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SUMMARY Clostridioides difficile infection (CDI) is one of the major issues in nosoco
mial infections. This bacterium is constantly evolving and poses complex challenges 
for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increas
ingly equipped with new therapeutic strategies, such as monoclonal antibodies and 
live biotherapeutic products, which need to be thoroughly understood to fully harness 
their benefits. Moreover, interesting options are currently under study for the future, 
including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and preven
tion strategies continue to play a pivotal role in limiting the spread of the infection. In 
this review, we aim to provide the reader with a comprehensive overview of epidemio
logical aspects, predisposing factors, clinical manifestations, diagnostic tools, and current 
and future prophylactic and therapeutic options for C. difficile infection.

KEYWORDS Clostridioides difficile, Clostridium infections, bacteriophages, antibacterial 
agents, bacteria, antibodies, monoclonal, prevention, surveillance
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INTRODUCTION

C lostridioides difficile infection (CDI) is a disease primarily involving the colon. It 
typically occurs in patients whose gut microflora has been disrupted by antibiotic 

therapy. The most common clinical manifestation of CDI is diarrhea, and the typical 
patient is hospitalized, comes into contact with spores of C. difficile which vegetate, 
multiply, and secrete toxins capable of causing pathogenic damage that can manifest in 
clinical conditions ranging from mild colitis to fulminant colitis and even death.

Over the last three decades, a profound shift in the epidemiology of C. difficile 
infection has been observed. This change began in the Western world and has since 
spread globally. First, CDI episodes, recurrences, and severity have increased, with a 
consequent increase in mortality (1). The epidemiological change appears to have 
started in Quebec, Canada, where researchers noticed outsized increasing rates of 
CDI and its associated 30-day mortality between 1991 and 2003. During this period, 
incidence increased from 35 to 156 per 100,000 population, and mortality increased 
from 5% to 14% (2). The following year, McDonald et al. in the United States (US) 
identified a new strain (the same one that caused the Quebec outbreak) with increased 
fluoroquinolone resistance that was referred to as NAP1/027 (3). From that moment on, 
the NAP1/027 strain spread to Europe and then worldwide (4) significantly impacting 
health and costs (5, 6). From 1999 to 2004, a fourfold increase in mortality was observed 
in the US (from 5.7 to 23.7 yearly C. difficile mortality rates per million population) (7).

Elderly and fragile populations are those who paid the highest price, with a mortality 
of 13.5% in CDI patients over 80 years (8). In 2014, a multistate point prevalence study in 
the US (183 hospitals—data referring to 2011) reported C. difficile as the most commonly 
reported nosocomial pathogen, causing 12% of healthcare-associated infections (9). 
From an epidemiological perspective, this was a paradigm-changing study: for the 
first time, C. difficile surpassed Staphylococcus as the prevalent agent of nosocomial 
infections. Similar data, referring to 2015, were reported by the same authors in 2018 
(10). However, when adjusting data to account for increased diagnostic sensitivity due 
to the increased use of nucleic acid amplification testing, the data appear to indicate a 
decrease in healthcare-associated CDI (HA-CDI) episodes from 2011 onward, although 
the numbers remain significantly elevated (11). Likely, the reduction of fluoroquino
lone use, combined with the decline in NAP1/027 epidemiology, contributed to this 
downward trend (12).

Regarding management, metronidazole and vancomycin have long remained the 
mainstay for CDI treatment. In 2013, we had the first robust evidence from a randomized 
trial on the effectiveness of fecal microbiota transplantation (FMT) in recurrent CDI 
(rCDI) (13). In 2017, the first trial of a monoclonal antibody (bezlotoxumab) against CDI 
demonstrated a reduction in recurrences (14). In the same year, fidaxomicin replaced 
metronidazole as the firstline therapy for initial CDI episodes (15). In the meantime, 
surgical techniques have also been implemented (16).

Currently, CDI is an extremely complex problem that attracts significant scientific and 
research interest, along with relevant funds. Aside from studies on antibiotics, differ
ent other therapeutic strategies are being investigated, including vaccines, oral spores, 
antitoxin compounds, small molecules, natural products, and many others. Below, we will 
review the current main evidence on CDI focusing on prevention, clinical manifestations, 
and treatment options.

HISTORY

The first description of human pseudomembranous colitis (PMC) was reported by Finney 
in 1893 (17). The patient was a 22-year-old debilitated woman who underwent surgical 
resection of a gastric tumor. She later developed severe diarrhea and died on the 
15th post-operative day. The autopsy described a “diphtheritic membrane” in her small 
bowel. Several cases of PMC have been reported in the pre-antibiotic era, often as a 
complication of surgery or severely debilitating diseases (18). Certainly, PMC became 
more common with the introduction of antibiotics. In the 1950s, the suspected causing 
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pathogen of PMC was Staphylococcus aureus. This hypothesis was based on the frequent 
detection of this organism in stools, leading to oral vancomycin becoming the standard 
treatment for this disease (19, 20). In 1974, Tedesco et al. published a decisive study 
that laid the foundation for the definitive cause of PMC (21). In this prospective study, 
among 200 patients receiving clindamycin, 42 patients developed diarrhea, and 20 (10%) 
showed proctoscopic findings of PMC. Staphylococci and other pathogens were not 
recovered, but subsequent investigations on stored stool specimens from eight patients 
revealed C. difficile on culture (22). C. difficile, named Bacillus difficilis at that time, was 
reported for the first time by Hall and O’Toole in 1935 as a colonizing organism of the 
neonatal intestinal flora (23). In 1962, Smith and King documented the occurrence of C. 
difficile in extraintestinal sites of eight patients, including blood, soft tissue, peritoneal 
and pleural fluids, and vaginal vault (24). Three of these patients eventually died. The 
authors concluded that C. difficile did not regularly produce its characteristic toxin in 
the human body, or alternatively, the human body was not considerably sensitive to the 
lethal action of this toxin.

The original description of C. difficile cytotoxin might be attributable to Green who 
found a cytopathic toxin in the stools of guinea pigs treated with penicillin. At the time, 
this finding suggested a viral pathogen; however, in retrospect, it was likely the first 
description of the cytopathic toxin produced by C. difficile (25). In 1977, Rifkin et al. 
demonstrated the presence of a toxin in the stools of two patients with antibiotic-associ
ated colitis that could be neutralized by Clostridium sordellii antitoxin (26). The following 
month, similar findings were reported by Larson and Price in 11 patients affected by 
PMC or antibiotic-associated colitis (27). Lastly, in 1978, George et al. demonstrated the 
isolation of C. difficile and the presence of a preformed fecal toxin in the feces of a 
patient with clindamycin-associated PMC (28). This finding was, almost simultaneously, 
confirmed by Bartlett et al. who showed that toxin-producing clostridia were responsible 
for antibiotic-associated pseudomembranous colitis through testing human stools both 
in tissue cultures and hamster models (29). The “hamster model” has been shown to 
be central in discoveries about PMC. Bartlett et al. demonstrated that clindamycin-asso
ciated colitis in hamsters is due to a clindamycin-resistant, toxin-producing strain of 
Clostridium (30, 31). Furthermore, the protective effect of vancomycin on clindamycin-
induced colitis has been shown in hamsters before C. difficile was found to be the 
cause of fatal hamster colitis (32). In 1978, the first randomized controlled trial (RCT) 
on patients with PMC suggested that oral vancomycin therapy is associated with rapid 
clinical and histological improvement (30). The “hamster model” turned out to be crucial 
even in detecting toxin A which represents an important factor in the pathogenesis 
of PMC resulting in differing from toxin B, the previously described cytopathic toxin 
(33). Both these toxins produced by C. difficile are responsible for human PMC symptoma
tology causing cytotoxicity, inflammation, and cellular detachment from the intestinal 
epithelium. In 1988, a C. difficile strain from a patient suffering from PMC was shown to 
produce a binary toxin that might be thought to be an additional virulence factor (34), 
as subsequently confirmed in the 2000s (35). Milestones in C. difficile history are briefly 
illustrated in Fig. 1.

In 2016, Lawson et al. proposed the reclassification of Clostridium difficile as Clostri
dioides difficile when it was necessary to classify C. difficile and the related C. mangenotii 
into a new genus following the restriction of the genus to Clostridium butyricum and 
related species in 2015 (36). Recent studies using molecular methods (DNA-rRNA pairing 
and 16S rRNA) have shown the diversity of organisms that were previously included in 
the single genus “Clostridium.” In order to minimize confusion when renaming a new 
genus resembling the genus Clostridium, the term “Clostridioides” was coined, retaining 
the species name “difficile” due to the unusual difficulty in its isolation and study (37).

DIFFERENCES IN EPIDEMIOLOGY

Since March 2003, an increasing incidence of CDI caused by the hypervirulent C. difficile 
PCR ribotype (RT) 027/toxinotype III was first recognized in Canada, the US, and, 
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thereafter, in Europe and in several other countries. More recently, a post hoc analysis on 
1,501 clinical isolates from MODIFY I and II studies (clinical trials comparing bezlotoxu
mab vs placebo) showed a significant continent distribution preference among five C. 
difficile clades (38). In detail, a predominance of clade 1 (including the non-toxigenic 
RT009, RT010, and RT039) was found in Europe with the exception of Poland where clade 
2 predominated. On the other hand, this study demonstrated the prevalence of RT027, 
belonging to the hypervirulent clade 2, as well as a prevalence of clade 1 in the US (38).

Comparing CDI epidemiological differences between countries and territories is 
challenging because of various approaches to diagnosis, definition, and data reporting. 
A systematic review and meta-analysis showed the heterogeneity of HA-CDI incidence, 
between 2006 and 2016, between territories, reporting high rates in North America, 
particularly among the elderly from 2006 to 2016. The authors of this study attribute 
such differences to various testing policies and methodologies, under-ascertainment of 
cases, and reporting requirements (39). For instance, a European, multicenter, prospec
tive, biannual point prevalence study showed a wide variety of testing approaches 
for C. difficile infection across Europe reporting the use of optimum testing methods 
only in twofifths of hospitals (39). A recent systematic review reported a substantial 
global incidence, with the highest incidence rates occurring in hospitalized patients 
and marked heterogeneity between countries (40). More specifically, incidence rates of 
HA-CDI and community-associated CDI (CA-CDI) in the US were 8.00 and 2.00 per 10,000 
patient days, respectively. Canada reported a rate of 4.3 per 10,000 patient days for 
HA-CDI, whereas CA-CDI data were unavailable. On the other hand, the highest incidence 
in Europe was reported in Poland (HA-CDI and CA-CDI 6.18 and 1.4 per 10,000 patient 
days, respectively), and the lowest incidence in the United Kingdom (UK) (HA-CDI and 
CA-CDI 1.99 and 0.56 per 10,000 patient days, respectively). In Australia, rates were 3.19 
and 1.19 per 10,000 patient days for HA-CDI and CA-CDI, respectively. Over 2009–2019, 
no clear incidence trend emerged, with most countries showing stable rates. A point 
prevalence survey of healthcare-associated infections in 25 US hospitals found that C. 

FIG 1 Milestones in Clostridioides difficile history. CD, Clostridioides difficile.
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difficile remained the most frequent pathogen and confirmed that the prevalence of CDI 
remained stable between 2011 and 2015 (15% of all infections) (10). On the other hand, 
in Europe, the frequency of C. difficile causing healthcare-associated infections in acute 
care hospitals appeared to increase from 5.4% to 7.3% according to two point prevalence 
surveys, respectively, in 2011–2012 and 2016–2017 (41).

Considering all these findings, epidemiological differences in CDI frequency in 
different countries might be explained by different burdens of welldefined or con
flicting risk factors. Established risk factors for both initial and recurrent HA-CDI are 
antibiotic use, recent hospitalization, proton pump inhibitor (PPI) use, and increasing 
age. The latter risk factor might be of particular interest, as the proportion of the elderly 
population is increasing worldwide. According to the latest figures from Eurostat (the 
statistical bureau for the European Union), the proportion of individuals over 65 years 
old accounted for 28% of the population in Japan, 20.3% in European countries, and 
16% in the US (42). However, an epidemiologic review made in Japan (2006–2017) 
showed a lower incidence of CDI (0.8–4.71 episodes per 10,000 patient days) than 
that reported in Europe and the US (43). Considering different antibiotic use as risk 
factors for CDI, the highest incidence rates of CDI found in the US and Poland might be 
explained by the different antimicrobial use of prescribed medicines and by the high 
prevalence of 027 ribotypes. A report on antibiotic consumption in 76 countries over 
16 years (2000–2015) showed that the US alongside France and Spain had the highest 
antibiotic consumption rates among the Western high-income countries (HIC) in 2000. 
These figures were essentially confirmed in 2015 when the leading HIC consumers of 
antibiotics were again the US and France, and also Italy (44). According to the European 
point prevalence surveys (2016–2017) (41), antimicrobial use in Poland was relatively low 
[36.7 defined daily dose (DDD) per 100 patient days] and much lower compared to the 
UK (64.2 DDD per 100 patient days) who had the lowest incidence of CDI in Europe (40). 
A recent review and meta-analysis confirmed PPI use to be associated with CDI, including 
recurrent CDI, both in adult and pediatric patients (45). A systematic review of data from 
23 countries indicated that nearly one-quarter of adults used PPIs. Over the study period 
(1988–2022), the prevalence rates of PPI utilization continued to rise and were found 
to be quite similar between the US (6.7%) and some European countries (UK 7.7% and 
Denmark 7.4%) but not other (Spain 18.7%) (46).

Regarding controversial issues, the type of diet is a possible host-related risk factor 
for CDI. The Mediterranean diet was found to promote changes in the human gut 
microbiota, lowering the Firmicutes/Bacteroidetes ratio and increasing the presence 
of Bacteroidetes due to lower animal protein intake. In addition, higher Bifidobacteria 
counts and higher total short-chain fatty acids (SCFA) were found to be associated 
with greater consumption of plant-based nutrients (47). In mice experimental studies, a 
high-fat/high-protein diet may enhance CDI risk and severity during antibiotic treatment, 
whereas a high-carbohydrate diet may be protective despite high levels of refined 
carbohydrates and low levels of fiber (48).

According to this study, these findings might be due to the synergistic effect of a 
loss of microorganisms that normally inhibits C. difficile overgrowth and the abundance 
of an amino acid that promotes C. difficile overgrowth. On the other hand, a high-car
bohydrate diet might be protective despite other authors finding that simple carbohy
drates, specifically trehalose, are implicated in the proliferation of RTs 027 and 078 
epidemic C. difficile strains (49). These epidemic ribotypes have been shown to acquire 
unique mechanisms for metabolizing low concentrations of the disaccharide trehalose. 
Nevertheless, increases in total dietary trehalose were likely minimal particularly in the 
US and Europe during the period 2000–2006 when the incidence of CDI rose substan
tially in the US and England because of the spread of hypervirulent RT027 (50). Therefore, 
the increase in CDI incidence due to epidemic RTs should be attributed to other causes 
rather than trehalose consumption.

Another possible host-related risk factor for CDI is body mass index (BMI). The 
composition of intestinal microbiota has been shown to differ in lean vs obese animals 
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and human volunteers, with a decreased proportion of Bacteroidetes to Firmicutes 
in obese individuals (51). While a case-control study including 148 patients with CDI 
showed that a high BMI value was significantly associated with CDI (52), a recent 
systematic review and meta-analysis, which included studies published up to February 
2021, demonstrated a significant negative association between BMI and CDI. Possible 
explanations of this paradoxical decrease in risk of CDI among obese individuals might 
include altered gut microbiota, underdosing of antibiotics due to high volume of 
drug distribution, concomitant medications exerting a protective effect against CDI (i.e. 
metformin), and comparators with increased risk of CDI (53). In a pooled analysis of BMI 
trends in adults from 1975 to 2014, Western countries showed different frequencies of 
obesity, with the highest and the lowest rates in the US and Poland, respectively (54). 
However, these countries showed the highest incidence of CDI according to the recent 
meta-analysis of Finn et al. (40), suggesting that the impact of BMI on the CDI frequency 
differences is questionable.

Although C. difficile is primarily a nosocomial pathogen, the prevalence of CDI in 
the community appears to be increasing in the US and, to a lesser extent, in Europe 
and other territories (11, 39). Moreover, patients with CA-CDI are generally younger, 
healthier individuals who lack well-known risk factors for CDI (55). C. difficile can be 
found worldwide in various environments including water, soil, and, as commensal or 
pathogen, in the digestive tracts of most mammals, birds, and reptiles. Furthermore, 
food products such as meat, fish, and vegetables could be potential sources of exposure 
to C. difficile by the fecal-oral route. Direct transmission of C. difficile from animals, 
foods, or the environment to humans has not been demonstrated, although overlapping 
PCR ribotypes from animals, foods, and human sources have been found. However, 
the ubiquitous nature of C. difficile and its capacity to persist for prolonged periods 
as an endospore make it very difficult, if not impossible, to ascertain the foodborne 
transmission of this organism. In a previous review, European studies have reported 
lower prevalence rates (up to 3% of meat samples), while in the US and Canada, C. difficile 
is generally reported at much higher rates, in up to 42% of meat samples. Additionally, 
RTs 078 and 027 have not been found in meat samples in Europe but represent the main 
RT in food in North America (56). A more recent review and meta-analysis (2009–2019) 
showed that the overall prevalence of C. difficile in all food samples was 6.3% (from 
0.1% to 66.7%), but differences in different territories, especially Central/North America, 
Europe, and Asia, were not significant. Prevalence rates were similar in vegetables, meat, 
salad, and poultry (from 5.5% to 6.2%) but much higher in seafood samples (10.3%). 
Toxin genes were identified in 61.7% of C. difficile strains (57). Seafoods, including oysters, 
are well-known carriers of C. difficile with a high consumption of these foods in Asia and 
Europe, which might explain the similar prevalence of C. difficile in food in these two 
continents (58).

Another potential risk factor for CDI is climate. CDI appeared more frequent in cold 
climates, although this finding may be influenced by higher awareness in some studies 
(59). In detail, a clear seasonality for CDI with higher numbers of affected patients 
occurring in the winter months was observed in various countries such as Germany, 
Canada, and the Northeastern region of the US (60). Brown et al. hypothesized that this 
marked CDI incidence associated with the co-seasonality of influenza and pneumonia 
might be due to a combination of factors, including hospital crowding and increased 
use of certain antibiotics during wintertime (61). If climate influences CDI incidence, 
community-acquired C. difficile might play a role in explaining CDI peak incidence in cold 
climates. For instance, a Canadian study showed the highest prevalence of C. difficile in 
retail meats in winter, raising questions about the possible seasonality of this infection 
(62).

In conclusion, several factors likely interplay to lead to different incidences of 
CDI among various countries and territories. In particular, the main potential factors 
contributing to the higher CDI prevalence in North America compared to Europe are 
illustrated in Fig. 2. Besides well-known risk factors, diet, especially the Mediterranean 
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diet, with low animal protein and high carbohydrate intake, appears to play a primary 
role in reducing CDI risk in countries where this diet is more widespread.

RISK FACTORS

When considering risk factors for CDI, it is important to keep in mind that they partly 
differ in terms of predisposing to a single CDI episode, recurrent CDI, severe/complicated 

FIG 2 Potential factors contributing to the higher CDI prevalence in North America compared to Europe.
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CDI, and/or fatal CDI. Genetics, resident microbiota, age, immunity, and comorbidities 
play a role in modulating the risk for hosts. Antibiotics and older age are the two most 
relevant risk factors for developing CDI. In the following section, we describe the main 
risk factors associated with CDI.

Antibiotics

In relation to antibiotics, different classes confer different levels of risk, and there is also 
an intra-class stratification difference. It is important to understand that these differences 
are not fixed but rather evolve according to changing epidemiology (different strains and 
different susceptibilities).

In particular, the risk of antibiotic-associated CDI is increased if C. difficile is resist
ant to the antibiotic to which the patient has been exposed (63). In 1999, Johnson 
et al. demonstrated that CDI outbreaks occurring in the US between 1989 and 1992 
were linked to the appearance of an epidemic C. difficile strain with high resistance to 
clindamycin [minimal inhibitory concentration (MIC) >256 µg/mL] (63). Similarly, in 2005, 
McDonald et al. demonstrated that outbreaks in the US between 2000 and 2003 were 
associated with the epidemic emergence of the RT027, which had a 100% resistance rate 
to moxifloxacin (3).

Usually, cephalosporins are among the antibiotics more commonly associated with 
CDI development. These drugs have been and still are widely used because of 
their favorable pharmacokinetic/pharmacodynamic properties, but current stewardship 
efforts are focused on reducing their use. C. difficile strains are intrinsically resistant to 
third-generation cephalosporins (64). The risk associated with cephalosporins decreases 
from third/fourth, to second, to first generation. In a recent longitudinal case-cohort 
study on nursing home residents in the US, cefixime, clindamycin, and moxifloxacin 
showed higher adjusted relative risk for CDI development: 4.26, 4.04, and 3.39, respec
tively (65). Within the same class, fecal excretion also matters; for example, cefotaxime is 
considered less impactful on gut flora compared to ceftriaxone since the former has no 
biliary excretion (66).

Apart from the specific antibiotic molecule, the duration of antibiotic exposure has a 
significant impact. A longer therapy causes a more prolonged disruption of the gut flora; 
a 14-day course of antibiotics confers an adjusted relative CDI risk of 27% compared to 
7-day courses (65). CDI risk is higher during antibiotic courses within the first month after 
antibiotics [odds ratio (OR) 6.7–10.4] but remains elevated for 3 months after antibiotic 
cessation (odds ratio 2.7; 95% CI: 1.20–6.15) (67).

Moreover, adding a beta-lactamase inhibitor to a beta-lactam antibiotic confers 
an increased risk for CDI development (e.g., co-amoxiclav vs amoxicillin) because this 
combination causes a stronger disruption of the gut microflora, especially with increased 
activity against anaerobes (e.g., Bacteroides) (68–71). In this regard, aztreonam and 
aminoglycosides are weak inducers of CDI, likely due to no activity against anaerobes 
(68–70). Tetracyclines are another antibiotic class regarded as a weak inducer of CDI. 
Multiple data support the evidence that tetracyclines carry a low risk of CDI (or even 
a protective role); this should be taken into account for cases where discontinuing 
antibiotics is not possible (65, 72).

In Fig. 3, we categorized antibiotics according to their risk of CDI induction.

Age

Age is an independent factor associated with CDI, recurrent CDI, severe CDI, and fatal 
CDI. Resident colonic microflora changes with age, with a decrease in inter-species 
diversity, therefore lowering resistance to colonization by pathogenic bacteria (78). A 
clear example is the progressive decrease of bifidobacteria with age. Bifidobacteria 
are associated with the production of health-promoting metabolites, including short-
chain fatty acids, conjugated linoleic acid, and bacteriocins. It has been demonstrated 
that the relative abundance of bifidobacteria is 60%–70% in early life, 30%–40% in 
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early adulthood, 10% in late adulthood, and 0%–5% in the elderly (79). Furthermore, 
immunosenescence contributes to increased recurrence rates of CDI and correlates with 
worse clinical outcomes (80).

From an immunological point, both cellular and humoral immunity are impaired in 
elderly patients. Naive T cells, especially the CD8+ subset, sharply decrease with age 
(81). This decrease in naïve T cell numbers is believed to be a result of thymic involu
tion in combination with ongoing differentiation of naïve T cells into memory cells or 
effector cells. B cell response is also affected by age, and the quality of secretory IgA 
response may be altered (82). Additionally, phagocytosis and intracellular killing from 
polymorphonuclear cells (PMNs) are deficient in the elderly (83); this has specifically 
been demonstrated against C. difficile more than 30 years ago by Bassaris et al. They 
showed that polymorphonuclear cells from elderly healthy subjects exhibited a marked 
reduction in their ability to ingest C. difficile as compared to PMNs of young healthy 
subjects (P < 0.001) (84).

