xk) is a rotation matrix defined by

(xk) ≜

⎡⎣x21,k − x22,k − x23,k + x24,k 2(x1,kx2,k + x3,kx4,k)
2(x1,kx2,k − x3,kx4,k) −x21,k + x22,k − x23,k + x24,k
2(x1,kx3,k + x2,kx4,k) 2(−x1,kx4,k + x2,kx3,k)

2(x1,kx3,k − x2,kx4,k)
2(x1,kx4,k + x2,kx3,k)
−x21,k − x22,k + x23,k + x24,k

⎤⎦ .

he sampling time is Ts = 0.2 s, and the initial state belongs to the
onotope X0 = {0.18I4, [0 1 0 0]T }. For the purpose of generating
rajectories of (19), the initial state is x0 = [0 1 0 0]T .

In the following, for the sake of clarity we first illustrate the
bservation described in Remark 11 for the consistency step in a
ub-example with xk ∈ R2, ∥xk∥22 = 1, and

0 =

{[
0.2 0.2
0 0.2

]
,

[
1.3
0

]}
.

ote that in this case the set {I2, 0} is a valid enclosure for the
easible state set of the invariant ∥xk∥22 = 1. Fig. 4 shows the
nitial set X0 and the enclosure X̃0 obtained using Corollary 1 for
he consistency step with X̂0 = X0. Note that, although tightened,
he resulting set is still very conservative. Fig. 4 also shows the
ntersection X0∩{I2, 0}, which is tighter than the previous result.
inally, we illustrate the enclosure X̃0 obtained using Corollary 1
ith X̂0 = X0 ∩ {I2, 0}, which is the least conservative result. This
emonstrates the improved accuracy that can be achieved if an
nclosure of the feasible state set is known a priori.
Fig. 5 illustrates the radii of the enclosures X̃k obtained for

he trajectories of the system (19) using ZMV-like and CZMV-
ike methods. We consider the enclosure {I4, 0} of the feasible
tate set of the invariant ∥xk∥22 = 1. In this case, Zw and Zv are
omputed as in Remarks 4 and 8, respectively. The number of
enerators and constraints is limited to 12 and 5, respectively.
9

Fig. 5. The radii of the estimated enclosures X̃k for (19) obtained using ZMV-like
and CZMV-like methods.

Note that the zonotope methods were not able to provide use-
ful enclosures for (19), i.e., the sizes of the enclosures increase
with time and do not provide useful information, even when
considering the intersection with {I4, 0}. Note that the enclosures
provided by CZMV and CZMV+F also are not useful in this case,
even though CZMV+F is much tighter than the others. On the
other hand, CZMV+C and CZMV+FC both provided good enclo-
sures with stable size, with the latter providing more accurate
sets in the initial time steps, as expected. This demonstrates the
advantage of including the consistency step (5) in state estimation
using the mean value extension to take into account the invariant
∥xk∥22 = 1. In addition, note that the radii of the enclosures pro-
vided by CZMV+C and CZMV+FC are much smaller than the radius
of {I4, 0}, showing that significant accuracy can be obtained by
combining the state estimation procedure with the invariant, in
comparison with using only the information available about the
feasible state set.

Fig. 6 shows the radii of the enclosures X̃k obtained for the
trajectories of (19) using ZFO-like and CZFO-like methods. Once
again, the enclosures computed by zonotopes do not provide
useful information since these increase with time, even when
considering the intersection with {I4, 0}. On the other hand, even
CZFO provides tight enclosures for this example. This demon-
strates that the first-order Taylor extension is able to provide
significantly less conservative bounds than the mean value exten-
sion in this case, since the nonlinear measurements are polyno-
mials of second order, and therefore the interval matrices Q[q] in
Proposition 4 are singletons. Nevertheless, CZFO+C and CZFO+FC
both provide still sharper enclosures, with comparable sizes due
to the limited complexity of the sets. To provide a comprehen-
sive comparison between all of the methods, Table 3 shows the
average radius ratio for this example (ARR, i.e., the ratio of the
radius of the set provided by one method over the radius of
the set provided by another method at k, averaged over all time
steps), and Table 4 shows the average computational times per
time step of each method. Note that, in contrast to the analogous
state estimation algorithms for linear measurements in Rego et al.
(2020), the computational times of CZMV-like methods were
competitive with ZMV-like methods, and CZFO-like methods with
ZFO-like methods as well. The increased times of the zonotope
methods arise from the iterative computation of strips based on
interval analysis in Alamo et al. (2005) and the intersection with
strips given in Bravo et al. (2006) to perform the update step.
In this sense, using the mean value extension with constrained
zonotopes, one can achieve about 93% less conservative bounds
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Table 3