In terms of epidemiology, large data on US inpatients provide us with CDI prevalence 
rates that we can assume are comparable with Western countries. CDI prevalence rates 
in inpatients were 0.14% for those aged 0–18, 0.31% for those aged 19–44, 0.84% for 
those aged 45–64, 1.35% for those aged 65–79, and 1.85% for those ≥80 years (85). As 
expected, attributable mortality also increases with age. In a review analysis conducted 
on 10975 CDI cases, Karas et al. reported pooled attributable mortality rates according to 
age groups: mortality was 2.5% for those <60 years old, 4.3% for the age group 61–70, 
9.4% for the age group 71–80, and 13.5% for those >80 years old (8). These data clearly 
prove the impact of age on both disease incidence and outcome.

Obesity

Obesity has been identified as a risk factor for CDI in many clinical reports. Studies on 
the gut microbiota of obese patients have demonstrated an increased Firmicutes-to-Bac
teroidetes ratio, the same finding has been observed in CDI patients. Recent studies have 
confirmed an association between BMI and immunological and inflammatory molecules 
such as serum complement component 3 and C-reactive protein (86).

In a retrospective case-control study conducted in Israel, researchers found that 
patients with CDI had a significantly higher BMI compared to controls (33.6 vs 28.9, P = 
0.001), and the association remained significant also in the multivariable analysis with an 

FIG 3 Approximate risk of CDI development according to different antimicrobials (65, 73–77).
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OR of 1.196 per one-unit increase in the BMI scale (52). Similarly, a study conducted in the 
US on 196 hospitalized CDI patients found that those with BMI >35 kg/m2 were 1.7-fold 
more likely to be associated with severe CDI compared to those with a BMI 20–35 kg/m2 

(P < 0.005), and BMI >35 kg/m2 was an independent predictor of severe CDI (P = 0.038) 
(87).

However, a meta-analysis published in 2022 reported that individuals with high BMI 
had significantly decreased odds of CDI with the pooled OR of 0.88 (95% CI 0.80–0.97) 
(53). How should we interpret these findings? It is likely that there is a U-shaped 
relationship between BMI and CDI, with both low and high BMI carrying an increased 
risk of developing CDI and its severe forms. A paper from Nathanson et al. supports 
this hypothesis. The authors analyzed 22,937 patients with CDI visited at the emergency 
department, finding that being underweight (BMI <19) or morbidly obese (BMI >40) was 
associated with an increased risk of in-hospital mortality in CDI patients (88).

Hypoalbuminemia

Hypoalbuminemia is regularly recognized as a risk factor for CDI, rCDI, severe/complica
ted CDI, and fatal CDI. Hypoalbuminemia correlates with high inflammatory conditions 
and is commonly seen in critically ill patients independently of nutritional status (89). 
Indeed, hypoalbuminemia is observed in ~100% of patients admitted to the intensive 
care unit (ICU) after 48 hours, and the lower the albumin the worse the prognosis 
(90). There is evidence showing that during inflammatory phases, there is an increased 
“escape” of albumin into the extravascular compartment through the continuous 
capillaries. Moreover, the rate of albumin synthesis in the critically ill may be significantly 
altered (91), making replacement of losses insufficient. In addition, patients with CDI 
commonly experience protein-losing enteropathy which can further contribute to the 
“negative balance” of albumin metabolism in these patients (92). Albumin works as a 
buffer in maintaining acid-base homeostasis (91) and has a great chelating activity (93). 
Its role as a scavenger has also been tested against C. difficile toxins. It has been shown 
that human serum albumin can bind to toxin A and toxin B, preventing their internaliza
tion into host cells thus reducing the toxin-dependent glucosylation of Rho proteins 
necessary for toxin-induced cellular damage (94, 95). When human serum albumin was 
added to zebrafish embryos exposed to toxin B, their mortality decreased from 50% to 
30% (P < 0.0001) (95). In this context, it seems possible that human serum albumin could 
serve as a protein with an “immunity role” in CDI. However, human experimental studies 
are currently lacking.

Sex

Female sex is more commonly associated with CDI (96). This is an exception compared to 
the majority of bacterial infectious diseases. In fact, females typically present stron
ger immune responses to self and foreign antigens, therefore being more prone to 
autoimmune diseases and, at the same time, less prone to infections. Several factors 
are implicated in this evidence: genetic, anatomic, immunological, and hormonal. From 
an immunological perspective, females display stronger innate and adaptive immune 
responses. Concerning C. difficile, adult females have greater antibody responses, higher 
B cell numbers (96), and higher immunoglobulin (Ig)M and IgG levels but lower IgA 
levels (97). CDI is a unique case where the disease is more common in females, 
accounting for 55%–60% of clinical episodes, with even higher percentages in commun
ity-acquired cases (98). In addition to the aforementioned substrates which contribute to 
the difference between sexes, behavioral factors could play an important role: females 
are usually more exposed to antibiotics in the community and are more often in contact 
with children, who are a well-known source of C. difficile. Despite higher CDI incidence in 
females, associated mortality is greater in males (99).
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Impaired humoral immunity

Several studies confirm the importance of humoral immunity in protecting humans from 
CDI pathogenesis. As early as 1985, Perlmutter et al. demonstrated that C. difficile was 
found in 24% of children with chronic diarrhea and hypogammaglobulinemia (100). In 
2001, Kyne et al. demonstrated that rCDI was by far more common in patients unable 
to mount an adequate IgG response against toxin A (OR 48; 95% CI: 3.5–663) (101). In 
the following years, studies confirmed that low serum levels of IgG directed against both 
toxin A and toxin B were associated with recurrences (102).

From a real-world point of view, there is a substantial prevalence of hypogamma
globulinemia in transplant recipients (both hematopoietic stem cell and solid organ 
transplanted patients). In a study on 235 heart-transplanted patients, Munoz et al. found 
that severe hypogammaglobulinemia (<400 mg/dL) was more common among those 
who developed CDI compared to those who did not (71.4% vs 29.5%, P = 0.03). In the 
multivariate analysis, the only independent risk factor for CDI after heart transplant was 
severe hypogammaglobulinemia (relative risk 5.8; 95% CI: 1.05–32.1; P = 0.04) (103). 
Similarly, a case-control study on 41 kidney-transplant recipients indicated that patients 
who presented with a first CDI episode beyond the first month were more likely to 
have hypogammaglobulinemia (P = 0.002). Poor outcome (graft loss and/or all-cause 
mortality) was more common among CDI cases [adjusted hazard ratio (HR) 5.69; P = 
0.001] (104). Low serum immunoglobulins are usually present in HIV-infected individu
als. A case-control (1:2) study investigated risk factors for CDI among hospitalized HIV 
patients. Cases (HIV that developed CDI) had significantly lower gammaglobulin levels 
on admission compared to controls (HIV who did not develop CDI) (OR 0.68; 95% CI: 
0.48–0.96) (105).

It is crucial to include gammaglobulin level measurement in the global assessment 
of CDI patients because secondary hypogammaglobulinemia is commonly detected 
in several populations/conditions such as transplanted patients, HIV, chemotherapy 
exposed, steroids and/or rituximab exposed, and chimeric antigen receptor-T therapy-
treated patients.

Gastric acid suppressants

Gastric acid suppressants have long been identified as predisposing to CDI. Even when 
H2 antagonists were still in use, there was evidence of their role in predisposition in 
both colonization and infection (106, 107). It is important to note that clostridial spores 
are able to survive the acidic environment of the stomach; therefore, the relationship 
between gastric acid suppressants and CDI cannot be merely explained by the lack of 
acid barrier effect. So why do gastric acid suppressants predispose to CDI? Antacids are 
associated with intestinal dysbiosis: the long-term reduction of gastric acid secretion 
increases the risk of imbalances in the gut microbiota composition.

A meta-analysis of controlled observational studies published in 2018 assessed the 
relationship between PPI and the risk of CDI. It included 50 studies with a total of 342,532 
individuals. The pooled analysis showed a significant association between PPI use and 
the risk of developing CDI (OR 1.26; 95% CI: 1.12–1.39; P < 0.001) (108). In 2021, a 
systematic review and meta-analysis by Mehta et al. focused on the relationship between 
acid suppressants and recurrent CDI: they included 9 studies involving 5,668 inpatients, 
of whom 1,003 (17.7%) developed recurrent CDI. They found that those who received 
acid suppressants during the hospitalization were 64% more likely to develop recurrent 
CDI (OR 1.64; 95% CI, 1.13–2.38; P = 0.009) (109).

Acid suppressants are not only associated with developing CDI (and recurrent CDI) 
but also with worse outcomes. In 2013, Shivashankar et al. analyzed data from 1446 
inpatients with CDI (median age 62.5). Patients with severe-complicated CDI (n = 487) 
were defined as those who required ICU admission, colectomy, or died within 30 
days of CDI diagnosis. Multivariate analysis demonstrated that H2-blockers/PPI use was 
associated with an increased risk of severe-complicated CDI (OR 1.8; 95% CI: 1.3–2.6, P = 
0.0002) (110).
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Another interesting study on 240 patients with CDI (mean age 69.1) with a 180-day 
follow-up included 91 patients who died within the follow-up period. Not only was daily 
use of PPI independently associated with mortality, but cumulative analysis confirmed 
the association of duration-dependent PPI usage with a high mortality rate. In fact, those 
who received PPI for 1–14 days had an HR for mortality of 1.91 (95% CI: 1.14–3.20), while 
those who received PPI for 15–28 days had an HR for mortality of 2.79 (95% CI: 1.69–
4.59). The authors clearly demonstrated significant differences in the gut microbiota of 
CDI patients exposed and non-exposed to PPI (111).

A recent study conducted by Chinese colleagues found that patients receiving 
omeprazole were infected with C. difficile exhibiting higher fluoroquinolone MICs. 
Moreover, this study demonstrated that omeprazole facilitated C. difficile sporulation and 
germination by blocking the pathway of purine metabolism and promoting cell motility 
and toxin production by activation of the flagella (112).

While the Infectious Diseases Society of America (IDSA) guidelines state that there 
is insufficient evidence for discontinuation of PPIs as a measure for preventing CDI, 
they also state that stewardship activities to discontinue PPIs are indicated (15). Indeed, 
antacid overuse is a common and growing problem, with some papers reporting that 
more than 50% of CDI patients who were prescribed PPI lacked a valid indication (113). 
In that respect, CDI diagnosis may be a good opportunity to review patients’ chronic 
medical therapy, discontinuing PPI use if no longer necessary.

Renal impairment

Renal failure is a well-recognized risk factor for CDI. Understanding the extent to which 
this risk is borne by the underlying disease itself, or by higher rates of hospitalization, 
increased exposure to antimicrobials, or immune abnormalities in chronic kidney disease 
(CKD) patients is challenging. (114). From a purely “intestinal” point of view, dysbiosis 
is common among CKD patients. In these patients, a reduction in the number of 
Bifidobacteria and Lactobacillus has been demonstrated (115). In addition, the increased 
plasma concentration of urea and uric acid leads to greater excretion in the gut lumen, 
triggering a process that culminates in damage to the intestinal barrier (114).

Data from more than 150 million hospitalizations between 2005 and 2009 in the US 
showed an almost twofold increase in CDI incidence in patients with CKD compared to 
patients without CKD (1.5% vs 0.7%) (116). Moreover, CKD patients on dialysis were more 
likely to develop CDI compared to CKD patients not on dialysis (OR 1.33; 95% CI 1.32–
1.35; P < 0.001). When analyzed for CKD severity, it appeared clear that CDI incidence 
increases in more severe CKD (116). CKD is not only associated with CDI but also with 
recurrent CDI and severe CDI. In 2015, a meta-analysis on the risk of incident and 
recurrent CDI in CKD and end-stage kidney disease patients was published, including a 
total of 162,218,041 patients. The pooled risk ratio (RR) of CDI in patients with CKD was 
1.95 (95% CI 1.81–2.10), the pooled RR of CDI in patients with end-stage renal disease 
(ESRD) was 2.63 (95% CI 2.04–3.38), and the pooled RR or recurrent CDI in patients with 
CKD was 2.61 (95% CI 1.53–4.44) and in patients with ESRD was 2.23 (95% CI 0.59–8.37) 
(117). A meta-analysis assessing clinical outcomes of CDI in patients with CKD and ESRD 
was performed by Thongprayoon et al., including 116,875 patients. The pooled RR of 
mortality risk of CDI in CKD/ESRD patients was 1.76 (95% CI 1.32–2.34) (118).

PATHOGENIC DETERMINANTS

Ribotypes

PCR ribotyping is the gold standard method used for typing C. difficile isolates and 
investigating CDI epidemiology (119). PCR ribotyping amplifies 16S-23S intergenic 
spacer regions, which vary substantially in size between strains, thus allowing typing 
with high discriminatory power, generating a pattern of bands in PCR amplifications that 
is unique for a specific PCR-RT (120, 121). The most prevalent RTs are 001, 002, 014/020, 
017, 018, 027, and 078.
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RT001 (often grouped with RT072) is one of the most frequent RTs in European 
countries. This strain is commonly identified in HA-CDI cases, but there are also some 
reports of CA-CDI (122, 123). Moreover, different reservoirs have been described for 
this strain, including goats and poultry, and seafood (124). RT001 has been reported as 
the cause of severe CDI in up to 70% of cases and has been strongly associated with 
resistance to moxifloxacin and levofloxacin (125). High-level resistance to erythromycin 
and ceftriaxone has also been reported (126).

RT002 is an emerging cause of severe HA-CDI but can also be a cause of CA-CDI. It 
has been considered an emerging ribotype since 2008, as a principal circulating ribotype 
in Asia (127, 128). RT002 is associated with fluoroquinolone and clindamycin resistance 
(129).

RT014 (frequently listed together with RT020 because they are difficult to distinguish) 
is among the 10 most commonly reported RTs across Europe, the US, and Australia 
(130–133). RT014/020 has been reported as one of the most predominant RTs among 
symptomatic (HA- and CA-CDI) and asymptomatic patients (134). Isolates of both animal 
and human origin were susceptible to firstline human CDI therapies and were resistant 
to clindamycin, erythromycin, and tetracycline (135). RT017 does not express toxin A 
due to a non-sense mutation at amino acid 47 (136). Moreover, it has been linked to 
severe disease, being mostly associated with higher 30-day mortality than the other RTs 
(137) and with resistance to clindamycin and rifampicin. Resistance to erythromycin and 
fluoroquinolones has been reported from Europe, while tetracycline-resistant isolates 
were reported from China (138, 139).

RT018 (ST-17, clade 1) has been reported as the predominant strain in Italian (140) 
and Japanese (127, 128) hospitals, mainly recovered from HA-CDI. RT018 has been 
associated not only with fluoroquinolone resistance (140) but also with resistance to 
macrolides and rifampicin (141).

RT027 (binary toxin positive) has been named the hypervirulent strain due to 
an increase in associated infections at the beginning of the new millennium. Whole-
genome sequencing and phylogenetic analysis demonstrated the existence of two 
genetically distinct lineages (named FQR1 and FQR2) that originated in Canada and in 
the US and disseminated with distinct patterns: FQR1 was extensively reported in the US 
but later spread to South Korea and Switzerland; the FQR2 lineage spread more widely 
in the UK, continental Europe, and Australia (142). The typical fluoroquinolone resistance 
in these strains is thought to be the result of the widespread use of these antibiotics in 
the US during the late 1990s and early 2000s. This strain has been associated with higher 
virulence, mostly due to enhanced sporulation and toxin production. Additionally, the 
production of binary toxin has been linked to more severe disease (143, 144). More
over, RT027 has been associated with a higher production of toxin (145) and with the 
production of a more lethal toxin B that is antigenically different from toxin B produced 
by other RTs (146).

RT078 (binary toxin positive) is a recently described hypervirulent ribotype that 
emerged in the Netherlands, mostly associated with a younger population and with 
CA-CDI (147). Moreover, it was isolated from environmental sources and animals (piglets) 
in Korea (148), Taiwan (149), and Japan (150).

Adhesins

C. difficile surface proteins represent important virulence factors that facilitate coloni
zation through adherence to the gut epithelium and activation of the host immune 
response. Among these, the S-layer is a conserved array of protein that envelops the cell 
and is composed of two subunits: the low molecular weight and high molecular weight 
S-layer proteins. There are 28 other cell wall proteins (CWP), which constitute 5%–20% 
of the S-layer and provide a range of additional functions (151). The S-layer provides 
a strong specific binding to human gastrointestinal tissue specimens, especially to the 
surface epithelium lining of the lumen and to HEp-2 cell lines (152, 153). In addition, 
the S-S-layer is implicated in sporulation and resistance to innate immune effectors, 
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including lysozyme and LL-37 (154). Many CWPs are associated with pathogenesis 
and are often highly immunogenic. In particular, Cwp2 is the most expressed constit
utive CWP. Since knockout experiments have demonstrated a significant reduction in 
adherence to Caco-2 cells, it has been suggested an important function as adhesin (155). 
Cwp66 was the first C. difficileclassified adhesin, as antibodies to Cwp66 reduced cellular 
adherence (156). Cwp22 is an L,D-transpeptidase, a peptidoglycan cross-linking enzyme 
implicated in toxin production, cell permeability, and autolysis, as well as reduced 
cellular adherence (157). Moreover, the CwpV can contribute to autoaggregative cell-cell 
interactions involved in colonization and biofilmlike growth (158). C. difficile produces 
two important collagen proteins: CD2831 and CbpA. CD2831 is a collagen-binding 
protein, which further promotes adhesion and biofilm formation while also modulating 
the classical immune response and promoting immune evasion (159). CbpA has been 
demonstrated to enhance collagen interaction and extracellular matrix adherence (160).

Human receptors and cytokines

Combined repetitive oligopeptide sequences are believed to mediate toxin attachment 
to the cell surface via glycan-binding interactions. Two glycoproteins, sucrase-isomal
tase (SI) and soluble glycoprotein 96 (gp96), have been reported as toxin A receptors. 
Moreover, additional receptor targets have been identified, including sulfated glycosa
minoglycans and members of the low-density lipoprotein receptor family (161, 162). 
For toxin B, three classes of protein receptors have been reported: chondroitin sulfate 
proteoglycan 4, Frizzled 1 (FZD1), FZD2, FZD7, and Nectin 3. These proteins undergo 
constitutive endocytosis and recycling through clathrin-dependent pathways and thus 
could promote toxin entry (163, 164). The extracellular domain of lipolysis-stimulated 
lipoprotein receptor represents the host cell receptor of the C. difficile binary toxin (165).

The cytokine response to CDI has been investigated in humans. A case-control study 
revealed that patients with CDI produced significantly higher levels (at least twofold) 
of interleukin-1β (IL-1β), IL-2, IL-5, IL-6, IL-8, IL-10, IL-13, IL-15, IL-16, IL-17A, and tumor 
necrosis factor alpha (166). Specifically, IL-1β, IL-6, IL-8, IL-17A, and IL-16 were the 
most upregulated, while IL-7 was lower in CDI patients. The authors also assessed the 
prognostic value of cytokine measurements and found that elevated serum levels of 
IL-2 and IL-15 were associated with a poor prognosis in CDI patients, whereas high 
levels of IL-5 and gamma interferon (IFN-γ) were linked to less severe disease (166). 
Similarly, Abhyankar et al. demonstrated a higher mortality in CDI patients in the top 
25th percentile for TNF-α (HR = 8.35, P = 0.005) and IL-8 (HR = 4.45, P = 0.01) (167). In a 
mouse model, another group of researchers demonstrated that IL-33 drives activation of 
colonic group 2 innate lymphoid cells during infection, preventing C. difficile-associated 
mortality (168). Animal studies investigating the potential of cytokine inhibitors are 
currently being published (169, 170), and we will see if there is a possibility to translate 
the potential of these molecules into humans.

Sporulation

C. difficile spore formation represents a transmission route for direct patient-to-patient 
spread and infection from contaminated surfaces in the environment. Furthermore, 
sporulation is responsible for the persistence and recurrence of C. difficile in patients. 
Environmental stimuli (e.g., nutrient deprivation or quorum sensing, stress factors, pH) 
could trigger C. difficile sporulation, with principal molecular regulators represented by 
CodY and CcpA, which are nutritional sensor proteins working as negative regulators 
(171). Moreover, Spo0A functions as a critical regulator for sporulation by regulating 
sporulationspecific RNA polymerase sigma factors, especially for σE and σK (mother 
cell specific), σF and σG (forespore specific) (172). Spores provide resistance to oxygen, 
UV, desiccation, heat, many disinfectants, and antibiotics. Efficiency in sporulation can 
vary between strains. High efficiency provides C. difficile-enhanced transmission in the 
hospital setting (173). Sporulation begins with an asymmetric septation that separates 
the larger portion of the mother cell from the smaller forespore portion. Afterward, 
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the forespore is engulfed by an intracytoplasmic double-membraned prespore, in a 
phagocytosis-like event. At this point, the spore cortex and coat layers are assembled, 
and the mother cell lyses, and later, the mature spore is released into the surrounding 
environment. Spores present a multi-layered structure, with each layer contributing to 
the overall resilience. The core represents the inner layer of the spore and contains the 
genomic DNA, mRNA, ribosomes, and proteins. The dense core is dehydrated due to 
the presence of up to 25% dipicolinic acid conjugated to calcium ions (Ca-DPA), and 
the DNA is compacted and bound to the small acid-soluble proteins that protect it 
from UV damage. The core protects the DNA from heat-induced damage. An extremely 
impermeable inner membrane and the primordial cell wall surround the core. A thick 
layer of cortex peptidoglycan is then synthesized exterior to the primordial layer. This 
layer is composed of approximately 25% of the N-acetylmuramic acid moieties that 
are modified to muramic-δ-lactam, with few crosslinks between adjacent N-acetylmur
amic acid N-acetylglucosamine polymers that confer a more flexible structure (174). A 
second membrane, derived from the mother cell, envelops the cortex. The coat and the 
exosporium constitute the outermost protein layers of the spore.

Germination

C. difficile spore germination is triggered in response to certain host-derived bile salt 
germinants (e.g., cholic acid derivatives) and amino acids (e.g., glycine or alanine), using 
the subtilisin-like, CspC pseudoprotease as the bile acid germinant receptor (175, 176). 
Interestingly, cholic acid and chenodeoxycholic acid derivatives from the gut micro
biome could impact the C. difficile life cycle (177). SleC hydrolase is activated by CspB 
protease, which cleaves the N-terminal pro-sequence from the protein. Activated SleC 
degrades the cortex leading to hydration and to CaDPA release from the spore core 
in response to osmotic swelling. The mechanosensing protein SpoVAC allows CaDPA 
release from the core (178). GerG and GerS proteins have a pivotal role in C. difficile 
spore germination. Particularly, isolates with modifications in these determinants result 
in spores with germination defects, reduced responsiveness to bile salt germinants, and 
cortex degradation defects (179, 180). Ca2+ represents an essential cofactor for C. difficile 
spore germination. Indeed, Ca2+ works with glycine to stimulate germination, and it may 
play a role in the activity of the CspB serine protease, the CspC germinant receptor, the 
CspA pseudoprotease, or in the activity of the cortex hydrolase. Some cortex-degrading 
enzymes also require Ca2+ (181).

Toxins

Many C. difficile strains contain genes that encode up to three different toxins, which 
have been linked to the onset of clinical symptoms. Toxins are considered the major 
virulence factor in CDI pathogenesis. The genes encoding toxin A and toxin B are found 
in a 19.6-kb DNA region that also contains genes for four additional proteins (TcdR, TcdE, 
TcdL, and TcdC), with an important role in the regulation of expression and secretion 
(161). In particular, the activity of TcdR is modulated by activators and repressors and 
is influenced by environmental changes such as changes in temperature and nutrienta
vailability (182). Subsequently, toxin A and toxin B are secreted through TcdE, a protein 
predicted to adopt a holin-like function (183). Toxin A and toxin B are 308 and 270 kDa 
in size, respectively, and share 47% sequence identity. Their toxic action is related to 
the glucosyltransferase activity. More specifically, toxin A and toxin B bind the host 
receptors, followed by pore formation and translocation. Then, toxins mediated their 
action through glucosylation of host GTPases. Inactivation of the Rho-family GTPases 
leads to changes in the actin cytoskeletal structure, the secretion of cytokines, cell 
cycle arrest, and, ultimately, cell death (184). Disruption of focal adhesions and tight 
junctions in epithelial cells are thought to contribute to a reduction of barrier function 
and the onset of diarrhea. Additionally, the secretion of proinflammatory chemokines 
and cytokines further amplifies the intestinal damage associated with CDI. In epithelial 
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cells, the toxins induce caspase 3/7-mediated apoptosis. The intoxication leads to cell 
death, which may contribute to the formation of pseudomembranes and/or necrotic 
lesions in the colon (185–188).

The binary toxin is an ADP-ribosylating toxin, composed of two proteins: an ADP-
ribosyltransferase enzymatic component involved in modifying host cell actin and a 
second component involved in binding to host cells and translocating CDTa to the 
cytosol (189). Binary toxin ADP-ribosylates cellular actin at Arg177, producing ADP-ribose 
and nicotinamide, prevents actin from further polymerization. This leads to complete 
depolymerization of the actin cytoskeleton, resulting in loss-of-barrier function and 
disruption of tight junctions (190). In addition, actin polymerization results in the 
redistribution of the microtubule network, affecting intracellular transport, cell division, 
and cilia formation while also providing long cellular protrusions that increase C. difficile 
adherence to host cells (191). Binary toxin represents a putative factor associated with 
increased virulence of the hypervirulent RT027. Its substantial contribution to C. difficile 
pathogenesis has become apparent in the rare events of infections sustained by strains 
that lacked toxin A and toxin B production but were positive for binary toxin produc
tion. These strains caused symptomatic infections (192). Binary toxin contributes to 
increased virulence and disease severity by activating the inflammatory response, with 
elevated IL-6 cytokine levels, inducing inflammation via the Toll-like receptor 2-depend
ent pathway, and suppressing the protective host eosinophil response (193).

TOXINOGENIC CLOSTRIDIOIDES DIFFICILE CARRIAGE

An infectious disease might be defined as the result of the multiplication of a diffusive 
pathogen in host tissue and inflammation or the host tissue response to the pathogen. 
In fact, the mere carriage of a pathogen (for instance, Candida albicans), although 
necessary, is not alone sufficient to cause an infectious disease. Many pathogens are 
part of the resident tissue flora, being involved in a complex interplay between the 
host’s immune system and the remaining species of the resident flora. For instance, C. 
albicans is part of the healthy gut microbiome, but the transition to tissue invasion and 
damage might lead to clinical diseases such as bloodstream infections (BSIs) (194). CDI, 
as a human infectious disease, is not an exception. In fact, the acquisition of toxigenic 
C. difficile frequently results in carriage without clinical illness. Conversely, a successful 
treatment of a CDI episode might lead to asymptomatic carriage with prolonged spore 
shedding. Moreover, asymptomatic carriage of toxigenic C. difficile is relatively common 
in healthcare facilities, with prevalence or incidence rates ranging from 7% to 18% in 
hospitals and up to 51% in long-term care facilities (195).

For instance, in a recent multicentric study on the natural history of C. difficile carriage, 
in a cohort of 1,432 patients negative at baseline, 9.9% acquired asymptomatic carriage 
of toxigenic C. difficile, and 13.4% of these patients were subsequently diagnosed with 
CDI within 12 weeks of enrollment. Only 39 patients (2.7%) developed CDI without 
prior carriage detection. Additionally, asymptomatic carriage was frequently a transient 
phenomenon, while in 39% of asymptomatic carriers, persistently positive cultures lasted 
for months, with 77 days as median time of colonization clearance (196). These findings 
might suggest that exposure to C. difficile spores is more likely to result in transient 
carriage or “pass-though” with positive stool cultures rather than stable colonization.

It has been suggested that asymptomatic C. difficile carriers might be protected 
against CDI and disease progression (197). Serum IgG levels were higher in asympto
matic patients compared to patients who subsequently developed CDI, and patients 
with mild manifestations of the disease have been shown to have increased IgM levels 
(against toxin and non-toxin antigens) compared to patients with recurrent disease (101, 
198). On the other hand, colonization with non-toxigenic strains of C. difficile also has 
a protective role against CDI due to competition in the same ecological niche, but 
non-toxigenic strains might acquire the pathogenicity locus from toxigenic strains by 
transconjugation (199).
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However, despite the potential resilience against CDI, C. difficile asymptomatic carriers 
might act as an infection reservoir and may pose a risk to others. Nevertheless, trans
mission potential is lower compared to patients with symptomatic CDI, and there is 
no conclusive evidence supporting the extension of contact precautions to C. difficile 
asymptomatic carriers during their hospital stay (199).

CLINICAL FEATURES

Clinically evident CDI can range from mild diarrhea to fulminant colitis with toxic 
megacolon. Patients usually present with general malaise, diarrhea (~100%), fever (30%), 
and abdominal pain (20%) (71). Abdominal pain, when present, usually is localized in 
the lower abdominal quadrants. Hospitalized patients with diarrhea occurring >72 hours 
after admission who are receiving antibiotics are much more likely to have CDI than 
an infection caused by an alternative enteric pathogen (200). Usually, diarrhea begins 
during or shortly after receiving a course of antibiotic therapy, it may arise after days or 
even weeks after therapy termination (71). Stools are typically watery, with a character
istic foul odor; hematochezia is very uncommon (71). Diarrhea could persist for days 
despite the clinical improvement; therefore, the subjective evaluation and biohumoral 
improvement are indicative of a favorable trend even in the absence of a normalization 
of the bowel movements. In a few cases, diarrhea may be absent (e.g., in postoperative 
patients or those receiving opioids). On the other hand, severe CDI may cause paralytic 
ileus that can evolve into toxic megacolon with significant systemic involvement and 
a high mortality risk (71). Hypoalbuminemia is very frequently observed among CDI 
patients (201). The basic clinical features of CDI patients are illustrated in Fig. 4.

Depending on pre-existing conditions (e.g., heart disease) and the severity of 
hypoalbuminemia, the patient could paradoxically appear edematous, although being in 
intravascular water volume deficit. Hematochezia is uncommon and should suggest an 
underlying inflammatory bowel disease (IBD) or an occurring complication. Sweating is 
also uncommon among these patients. Cardiac function needs to be carefully evaluated 
since usually metabolic acidosis and hypokalemia (arrhythmia risk) coexist. Atrial 
fibrillation is detected in 39% of hospitalized patients with CDI diarrhea vs 17% of 
hospitalized patients with non-CDI diarrhea (P < 0.01) (202). It is important to keep in 
mind that, in animal studies, C. difficile toxins were demonstrated to induce cardiotoxicity 
(203, 204). Mucous membranes could be dry, reflecting different levels of dehydration, 
and ultrasound measurements of the inferior vena cava could be useful in assessing the 
volemic state of the patients, especially in non-intensive settings (205). Tachycardia and 
hypotension are relatively common signs, with a prevalence of 71% and 46%, respec
tively (206). Severe CDI episodes may be further complicated by mental state change 
(207), reflecting hypoperfusion and toxemic state. Dehydration, combined with hypoal
buminemia (and toxemia), is very common and frequently leads to tissue damage 
potentially resulting in acute kidney injury, a defining criterion of a “severe” CDI episode 
(208). Importantly, C. difficile toxins can directly damage parenchymal organs (e.g., heart, 
kidneys, and brain) (209). For all the above reasons, in most severe cases, continuous ECG, 
arterial blood pressure, and urine output monitoring should be started, and a careful 
fluid balance calculation should be considered.

From a biochemical perspective, white cell count, serum creatinine, C-reactive 
protein, and erythrocyte sedimentation rate are commonly elevated, and their trend 
should be monitored. Serum potassium can be low due to fecal loss or elevated because 
of acute kidney injury and/or metabolic acidosis. When hypokalemia is present, checking 
serum magnesium level is important, and if low, magnesium correction is very helpful for 
potassium replacement to be effective. Procalcitonin is usually normal in mild CDI, but 
when it is high, it can indicate a moderate/severe CDI (210) or even a bacterial superin
fection through gut translocation (211). Another important consideration, especially if 
sepsis or septic shock develops, is the possibility of candidemia (translocation from a 
damaged gut). In this context, blood cultures and serum beta-D-glucan measurement 
can be useful, but clinical suspicion remains fundamental, especially in critically ill 
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patients (211). Lactate measurement (and its trend) is also important and was mentioned 
in past guidelines as a marker to decide when to request surgical consultation for 
colectomy (207). The finding of eosinopenia on complete blood cell count can also be 
useful since it is associated with infections and can be used to identify more severe 
episodes but also when a differential diagnosis of diarrhea is needed (e.g., patients with 
inflammatory bowel disease and C. difficile toxin detection) (206). A low absolute 
eosinophil count in CDI has also been associated with an increased mortality risk (111).

FIG 4 Main clinical features of CDI.
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Imaging in CDI is of limited usefulness because it almost always relies on the ability 
to identify possible complications (e.g., perforations) or concomitant conditions (e.g., 
diverticulosis and diverticulitis). Imaging studies can be useful in providing information 
on disease extension (e.g., megacolon and ileum involvement) or can be useful before 
a surgical evaluation for eventual colectomy. Characteristic computed tomography (CT) 
scan features in CDI include colonic-wall thickening, pericolic stranding, the “accordion 
sign,” the “double-halo sign,” and the presence of ascites (71). Detailed diagnostic 
features will be discussed in detail in the “Diagnosis” paragraph.

Recurrent CDI is common. Approximately 15%–25% of patients with an initial CDI 
episode will develop recurrent infections despite the lack of additional risk factors 
(15). In theory, subsequent episodes of CDI are usually less severe compared to the 
first episode; however, if they are temporarily close or if the patient is very frail, they 
may contribute to unfavorable outcomes. It is also important to note that loose stools 
may persist for quite a long time after an episode and that premature re-testing may 
lead to false-positive results; therefore, a careful clinical assessment is needed. In some 
cases, serial determinations of fecal calprotectin (FC) may be helpful in identifying a 
trend toward amelioration in terms of intestinal neutrophil recruitment/activation (212). 
Similarly, stool IL-1β has been used to differentiate CDI from non-CDI diarrheas (213). A 
deficitary humoral immunity is strongly related to experiencing multiple CDI recurrences 
(refer to Clostridioides difficile and Immunity).

EXTRAINTESTINAL CLINICAL MANIFESTATIONS

Although C. difficile has no particular tropism for extraintestinal locations, in the 
literature, there are several reports of C. difficile isolated from different extraintesti
nal sites. Extraintestinal C. difficile spread is common in patients experiencing severe 
episodes when hematogenous dissemination occurs due to a significant gut disruption. 
However, these cases are really uncommon. Instead, what is more common is the 
occurrence of toxemia. It is important to distinguish between extraintestinal localization 
of C. difficile (microorganism in tissues) and extraintestinal effects of C. difficile (toxin-
mediated damage).

Regarding the former, evidence of C. difficile presence in extraintestinal sites is 
found approximately in 0.17% of CDI cases: small bowel involvement, bacteremia, 
visceral or soft tissue abscess formation, infection of implanted prosthetic devices, 
wound infections, and osteomyelitis are the main reported extraintestinal localizations 
(214, 215). As expected, C. difficile bacteremia is more common among patients with 
gastrointestinal disruption caused by malignancies (216).

In terms of “toxemia,” growing evidence shows that C. difficile toxins reach the 
bloodstream more commonly than previously thought, probably due to an increased 
detection capability of testing tools. Toxins can contribute to extraintestinal organ 
damage. Almost all organs (kidneys, heart, liver, thymus, etc.) can be interested in this 
process. Granata et al. reported a new semi-quantitative diagnostic method to measure 
serum C. difficile toxin levels, capable of detecting picograms of toxins per microliter. 
Using this assay on 35 CDI patients, the authors found detectable toxemia in 94% of the 
patients (33 out of 35), thus demonstrating that the detection of toxemia is mainly a 
matter of sensitivity of the diagnostic tool (217).

From the perspective of organ damage, heart, kidneys, and brain have evidence of 
toxin-induced injury, mainly deriving from in vitro or animal studies. In particular, toxin 
B has been demonstrated to have cardiac tropism in zebrafish studies more than 15 
years ago (203). More recently, Tonon et al. demonstrated that C. difficile toxin A and 
toxin B induced cardiovascular damage in an animal model through four mechanisms: 
(i) direct toxicity, (ii) hormonal stimulation, (iii) vascular endothelium alteration, and (iv) 
proinflammatory stimuli (204). Zebrafish exposed to C. difficile toxins experienced a 
decrease in heart rate as a sign of depressed cardiac function (204). In a recent interest
ing animal study conducted on mice, Mileto et al. demonstrated that bezlotoxumab was 
able to block systemic disease complications, thymic atrophy, and kidney inflammation 
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but did not prevent gut damage (218). Regarding the brain, it is well known that 
CDI patients can experience mental status alterations, a phenomenon that is currently 
being investigated (219–222). Di Bella hypothesized that, similarly to what happens with 
Clostridium botulinum and Clostridium tetani, C. difficile toxins may pass the blood-brain 
barrier, therefore exerting direct damage on human neuronal cells. Mice experiments on 
this topic are ongoing.

COMPLICATIONS

CDI complications have a significant impact on clinical outcomes, including mortality. In 
this section, we will focus on complications specific to CDI and not those shared by other 
infectious processes.

Intestinal perforations are undoubtedly among the most dreaded complications, 
although rare. It is important to note that perforations can involve both the colon and/or 
the terminal ileum (223). Perforations are more likely to occur in an ectatic colon, which 
is defined as megacolon when the diameter of the transverse colon is >6 cm, with loss 
of haustration on radiologic examination (224, 225). The prevalence of toxic megacolon 
among CDI patients is between 0.4% and 3% (226), with higher rates occurring among 
patients older than 80 years (227). In a Canadian paper published in 2015 with follow-up 
data on 1,367 hospitalized CDI patients, toxic megacolon occurred in 1.1% of cases (228), 
having 2 patients experienced gut perforation and 16 underwent hemicolectomy.

Since CDI affects the colon in the vast majority of cases, the risk of bacterial and 
fungal gut translocations is high, with the colon acting as the port of entry. In a 
retrospective study on 393 cases of CDI, 79 developed a primary nosocomial BSI, while 
321 did not. Etiologic agents of BSI were Candida species (47.3%), Enterobacteriaceae 
(19.4%), enterococci (13.9%), and mixed infections (19.4%). In-hospital mortality was 
76.3% in CDI patients with BSI and 21.8% in CDI patients without BSI (229), as evidence of 
the significant impact of BSI on the outcome.

Concerning Candida, its link with C. difficile seems to be a two-way relationship: 
gastrointestinal colonization from Candida promotes CDI, and a CDI predisposes to a 
Candida translocation (230–232). Additionally, Candida and C. difficile share the same 
risk factors such as antibiotic therapy, impaired immune system, old age, and antacids. 
Longitudinal population-based surveillance reported that candidemia developed in 0.8% 
of CDI cases within 120 days (233).

Neurological complications should also be considered in CDI patients. It is well known 
that metronidazole, especially when administered for prolonged periods, can manifest 
its neurotoxicity, presenting as cerebellar syndrome, encephalopathy, seizures, and 
autonomic, optic, and peripheral neuropathies (234). Hypomagnesemia, often resulting 
from diarrhea, may lead to posterior reversible encephalopathy (235). The appearance of 
an altered mental status is relatively common in severe cases in elderly patients.

Lastly, CDI patients may become seriously ill and require ICU admission. In the 
Western world, approximately 3% of hospitalized CDI patients require ICU admission 
for CDI management (228). Hospitalized CDI patients experience a 12% 30-day mortality 
rate and a 22% 90-day mortality rate (228). Age strongly correlates with mortality (8), and 
immunosuppressive therapy is associated with a nearly 70% increased risk of both ICU 
admission and death (236).

CLOSTRIDIOIDES DIFFICILE AND IMMUNITY

The human host interacts with C. difficile through several defense mechanisms of innate 
and adaptive immunity. Innate immunity defense mechanisms influence the primary 
response to CDI and may be summarized as follows: physical barriers, chemical barriers, 
microbiological barriers, and cellular immunity. Physical barriers are represented by the 
intestinal epithelium, which physically segregates the gut flora from the circulatory 
system (237).
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Chemical barriers include antimicrobial peptides secreted by the Paneth cells. These 
cells, localized in the crypts of Lieberkühn, secrete several oligopeptides, such as 
defensins, with several immunological functions, both as antimicrobial peptides with 
broad antimicrobial spectrum and as immunomodulators. For instance, α-defensin 5 has 
a direct antimicrobial effect, and it is also a potent lectin that binds bacterial exotoxins 
(238). Microbiological barriers are represented by the gut microbiota which competes 
and interacts with C. difficile populations. The intestinal microbiota is composed of a 
collection of bacteria, archaea, viruses, phages, fungi, and eukaryotic microorganisms 
that live in the human gut. This microbiological barrier interacts with C. difficile through 
various mechanisms, including (i) competition for available nutrients; (ii) stimulation 
of gut immunity; (iii) increased synthesis of short-chain fatty acids such as butyrate—
that indirectly inhibits in vitro C. difficile growth and enhances gut defense barriers; (iv) 
regulation of metabolism of bile salts from primary bile acids to secondary bile acids, 
such as chenodeoxycholic acid, which inhibits C. difficile germination (239).

Regarding cellular immunity, enterocyte death and loss of epithelial integrity by the 
action of toxin A and toxin B result in the translocation of intestinal microbiota and 
subsequent secretion of proinflammatory cytokines, chemokines, and reactive oxygen 
and nitrogen species by the resident immune cells and intestinal epithelial cells (237). 
Among the secreted interleukins (such as IL-1, IL-8, IL-10, IL-12, etc.), it was recently found 
that the IL-27/human cathelicidin antimicrobial peptide (LL-37) axis might have a pivotal 
role in the innate immunity against CDI (240). IL-27 induces the expression of the human 
cathelicidin LL-37 (an antimicrobial peptide) by human colonocytes. A murine study 
conducted on IL27receptordeficient mice and their impaired expression of cathelici
din-related antimicrobial peptide (CRAMP—mouse homolog for LL-37) has shown that 
restoration of CRAMP improved C. difficile clearance and reduced mice mortality caused 
by CDI. In clinical samples from 119 CDI patients, elevated levels of IL-27 were positively 
correlated with LL-37 in the sera and stools (240). Moreover, inflamed enteric glial cells, 
the intestinal equivalent of microglia in the central nervous system, overexpress S100B (a 
neurotrophin with trophic function at nanomolar concentrations and proinflammatory 
function at micromolar concentrations), which initiates the deleterious gliotic reaction 
with the maintenance of the inflammation in the gut (241). Increased S100B levels were 
found in colonic biopsies from CDI patients and colon tissues from C. difficile-infected 
mice (242). Besides, toxin A and toxin B were shown to upregulate S100B-mediated IL-6 
expression, and inhibition of S100B activity was shown to ameliorate the intestinal injury 
and diarrhea caused by C. difficile toxins (242).

As mentioned earlier, neutropenia poses a risk factor for CDI as neutrophils are 
important in the immune response to CDI. While murine studies have shown an 
increased mortality in C. difficile-infected mice following the depletion of GR1+ (Ly6G) 
cells or an increase in mice mortality following the knock-out formation of inflamma
some and neutrophils recruitment, other studies suggest that neutrophils contribute to 
tissue damage, and predominantly, neutrophilic inflammation is the main histological 
characteristic of CDI (237, 243). For instance, antibody-mediated inhibition of neutrophil 
recruitment in rabbits and rats was correlated with a reduction in toxin A-mediated 
enterotoxicity (237). Concerning the immune response to C. difficile toxins, it was found 
that the binary toxin acts as a priming signal for inflammasome formation and reduces 
the activity of host eosinophils as the eosinophil count was found to positively correlate 
with enhanced epithelial integrity in a murine model. Colonic eosinophilia is considered 
to be protective against CDI (193, 244).

The adaptive immunity is also of great importance in defending the host against C. 
difficile. Generally, the antibody response against C. difficile involves specific antitoxin 
antibodies and antibodies against non-toxin antigens. Regarding antitoxin antibodies, 
seroprevalence (i.e., serum IgG and IgA) against toxin A and toxin B is relatively 
widespread in the healthy population (around 60% of adults and older children) even 
in the absence of colonization or active infection, possibly reflecting a persistent long-life 
exposure to C. difficile or other clostridial species (243, 245). Following primary CDI, 
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highaffinity IgA and IgG both neutralize toxins, while IgM generally characterizes the 
early phase of the immune response and usually manifests a lower affinity for the 
antigen. Dimeric IgA are secreted across mucosal surfaces, likely mediating immunity 
against toxin A and toxin B.

Immunity against toxin A and toxin B (elevated levels—vs low level or undetect
ability—of specific serum IgA, IgM, IgG, and fecal IgA) was generally shown to be 
protective against primary CDI and its recurrences (243, 245). Moreover, elevated serum 
antibodies (IgA, IgM, and IgG) correlate with C. difficile colonization compared to lower 
serum antibody levels demonstrated in CDI patients, suggesting that colonized hosts are 
protected by serum antibodies against the transition to infection (198, 243).

Lastly, immunotherapy with a humanized monoclonal IgG against toxin B (bezlotoxu
mab) was shown to significantly reduce recurrences of CDI, in two randomized trials, 
while the addition of a humanized monoclonal IgG against toxin A (actoxumab) did 
not improve efficacy (14). Even if these results confirm the protective role of antitoxin B 
serum IgG against recurrences, these results contradict a previous study that suggested a 
protective role of antitoxin A serum antibodies (101).

Immunity against non-toxin C. difficile antigens and cellular adaptive immune 
response (such as T-cell response) in C. difficile pathogenesis are less explored fields. 
For instance, patients with recurrent CDI fail to mount an IgM immune response to C. 
difficile surface-layer proteins (proteins with a role in bacterial adhesion) compared to 
patients with a single episode of CDI (245, 246). It was also suggested that recurrent 
CDI patients have different T-cell immune responses compared to controls, in terms of 
flow cytometry markers: recurring patients had a greater number of circulating CD3(+) 
lymphocytes skewed toward a Th1/Th17 inflammatory population as well as possible 
immune plasticity (Th17/Treg) (247).