Average radius ratio of the enclosures obtained by the state estimators (column per row) for the system (19).
\ ZMV ZMV+F CZMV CZMV+C CZMV+F CZMV+FC ZFO ZFO+F CZFO CZFO+C CZFO+F CZFO+FC

ZMV 1 0.9187 0.7193 0.0636 0.1491 0.0669 0.6447 0.6057 0.0489 0.0358 0.0436 0.0385

ZMV+F 1.0891 1 0.7834 0.0671 0.1606 0.0707 0.6988 0.6562 0.0521 0.0379 0.0465 0.0408

CZMV 1.4091 1.2946 1 0.0857 0.2024 0.0901 0.9272 0.8701 0.0680 0.0484 0.0593 0.0523
CZMV+C 29.2088 26.5557 21.4655 1 3.8897 1.0665 16.3264 15.2013 0.8974 0.6056 0.8472 0.6363
CZMV+F 8.0755 7.4009 5.6895 0.3745 1 0.4023 5.2585 4.9195 0.3382 0.2289 0.2919 0.2460
CZMV+FC 28.7622 26.1185 21.1725 0.9697 3.8402 1 15.8969 14.7785 0.8571 0.5744 0.8144 0.6018

ZFO 1.6829 1.5384 1.2325 0.0849 0.2420 0.0898 1 0.9367 0.0671 0.0487 0.0621 0.0519

ZFO+F 1.8040 1.6484 1.3211 0.0891 0.2581 0.0942 1.0683 1 0.0709 0.0512 0.0656 0.0546

CZFO 34.1796 31.0484 25.3451 1.1983 4.6785 1.2562 18.5748 17.2934 1 0.6964 0.9717 0.7290
CZFO+C 50.4008 45.7732 37.1612 1.7337 6.8068 1.8039 27.7376 25.7968 1.4945 1 1.4372 1.0499
CZFO+F 33.4713 30.4709 24.4434 1.2814 4.5068 1.3433 19.2573 17.9445 1.1000 0.7504 1 0.7929
CZFO+FC 50.2958 45.6286 37.2526 1.6647 6.8396 1.7317 27.1388 25.2164 1.4323 0.9617 1.3947 1
T
T
s

e
f
t

Fig. 6. The radii of the estimated enclosures X̃k for (19) obtained using ZFO-like
nd CZFO-like methods.

CZMV+C–to–ZMV+F ARR of only 6.7%) in comparison to zono-
opes, with a mild increase of 22.2% in the average execution
ime. On the other hand, using the first-order Taylor extension,
ne can achieve about 95% less conservative bounds (CZFO+C–
o–ZFO+F ARR of 5.1%), with an increase of 10.5% in the average
xecution time. This demonstrates the joint accuracy and effi-
iency provided by the proposed methods based on constrained
onotopes. These ARR are highlighted in Table 3, and correspond
o a comparison between the most accurate results obtained by
MV-like and CZMV-like methods, and between ZFO-like and
ZFO-like methods.
Lastly, note that the CZFO+C–to–CZFO ARR was of 69.64%,

howing again the improved accuracy obtained by taking into
ccount the invariant through the consistency step. In addition,
ZFO-like methods provided better enclosures than CZMV-like
ethods in this example. Nevertheless, this comes with an im-
ortant increase in computational time as shown in Table 4. This
emonstrates that the choice between CZMV-like methods and
ZFO-like methods for state estimation can provide a trade-off
etween accuracy and efficiency, and therefore will depend on
he current application.

emark 15. Although the examples in this section are low-dim-
nsional, the proposed methods can be applied straightforwardly
o higher dimensional systems, such as the quaternion-based
uadrotor model in Kang et al. (2020). The computational com-
lexity will follow the expressions shown in Table 1.
10
able 4
otal and complexity reduction average execution times per time step of the
tate estimators for the system (19).