CLOSTRIDIOIDES DIFFICILE INFECTION IN SPECIAL POPULATIONS

Pregnant women

Pregnant women are generally considered at low risk of CDI. The first case of obstetric 
CDI was described in 1985 in the US (248). Since the early 2000s, an increased incidence 
of CDI in pregnancy, peri-, and postpartum has been documented in North America 
(249–252). Canadian data reported that the incidence rate of obstetric CDI doubled from 
1999 to 2013 (from 15 admissions per 100,000 deliveries in 1999 to 30 in 2013) (250). In 
the US, Saha et al. reported a 3.4-fold increase in the incidence of obstetric CDI from 1997 
to 2017 (252). Epidemiological data on obstetric CDI in Europe are scarce and consist of 
few published case reports or case series (253–256).

Pregnancy, peri-, and the postpartum period put women at an increased risk of 
developing CDI. Main risk factors are prior antibiotic therapy and hospitalization (221, 
250, 256, 256). Additionally, other recognized risk factors are gestational diabetes, 
cesarean delivery (250, 251, 255), age ≥35 years old, inflammatory bowel diseases, 
smoking, multiple pregnancies, presence of co-infections during pregnancy (251), 
chronic steroid therapy, obstetric complications (255), and prior surgery (257). Two other 
additional factors contribute to an increased risk of obstetric CDI. The first one is the 
unavoidable exposure of these women to toxigenic C. difficile strains of asymptomatic 
neonate carriers. The second is the shift from Th1 toward Th2 response of the immune 
system during pregnancy, reducing the production of antibodies against C. difficile toxins 
A and B (258).

Regarding the timing of CDI, the available data report conflicting results. According 
to Unger et al., half of the cases were described in the postpartum (250), while in the 
observational study of Saha et al., 51.5% of cases were reported during pregnancy, 
with the second trimester as the most affected (257). Ruiter-Ligeti et al. reported cases 
that occurred only in the peripartum (251). Only a few retrospective studies compared 
maternal and neonatal outcomes of obstetric CDI with healthy pregnant controls (250, 
251, 257). Women with CDI during pregnancy are generally more likely to undergo 
cesarean delivery than controls (250, 257) and to face obstetric complications such 
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as postpartum endometritis, and chorioamnionitis (250). Furthermore, Ruiter-Ligeti et 
al. observed a significant increase in maternal mortality, sepsis, paralytic ileus, venous 
thromboembolism, and longer hospital stay in women with peripartum CDI as compared 
to controls (251). Only one study focused on neonatal outcomes (birth weight and 
neonatal complications), reporting no differences between cases and controls (257).

No specific recommendations about the management and treatment of obstetric 
CDI are provided in the IDSA guidelines (15). The American College of Gastroenterol
ogy (ACG) recommends using oral vancomycin to treat pregnant, peripartum, and, 
with caution, breastfeeding patients with CDI (259). The European Society of Clini
cal Microbiology and Infectious Diseases (ESCMID) advises oral vancomycin during 
pregnancy (208, 260). Oral vancomycin crosses the placenta, and it is not secreted into 
the milk (261, 262). As for metronidazole, it should be used during pregnancy only if the 
benefits outweigh the risks. Its use during breastfeeding is controversial; some authori
ties advise to discontinue breastfeeding during the treatment (259, 263). There are no 
data on the safety and efficacy of both fidaxomicin and bezlotoxumab during pregnancy 
and breastfeeding (264). FMT has been safely performed also during pregnancy (265) 
and in the postpartum (257). However, the ACG guidelines recommend avoiding FMT in 
pregnant patients due to potential procedural risks (259).

Children

The incidence of CDI in the pediatric population has increased over time in the US but 
not in Europe (266). While in adults CDI is mainly healthcare associated, in children 
it is mainly a community associated (267, 268). The predominant RTs in the pediatric 
population in Europe are 014/020 (269–271) and 265 (272), while in the US, 014/020 and 
106 are predominant (273).

During the first months of life, colonization by C. difficile is common, reaching its peak 
by the end of the first year of age (274). According to a recent systematic review and 
meta-analysis, the prevalence of C. difficile colonization among children is 15% during 
the first week of life, 41% at 6–12 months of age, and 12% among children aged 5 or 
older. The prevalence of toxigenic C. difficile colonization peaked at 14% among infants 
aged 6–12 months and decreased to 6% among children aged 5 years or older (274). 
Some specific pediatric populations show higher rates of colonization. Among these are 
patients with IBD (275), cystic fibrosis (276), or cancer (277), transplant recipients (278, 
279), and preterm neonates (280).

Risk factors for pediatric CDI are the same as those described in “Risk Factors” for 
adults, except for advanced age (266). Some special pediatric populations with higher 
rates of colonization are also at higher risk of CDI. Among these are patients with 
IBD (275), cystic fibrosis (281), cancer, and transplant recipients (282). Patients with 
Hirschsprung’s disease have a higher risk of CDI (283, 284). The transmission among 
asymptomatic carriers in healthcare settings occurs less in children than adults (285, 
286).

Despite high rates of colonization, children appear to be less affected by active 
infection compared to adults. The reasons are not yet well understood, but some 
hypotheses have been proposed over the years. The first hypothesis concerns the 
absence of C. difficile toxin receptors in infants, based on studies conducted on newborn 
rabbits (287). Additionally, age-dependent changes in intestinal microbiota have been 
proposed as protective factors against active infection (288), as well as the transpla
cental transfer of maternal antitoxin antibodies to newborns (289). Finally, Kociolek 
et al. recently demonstrated the association between C. difficile colonization and the 
production of IgA and IgG against toxins A and B in children aged 9–12 months. This 
humoral immune response could be the reason for the “protection” against active 
infection in infants (290).

CDI is relatively rare in neonates. Most children have mild or moderate CDI, with 
severe cases being less common than in adults (291). Some patients experience a 
more severe course of the disease (e.g., patients with IBD, cystic fibrosis, cancer, or 
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transplantation) (275, 278, 281, 291, 292). The rate of recurrence is 20%–30% after the 
first episode of CDI (290). Children with cancer (293–295) and IBD (296) are at high risk of 
experiencing recurrence of CDI. Other risk factors for recurrent CDI in children are recent 
surgery, prior antibiotic therapy (293, 295), transplantation (278), and tracheostomy tube 
dependence (294).

Distinguishing colonization from active infection can be challenging. When 
interpreting the results, it is essential to remember that young children and some special 
pediatric patients have high rates of colonization. It is also important to know when 
it is appropriate to test for C. difficile. The IDSA guidelines categorize the pediatric 
population into three age groups. For neonates and infants ≤12 months with diarrhea, 
testing for CDI is never routinely recommended, while for children aged 1–2 years, 
testing is recommended only when other infectious or non-infectious causes have been 
excluded. In contrast, for children ≥2 years, the testing is recommended for patients with 
prolonged or worsening diarrhea and risk factors or relevant exposures. Testing for C. 
difficile is recommended, regardless of children’s age, in case of PMC, toxic megacolon, or 
clinically significant diarrhea (15). Similarly, the American Academy of Pediatrics suggests 
that testing infants ≤12 months should be limited to those with Hirschsprung’s disease or 
other severe motility disorders or during outbreaks (297).

Oral vancomycin, metronidazole, and fidaxomicin are approved for use in the 
pediatric population. For non-severe pediatric CDI, discontinuation of antibiotics and 
appropriate rehydration could be sufficient without any antibiotic treatment (298). 
According to IDSA, for the first non-severe CDI episode, either metronidazole or 
vancomycin can be prescribed. For children with an initial episode of severe or recurrent 
CDI, oral vancomycin is recommended over metronidazole. For the initial non-severe 
episode, metronidazole dosage is 7.5 mg/kg three or four times daily for 10 days, and 
vancomycin dosage is 10 mg/kg four times per day for 10 days (15). Although no 
RCT comparing metronidazole with oral vancomycin in pediatric CDI exists, Yin et al. 
conducted an observational study in a propensity-score-weighted cohort of children 
with non-severe CDI, demonstrating that patients receiving oral vancomycin were more 
likely to experience clinical resolution by day 5 compared with those receiving metro
nidazole (299). Fidaxomicin is also considered safe and effective in pediatric CDI. The 
dosage of fidaxomicin for an initial CDI episode is 200 mg twice daily for 10 days, 
with adjustment needed in children weighing 12.5 kg or less. The Food and Drug 
Administration (FDA) approved fidaxomicin for children older than 6 months, while 
the European Medicines Agency (EMA) recommends caution in using it in this age 
group (300–302). The recent RCT SUNSHINE confirmed that the global cure without less 
recurrences was higher in patients undergoing fidaxomicin when compared to those 
taking oral vancomycin (68.4% vs 50%) (303). Thus fidaxomicin may be the preferred 
treatment for initial non-severe CDI episodes also in the pediatric population, according 
to current expert opinions (266). No RCTs are available comparing oral vancomycin with 
fidaxomicin for severe CDI treatment.

Regarding recurrent CDI, for second or subsequent recurrences, tapered regimens 
with vancomycin are suggested by IDSA (15). Bezlotoxumab and FMT are two other 
important tools for reducing CDI recurrences in adults. The MODIFY III trial recently 
proved that a single intravenous infusion of bezlotoxumab at the dosage of 10 mg/kg 
had PK and safety profiles similar to those observed in adults. This trial supports the 
use of bezlotoxumab also in children (304). FMT could be safely performed also in 
children, showing high efficacy (260). IDSA guidelines consider FMT in case of multiple 
recurrences of CDI following standard antibiotic treatments (15). Subsequently, the North 
American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the 
European Society for Pediatric Gastroenterology, Hepatology, and Nutrition published 
specific guidance on FMT in pediatric CDI (305).
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Transplanted patients

Transplanted patients are at higher risk of experiencing CDI compared to the general 
population (306, 307). Diarrhea can be a very common complication in both solid organ 
transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients. In addition to 
infectious causes, such as C. difficile or cytomegalovirus (CMV), we mention massive use 
of antibiotics (mainly for treatments but also for prophylaxis), long hospital stays, surgery, 
immunosuppressants, chemotherapy, and graft-vs-host disease (GVHD) (308, 309).

We now analyze separately the main features of CDI in SOT and HSCT populations. 
Table 1 summarizes the characteristics of CDI in transplanted patients.

Solid organ transplant

CDI is a common problem for SOT recipients. In 2015, a meta-analysis estimated a 
prevalence of 7.4% of CDI in peri-transplant period, defined as “the time of transplant 
to the first discharge from the hospital” (310). In the same meta-analysis, pancreas 
(3.2%) and kidney (4.7%) transplant had the lowest prevalence. Heart (5.2%), intestine 
(8%), liver (9.1%), and lung (10.8%) followed. However, the highest prevalence was 
reported in patients with multiple transplants (12.7%) (310). Subsequent studies have 
confirmed this trend with patients, with kidney transplant recipients being the least 
affected and lung transplant recipients the most affected (311–313). CDI rates vary 
among transplanted organs in the studies due to different diagnostic methods and 
different follow-up periods after transplantation (306). SOT recipients have C. difficile 
colonization rates higher than non-transplanted patients (314). Keegan et al. first studied 
the association between C. difficile colonization and active infection. In their cohort 
(mostly kidney transplant recipients), the rate of toxigenic C. difficile colonization was 
9.5%. In the multivariate analysis, only C. difficile colonization and hospital length of stay 
were independently associated with CDI (315).

Besides the classical risk factors for CDI, SOT recipients have additional factors, with 
more than 30 identified (306). Among these, we highlight hypogammaglobulinemia (see 
“Impaired humoral immunity”) (103), immunosuppressive therapy (316) and consequent 
low levels of C. difficile antitoxin antibodies (317), acute rejection (318), re-transplantation 
(319), Model for End-Stage Liver Disease score, and end-stage disease for liver transplant 
(320–322). Regarding immunosuppressants, Varma et al. retrospectively evaluated the 
relationship between the use of different classes of drugs and the risk of CA-CDI, finding 
the highest risk in patients using multiple classes and those taking calcineurin inhibi
tors (e.g., tacrolimus). Calcineurin inhibitors lead to attenuated IL-2 and IL-6, impairing 
humoral immune response and predisposing to CDI (316). Other previous studies found 
an association between corticosteroid therapy and the risk of CDI in SOT recipients (323–
325).

The highest incidence of CDI in SOT recipients occurs within the first weeks, while 
late-onset CDI appears months or years after transplant (326). Recently, Hosseini-Mog
haddam et al. conducted a population-based cohort study from 2003 to 2017 on 10724 
SOT patients, finding that 60% of CDI were late onset (kidney transplant: median 2.2, IQR 
0.4–6.0 years; non-kidney transplant: median 0.9, IQR 0.0–4.6 years) (313). In SOT patients, 
CDI shows a high rate of recurrence (327, 328) and severe course (310). The mortality rate 
in SOT recipients with CDI is higher when compared to non-transplanted patients (313, 
329). CDI also is associated with an increased risk of loss of graft (311).

The management of the first episode of CDI, recurrences, and severe cases does not 
differ from that of the general population (326). AST guidelines indicate bezlotoxumab, 
in addition to the standard of care, for SOT recipients at risk for recurrent CDI (326). This 
recommendation was formulated on the basis of studies conducted in non-transplanted 
patients. Thus, Johnson et al. retrospectively evaluated the safety and the efficacy of 
bezlotoxumab plus standard of care in SOT and HSCT patients vs standard of care 
alone. In this study, bezlotoxumab significantly reduced the incidence of recurrent CDI 
in the transplanted population (330). FMT in SOT recipients is considered safe and 
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effective (331–333). AST guidelines recommend it in cases of multiple recurrences of 
CDI (323). ACG guidelines recommend appropriate donor screening before FMT (259). 
Currently, there is no evidence supporting the use of antibiotics in CDI prophylaxis in SOT 
recipients (15, 326).

Hematopoietic stem cell transplant

HSCT recipients are nine times more affected by CDI than the general population (307). 
Furthermore, HSCT recipients have C. difficile colonization rates higher than the general 
population. Toxigenic C. difficile colonization was found to be a risk factor for CDI in this 
population (334–338).

Specific risk factors for CDI have been reported for HSCT patients: low levels of C. 
difficile antitoxin antibodies (317), CMV and Herpesviridae reactivations (339), mucositis 
(340) (339), bacterial infections within 100 days after transplant (341), GVHD (342) (312), 
previous chemotherapy (311, 341–343), and vancomycin-resistant Enterococcus faecium 
colonization (342). GVHD, in particular, could act both as a risk factor of CDI and a 
consequence of CDI and is also associated with recurrent CDI (342, 344). GVHD usually 
presents with symptoms similar to CDI and could be misdiagnosed. Endoscopy and 
colonic biopsies often are performed to establish the correct diagnosis, as the treatment 
of GVHD significantly differs from that of CDI. The colonic mucosa in GVHD presents a 
tortoiseshell-like pattern (345).

CDI is more common in patients undergoing allogeneic transplant compared with 
autologous (307, 346). It is most frequent in the first weeks after HSCT (347). CDI 
is associated with higher mortality in HSCT recipients when compared to non-HSCT 
patients (312), while recurrent CDI shows similar prevalence (341, 342). HSCT recipients 
with CDI experience BSI more commonly (348).

No specific guidelines are present for CDI treatment in HSCT recipients. The use 
of oral vancomycin in primary and secondary prophylaxis of CDI has been studied in 
this patient category. Four retrospective studies evaluated vancomycin as effective as 
primary (349, 350) and secondary (351, 352) prophylaxis, respectively. All studies except 
one (352) included only patients who underwent allogeneic stem cell transplantation. 
An RCT demonstrated the efficacy of once-daily oral fidaxomicin (200 mg) vs placebo in 
primary prophylaxis of CDI in HSCT patients (both autologous and allogeneic) undergo
ing fluoroquinolone prophylaxis for neutropenia (353). Despite these findings, ESCMID 
does not recommend routine prophylaxis, except in selected patients (204). Bezlotoxu
mab has also been found as safe and effective in HSCT recipients (330). Similar to SOT 
recipients, FMT is safe and effective also in HSCT patients (354). Current evidence is 
provided by case reports and series, so additional and more powerful studies are needed 
(355). ACG guidelines recommend appropriate donor screening before FMT (259). An 

TABLE 1 Features of CDI in transplanted patients (SOT vs HSCT)a

CDI features SOT HSCT

Specific risk factor Hypogammaglobulinemia, immunosuppressive therapy, low 
levels of C. difficile antitoxin antibodies, acute rejection, 
re-transplantation, MELD score, and end-stage disease

Low levels of C. difficile antitoxin anti
bodies, CMV and Herpesviridae reactiva
tions, mucositis, bacterial infections, GVHD, 
previous chemotherapy, VRE colonization

Transplant with higher risk Lung Allogeneic
Most affected timing First weeks after transplant First weeks after transplant
Recurrence rate Higher than general population Similar to the general population
Outcomes (comparing transplanted to 

non-transplanted patients)
Loss of graft
Higher mortality rate

Higher BSI incidence
Higher mortality rate

Primary prophylaxis Oral vancomycin 125 mg daily
(not recommended by official guidelines)

Fidaxomicin 200 mg daily
Oral vancomycin
(not recommended by official guidelines)

aMELD, Model for End-Stage Liver Disease; VRE, vancomycin-resistant Enterococcus.
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RCT (NCT02269150) on autologous fecal microbiota transplantation for prophylaxis of 
CDI in recipients of allogeneic hematopoietic stem cell transplantation is still ongoing 
(356).

Inflammatory bowel disease patients

In the late 1970s, individuals with IBD were found to have an increased risk of coloniza
tion with toxin-producing C. difficile, sparking debate on whether these toxins could 
cause IBD or IBD flares (357). The incidence and severity of CDI have risen, especially in 
IBD patients (358, 359). Between 2004 and 2005, CDI cases diagnosed in IBD patients 
increased from 7% to 16% (360). The increasing CDI incidence primarily affects patients 
with ulcerative colitis, rising from 2.4% of admissions in 1998 to 3.9% in 2004, with 
lower rates observed in Crohn’s disease patients (0.8%–.2%) (361). Another study found 
overall CDI rates to be higher in ulcerative colitis patients than in Crohn’s disease patients 
and nearly eight times higher in IBD patients compared to non-IBD patients (362). 
This disparity may be due to the lower incidence of colitis in Crohn’s disease and less 
widespread colonic dysbiosis.

CDI and IBD coexistence increases risks for adverse outcomes compared to either 
condition alone. Patients with both conditions have longer hospital stays, poorer 
response to medical therapy, frequent IBD flares, higher likelihood of intensified therapy, 
and increased colectomy or gastrointestinal surgery rates (360, 361, 363). Mortality rates 
are four times higher, and healthcare costs are greater (364). Clinical presentations of 
CDI and IBD with colitis share many overlapping symptoms, such as diarrhea, abdominal 
discomfort, and fever. Differentiating between an acute IBD flare and CDI-complicating 
IBD is challenging. IBD patients presenting with worsening diarrhea or colitis symptoms 
should be tested for toxigenic C. difficile using nucleic acid amplification tests (NAATs) 
or enzyme immunoassays (EIAs) (207, 365, 366). Asymptomatic carriage of toxigenic C. 
difficile and potential overdiagnosis with NAAT complicate diagnosis (199, 367, 368). A 
two-step testing modality, including EIA for glutamate dehydrogenase (GDH) and C. 
difficile toxins, followed by NAAT for discordant results, may provide a more accurate 
diagnosis in IBD patients (369). Colonoscopy is more frequently used for diagnosing 
CDI in IBD patients, but differentiating histopathologic changes is difficult (360). No 
validated biomarkers distinguish CDI-induced colitis from IBD. In light of these diagnos
tic challenges, clinicians should initially treat symptomatic IBD patients with positive 
toxigenic C. difficile tests for CDI and later intensify IBD therapy if no clinical response is 
observed.

Managing CDI in IBD patients is complex due to challenges in differentiating 
symptoms, selecting antibiotic therapy, and adjusting immunosuppressants (370). FMT 
is an emerging treatment option for CDI in IBD. General management principles include 
fluid and electrolyte balance, laboratory data assessment, and infection control measures 
(370). Antibiotic treatment options include metronidazole, vancomycin, and fidaxomicin, 
with vancomycin or fidaxomicin preferred for IBD patients. Recurrent CDI management 
is particularly challenging in IBD patients, with FMT being a potential treatment (370). 
However, FMT’s long-term effects remain unknown, and further research is needed to 
establish its efficacy and safety in IBD patients with CDI (370).

Differentiating between IBD flare symptoms and concurrent CDI poses a signifi
cant challenge in CDI management in IBD patients, especially in those with ongoing 
immunosuppressant therapy. Immunosuppression can exacerbate infections but may 
be necessary to treat IBD flares. Deciding to increase immunosuppressive therapy 
demands careful consideration. Studies show mixed results regarding adverse outcomes 
in patients treated with antibiotics and immunomodulators (371–373). Until more data 
are available, clinicians should cautiously escalate immunosuppressive therapy alongside 
antibiotics and closely monitor patients for symptom worsening and complications.

The ACG guidelines recommend a longer therapy duration for IBD patients (vanco
mycin for a minimum of 14 days), but this recommendation is based on their clinical 
experience (259).
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In conclusion, C. difficile is a prevalent issue for IBD patients. All IBD flareups should 
be tested for CDI, with recurrent testing if symptoms persist. Vancomycin is preferred 
over metronidazole for treatment. Hospitalization may be necessary for severe cases, and 
immunosuppression agents should be cautiously managed. FMT is recommended for 
IBD patients with recurrent CDI.

DIAGNOSIS

CDI diagnosis is primarily clinical but should be supported by laboratory tests and, 
when necessary, imaging and endoscopic findings (374). A prompt diagnosis is crucial 
both for correct patient management and implementation of infection control measures, 
especially in healthcare settings.

Stool examination

Stool examination for CDI diagnosis requires both appropriate indication and accurate 
tests. Regarding the indication, C. difficile testing is recommended in cases of symptoms 
suggestive of CDI, thus—as stated in the IDSA guidelines—in cases of “unexplained and 
new onset ≥3 unformed stools in 24 hours” (15, 259, 375). Repeating C. difficile testing 
during the same diarrheal episode is not recommended, except in cases of outbreaks 
or high clinical suspicion (15, 375). Formed stool samples should not be tested for CDI. 
In case of paralytic ileus, ESCMID guidelines suggest a rectal swab for C. difficile testing 
(toxigenic culture, nucleic acid amplification tests, or glutamate dehydrogenase assays) 
(375). Testing on the same day of stool collection is highly recommended (376), if not 
possible, stool samples should be stored at 4°C, for a maximum of 72 hours (377). 
Storing stools at −20°C alters C. difficile toxins (378), while this is not true for −80°C 
(379). Stool samples should be collected before starting CDI treatment, in order to avoid 
false-negative tests (380). Tests of cure are not recommended (375), as in most patients, 
toxins can be detected on stools even 6 weeks after treatment and resolution of diarrhea 
(381).

A single test combining high sensitivity and specificity, low cost, and fast turnaround 
time for CDI diagnosis is still missing. Reference methods are cell cytotoxicity neutraliza
tion assay (CCNA) and toxigenic culture (TC). CCNA is the reference test for the detection 
of C. difficile toxins in stools. It consists of an inoculation of a stool sample filtrate 
onto a monolayer of a cell line. After 24–48 hours of incubation, cells are observed 
for toxin-induced cytopathic effect. If the cytopathic effect is observed, a neutralization 
assay is performed for confirmation. TC is the reference test for the detection of toxigenic 
C. difficile in stools. Once C. difficile is isolated in selective media, it aims at determining 
if the identified isolate is a toxin-producing strain or not (374, 382). CCNA and TC are 
accurate but no longer used in routine practice because they are not advantageous 
in terms of time and resources (259, 377). TC remains highly recommended in case of 
outbreaks (375). The other diagnostic tests for C. difficile on stool samples are EIAs for 
toxins, GDH, and nucleic acid amplification test. Currently, available enzyme immunoas
says use monoclonal or polyclonal antibodies to detect C. difficile toxins A and B. They 
show low sensitivity and moderate specificity. Better accuracy is described for ultrasensi
tive toxin EIA assays (383); however, they are not yet commercially available. GDH is a 
metabolic enzyme expressed at high levels by all strains of C. difficile, both toxigenic and 
non-toxigenic strains. It shows high sensitivity and a favorable negative predictive value. 
It is frequently used as a screening test for CDI (370). NAATs include polymerase chain 
reaction, loop-mediated isothermal amplification, and helicase-dependent amplification 
assays. They detect targeted toxin genes directly (e.g., tcdB, tcdA, cdt). As GDH, they have 
high sensitivity and high negative predictive value (377).

In order to achieve optimal diagnostic accuracy (375) and reduce inappropriate CDI 
treatment (384), different algorithms including both a highly sensitive and a highly 
specific test have been proposed. European guidelines recommend a two-step algorithm 
based on a sensitive screening method (NAAT or GDH EIA) followed, in the case of 
positive result, by a toxin A/B EIA. An alternative algorithm is to screen samples with 
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both a GDH and toxin A/B EIA. Samples with concordant positive or negative results can 
be reported as such. Samples with a negative GDH result but positive for toxin need 
to be retested as this is an invalid result. Samples with a positive first test result and 
negative second test result and samples with a GDH-positive test but negative toxin 
A/B test may represent samples with CDI or C. difficile carriage. In these cases, TC or 
NAAT can be performed optionally (375). AGC guidelines recommend a two-step testing 
algorithm too (259). IDSA guidelines propose the same diagnostic approach with the 
exception that NAATs alone can be considered if appropriate stool selection is guaran
teed by laboratories (15). Kraft et al. conducted a systematic review in order to assess 
the diagnostic accuracy of NAAT alone or following GDH EIAs or GDH EIAs plus C. difficile 
toxin EIAs. This meta-analysis shows how there is insufficient evidence to recommend 
against repeat testing of the sample using NAAT after an initial negative result and 
supports the GDH/toxin/NAAT algorithm for CDI diagnosis (385). More recently, Prosty et 
al. conducted a systematic review and meta-analysis finding similar to all-cause mortality 
between patients NAAT+/Toxin + and NAAT+/Toxin− (386).

Imaging

Imaging is crucial when suspecting a complication of CDI. Abdominal X-ray can be 
as normal as detecting abnormalities typical of CDI. The classic X-ray findings of 
CDI are colon dilatation, nodular haustral thickening, thumbprinting, and ascites (387, 
388). Moreover, in severe/fulminant cases, toxic megacolon with colon distention and 
perforations with evidence of free air may be present (389).

Contrast-enhanced computed tomography (CECT) plays an important role in the 
diagnosis of CDI complications, especially when the patient has severe abdominal pain 
(390, 391). The most typical CECT finding of C. difficile colitis is colon wall thickening 
(388) (Fig. 5). In its classic form, it presents as a pancolitis (392). According to studies 
conducted in the 1990s, in 30%–40% of the cases, only the right side of the colon 
is involved. In other cases, isolated segments of the colon and rectum have been 
described (387, 393). Other reported common colonic signs are colon wall nodular
ity, dilatation, the “accordion sign” (indicating trapped positive contrast between the 
inflamed mucosal folds), and the “double-halo sign, target sign” (that indicates the 
multilayered appearance of high attenuation surrounding a central area of decreased 
attenuation representing edema, after intravenous contrast administration) (393–397). 
These findings have been reported also in the pediatric population (398). Extra-intestinal 
findings usually detected by CECT are pericolonic stranding and ascites (395–397). CT 
scan can be of great help in the diagnosis of CDI, but it lacks sensitivity, so it should 
not be used for screening purposes (390). Interestingly, in a retrospective study by 
Kirkpatrick and Greenberg, CT diagnosis of CDI had a sensitivity of 52% and a specif
icity of 93%, while the positive and negative predictive values were 88% and 67%, 
respectively. Sensitivity increased up to 70% using colonic wall thickness of greater 
than 4 mm as diagnostic criteria in addition to one of the following: colon wall nodular
ity, accordion sign, pericolonic stranding, or ascites (396). In 2016, Palau-Davila et al. 
developed a fiveparameter CT radiological scale that predicted the need for surgery. 
The five parameters evaluated were increased cecum wall thickness >3 mm (four points), 
increased transverse colon wall thickness >3 mm (three points), increased sigmoid colon 
wall thickness >3 mm (six points), pancolitis (three points), and bowel dilation (eight 
points). The scale was considered positive if it was greater or equal to 6 (399).

Ultrasound could be useful in case of critically ill patients who cannot be transported 
to a CT scan room (390). Typical, but nonspecifically, ultrasound findings of C. difficile 
colitis are colonic wall thickening, effacement of the lumen, diminution of large bowel 
content, the so-called “internal ring” and the hypoechoic “external ring,” that corresponds 
to the edematous mucosa and muscularis propria, respectively, and ascites (388, 400). 
Wiener-Well et al. prospectively evaluated patients with suspected CDI who underwent 
ultrasound and found out that colonic wall thickening had high positive and negative 
predictive values (0.80 and 0.90, respectively) (401).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/c

m
r 

on
 2

6 
Ju

ne
 2

02
4 

by
 1

40
.1

05
.1

47
.1

84
.

30

https://doi.org/10.1128/cmr.00135-23


The role of nuclear imaging in CDI is quite limited. Most of the time, C. difficile colitis 
is an incidental finding in scintigraphic examinations performed for other reasons (402–
404). A colonic activity is commonly detected. As regard positron emission tomography, 
a few case reports (405–408) and a preclinical study on mouse model (409) have been 
published, showing that colon 18Ffluorodeoxyglucose uptake could predict the severity 
of the CDI episode.

Endoscopy

Gastrointestinal endoscopy is not routinely performed and should be used sparingly to 
confirm the diagnosis of CDI (390). However, it could be considered when the suspicion 
is high and stool examination is negative (410), when other coexisting diseases have to 

FIG 5 Pseudomembranous colitis with characteristic colon wall thickening and pancolonic involvement. (Image courtesy of Marco Cavallaro, reproduced with 

permission.)
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be ruled out, or if the patient is severely ill (391, 411). When gastrointestinal endoscopy 
is performed, an elevated risk of perforation and bleeding must be taken into account, 
particularly in cases of fulminant CDI (389, 412).

The typical endoscopic CDI presentation is PMC. Pseudomembranes are lesions of 
approximately up to 2 cm in diameter, usually yellow or white, irregularly distributed in 
the colon, and attached to the mucosa (Fig. 6). Ulcers can also be described in CDI (412, 
413). These macroscopic findings are not specific to CDI. Colonic pseudomembranes 
could be found also in other bacterial infections (e.g., Klebsiella oxytoca, Escherichia coli 
O157:H7) (414, 415), in CMV colitis (416, 417), and, rarely, in parasitic infections (e.g., 
Entamoeba histolytica, Schistosoma mansoni) (418, 419). Also non-infectious diseases 
could present with colonic pseudomembranes. Among these, we report Behçet disease, 
ischemic colitis, IBD, and iatrogenic colitis (420).

Furthermore, pseudomembranes are not always present but are found in about 
40%–60% of CDI cases (411, 421). Colonoscopy is generally preferred to sigmoidoscopy 
and flexible sigmoidoscopy because in one-third of patients only the right colon is 
involved (71). Pseudomembranes are less common among patients with IBD (422, 423) 
and those undergoing immunosuppressant therapy (424). The amount of pseudomem
branes detected with endoscopy is not necessarily related to the severity of the disease, 
especially in the abovementioned special populations (425).

In patients with suspicion of C. difficile colitis undergoing colonoscopy and negative 
stool examinations or when a co-infection has to be ruled out, biopsies of the intestinal 
mucosa must be taken.

Endoscopy can also aid in the treatment of CDI. In fact, it can be used to carry out 
colonic decompression when significant distention is present or to deliver intracolonic 
drugs (e.g., vancomycin) (426–429) and FMT (430).

Histologic features

The histologic features of C. difficile colitis may range from mild to severe inflammation 
of the colonic mucosa. The typical pseudomembranes contain fibrin, mucin, inflamma
tory cells, and mucosal epithelial cells (389). In severe cases, cryptitis, crypt abscesses, 
gland dilation, and confluence of pseudomembranes could be detected (431), as well 
as complete necrosis of the mucosa (making differential diagnosis with ischemic colitis 
difficult) (387, 431), and massive edema which extends through the submucosa into 
the muscularis propria of the colon (389). Vasculitis and microthrombi are not common 
findings (387). Signet ring-like cells can be found because of the degeneration of the 
mucosa sometimes leading to misdiagnosis of carcinoma (432).

In 1977, Price classified PMC into three types. Type I lesions are characterized by 
patchy epithelial necrosis of the interglandular surface accompanied by an exudation of 
fibrin and neutrophils into the colonic lumen (Fig. 7). Type II lesions have more extended 
focal surface epithelial necrosis and more prominent exudate above (Fig. 8). Type III 
lesions are characterized by complete necrosis of the colonic mucosa, which is entirely 
covered by confluent pseudomembranes (433).

As mentioned in “Inflammatory bowel disease patients,” differentiating between IBD 
flares and concomitant CDI is quite challenging. Pseudomembranes could be absent in 
C. difficile colitis in IBD patients (360). In 2022, Sweeney et al. retrospectively evaluated 
colonic biopsies of IBD patients with diarrhea, including a group of patients with CDI and 
a group without. They reported that samples from patients with CDI showed more likely 
neutrophil-rich inflammation in the lamina propria distant from cryptitis, cryptitis, and 
neutrophilic intra-epithelial infiltrates without plasma cells nearby (434). These findings 
may help pathologists in the diagnosis of CDI in IBD patients.

When C. difficile colitis resolves, usually, the mucosa heals and returns to normal (435).
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Biomarkers

Over the years, several biomarkers have been proposed for the diagnosis of CDI. Among 
them, fecal calprotectin and fecal lactoferrin (FL) are the most studied.

Calprotectin is a protein with antimicrobial effects mostly released from neutrophils, 
after their activation or death within the innate immune response. Fecal calprotectin 
is a well-known nonspecific marker of gastrointestinal inflammation (436), so it has 
been studied in the CDI setting (212). Many potential roles have been found for FC 
in CDI diagnosis and management. First of all, FC is higher in patients with CDI when 
compared to healthy subjects (437) and to patients with non-C. difficile diarrhea (438). 
In addition, in a case-control study performed by Barbut et al., FC and fecal lactoferrin 
were higher in CDI patients with detectable toxins in feces (439). Moreover, few studies 
found out that FC is a predictive marker to assess CDI severity in adults (437, 440–443). 
Furthermore, FC could play a role as a prognostic factor in CDI. Adults (444) and children 
(445) with recurrent CDI tend to have higher levels of FC when compared to patients 
who experience an isolated episode of CDI. Finally, FC levels could predict the outcome 
of patients after FMT, showing higher levels in those with recurrent CDI, when compared 
with those without recurrence (444).

Lactoferrin is an iron-binding glycoprotein with antimicrobial effects usually released 
by neutrophils after their activation during inflammation. During gastrointestinal 
inflammation, neutrophils infiltrate the mucosa, leading to an increase of lactoferrin’s 
concentration in feces. Fecal lactoferrin is a marker of gastrointestinal inflammation (446). 

FIG 6 Yellow-white pseudomembranes irregularly distributed and strongly adhering to the colonic mucosa. (Image courtesy of Lisa Fusaro, reproduced with 

permission.)
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In the setting of CDI, FL was found to be useful in screening for CDI in patients with 
diarrhea (447), as a predictor of severity (448–450) and recurrence (445).

Measurement of proinflammatory cytokines, such as IL-1β and IL-8, on feces has 
been proposed as possible tools in CDI diagnosis (448) and in assessing the severity 
of CDI (451). In particular, fecal IL-1β concentrations can differentiate CDI from non-CDI 
diarrheas (213). Animal models also proposed IL-23 as a potential marker of CDI (244, 
452).

However, the IDSA guidelines do not recommend the use of adjunctive biomarkers 
in diagnosing CDI (15). ESCMID (208, 260) and ACG (259) guidelines do not mention 
their use in CDI diagnosis and management. The abovementioned studies are promising, 

FIG 7 PMC type I pattern with epithelial necrosis of the interglandular surface accompanied by an exudation of fibrin and neutrophils above (hematoxylin and 

eosin, 20×). (Image courtesy of Iacopo Ghini, reproduced with permission.)
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but they do not provide sufficient evidence to apply these markers in CDI screening, 
diagnosis, nor in assessing prognosis.

MANAGEMENT

General approach: fluid balance, electrolytes

We will focus on anti-infective treatment of CDI; however, a brief mention of the 
importance of proper management of dehydration, hypokalemia, and hypomagnesemia 
in these patients is mandatory. In addition, particular attention should be paid to heart 
failure development in CDI since it is not uncommon among these patients (453), with 
metabolic acidosis likely contributing to the insult and with a possible cardiotoxic role of 
toxins in worsening cardiac function (203, 454). With these assumptions, clinicians should 
be very careful with hydroelectrolytic balance because metabolic acidosis and hypoalbu
minemia often coexist, and these patients tend to accumulate fluids in the third space, 
with a higher risk of pulmonary edema. It is also important to consider arrhythmias 
secondary to electrolyte disturbances (i.e., hypokalemia) and avoid unnecessary systemic 
antibiotics, antiperistaltic agents, and gastric suppressants (455).

Antibiotic therapy

Despite the widely acknowledged superiority of FMT-based treatments, as of today, 
antibiotic therapy remains the most commonly used anti-CDI treatment. Historically, 
the most commonly used drugs for CDI have been metronidazole, vancomycin, and 

FIG 8 Pseudomembranous colitis type II pattern with more extended focal surface epithelial necrosis and more prominent exudate above (hematoxylin and 

eosin, 20×). (Image courtesy of Iacopo Ghini, reproduced with permission.)
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fidaxomicin. Until 2014, metronidazole was considered an acceptable choice for a first 
mild CDI episode (365). However, guidelines have evolved over time and gradually 
replaced metronidazole with vancomycin, in both severe and mild/moderate CDI (456, 
457). A habit not always explicitly mentioned in guidelines but commonly practiced 
by experienced clinicians, especially in mild cases, is discontinuation of concomitant 
antibiotics to observe the patient’s response.

In the following sections, we will discuss the main treatments for CDI.

Fidaxomicin vs vancomycin

Vancomycin has been the mainstay in CDI treatment for decades. Its efficacy is beyond 
dispute, and its superiority of vancomycin vs the “historical opponent metronidazole” 
has been demonstrated for severe CDI in 2007 by Zar et al. (456). Seven years later, 
superiority of vancomycin over metronidazole in mild cases was also demonstrated 
(457). In the past decade, the primacy of vancomycin was undermined by fidaxomicin, 
a macrocyclic antibiotic with similar clinical efficacy but with a lower impact on the gut 
flora due to more selectivity.

Fidaxomicin showed superiority over vancomycin in reducing recurrent CDI episodes 
(458). This evidence is solid, while data comparing vancomycin and fidaxomicin for 
initial CDI episodes are less clear. IDSA guidelines did change their strength of recom
mendation for fidaxomicin in 2018, where vancomycin and fidaxomicin were equated 
for the first CDI episode (strong recommendation and high quality of evidence) (15). In 
a focused update from 2021, it is stated “For patients with an initial CDI episode, we 
suggest using fidaxomicin rather than a standard course of vancomycin” (conditional 
recommendation and moderate certainty of evidence) (459). Conversely, ACG guidelines 
pose a distinction for an initial CDI episode: when non-severe both vancomycin and 
fidaxomicin have a strong recommendation, but if severe vancomycin has a strong 
recommendation, while fidaxomicin has a conditional recommendation (259).

A network meta-analysis published in 2018 evaluated 24 trials and found that 
fidaxomicin was superior to vancomycin in sustained symptomatic cure of mild to 
moderate CDI (OR 0.47; 95% CI 0.33–0.66), while this superiority was not statistically 
significant in severe cases (OR 0.57; 95% CI 0.30–1.11) (460). Several pre-clinical and 
clinical studies suggest that fidaxomicin is similar to vancomycin for an acute episode 
but is superior for sustained response. A meta-analysis published in 2022 by Tashiro 
et al. confirms these remarks: the authors evaluated six randomized controlled trials 
concluding that, compared to vancomycin, fidaxomicin was significantly associated with 
higher global cure rates (the ratio of the number of patients without recurrence after 
the achievement of clinical cure to the number of mITT patients) (RR = 1.18, P < 
0.00001), while clinical cure rates (the ratio of the number of patients with resolution 
of diarrhea and no further need for treatment of CDI to the number of mITT patients) 
were comparable (P = 0.31). Fidaxomicin was indeed associated with significantly lower 
recurrence rates (RR = 0.59, P < 0.0001). Adverse event rates were similar between 
the two drugs (461). When not considering trials and only including observational 
studies with both pros and cons of the type of study (pro: no selected populations; 
cons: no randomization), results can be overturned. Dai et al. in a meta-analysis of 10 
real-world studies reported fidaxomicin having an OR of 2.81 (95% CI 1.08–7.29) for 
treatment failure compared to vancomycin (462). In the registrative study, researchers 
also evaluated the time to resolution of diarrhea, and this was shorter in the fidaxomi
cin group than in the vancomycin group (58 vs 78 hours in the modified intention-to-
treat population and 55 vs 69 hours in the per-protocol population), although these 
differences were not statistically significant (458). In our opinion, evidence for the 
superiority of vancomycin or fidaxomicin for initial CDI episodes still shows some gaps.

In addition to data on direct clinical outcomes, data on microbiota disruption must 
be considered. Unlike vancomycin, fidaxomicin has a narrower spectrum with limited 
activity against enteric commensal bacteria. Indeed, it has been demonstrated that 
fidaxomicin use results in significantly reduced acquisition of vancomycin-resistant 
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enterococci and Candida species compared to vancomycin (7% vs 31% and 19% vs 
29%, respectively) (463). It is well known that approximately onefifth of hospitalized CDI 
patients will develop a bloodstream infection for which Enterobacterales and Candida 
are among the most commonly responsible agents (229), and the benefit of a narrow 
spectrum anti-CDI molecule may be useful for infective episodes other than CDI.

Moreover, fidaxomicin has shown a capability to reduce C. difficile sporulation and 
toxin production (464–467). On the other hand, evidence of sporulation inhibition and 
inhibition of toxin production by vancomycin is lacking (468). Both fidaxomicin and 
vancomycin inhibit the outgrowth of a vegetative cell from the germinating spore (469). 
Evidence from human studies showed that patients treated with fidaxomicin had lower 
detection of post-treatment toxins (470). The main differences between vancomycin and 
fidaxomicin are reported in Table 2.

From a perspective of bacterial killing which is reflected in clinical practice, vancomy
cin and fidaxomicin have different mechanisms of action. Vancomycin inhibits cell wall 
biosynthesis, while fidaxomicin inhibits RNA polymerase. Former guidelines recommen
ded higher doses of vancomycin (i.e., 500 mg every 6 hours) in severe/complicated cases 
(366), even though the benefit of this higher dosage vs the standard dosage of 125 mg 
every 6 hours has never been demonstrated (478, 479). Despite the fact that the dosage 
of 125 mg every 6 hours results in high intraluminal levels (480), it is possible that 
another mechanism exists. Studies demonstrate that, at higher level concentrations up 
to 64× MIC, vancomycin displays an Eagle effect (more-drug-kill-less) against C. difficile. 
A study published in 2018 demonstrated that C. difficile survived clinically relevant high 
concentrations of vancomycin (up to 2,048 mg/L) while it did not survive such high 
concentrations of fidaxomicin (481).

C. difficile resistance to both vancomycin and fidaxomicin is rare. A US susceptibility 
testing and genomic surveillance spanning from 2012 to 2017 reported that 98.5% 
of the strains displayed a vancomycin MIC ≤2 mg/L (susceptible according to EUCAST 
breakpoints) (482). Reduced susceptibility to fidaxomicin has been seldom reported, a 
single patient with a strain with MIC of 16 mg/L at the time of recurrent CDI in the 
registration trial cohort was reported (483). Similarly, Marchandin et al. recently reported 
a case of in vivo emergence of fidaxomicin resistance in a patient with underlying 
diseases and three CDI episodes, with fidaxomicin MIC increasing from 0.063 mg/L in 
the first episode to 16 mg/L in the second and third episodes. The patient had received 
fidaxomicin for the first CDI episode (484).

In patients who concomitantly receive antibiotics, the superiority of fidaxomicin over 
vancomycin is evident not only in reducing recurrent CDI but also in improving clinical 
cure rates. A post hoc analysis of phase II and phase III studies published in 2011 showed 
that in subjects who received concomitant antibiotics with CDI treatment, the cure rate 
was 90.0% for fidaxomicin and 79.4% for vancomycin (P = 0.04). In subjects receiving 
concomitant antibiotics during treatment and/or follow-up, treatment with fidaxomicin 
compared to vancomycin was associated with 12.3% fewer recurrences (16.9% vs 29.2%; 
P = 0.048) (485). Similarly, the results of a recent open-label randomized clinical trial 
comparing standard dosage fidaxomicin vs standard dosage vancomycin in CDI patients 
receiving concurrent antibiotics for other infections have been published. The primary 
endpoint of clinical cure was reported in 73% (54/74) and 62.9% (44/70) of patients in the 
fidaxomicin and vancomycin arms, respectively (486). Regarding safety, fidaxomicin and 
vancomycin are both well tolerated and present similar safety profiles (487).

Further randomized clinical trials are ongoing (488) and may aid in clarifying the 
comparison of the two molecules.

Teicoplanin as vancomycin?

Teicoplanin has long been considered the “European vancomycin.” It belongs to the 
glycopeptide class and was introduced into clinical use in 1988 in Italy (489). Teicoplanin 
has the same spectra as vancomycin except for VanB and VanC staphylococcal and 
enterococcal strains which are susceptible to teicoplanin but resistant to vancomycin 
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(489). Teicoplanin is also active in vitro and in vivo against C. difficile. Clinical studies on 
teicoplanin are significantly fewer compared to vancomycin; however, results are very 
interesting. Already in the ‘90s, some clinical trials (although enrolling relatively small 
populations) demonstrated the non-inferiority of teicoplanin compared to vancomy
cin for CDI clinical cure (490, 491). When compared, teicoplanin MIC was lower than 
vancomycin MIC against C. difficile (0.5 vs 2 mg/L, respectively) (492). In 2013, teicoplanin 
obtained a licensed indication for CDI (in Europe) and was available for oral administra
tion.

An interesting prospective observational study on hospitalized patients with CDI was 
conducted from 2013 to 2015 by a Serbian team (493). Although not classified as a trial, 
the researchers allocated drugs alternately (first patient vancomycin, second teicoplanin, 
and so on); however, during the study period, they had a shortage of one of the two 
drugs. Dosages were 100 mg every 12 hours for teicoplanin and 125 mg every 6 hours for 
vancomycin, both administered for 10 days. In the end, 107 patients received teicoplanin, 
and 180 received vancomycin. Clinical characteristics of patients were similar, and there 
was no statistically significant difference in time to resolution of diarrhea between the 
two treatment arms; however, those who received teicoplanin showed a significantly 
higher clinical cure rate compared to vancomycin (90.7% vs 79.4%, P = 0.013; OR 2.51; 
95% CI 1.19–5.28). Additionally, recurrence rates were significantly lower in patients 
treated with teicoplanin (9.3% vs 34.3%; P < 0.001; OR 0.20; 95% CI 0.09–0.42). However, 
overall mortality rates were not different between the two groups (493).