ZMV ZMV+F CZMV CZMV+C CZMV+F CZMV+FC

Total 0.4552 s 0.4610 s 0.4478 s 0.5635 s 0.4519 s 0.5942 s
Red. 0.37 ms 0.31 ms 10.6 ms 71.8 ms 19.8 ms 96.5 ms

ZFO ZFO+F CZFO CZFO+C CZFO+F CZFO+FC

Total 1.0403 s 1.0563 s 1.0907 s 1.1671 s 1.1009 s 1.3750 s
Red. 2.3 ms 2.2 ms 90.3 ms 0.1266 s 98.7 ms 0.3306 s

6. Conclusions

This paper developed new approaches for set-valued state
estimation of nonlinear discrete-time systems with nonlinear
measurements and nonlinear invariants. The state trajectories
were enclosed using the standard prediction-update algorithm
with the addition of a new consistency step accounting for the
nonlinear invariants. New methods were proposed for the up-
date and consistency steps using generalized intersections of
constrained zonotopes. In addition, our previous methods for
the prediction step were generalized to allow the approximation
points for the mean value and first-order Taylor extensions to
lie in a larger region. Numerical results demonstrate that our
methods can provide significantly tighter enclosures compared to
existing zonotope methods. The improved accuracy is achieved
with a mild increase in computational cost. Nevertheless, future
work will seek to reduce the execution times, since these can be
a major issue in many practical applications, and to reduce the
conservativeness introduced by the mean value and first-order
Taylor approximations.
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Appendix A. Proofs

Proof of Proposition 1. Choose any (x,w) ∈ X ×W . Lemma 1
nsures that there exists a real matrix Ĵ ∈ J such that f(x,u,w) =
(γx,u,w)+Ĵ(x−γx). By Theorem 1 and the choice of Zw , it follows
hat f(x,u,w) ∈ Z ⊕ ◁

(
J, X − γ

)
, as desired. ■
w x
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Proof of Proposition 2. Choose any (x,w) = z ∈ Z . Lemma 2
nsures that there exist ξ ∈ B∞(A, b), ξ̃ ∈ B∞(Ã, b̃), and L̂ ∈ L,

such that

f(x,u,w) = f(γx,u, γw)+∇
T f(γx,u, γw)(z− γz)

+ c̃+ [G̃ G̃d]ξ̃ + L̂((c− γz)+ 2Gξ).

Therefore, f(x,u,w) ∈ f(γx,u, γw) ⊕ ∇T f(γx,u, γw)(Z − γz) ⊕
◁(L, (c−γz)⊕2GB∞(A, b))⊕c̃⊕[G̃ Ḡd]B∞(Ā, b̃). Thus, (14) follows
immediately from the definition of R. ■

Proof of Proposition 5. Each component of (J−mid(J)) ∈ IRm×n

is an interval satisfying (Jij − mid(Jij)) = (1/2)diam(Jij)[−1, 1].
Moreover, a[−1, 1] = |a|[−1, 1] holds for every a ∈ R. Therefore
mγ,i =

∑n
j=1(1/2)diam(Jij)|c̄γ,j|[−1, 1]. Consequently, diam(mγ,i)∑n

j=1 diam(Jij)|c̄γ,j|, and

∥diam(mγ )∥1 =
m∑
i=1

n∑
j=1

diam(Jij)|c̄γ,j| =
n∑

j=1

(
m∑
i=1

diam(Jij)