In 2018, the network meta-analysis by Beinortas et al. reported that, for sustained 
symptomatic cure, teicoplanin was superior to vancomycin (OR 0.37; CI 95% 0.14–0.94) 
and metronidazole (OR 0.27; 95% CI 0.10–0.70) (460).

In conclusion, although teicoplanin is more expensive and less used than vancomy
cin, it is likely that it can have some advantages and should not be abandoned.

TABLE 2 Comparison: vancomycin and fidaxomicina

Antibiotic Fidaxomicin Vancomycin

Biofilm inhibition Yes (471, 472) No
C. difficile MIC90 0.125 mg/L (473) 2 mg/L (473)
Category Macrocyclic antibiotic Glycopeptide
Dosage 200 mg PO q12h 125 mg PO q6h
Eagle effect No Yes
Efficacy in mild CDI +++ +++
Efficacy in severe CDI ++ +++
Formulations Tablets Powder, tablets
Gut flora disruption Low Moderate/high
Mechanism of action Inhibits RNA polymerase Inhibits cell wall synthesis
MIC breakpoint 1 mg/L (474) 2 mg/L (475)
Molecular weight 1,058 Da (476) 1,449 Da (477)
PK/PD index AUC/MIC (474) AUC/MIC (474)
Post antibiotic effect Long (474) Short (474)
Prevention of rCDI +++ +
Pulsed/tapered regimens Evidence existing Evidence existing
Risk of VRE emergence Low Moderate/high
Systemic absorption Minimal Minimal
Sporulation reduction ++ (464) – (468)
Toxin reduction ++ –b

aAUC, area under the curve; Da, dalton; PK/PD, pharmacokinetic/pharmacodynamic; PO, per os; MIC, minimum 
inhibitory concentration.
b–, low.
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Intravenous metronidazole: when?

The addition of intravenous metronidazole to the standard of care is commonly 
employed by clinicians, especially in severe CDI cases at high risk of progression/compli
cations, although no clinical trial has explored the potential advantages of this strategy. 
The more conspicuous source of evidence dates back to a 10-year surveillance (1982–
1991) conducted at the Minneapolis Veterans Affairs Medical Center and published in 
1994. Out of 908 CDI patients, 52 (6%) were diagnosed with ileus, and 15 (29%) of them 
received intravenous metronidazole in addition to the standard oral treatment. Among 
those with severe ileus, seven out of eight were treated with intravenous metronidazole 
in addition to the oral medication, and six had a clinical response while the remaining 
two died. These results were at that time considered encouraging (494). From that time 
on, metronidazole was always included in CDI therapy which was extensively used by 
clinicians facing CDI.

In the last 10 years, moderate evidence was gathered mostly from three retrospective 
observational studies (206, 495).

Rokas et al. evaluated critically ill patients (ICU) with CDI who received oral van
comycin (monotherapy) or oral vancomycin with intravenous metronidazole (combina
tion therapy). All patients with three or more of the following criteria were included: 
albumin <2.5 g/dL, heart rate >90 bpm, mean arterial pressure <60 mm Hg, white 
blood cell (WBC) count ≥15,000 cells/mL, age >60 years, serum creatinine ≥1.5 times 
baseline, or temperature ≥100.4°F (38°C). Forty-four patients per group were included, 
with similar patient characteristics except for renal disease which was more prevalent 
in the combination group. They found that mortality was 36.4% in the monotherapy 
and 15.9% in the combination group (P = 0.03) (496). However, given the difference in 
baseline characteristics between these populations, the comparison was prone to bias. 
To control this bias, Wang et al. retrospectively analyzed 2,114 CDI patients of which 993 
received dual therapy with oral vancomycin and intravenous metronidazole, and 1,121 
received monotherapy with oral vancomycin alone. Their results, after adjusting for CDI 
severity, indicated that the addition of intravenous metronidazole was not associated 
with death or colectomy within 90 days (aOR, 1.07; 95% CI, 0.79–1.45), which proved 
statistically significant when the analysis was restricted to patients with fulminant CDI 
(aOR, 1.17; 95% CI, 0.65–2.10) (206). Similarly, Vega et al. retrospectively compared 
outcomes of 138 severe CDI patients treated with vancomycin alone (n = 60) or with 
oral vancomycin plus intravenous metronidazole (n = 78). According to these results, 
the addition of intravenous metronidazole did not reduce 30-day mortality both in 
the overall population (12.8% monotherapy vs 18.3% combination, P = 0.371) and in a 
96-patient APACHE-II matched subgroup (14.6% monotherapy vs 18.8% combination, P = 
0.785) (495).

In real-life practice, several clinicians usually add intravenous metronidazole to a 
firstline anti-CDI agent in severe/complicated cases at risk for progression, in fulminant 
cases, or in refractory CDI (497). We prefer to add tigecycline to vancomycin or fidaxo
micin in refractory CDI since it can be difficult to distinguish a clinical deterioration 
due to CDI progression or the occurrence of bacterial translocation. Moreover, in the 
rare case of a pharmacologic failure, tigecycline has a very low MIC for C. difficile, as 
explained in section “Tigecycline.” Metronidazole remains a viable option for patients 
with constipation or ileum.

Tigecycline

Tigecycline is a broad-spectrum protein synthesis inhibitor of the glycylglycine class, 
active against gram-positive, gram-negative bacteria and anaerobes—including C. 
difficile, Fusobacterium spp., Prevotella spp., Porphyromonas spp., and Bacteroides fragilis 
group (498). Its in vitro activity against C. difficile was demonstrated more than 20 
years ago (499). In subsequent years, many papers—although with small sample sizes
—reported favorable outcomes when tigecycline was added to the standard anti-CDI 
treatment (498).
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In 2016, Gergely Szabo et al. published an interesting retrospective study comparing 
45 CDI patients who received tigecycline monotherapy vs 45 CDI patients receiving 
standard therapy (vancomycin plus metronidazole). They reported a better clinical cure 
(75.6% vs 53.3%; P = 0.02), less complicated disease course (28.9% vs 53.3%; P = 0.02), 
and less CDI sepsis (15.6% vs 40.0%; P = 0.009) in the tigecycline group (500). However, 
the groups were not well matched, with a potential bias induced by a lower clinical 
severity of patients treated with tigecycline. To address this bias, in a subsequent study, 
Phillips et al. selected 168 CDI patients after a propensity score matching, where 140 
received tigecycline and 28 did not. Adjusting for ATLAS score (age, treatment with 
systemic antibiotics, leukocyte count, albumin and serum creatinine as a measure of 
renal function), hypotension, treatment time period, and serum lactate, tigecycline did 
not significantly improve 30-day mortality (OR: 0.89; 95% CI 0.25–3.12; P = 0.853) (501). In 
the absence of data based on robust studies (very low evidence), the ESCMID guidelines 
only weakly recommend tigecycline in patients who are deteriorating or progressing to 
severe-complicated disease (208).

Regarding microbiology study, tigecycline showed good in vitro activity against 606 
toxigenic C. difficile strains collected over 14 years. The authors found that tigecycline 
MIC90 was 0.064 mg/L, with no resistant strain (502). However, it is important to note 
that tigecycline, like other antimicrobials, is subject to changing CDI epidemiology. 
Specifically, tigecycline shows higher MIC against C. difficile RT 078. Hung et al. tes
ted tigecycline on 1,112 C. difficile isolates in Taiwan and demonstrated that reduced 
tigecycline susceptibility was quite common among RT-078 strains (12/58; 20.7%) (503); 
therefore, this should be taken into account when tailoring therapy to local epidemi
ology. Nonetheless, large data confirm that tigecycline still maintains very low resist
ance rates (1%) against C. difficile (504). Aside from direct action, tigecycline has been 
demonstrated dose-dependent reduction in C. difficile spore production (505).

To summarize, tigecycline is a good companion drug in severe/complicated CDI cases, 
especially when bacterial translocation is suspected. Tigecycline retains good MIC on C. 
difficile, activity against other anaerobes, gram negatives, and gram positives, including 
enterococci and vancomycin-resistant strains (506). It is possible that the same potential 
could be shared by eravacycline and omadacycline (507, 508); however, clinical evidence 
on these agents is still lacking.

Tapered/pulsed schemes

Considering that the recovery from CDI benefits from gut repopulation by “good 
bacteria,” regimens with progressively decreased amounts of drugs have been attempted 
during the years. These regimens (most of the literature focuses on vancomycin) allowed 
time for recovery of the flora, with tapered and pulsed schemes. The main expected 
advantage of these schemes consists in the reduction of recurrent episodes, not in 
resolving the single episode. A recent systematic review and meta-analysis showed 
that resolution rates were 83% for taper and pulse, 68% for taper alone, and 54% 
for pulse-alone regimens, with taper and pulse being found superior to taper alone 
(P < 0.0001) and pulse alone (P < 0.0004), while no significant difference was found 
comparing tapered and pulsed alone (509). Tapered/pulsed vancomycin is among the 
recommended options in ACG, ESCMID, and IDSA guidelines from the first recurrence 
onward (208, 259, 459).

Recent data on pulsed fidaxomicin have been available in the last few years. A 
randomized controlled trial published in 2017 compared extended pulsed fidaxomicin 
(200 mg twice daily on days 1–5, then once daily on alternate days on days 7–25) vs 
standard vancomycin (125 mg four times daily on days 1–10). The primary endpoint had 
sustained clinical cure 30 days after the end of treatment (day 55 for extended pulsed 
fidaxomicin and day 40 for vancomycin). Seventy percent of patients who received 
extended pulsed fidaxomicin achieved sustained clinical cure compared with 59% of 
those receiving vancomycin (P = 0.03; OR 1.63; 95% CI 0.04–2.54) (510).
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In 2021, Skinner et al. reported a case series of 46 patients with multiple recurrent 
CDI treated using a tapered-pulsed fidaxomicin regimen, the majority of whom (75%) 
had failed prior tapered-pulsed vancomycin treatment. The tapered-pulsed fidaxomicin 
regimen included 20 tablets of fidaxomicin administered as 200 mg once daily for 7 
days followed by 200 mg every other day for the remaining 13 doses. Sustained clinical 
response (SCR) rates at 30 and 90 days were 74% and 61%, respectively (511).

More recently, a Spanish study on 254 CDI episodes compared the recurrence rate of 
fidaxomicin conventional dosing and fidaxomicin in extended pulsed dosing in clinical 
practice. Propensity score matching was performed to evaluate patients with a similar 
recurrence risk. No differences were observed in CDI recurrence rate in patients receiving 
extended pulsed vs conventional fidaxomicin dosing (OR 0.74; 95% CI 0.27–2.04) (512).

Studies from over a decade ago tested the so-called “chaser” regimens with rifaximin 
and fidaxomicin administered immediately after vancomycin treatment to reduce 
recurrence rates. Results were encouraging (513–515), though the number of patients 
was low and evidence is lacking.

Antibiotics by rectal or trans-stoma enema

In severe or fulminant cases, or when megacolon is present, ileum is not an uncommon 
complication. Guidelines take this possibility into consideration and recommend, in such 
cases, the administration of vancomycin also via the rectum through a retention enema 
of 500 mg in 100 mL normal saline every 6 hours (15).

One year after the publication of the IDSA guidelines, Fawley et al. conducted a 
review of studies on vancomycin enema in CDI. Their findings indicated that case 
series with higher vancomycin doses and larger enema volumes showed greater 
efficacy. Therefore, they suggested a revision of the guidelines, proposing to administer 
vancomycin rectally as 500 mg in a volume of 500 mL every 6 hours as a retention 
enema. They utilized an 18F Foley catheter with a 30mL balloon inserted into the rectum, 
inflated the balloon, instilled the solution, and clamped the catheter for 60 minutes (516).

The World Society of Emergency Surgery (WSES) guidelines published in 2019 state 
that “in patients in whom oral antibiotics cannot reach the colon, vancomycin may 
be administered as a retention enema via a large rectal tube or catheter” (390). The 
possibility of antegrade instillation of vancomycin flushes via ileostomy in patients with a 
diverting loop ileostomy has been described, although specific methods are not detailed 
(390).

Antibiotics via nasogastric tube

In critically ill patients (e.g., in ICU), the problem of impaired oral intake is common. In 
addition, enterally fed patients are more prone to develop CDI; therefore, the issue of 
having to administer anti-CDI treatment via nasogastric tube is common. For vancomy
cin, this issue is usually bypassed by using powder for injection (517). More recently, 
some literature reported experiences of administering crushed tablets of fidaxomicin 
via nasogastric tube. The first case report was published in 2013 by Maseda et al. and 
reported the efficacy of fidaxomicin 200 mg every 12 hours crushed and mixed with 
20 mL water in a critically ill patient (518). In 2014, Tousseeva et al. assessed the stability 
of crushed fidaxomicin tablets dispersed in water, applesauce, or Ensure brand liquid 
nutritional supplement. They found that the recovery of the drug after crushing and 
dispersing in any of the three intermediates studied ranged from 95% to 108%, which is 
within the normal range of individual tablet variability (519). Subsequently, other reports 
of crushed fidaxomicin efficacy via nasogastric tube were published (520, 521).

Recurrent CDI

Recurrent CDI is defined as the reappearance of symptoms of CDI in conjunction with 
positive laboratory testing for C. difficile in a patient who has had an episode of CDI in 
the preceding 2–8 weeks (15). Recurrent CDI is a common clinical challenge, as a first 
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recurrence is experienced in 20% of CDI patients (522, 523), among which a second 
recurrence is expected in 45% of cases (524). A recent survey conducted in the US 
showed that the burden of first recurrences did not vary significantly from 2011 to 2017 
(11). In patients with suspected recurrent CDI, clinical approach should first consider 
the most frequently reported risk factors for a relapse, such as: (i) age >65–70 years; 
(ii) previous recurrence of CDI (<3 months); (iii) healthcare-associated CDI; (iv) prior 
hospitalization (<3 months); and (v) PPIs started during/after CDI diagnosis (525).

From a therapeutic point of view, the main international guidelines agree in favoring 
fidaxomicin over vancomycin for recurrent CDI (208, 259, 459). Standard or extended 
pulsed regimens of fidaxomicin are recommended with similar strength by ESCMID and 
IDSA guidelines (208, 259, 459), while ACG guidelines contemplate fidaxomicin only as 
standard regimen (259). Tapered/pulsed vancomycin is unanimously recommended as 
an option for recurrent CDI by all the three main guidelines (208, 259, 459). According to 
IDSA guidelines, bezlotoxumab may be added to the standard of care from the first CDI 
recurrence (459), while ESCMID and ACG agree to add it irrespectively from the episode 
but provided that the patient is at high risk of recurrence (208, 259).

FMT strategies for recurrent CDI will be discussed in the following section “FMT.”

FMT

Oral administration of a suspension of human feces is an ancient practice. Evidence 
of its use in Chinese traditional medicine has been found since the 4th century as a 
remedy for food poisoning or severe diarrhea (526) and, in the 16th century, as the use 
of stool products (“yellow soup”) for the treatment of several gastrointestinal disorders 
(526). In the 17th century, the Italian anatomist Fabricius Aquapendente described the 
“transfaunation,” the transplantation of chewed material from a ruminant to another 
one, to solve digestive issues (527), a practice used in veterinary medicine in Europe. In 
Western medicine, the first use of FMT in humans has been described in 1958 by Eiseman 
et al., who tested this practice on four patients with PMC, unaware that C. difficile was 
the etiological agent (528). Despite encouraging results sporadically described in case 
records and in a case series (529), FMT was first tested only in 2013 in a randomized 
controlled trial, demonstrating the superiority of vancomycin followed by FMT over 
vancomycin alone in patients with recurrent CDI, thus opening the way to the use of FMT 
in clinical practice. In 2022, Aby et al. reported that the probability of FMT costeffective
ness for first and subsequent CDI episodes was 90% (530).

For decades, it has been believed that the effectiveness of FMT was derived from 
the transfer of “good bacteria” from a “microbiologically healthy” donor to a patient 
with disrupted gut flora. However, a groundbreaking study by Ott et al. demonstra
ted that FMT was effective even when sterile fecal filtrate material was transferred to 
patients with CDI (531). This study, from an etiopathogenic perspective, opened up new 
hypotheses, such as the potential role of bacteriophages (531) (which will be further 
discussed in section “Phage therapy”).

FMT is recommended, with different emphasis, as a rescue therapy for patients 
with severe and fulminant CDI refractory to antibiotic treatment and not eligible for 
surgery by ESCMID (weak recommendation subjected to a preliminary riskbenefit 
analysis) (208, 260) and ACG (strong recommendation) (255) guidelines. In patients with 
multiple episodes of CDI, FMT is recommended as a preventive strategy against further 
recurrences by ESCMID (after standard-of-care antibiotic pre-treatment, weak, moderate 
recommendation) (208, 260), ACG, and IDSA (both strong recommendation) guidelines 
(208, 259, 459).

FMT is not a straightforward process, firstly for donor screening and secondly because 
delivering feces is challenging. FMT can be performed through different procedures, 
including colonoscopy, nasogastric/nasoduodenal tube, or enema, while recent studies 
have proposed a delivery via laboratory-designed frozen oral capsulized preparations 
(260). A recent meta-analysis has concluded that FMT performed with colonoscopy 
is superior to enema and nasogastric administration in successfully resolving CDI 
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symptoms, with a comparable efficacy of colonoscopy and capsule (430). Accordingly, 
IDSA guidelines gave a strong recommendation for delivering FMT through colono
scopy or capsules, reserving delivery by enema when the aforementioned methods are 
unavailable (208, 259, 459). However, it is important to consider that delivery of FMT via 
colonoscopy or nasogastric tube may expose the patient to the risk of perforation.

Furthermore, multiple factors related to patient characteristics (i.e., presence of 
inflammatory bowel diseases, CDI-related hospitalization before FMT, inpatient location 
of FMT, and administration of non-CDI antibiotics), procedural pitfalls (i.e., poor quality 
of bowel preparation before colonoscopy), and the severity of the CDI may increase the 
risk of failure up to fourfold after FMT (497). Other potential issues are related to the 
unavailability of healthy donors and to the fact that the donor may be a carrier for other 
infections (532). This risk is significantly reduced by donor screening, albeit it may be 
expensive: approximately 500$–1,000$ for stool screening and preparation) (533). Recent 
research demonstrated that the safety extends even to patients aged ≥85 years (534).

In a recently published randomized clinical trial comparing FMT vs vancomycin in 
patients with first or second CDI episodes, statistical superiority of FMT, both in first and 
second CDI episodes, was found (535). It is likely that this trial will serve as the basis for 
the recommendation of FMT as a firstline treatment for initial episodes of CDI in the 
upcoming guidelines.

Bezlotoxumab

Starting with the assumption that CDI pathogenesis is mediated by toxins, over the years, 
efforts have been made to find a therapeutic solution capable of acting not only on 
the bacterium itself but on the effectors of damage (i.e., toxins). Studies on passive or 
active immunization against C. difficile toxins A and B have already been demonstrated 
to be effective in animals challenged with toxigenic C. difficile (536–538). Based on 
these premises and according to additional studies on rodents and piglets, the decision 
was made to develop fully human monoclonal antibodies against toxin A (actoxumab) 
and toxin B (bezlotoxumab). Contrary to expectations, these drugs did not show to be 
effective for CDI episodes in terms of clinical cure; however, bezlotoxumab proved to 
be effective (administered alongside standard therapy) in reducing recurrence (bezlotox
umab vs placebo in MODIFY I: 17% vs 28%, P < 0.001; in MODIFY II: 16% vs 26%, P < 
0.001) (14). In this registration study, a subgroup analysis was performed on primary CDI 
patients, 75 out of 556 (13.5%) receiving bezlotoxumab plus standard-of-care treatment 
had an rCDI, while 114 out of 545 (20.9%) in the placebo group had rCDI at the 12 weeks 
follow-up (absolute difference: 7.4; P < 0.05) (14). Today bezlotoxumab is recommended 
also in the first CDI episode (alongside standard of care) in patients at high risk of 
recurrence, who did not receive fidaxomicin according to the ESCMID guidelines (208) or 
from the first recurrence onward in combination with standard of care according to IDSA 
guidelines (459).

It is important to clarify that the protective benefit of bezlotoxumab on recurrent CDI 
appears to be mitigated in CDI episodes sustained by RT027. In fact, both the trial by 
Wilcox et al. (14) and a post hoc analysis of MODIFY I and II trials did not find statistical 
differences in the 027 subgroup (539, 540). Similarly, in the post hoc analysis by Prabhu 
et al., which included only patients at high risk of rCDI, 9 out of 67 (13.4%) in the 
bezlotoxumab group and 14 out of 81 (17.3%) in the placebo group experienced hospital 
readmission within 30 days, without statistical difference, leaving the benefit unproven 
or at least not demonstrated.

Nevertheless, a costeffectiveness analysis (bezlotoxumab vs placebo) performed 
from data of the registration study demonstrated that bezlotoxumab was associated 
with 0.12 quality-adjusted life-years (QALYs) gained and was costeffective in prevent
ing CDI recurrences in the entire trial population, with an incremental costeffective
ness ratios (ICER) of $19824/QALY gained. Bezlotoxumab was also costeffective in the 
subgroups of patients aged ≥65 years (ICER of $15298/QALY), immunocompromised 
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patients (ICER of $12597/QALY), and patients with severe CDI (ICER of $21430/QALY) 
(541).

Regarding side effects, an issue arises in cardiopathic patients. In phase III clinical 
trials, heart failure has been more commonly reported in bezlotoxumab-treated patients 
compared to placebo-treated patients (14). These adverse reactions were observed 
primarily in patients with underlying congestive heart failure (CHF). In patients with a 
history of CHF, 12.7% of bezlotoxumab-treated patients and 4.8% of placebo-treated 
patients had a serious adverse reaction with worsening of heart failure during the 
12-week study period. Additionally, in these patients, there were more deaths in the 
bezlotoxumab-treated group (19.5%), vs in the placebo-treated group (12.5%). Causes of 
death varied and included cardiac failure, infections, and respiratory failure. According 
to the product data leaflet in patients with a history of CHF, bezlotoxumab should be 
reserved in cases where the benefit outweighs the risk (542).

Fulminant/refractory CDI

Complicated (or “fulminant”) CDI is a rather uncommon (up to 3%–5% of all CDI cases) 
but serious condition (543). There is no agreement on the very definition of “fulminant.” 
IDSA and ACG guidelines define a CDI episode as fulminant when the patient experi
ences hypotension, shock, ileus, or megacolon (259, 459). ESCMID guidelines define 
“fulminant” by the presence of one of the following factors that needs to be attributed 
to CDI: hypotension, septic shock, elevated serum lactate, ileus, toxic megacolon, bowel 
perforation, or any fulminant course of disease (i.e., rapid deterioration of the patient) 
(208).

No consensus exists regarding the management of fulminant CDI. IDSA guidelines do 
not include fidaxomicin for fulminant CDI since solid evidence on its use in these cases 
is lacking, thus recommending increasing the vancomycin dosage to 500 mg every 4 
hours orally or, if not possible, rectally (259, 459). Similarly, ACG guidelines recommend 
vancomycin at 500 mg every 6 hours and suggest considering the addition of parenteral 
metronidazole (low quality of evidence) (208, 259, 459). Conversely, ESCMID guidelines 
do consider the use of fidaxomicin even in fulminant cases. However, they do not 
recommend adding metronidazole but suggest evaluating the addition of tigecycline on 
a case-by-case basis.

Increasing, although weak, evidence on the role of FMT for fulminant CDI has been 
published. Nevertheless, the ACG guidelines strongly recommend considering FMT for 
fulminant CDI refractory to antibiotics, especially in patients who are poor surgical 
candidates, noting that “careful donor selection and screening can mitigate the risk of 
infection transmission” (208, 259, 459). An RCT by Ianiro et al. compared single adminis
tration of FMT to multiple fecal infusions in severe, antibiotic-refractory CDI cases. The 
data suggested that multiple infusions of FMT may be more effective than a single 
infusion. However, a control group is lacking (544).

Early surgical treatment could be lifesaving in selected patients with fulminant CDI 
(545). ESCMID guidelines recommend consulting a surgeon for any severe complica
ted case (208, 259, 459). According to WSES guidelines, surgery should be promptly 
considered in patients who present organ failure, including increased serum lactate or 
vasopressor requirements (390). When the surgical route is feasible, the treatment of 
choice is total abdominal colectomy (542). Indications and techniques for surgery to treat 
CDI are discussed in depth in section “Surgery.”

Our opinion aligns more with ESCMID guidelines since we believe that gut transloca
tion from bacteria other than C. difficile may precipitate the progression of the disease; 
therefore, tigecycline would have a double effect, but most importantly, a prompt 
surgical consultation should be requested in fulminant/refractory cases.
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Surgery

Apart from fulminant cases, an important consideration in the remaining “gray” cases 
is the timing of intervention because acting too early could lead to resection of an 
unresectable bowel intestine, but delaying intervention could be fatal. Although there 
is no common consensus, some authors have identified criteria that may be helpful in 
promptly recognizing patients who require surgical consultation. An abdominal CT is 
strongly recommended prior to surgery (15, 205, 287).

In 2018 guidelines, IDSA suggested surgical treatment for severely ill patients with 
fulminant CDI, particularly in those with WBC count ≥25,000 cells/mL and rising lactate 
level ≥5 mmol/L (15). WSES, in its 2019 guidelines, suggested a surgical approach in CDI 
patients with rapid toxemic progression despite medical therapy (390). ESCMID, in the 
2021 guidelines, suggested surgical consultation for patients whose clinical condition is 
deteriorating and those not responding to CDI treatment (208). Lastly, ACG in its 2021 
guidelines suggested a surgical approach for refractory severe or fulminant CDI (i.e., toxic 
megacolon, ischemia, and perforation) (259).

Patients with megacolon, colonic perforation, acute abdomen, septic shock, or organ 
failure usually benefit from prompt surgical evaluation. Another concerning category 
is that of patients with a reduction in the number of loose stools but with increasing 
leukocytes and inflammation indexes because reducing stools could be the preamble of 
an ileus/megacolon). Other alarming features are alteration of mental status which could 
reflect toxemia (546–549) and a rise in serum lactate or WBC which could reflect toxemic 
and/or bacteremic translocation from the gut (550).

The optimal timing for surgery is still debated, each guideline recommends different 
timing for surgical evaluation, but some authors suggest that the optimal window for 
surgical management could be 3–4 days (551). Some authors suggest surgical consul
tation when WBC ≥20,000 cells/mL and lactate ≤4.9 mmol/L since waiting longer is 
associated with higher mortality (550). Indeed, patients with higher mortality are those 
for whom surgery is delayed: as shown by some authors, more critical patients (e.g., with 
acute renal failure, multiorgan failure, requiring vasopressor or mechanical ventilation) 
have worse outcomes despite surgery (552, 553).

To date, two surgical approaches are employed, namely subtotal colectomy and 
diverting loop ileostomy with colonic anterograde lavage (15, 208, 390). Subtotal 
colectomy (surgical removal of colon, with or without sigma, anastomosis between 
ileum and rectum), the most commonly used surgical approach worldwide, has been 
shown to reduce mortality when compared to medical therapy (552–555). Although less 
common than subtotal colectomy, diverting loop ileostomy has increasingly become 
a solid alternative to colectomy for fulminant CDI (556). According to this approach, 
a loop ileostomy is used for colonic lavage with a warmed polyethylene glycol solu
tion or electrolyte solution, followed by antegrade instillation of vancomycin through 
the ileostomy. At present, literature data showed no statistically significant difference 
between the two techniques in terms of outcomes. A large retrospective study published 
in 2019 by Juo et al. included 3,021 adult patients in the US from 2011 to 2015 who 
underwent surgery for CDI (2,408 subtotal colectomies and 613 loop ileostomies). 
The authors found that the annual proportion of patients undergoing diversion loop 
ileostomy increased from 11% in 2011 to 25% in 2015, and there was no difference 
in in-hospital mortality between subtotal colectomy and loop ileostomy group (26% 
vs 31%; P = 0.28) (16). Another national US database review (2011–2016), including a 
total of 457 patients, showed no statistically significant difference in mortality between 
diverting loop and colectomy (26% vs 31%, respectively) (557). Furthermore, a retrospec
tive multicentric study showed lower mortality in patients treated with diverting loop 
compared to colectomy (respectively, 17% vs 40%, P = 0.002) (558).

To conclude, surgical therapy can be lifesaving, but timing is critical. Patients with 
signs of shock or ileum should be promptly evaluated by a surgeon. Additionally, “at-risk” 
patients whose clinical conditions are deteriorating, or who have worsening blood tests 
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indicating a fulminant form (such as lactate >2.2, WBC >20,000, creatinine >1.5, and 
albumin <2.4), could benefit from surgical management.

Orally administered microbiome

As described before, FMT is a rescue therapy for rCDI. However, the heterogeneity of 
stool donors and the risk of acquiring MDR bacteria may pose a limit. Thus, in recent 
years microbiome-based drugs have been developed and others are in development.

Currently, only two fecal microbiota products have been approved by the FDA: 
Rebyota and Vowst.

Rebyota (RBX2660) is a novel filtered fecal microbiota suspension from qualified 
donors, for rectal administration, useful in reducing recurrence of CDI (559). It showed 
an overall 8.8% reduced risk of rCDI compared to placebo among the overall population. 
Results are non-statistically significant, but subgroup analysis showed a higher success 
rate in patients between the ages of 65 and 74, in the RBX2660 group (560). RBX2660 
was approved by the FDA in 2022 (Rebyota) for patients ≥18 years old, after anti-CDI 
antibiotics, as a pre-packaged 150 mL suspension for one-dose rectal enema (561). The 
first real-life experiences with this product are being reported (562).

Vowst (SER-109) has been evaluated in a phase III trial conducted on 182 patients 
(563). SER-109 capsules containing Firmicutes spores are obtained through donation, 
purified, and administered after standard-of-care antibiotics, in four capsules each day 
for a total of 3 days. SER-109 showed a statistically significant superiority to placebo in 
reducing recurrence rate, respectively, 11/89 (12%) vs 37/93 (40%), with a relative risk of 
0.32 (95% CI, 0.18–0.58, P < 0.001) (564).

These products will be discussed in more detail in section “Live biotherapeutic 
products.”

Other active compounds

Oral microbiome is a new paradigm, but several other compounds have demonstrated 
activity against C. difficile. In these sections, we will discuss the most studied.

Auranofin

Auranofin, an oral drug approved for rheumatoid arthritis, is known for its in vitro 
inhibition of C. difficile cell growth, sporulation, and toxin production (565). In a PK/PD 
point of view, oral auranofin was mostly excreted in feces, leading to high concentrations 
in the gut, and carried out its activity by causing an impaired synthesis of the seleno-
protein in C. difficile resulting in alteration of protein synthesis (566, 567). Auranofin is 
also active against few gram-positive bacteria, such as methicillin-susceptible S. aureus, 
methicillin-resistant S. aureus, and Enterococcus spp., but lacks activity against gram-neg
ative bacteria (567, 568).

Bacitracin

Bacitracin, an oral antibiotic, inhibits cell wall synthesis, and its activity in the inhibition 
of C. difficile toxin was, recently, discovered. (569). Two less recent clinical trials compared 
bacitracin to vancomycin for the treatment of CDI, reporting a clinical efficacy similar 
to vancomycin (570, 571). However, a network meta-analysis by Beinortas et al. showed 
inferiority of bacitracin compared to metronidazole, vancomycin, and fidaxomicin in 
terms of sustained clinical cure (460).

Berberine

Berberine chloride has potential activity against C. difficile. Its mechanism of action 
is still being evaluated; some authors found metabolic inhibition by ion secretion 
and reduction of bacterial enterotoxin formation in mice models (572). Berberine in 
combination with vancomycin can also inhibit C. difficile growth, biofilm formation, and 
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motility. Furthermore, berberine has a synergistic effect in reducing vancomycin MIC for 
CDI (573).

Butyrate

Butyric acid is an important short-chain fatty acid produced during anaerobic fermenta
tion by the intestinal microbiome. It contributes to a normal gut barrier integrity and 
function, and its reduction could be associated with intestinal epithelial apoptosis and 
C. difficile proliferation (574–576). Conversely, in a pig model, a highfiber diet results in 
higher butyric acid concentration and inhibition of C. difficile growth (577). Butyrate-pro
ducing bacteria are being used as experimental anti-CDI therapy.

Ebselen

Ebselen, an organoselenium compound, is a drug originally studied in clinical trials for 
psychiatric disorders. It demonstrated its activity on C. difficile in covalently binding to 
the cysteine protease domains of both toxin B and toxin A (578, 579). Furthermore, 
ebselen can kill C. difficile cells altering the redox homeostasis by changing cellular NAD 
and NADH concentration (578). Ultimately, it is observed that ebselen reduces rCDI and 
decreases inflammatory markers in a hamster model (580).

Manuka honey

Manuka honey is common in New Zealand and Australia, and it is derived from the 
nectar of the Manuka tree. This honey is known to have antimicrobial properties 
against S. aureus, E. coli, and Pseudomonas aeruginosa due to its significant content 
of methylglyoxal. In vitro, Manuka honey demonstrated sporicidal, bactericidal, and 
antibiofilm effects against C. difficile (581–583). Furthermore, Manuka honey was used 
in an experimental therapy in four patients with rCDI and was administered via rectal 
enema in a 300-mL solution at 15%, after a 3-day course of fidaxomicin. A decrease in the 
C. difficile load was found in their gut microbiota, with a partial restoration of microbiota 
diversity and cessation of watery stools (584).

Nitazoxanide

Nitazoxanide is an antiparasitic drug, with antibacterial activity against C. difficile 
and other infectious diarrhea (585, 586). Two randomized double-blind clinical trials 
comparing the use of nitazoxanide for CDI, both by Musher et al., are available. The 
first clinical trial, from 2006, compared the efficacy of nitazoxanide vs metronidazole in 
patients with CDI. It showed no statistically significant difference among nitazoxanide 
and metronidazole groups in terms of clinical response rate (85% vs 82%, respectively) 
and recurrence rate (respectively, 14% vs 24%) (587). The second clinical trial, published 
in 2009, compared the efficacy of nitazoxanide vs vancomycin in patients with CDI. Fifty 
patients were randomized to receive a 10-day treatment of nitazoxanide or vancomycin, 
showing no statistically significant difference among nitazoxanide and metronidazole 
groups in terms of clinical response rate (77% vs 74%, respectively) and recurrence rate 
(5% vs 7%, respectively) (588).

Pomegranate

Pomegranate juice has in vitro antibacterial activity against C. difficile due to polyphe
nols, such as gallic acid (589, 590) and punicalagin (591). To date, pomegranate juice 
appears to have bactericidal activity against C. difficile (590) as well as the case of the 
hypervirulent strain NAP1/027/BI. Additionally, pomegranate can reduce C. difficile toxin 
B production, and it appears that it does not affect the growth of Lactococcus lactis, 
Lactobacillus casei, and Bifidobacterium animalis (591).
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Ramoplanin

Ramoplanin is a glycolipodepsipeptide oral antibiotic, with activity against gram-positive 
bacteria, both aerobic and anaerobic, reaching high concentrations in the colon.

Ramoplanin inhibits the transglycosylases responsible for peptidoglycan biosynthesis, 
preventing cell wall synthesis leading to cellular killing (592, 593). Ramoplanin can inhibit 
C. difficile growth and sporulation (594–598).

In a phase II clinical trial, ramoplanin showed similar clinical cure rate in comparison 
to vancomycin despite a higher rate of adverse events (599).

Rifaximin

Rifaximin is a rifamicin antibiotic that acts in inhibition of bacterial RNA synthesis and 
commonly used for traveler’s diarrhea. When administered orally, it achieves high colonic 
concentrations. In literature, a three-case series showed the usefulness of rifaximin in 
preventing C. difficile recurrence (513, 600, 601).

A phase II, double-blind, randomized clinical trial showed rifaximin use after a 
standard course of metronidazole or vancomycin for CDI can reduce recurrence rate 
(602). A different clinical trial showed similarity of rifaximin vs vancomycin in terms of 
clinical cure and recurrence rates (603).

Another single-blind randomized clinical trial by Gawronska et al. compared the 
use of rifaximin vs metronidazole for the treatment of CDI in pediatric patients with 
inflammatory bowel disease. Authors found a similar cure rate in both metronidazole and 
rifaximin groups (70.6% vs 78.6%, respectively, P = 0.5), without difference in recurrence 
rates (17% vs 0%, respectively, P = 0.3) (604). A network meta-analysis by Benoirtas et al. 
showed inferiority of rifaximin compared to vancomycin and fidaxomicin but superiority 
to metronidazole, in terms of sustained clinical cure (460).

Probiotics, prebiotics, and postbiotics

Probiotics are “live” microorganisms normally found in the intestinal tract, such as 
bacteria (i.e., Bifidobacteria and Lactobacilli) and yeasts (i.e., Saccharomyces boulardii). 
There are dozens of different species that have the ability of surviving the digestive 
action of gastric acid, intestinal enzymes, and bile salts. They are able to adhere to 
intestinal cells and begin to colonize them, without giving immune reactions. Probi
otics have beneficial effects: antagonistic action against pathogenic microorganisms, 
production of antimicrobial substances, and protection of the gut against antibiotics-
associated diarrhea.

Prebiotics, mainly represented by carbohydrates and oligosaccharides, are also 
essential elements of the microbiota, whose action aids in the expansion and activity 
of probiotics. These can be used to counteract the side effects of antibiotics. Prebiotics 
are found in certain foods such as whole grains, legumes, and vegetables (asparagus, 
artichokes, chicory, onion, and garlic) but also in bananas or honey. Prebiotics are also 
present in yogurt and fermented milk, often defined as symbiotic foods, due to the 
supply of both prebiotics and probiotics.

Postbiotics, defined as inactivated microbial cells that confer health benefits to the 
host, are released during the fermentation processes of food matrices by bacteria, and 
they have an intestinal modulation activity on the microbiome (605).

There are many studies concerning the role of probiotics on CDI. In 1994, a dou
ble-blind randomized controlled trial by McFarland et al. (606) evaluated the efficacy 
of Saccharomyces boulardii in combination with antibiotics for preventing C. difficile 
infection. A total of 124 patients were included, divided into the interventional group 
(S. boulardii 1 g/day) and control group (placebo). Patients treated with S. boulardii 
had lower recurrence rate of CDI (RR 0.43; 95% CI 0.20–0.97) compared to placebo. 
In the subgroup of patients with previous CDI episodes, recurrence rate was lower in 
the probiotic group compared to placebo (34.6% vs 64.7% respectively; P = 0.04) but 
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not in the subgroup of patients with an initial CDI episode (19.3% vs 24.2% respec
tively; P = 0.86). Another prospective double-blind trial by Surawicz et al. included 
180 patients showing the efficacy of S. boulardii during antibiotic treatment in reduc
ing antibiotic-related diarrhea. Among patients on placebo, 14/64 (21.8%) developed 
diarrhea compared to 11/116 (9.5%) patients treated with S. boulardii, with a statistically 
significant difference (P = 0.038) (607). A multicentric study by Heil et al. evaluated 
probiotics use, at the time of antibiotic prescription, for primary prevention of CDI using 
a computerized clinical decision support tool. Propensity score-matched analysis showed 
that patients who received probiotics had similar rates of CDI compared to those who did 
not receive probiotics (OR 1.46; 95% CI 0.87–2.45) (608).

A systematic review by Maddoff and colleagues evaluated the effect of probiotics, 
prebiotics, and other polymers compared to placebo on the prevention of rCDI (609). The 
authors included eight RCTs, five of which showed no statistically significant benefits. 
Three out of eight studies showed benefits in the prevention of rCDI of S. boulardii (606), 
oligofructose (RR 0.24, 95% CI 0.11–0.56) (610), and the non-toxigenic C. difficile strain 
M3 (RR 0.11; 95% CI 0.02–0.54) (539). A systematic review with meta-regression analysis 
showed that the administration of probiotics during antibiotic courses in hospitalized 
adults reduces the risk of CDI by >50% (611, 612).

On the other hand, the main international guidelines do not recommend usage 
of probiotics for CDI prevention. More specifically, ACG recommends against the use 
of probiotics for the prevention of CDI in patients treated with antibiotics (primary 
prevention) (conditional recommendation, moderate quality of evidence) and also in the 
prevention of CDI recurrence (secondary prevention) (strong recommendation, very low 
quality of evidence) (208, 259, 459); ESCMID does not recommend routine administration 
of probiotics to prevent CDI when on antibiotic treatment (strong recommendation, low 
quality of evidence) (208, 259, 459), and IDSA states that there are insufficient data to 
recommend administration of probiotics for primary prevention of CDI outside of clinical 
trials (no recommendation) (208, 259, 459).

ANTIMICROBIAL RESISTANCE

When it comes to antimicrobial resistance, one of the principal characteristics of C. 
difficile is that most antimicrobial compounds have limited to no activity against dormant 
cells, such as spores. This intrinsic resistance conferred by spores ensures that C. difficile 
can persist in the presence of antibiotics. Moreover, C. difficile demonstrates several 
acquired resistance mechanisms. In fact, there is a global increase in resistance to 
antibiotics in C. difficile, with the emergence of novel strains that are often more virulent 
and with multidrug resistance profiles. As seen in other species, common antimicrobial 
resistance mechanisms involve the alteration of the antibiotic, the modification of the 
antibiotic target site, and the extrusion of the drugs via efflux pumps.

Macrolides and lincosamides are often associated with the development of CDI (612). 
Erythromycin ribosomal methylase genes (erm) are considered to mediate the resistance 
of C. difficile to clindamycin and erythromycin. Other genes such as cfrB, cfrC, and cfrE 
encoding a 23S rRNA methyltransferase have been implicated in the resistance of C. 
difficile to macrolides and lincosamides (613). Efflux pumps may also play a role in 
resistance to these antibiotics (614).

Among beta-lactams, cephalosporins are considered the antibiotic mostly associated 
with CDI development (75). C. difficile strains are fully resistant to most cephalosporins 
(64). Penicillin-binding protein 2 (PBP2) is essential for C. difficile vegetative growth and 
serves as the primary bactericidal target for beta-lactams in C. difficile. PBP2 is insensitive 
to cephalosporin inhibition, appearing as the main basis for cephalosporin resistance in 
this organism (615). Furthermore, some C. difficile strains are known to encode beta-lac
tamase enzymes and efflux pumps that could also play a role in C. difficile resistance to 
cephalosporins (616).

Susceptibility of C. difficile to fluoroquinolones has always been low. The wide
spread development of fluoroquinolone resistance is associated with the emergence 
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of epidemic RT027 strains (617). Mutations in the quinolone resistance-determining 
regions of gyrA and/or gyrB genes result in several amino acid substitutions, conferring 
resistance to fluoroquinolones. Different types of efflux pumps have also been implica
ted in resistance to fluoroquinolones (618, 619).

Tetracycline-resistant C. difficile strains produce ribosomal protectant proteins such as 
Tet(M), Tet(W), and Tet (44), preventing binding of the antibiotics to the ribosome (620). 
To date, no resistance to newer tetracyclines such as tigecycline and omadacycline in C. 
difficile has been reported.

Resistance to chloramphenicol is mediated by two copies of the catD gene, which 
encodes the chloramphenicol acetyltransferase enzyme. This provides resistance based 
on modification of the antibiotic, by the insertion of an acetyl group from acetyl CoA 
to the primary hydroxyl group of chloramphenicol, rendering it unable to bind to the 
ribosome (621).

Genes that encode the rRNA methyltransferase cfr (cfrB, cfrC, and cfrE) have been 
detected among clinical isolates of C. difficile and are responsible for resistance to 
linezolid. The Cfr protein catalyzes the methylation of 8-methyladenosine at A2503, 
positioned in 23S rRNA of the large ribosomal subunit, inhibiting the interaction with the 
antibiotic (613).

Emerging resistances are considered those to firstline antibiotics. Resistance to 
vancomycin could arise due to alterations of the vancomycin-binding site in peptido
glycan precursors mediated by mutations in vanG operon enzymes (622). A vanG 
operon-like gene cluster has been detected in about 85% of C. difficile clinical isolates; 
however, it is not always associated with resistance. In particular, substitutions Ser313Phe 
and Thr349Ile in VanS and Thr115Ala in VanR have been associated with resistance to 
vancomycin in C. difficile. This type of resistance has been recently described in C. difficile 
clinical isolates in Israel and in the US, and also associated with RT027 (623, 624). More 
concerning are recent reports of C. difficile isolates carrying vanB and vanA genes that 
mediate high-level vancomycin resistance, described in Australia and Iran, respectively 
(625, 626).

Resistance to fidaxomicin is not widely known, although a single C. difficile strain 
isolated from a patient with CDI recurrence showed reduced susceptibility (483). Induced 
and genetically engineered mutations in RNA polymerase subunit rpoB and putative 
transcriptional regulator MarR caused resistance to fidaxomicin in experimental studies 
(627, 628).

While no longer recommended as firstline therapy, metronidazole is still used 
by clinicians. Metronidazole treatment failures have been increasingly recognized in 
recent years mainly attributed to suboptimal pharmacokinetics rather than resistance 
(629). Low levels of resistance of C. difficile to metronidazole have been reported in 
many countries (630). Metronidazole resistance in C. difficile may involve multi-genetic 
mechanisms that are possibly involved in oxidoreductive and iron-dependent metabolic 
pathways (631). Mutations in genes involved in electron transport such as the glycerol-3-
phosphate dehydrogenase-encoding gene glyC (Ala229Thr) and the pyruvateflavodoxin 
oxidoreductase (PFOR)-encoding gene nifJ (Gly423Glu) have been linked to resistance 
to metronidazole (632, 633). Impairment of intracellular iron content has been implica
ted in C. difficile resistance to metronidazole (631). Also, an efflux pump system has 
been molecularly confirmed in metronidazole resistance (634). High rates of metronida
zole resistance have been observed in C. difficile isolates carrying the 7-kb plasmid 
pCD-METRO, in particular for isolates belonging to RT010 and RT020 (clade 1) and 
the epidemic strain RT027 (clade 2). However, the specific sequences responsible for 
metronidazole resistance in pCD-METRO have not been identified yet (630).