)
|c̄γ,j|

=

n∑
j=1

Θjj|c̄γ,j| = ∥Θc̄γ∥1.

he constraints in (16) follow directly from the requirement that
∈ □Z . ■

roof of Corollary 1. Choose any x ∈ X satisfying h(x) = 0.
emma 1 ensures that there exists a real matrix Ĵ ∈ J such that
(x) = h(γx) + Ĵ(x − γx). Since Ĵ = J̃ + (Ĵ − J̃) holds, then
(x) = h(γx)+ J̃(x− γx)+ (Ĵ− J̃)(x− γx). Consequently,

x = h(x)+ J̃γx − h(γx)+ (J̃− Ĵ)(x− γx)

= 0+ J̃γx − h(γx)+ (J̃− Ĵ)(x− γx)

∈ (J̃γx − h(γx))⊕ ◁(J̃− J, X − γx) = H.

herefore, {x ∈ X : h(x) = 0} ⊆ {x ∈ X : J̃x ∈ H} = X ∩D H . ■

roof of Corollary 2. Choose x ∈ X such that h(x) = 0. Lemma 2
nsures that there exist ξ ∈ B∞(A, b), ξ̃ ∈ B∞(Ã, b̃), and L̂ ∈ L,
uch that

(x) = h(γx)+∇
T
x h(γx)(x− γx)

+ L̂(p+ 2Gξ)+ c̃+ [G̃ Ḡv]ξ̄.

ith p = c − γx. Since h(x) = 0, we have ∇T
x h(γ)x = −h(γx) +

T
x h(γx)γx − L̂(p+ 2Gξ)− c̃− [G̃ Ḡv]ξ̄, and therefore
T
x h(γx)x ∈ (−h(γx)+∇

T
x h(γx)γx)⊕ (−R) = H.

e conclude that {x ∈ X : h(x) = 0} ⊆ {x ∈ X : ∇T
x h(γx)x ∈

} = X ∩D H . ■

ppendix B. Linear systems

When the prediction, update, and consistency steps for non-
inear systems developed in the previous subsections are applied
irectly to linear systems, the resulting enclosures are straight-
orward. Consider the linear discrete-time system

k = Axk−1 + Buuk−1 + Bwwk−1, (B.1a)

yk = Cxk + Duuk + Dvvk, (B.1b)

here A ∈ Rn×n, Bu ∈ Rn×nu , Bw ∈ Rn×nw , C ∈ Rny×n, Du ∈ Rny×nu ,
v ∈ Rny×nv , with known polytopic bounds (x0,wk, vk) ∈ X0 ×

×V . Moreover, assume that the trajectories of (B.1) satisfy the
inear invariants Ex = d, with E ∈ Rnd×n, and d ∈ Rnd . Given the
k
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revious set X̃k−1, the prediction step (3) and the update step (4)
re computed exactly for (B.1a)–(B.1b) as in Scott et al. (2016):

¯k = AX̃k−1 ⊕ Buuk−1 ⊕ BwW , (B.2)
ˆk = X̄k ∩C ((yk − Duuk)⊕ (−DvV )). (B.3)

ll the set operations in (B.2)–(B.3) can be computed straightfor-
ardly using (10)–(12). To compute the consistency step (5), note
hat in this case this can be written as X̃k ⊇ {x ∈ X̂k : Exk ∈ {d}},
here {d} denotes a singleton that contains only the point d.
herefore, if X̂k = {Ĝk, ĉk, Âk, b̂k}, then X̃k is given by

˜k = X̂k ∩E {d} =
{
Ĝk, ĉk,

[
Âk

EĜk

]
,

[
b̂k

d− Eĉk

]}
. (B.4)

ence, the consistency step can be computed exactly as well.
herefore, the only source of conservatism in the set-valued state
stimation of (B.1) using constrained zonotopes through the steps
B.2)–(B.4) arises if the complexity of the sets are limited, which
s often necessary in practice and requires the use of complexity
eduction methods (Scott et al., 2016).
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