Rifamycins, such as rifaximin and rifampicin, were the most active agents in vitro, 
inhibiting C. difficile strains at very low concentrations. Mutations in the rifamycin 
resistance-determining region of RpoB found in clinical isolates of C. difficile are 
associated with rifamycin resistance (617, 635).
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INFECTION CONTROL

Surveillance of CDI on both the hospital and ward level associated with a timely feedback 
of infection rates is recommended as this strategy may lead to a reduction in the 
incidence of infection (636). The rate of hospital-onset CDI should be documented 
as the number of cases per 10,000 patient-days while the community-onset health
care facility-associated CDI prevalence rate as the number of cases per 1,000 patient 
admissions (15).

Hand hygiene and disposable gloves

CDI is mainly related to the care practices of healthcare workers’ hands (637). Implement
ing strict hand hygiene policies for healthcare workers is a key strategy to prevent C. 
difficile cross-infections in every clinical facility (638). Nevertheless, studies on healthcare 
workers have documented compliance rates from 9% to no more than 60% (639, 640). 
The implementation of hand hygiene programs in healthcare settings may have a 
highly positive impact on improving healthcare workers’ adherence to hand hygiene. 
Additional policies to promote and facilitate hand hygiene include the installation of 
new sinks, posting dedicated signage and providing interventions to increase hand 
hygiene compliance (641, 642). Unfortunately, multimodal interventions that include 
either only some or all of the strategies recommended in the World Health Organiza
tion (WHO) guidelines (643), as well as the recommended strategies plus additional 
ones (e.g., performance feedback, education, cues such as signs or scent, placement 
of alcohol-based hand rub products close to point of use) may only slightly improve 
hand hygiene compliance (644). No strong recommendations exist regarding the most 
effective technique/product for the removal of C. difficile and its spores (636). C. difficile 
spores are highly resistant to alcohol; therefore, spores may simply be transferred onto 
the skin instead of being killed by the product. This was the reason why mechanical 
washing with soap and water, chlorhexidine-based antiseptic, is recommended as more 
effective at removing C. difficile spores than an alcohol hand rub (645).

Interestingly, despite both the Centers for Diseases Control and Prevention and WHO 
stating that, besides representing a useless waste of resources, inappropriate glove 
use may result in missed opportunities for hand hygiene (646), a “universal gloving” 
approach preceded and followed by hand washing for all healthcare workers having 
contact with CDI patient (wash-glove-wash policy) has been recognized as able to 
increase hand hygiene compliance by threefold (647). Furthermore, the introduction 
of automated hand hygiene technologies (e.g., providing healthcare workers with a 
“badge” to wear, that beeps when hand hygiene has not been performed by measur
ing hands alcohol concentration or hands washing time, may significantly and rapidly 
increase hands hygiene compliance by more than 90% while decreasing CDI incidence 
(648, 649). However, questions related to the high cost in the face of poor literature 
evidence, as well as workers’ control and privacy issues, make their adoption still 
questionable.

Patient isolation, cohorting interventions, and contact precautions

Patients may be exposed to CDI not only as a result of direct contact with an infected 
patient but also indirectly by contact with a contaminated environment. Consequently, 
CDI control policies are particularly complex. On one hand, this is because of the 
bacterial characteristics (e.g., ubiquitous environmental and human reservoirs, spore-
forming bacterium with high environmental persistence). On the other hand, hospital 
facilities are promiscuous and often chaotic environments, characterized by high patient 
turnover. Consequently, each new patient is exposed to the risks of being infected with 
the same organism when admitted to the hospital, especially if located in a hospital 
room where an infected or carrier patient was previously hospitalized (650). Cohorting 
of staff, or patients, or both is thus a strategy of routine adoption to enhance infection 
control efficacy (651).
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At the same time, maintaining consistently high levels of attention to diffusion control 
strategies among patients, caregivers, visitors, and healthcare providers is extremely 
complex. For example, after caring for patients with CDI, almost one-quarter of them 
have hands contaminated with C. difficile spores, whether or not they use gloves (652). 
Each hospital facility should provide protocols that nurses can automatically implement 
(nurse-driven protocols) to ensure prompt isolation of patients with suspected (patients 
with clinically significant unexplained diarrhea) or confirmed CDI (653). This includes 
following rigorous recommended hand hygiene practices (see above); moving the 
patient to a single-patient room with a dedicated toilet (if unavailable, putting patients 
with confirmed CDI in the same room); ensuring rigorous contact precautions including 
wearing a clean, non-sterile gown and gloves before entering the patient’s room, and 
changing between patient contacts, while the diagnostic workup is ongoing and after 
CDI confirmation; providing the patient with a bath or shower with soap and water daily; 
avoiding patient transport from the isolation room, unless strictly necessary; maintaining 
all the above measures for at least 48 hours after diarrhea termination for asymptomatic 
patients. These measures should be maintained up to hospital discharge or patient’s 
transfer to a different hospital or community facility. Furthermore, blood pressure cuffs, 
stethoscopes, glucometers, thermometers, bedpans, and any other portable medical 
equipment should be dedicated to every single patient and must not travel between 
patients and rooms (654, 655). In addition, the use of launderable cover for a patient’s 
mattress and bed deck should be considered as has been described as associated with a 
decreased rate of healthcare-associated CDI (656).

Environmental interventions

Studies reported that feces of CDI patients may contain up to 10 million bacteria per 
gram, while C. difficile spores may remain viable on contaminated fomites for months 
or years despite routine cleaning (657). However, the transmission of C. difficile does not 
only occur by contact. Indeed, airborne dissemination of C. difficile spores from infected 
and symptomatic patients has been demonstrated in multiple studies. Furthermore, a 
number of routine, daily practices (e.g., bed making, bedpan washing, toilet flushing, 
healthcare workers or visitors’ movement) have been found as able to potentially 
generate aerosols embedding C. difficile spores (658).

Similar to hand hygiene, environmental cleaning procedures are among the 
interventions with the highest theoretical rationale for the control of CDI. Basic rules, 
such as starting to clean from the cleanest toward the dirtiest zones of the room (e.g., 
toilets), should be followed. Moreover, the reliability of cleaning practices should be 
routinely checked either through direct observation or, when possible, by adopting 
fluorescent markers (654).

The most effective interventions, resulting in a 45% to 85% reduction in CDI, include 
a daily to twice-daily sporicidal disinfection and the terminal cleaning of patients’ rooms, 
including “high-touch” surfaces like bed rails, door handles, and side tables (636, 659). 
Chlorine-based products (e.g., sodium hypochlorite, sodium dichloro-s-triazinetrione, 
sodium dichloroisocyanurate), as well as hydrogen peroxide and peroxyacetic acid, have 
demonstrated a greater killing action toward C. difficile spores (660).

No-touch disinfection systems such as continuous ultraviolet germicidal irradiation 
(UV-C) at the room level have been shown to significantly reduce airborne bacteria, 
with the potential to lower the incidence of CDI and other healthcare-associated 
infections caused by contact pathogens (661). This strategy may be effective in reducing 
transmission/incidence of CDI, especially in clinical facilities with high CDI rates, to 
control deficiencies in routine cleaning and disinfection (e.g., human error or substan
tial contaminations) but must be intended as adjunctive, not substitutive, to standard 
cleaning and disinfection strategies (654, 662–664).
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The issue of cross-transmission from asymptomatic carriers

A large number of patients or healthcare workers carry C. difficile without clinical 
symptoms (asymptomatic carriers) and act as reservoirs of C. difficile. Although routine 
screening is not recommended (636), the risk of infection transmission from asympto
matic carriers may be high, as no strict contact precautions or cleaning procedures are 
adopted for these subjects. A recent US study screened daily the patients admitted to 
an ICU by sequencing whole genome on all isolates (665). They found that, despite 
almost 10% of patients detected as asymptomatic carriers of toxigenic C. difficile, only 
1% of patients negative on admission acquired C. difficile via cross-transmission. The 
authors concluded that current infection prevention practices to prevent nosocomial 
cross-transmission of C. difficile are very effective. It should be noted, however, that the 
study was carried out in an ICU, where more strict adherence to prevention practice is 
expected, the nurse-to-patient ratio is very low (e.g., 1:1 or 1:2), and visitor access to the 
unit is very limited and controlled. The authors of the above study found that patients 
who carried toxigenic C. difficile on admission had 24 times greater risk for developing 
CDI compared to non-carriers, hoping for the development of interventions to prevent 
the transition from asymptomatic to symptomatic CDI.

PRIMARY AND SECONDARY PROPHYLAXIS

In addition to prevention strategies and medication stewardship programs, the fight 
against CDI can benefit from prophylactic interventions tailored to individual patients, 
aimed either at preventing CDI in at-risk populations (primary prophylaxis) or at reducing 
the risk for recurrent CDI (secondary prophylaxis) (666). In detail, these prophylactic 
interventions may include active and passive immunization, antibiotic prophylaxis, and 
microbiota-targeted therapy to prevent or restore gut dysbiosis (666).

Antibiotic prophylaxis

Although antibiotic prophylaxis may decrease CDI rates in at-risk populations, it can 
deeply impact the gut microbiome, increasing the risk of recurrent CDI, and induce 
antimicrobial resistance (e.g., vancomycin-resistant enterococci) (463, 667). Older studies 
showed that primary prophylaxis with metronidazole in asymptomatic C. difficile carrier 
patients was not effective, while oral vancomycin led to a “rebound effect,” characterized 
by a temporary positive effect followed by a paradoxical higher rate of both colonization 
and infection (668).

Oral vancomycin is the most studied strategy for primary and secondary prevention 
of CDI in patients receiving systemic antibiotics. However, risks exist that this drug, 
besides promoting drug-resistant organisms, has a relevant disruptive effect on the gut 
microbiota, theoretically leading to CDI recurrence and increasing the risk of treatment 
failure (669). This, along with the support of only low-quality evidence, has led to 
controversial and cautious recommendations by international guidelines regarding its 
use.

ACG guidelines conditionally recommend using low-dose vancomycin (i.e., 125 mg 
once daily, to be stopped 5 days after completion of antibiotic treatments) for secondary 
CDI prevention in high-risk patients undergoing systemic antibiotic therapy to prevent 
further recurrence (low-quality evidence) (259). The ESCMID guidelines recommend 
against routinely using anti-CDI antibiotic prophylaxis for patients on systemic antibi
otic treatment, except for selected patients with a history of multiple recurrences of 
CDI hastened by systemic antibiotic use, who could be considered for this prophylaxis 
after consultation with Infectious Diseases or Clinical Microbiology specialists and after 
balancing risks and benefits (208). More recently, an updated meta-analysis stated that 
oral vancomycin “appears to be an efficacious option for prevention of CDI in high-risk 
subjects undergoing systemic antibiotic treatment,” claiming, however, for additional 
data from RCTs before recommending this option as a good clinical practice, also for 
establishing its optimal dosage and duration (670). At present, only very few studies 
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have explored the potential of prophylaxis with antibiotics different from vancomycin. 
An RCT reported a lower 30-day incidence of CDI (confirmed by toxin immunoassay 
or nucleic acid amplification test) in neutropenic patients undergoing hematopoietic 
stem cell transplantation with fluoroquinolone prophylaxis treated with fidaxomicin 
(200 mg once daily) vs placebo (353). Nevertheless, at present, only poor evidence 
supporting prophylaxis with vancomycin or fidaxomicin during antibiotic treatments 
or other procedures implying a CDI risk is available, so neither the optimal dosing 
strategy nor the long-term safety (e.g., selection of multidrug-resistant microorganisms) 
has been established (666). A trial aimed at assessing the effectiveness and safety of oral 
vancomycin vs placebo in the prevention of rCDI infection in patients under systemic 
antibiotic therapy has been planned (671).

Microbiota-targeted therapy: dysbiosis prevention

A novel preventive strategy consists of administering molecules able to degrade some 
commonly used intravenous antibiotics in the gastrointestinal tract, thus protecting the 
colonic microbiota from disruption. At least two molecules have completed phase II 
trials. Ribaxamase (a class A serine enzyme) was shown to reduce the incidence of CDI in 
patients receiving ceftriaxone without affecting antibiotic efficacy. DAV-132, a colon-tar
geted adsorbent, showed potential against beta-lactams (penicillins, cephalosporins, and 
carbapenems), fluoroquinolones, and lincosamides (666). However, the above medica
tions are not yet available in clinical practice and are discussed in detail in section 
“Vaccine.”

Proton pump inhibitor stewardship programs

The pathophysiological mechanism linking PPIs to CDI seems to be multifactorial. On 
one side, gastric pH increase induced by PPIs would promote bacterial overgrowth and 
spore survival. On the other side, PPIs might induce impairment in neutrophil bacterici
dal activity or boost C. difficile toxin expression (672).

It is well documented that PPIs use leads to an increased risk of recurrent CDI, 
particularly in immunocompromised patients. These results support stronger recom
mendations for PPIs stewardship upon CDI diagnosis (673). However, a clear association 
between PPIs and CDI has been demonstrated only through observational studies, so, at 
present, a causeeffect relationship has not been proven. Thus, a mandatory withdrawal 
of PPIs in patients at risk for CDI seems not justifiable (259, 674). However, the adoption 
of PPI stewardship programs discouraging unnecessary PPI use would be desirable (675).

ANTIMICROBIAL STEWARDSHIP

Antimicrobial stewardship can be defined as the coherent set of actions that promotes 
using antimicrobials responsibly (676). Over the past decade, an increasing interest 
in this topic has been observed. Narrowing the spectrum, when possible, avoiding 
anaerobic coverage when not necessary, and optimizing the duration of antimicrobials 
are some of the basic principles of antimicrobial stewardship. CDI is strongly associ
ated with antibiotic exposure, so it is not surprising that an interconnection between 
antimicrobial stewardship and CDI exists. In fact, CDI incidence has been used as 
an indirect index of the effectiveness of antimicrobial stewardship programs (677). In 
2017, an important paper on this topic was published, detailing a stewardship interven
tion conducted in a region of Scotland serving 11% of the Scottish population. This 
intervention consisted of a mixed persuasive-restrictive intervention on the so-called 
4C antibiotics: fluoroquinolones, clindamycin, co-amoxiclav, and cephalosporins. The 
authors identified 4,885 cases of hospital-onset CDI and 1,625 cases of community-onset 
CDI. C. difficile infection prevalence density fell by 68% in hospitals and 45% in the 
community, during antibiotic stewardship (678).

From a global perspective, regarding healthcare facility-associated CDI, carbapenems 
and third- and fourth-generation cephalosporins are the most commonly prescribed 
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antibiotics (74). Fluoroquinolones are also under surveillance, particularly in settings with 
high prevalence of 027 strains, which are commonly fully resistant to all tested fluoro
quinolones (679). A retrospective case-control study conducted during an outbreak 
between 2000 and 2001 in the US on 253 nosocomial CDI cases showed that clindamycin 
(OR 4.8; 95% CI 1.9–12.0), ceftriaxone (OR 5.4; 95% CI 1.8–15.8), and levofloxacin use 
(OR 2.0; 95% CI 1.2–3.3) were independently associated with infection. Interestingly, the 
etiologic fractions for these three agents were 10.0%, 6.7%, and 30.8%, respectively (680, 
681). An Austrian study published in 2014 demonstrated that a dramatic interventional 
reduction of moxifloxacin use in hospitalized patients was followed by a 46% reduction 
(P = 0.0044) in CDI cases (682). Large data from the UK showed that significant reduc
tions in fluoroquinolone use in hospitals and in the community were associated with a 
significant decrease in CDI caused by fluoroquinoloneresistant isolates (50). A systematic 
review and meta-analysis published in 2014 support this statement after evaluating 
16 articles that used quasi-experimental or observational (case-control) study designs. 
Results showed that implementation of antibiotic stewardship programs had an overall 
protective benefit on CDI incidence (pooled risk ratio 0.48; 95% CI 0.38–0.62), indicat
ing a risk reduction for CDI of 52%, with the most significant protective effect being 
observed among the geriatric populations (pooled risk ratio 0.44; 95% CI 0.35–0.56). 
Authors also found that restrictive antibiotic stewardship programs had a statistically 
significant protective effect on CDI incidence (pooled risk ratio 0.46; 95% CI 0.38–0.56), 
while persuasive antibiotic stewardship programs did not (pooled risk ratio 0.49; 95% CI 
0.24–1.01). When stratifying per class, they found that cephalosporins restriction (14 
studies) was associated with a CDI risk reduction of 50%, and fluoroquinolones restriction 
(six studies) was associated with a 55% CDI risk reduction (683).

Generally, tetracyclines, daptomycin, linezolid, and nitrofurantoin are associated with 
a lower risk of CDI compared to other classes of antibiotics (65, 76, 684, 685). In particular, 
tetracyclines and daptomycin have been associated with protective odds ratios (685). 
Experimental evidence supports this finding. A study conducted on mice showed that 
doxycycline and azithromycin treatment did not promote C. difficile colonization when 
compared to saline controls. Moreover, the authors found a significantly lower disruption 
of mice intestinal flora in those exposed to doxycycline and azithromycin compared to 
those exposed to ceftriaxone (686).

Regarding strategies to improve antimicrobial stewardship, nursing-based actions 
have been advocated due to growing recognition of the importance of engaging nurses 
in hospital stewardship efforts. Given their constant close proximity to patients, adaptive 
ability, and scientific understanding of care processes across the continuum of care, 
the nursing profession has the potential to play a special role in infection prevention 
programs. Particularly, nurses can inform decisions about the need for diagnostic tests 
based on assessed patient symptoms, ensure timely microbiology tests are performed 
before antibiotics are started, and promote discussions regarding antibiotic treatment, 
indication, and duration (687–689).

FUTURE PERSPECTIVES

Main anti-CDI drugs with ongoing or completed phase III studies

Antibiotics

Over the years, vancomycin and metronidazole were predominantly recommended for 
most CDI patients. Yet, following its FDA approval in 2011, fidaxomicin emerged as 
a contender, frequently viewed as on par with or even superior to oral vancomycin. 
Alongside these primary three antibiotics, other medications like bacitracin, nitazoxa
nide, rifaximin, and tigecycline have been used in an offlabel context to address CDI. 
Furthermore, fusidic acid and teicoplanin, which are not available in the US, have 
undergone scrutiny as potential CDI treatments. Some candidates, such as cadazolid, 
LFF571, ramoplanin, and surotomycin, did not succeed in entering the market.
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The journey toward creating antibiotics specifically for CDI continues, as six promising 
drugs are under active clinical investigation: ridinilazole (now in phase III), MGBBP3 
(completed phase II), CRS3123, DNV3837/DNV3681, and ibezapolstat (all three are 
navigating phase II) (690). Ridinilazole, the only phase III trial antibiotic, will be discussed 
further.

Ridinilazole, a narrow-spectrum antibiotic developed by Summit Therapeutics Inc., 
has completed two phase II studies (691) and has been compared to vancomycin in two 
phase III trials: Ri-CoDIFy 1 (692) and Ri-CoDIFy 2 (692). The focal phase II investigation 
involved CDI patients aged between 18 and 90. These participants were allocated into 
two groups: one group was administered 200 mg of ridinilazole twice a day, while the 
counterpart received 125 mg of vancomycin, administered four times daily over a 10-day 
span (691). The primary target of effectiveness was sustained clinical response, defined 
as clinical remission without CDI recurrence within 30 days of the conclusion of antibiotic 
treatment. SCR was achieved in 66.7% of patients treated with ridinilazole vs 42.4% of 
patients treated with vancomycin, with a reported treatment difference of 21.1% (90% CI 
3.1–39.1; P = 0.0004) (691). In addition, further analyses of the phase II study specimens 
showed that ridinilazole had a reduced tendency for gut dysbiosis than vancomycin. 
The phase III study was conducted on 759 adult individuals with the same treatment 
regimen as the phase II studies (693), revealing statistically significant lower recurrence 
rates for ridinilazole (8.1%) when compared to vancomycin (17.3%; P = 0.0002). However, 
the data did not confirm the supposed primary outcome for ridinilazole SCR superior
ity when compared to vancomycin (693). Gastrointestinal symptoms were the most 
common treatment-emergent side effects, with termination of study medication being 
uncommon in both treatment groups (546–548). In addition, ridinilazole and vancomycin 
are currently being evaluated in a clinical study (Ri-CoDIFy 3) involving adolescents aged 
12–17 years with confirmed CDI (694). In conclusion, given the unmet SCR superiority 
over vancomycin, it is unlikely that a ridinilazole will enter the global market in the next 2 
years.

Live biotherapeutic products

The growing understanding and interest in the potential role of gut microbiome in 
the development and healing from CDI has driven the research in microbiome-based 
treatments. Live biotherapeutic products (LBPs) are classified by the FDA as non-vaccine 
biological products containing live organisms for the prevention, treatment, or cure of 
human illness or condition (695). LBPs for the prevention of CDI recurrence vary from 
prior microbiome-based treatments, such as probiotics and FMT.

Probiotics are bacteria that, when taken in appropriate amounts, provide health 
advantages (696). Typically, they are uncontrolled, resulting in variable product 
quality and efficacy  (697, 698). Consequently, results from research on probiotics 
for the prevention of CDI are frequently inconsistent, thus resulting in the absence 
of clinical recommendations toward probiotic therapeutic strategies for CDI (15, 208, 
259).

The FDA regulates LBPs, requiring strict standardization, acceptable manufacturing 
processes, and clinical studies to demonstrate safety and effectiveness (679, 699–702). 
Currently, three LBPs are participating in or have completed phase III CDI therapy studies. 
A substantial amount of information concerning these agents remains confidential and 
inaccessible for our review. These LBPs try to solve gut dysbiosis during antibiotic 
therapy in order to avoid further recurrence of CDI, which occurs in 15% and 25% of 
patients. We will discuss these LBPs below, and we will mention in Table 3 also an LBP 
that is ready to enter in phase III (VE303) (703).

CP101

The oral capsule CP101, produced by Finch Therapeutics, contains freeze-dried healthy 
donor stool (704, 705). After feces are collected and screened, they are processed, 
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lyophilized, and encapsulated (705). The treatment regimen consists of the administra
tion of a single pill, without prior gastrointestinal preparation. CP101 has concluded 
two phase II trials: PRISM3 (706, 707) and PRISM-EXT, an extension study for PRISM3 
individuals with recurrence (708, 709). In 2021, recruitment for a phase III study (PRISM4) 
was initiated but was delayed due to new donor screening and manufacturing criteria for 
possible SARS-CoV-2 infection (710, 711).

The initial CP101 trials focused on improving the formulation and determining the 
appropriate dosage for individuals with at least four to five CDI relapses (704, 705), and, 
interestingly, the proof-of-concept trial revealed that 87.8% of patients did not develop 
CDI recurrence within 8 weeks from the first administration. In phase II clinical studies, 
a single capsule containing 6 × 1011 bacterial cells was used (712), resulting in 74.5% of 
individuals treated with CP101 achieving SCR at 8 weeks, compared to 61.5% of those 
who were in the placebo group (708, 709). In the PRISM-EXT open-label extension, the 
8-week success rate achieved 80.3%. Participants in PRISM3 did not report any safety 
problems, and persistent clinical recovery was documented for up to 24 weeks (708, 709).

In January 2023 Finch Therapeutics announced its decision to discontinue the PRISM4 
phase III trial of CP101 in recurrent CDI because of slower than anticipated enrollment, 
the impact of unauthorized use of intellectual property, and broader sector trends. The 
company will also reduce its workforce by 95% (713).

RBX2660 (Rebyota)

RBX2660, created by Ferring Pharmaceuticals and Rebiotix, is a suspension of healthy 
donor feces in polyethylene glycol 3350 and administered through enema (714–716). No 
intestinal preparation is required prior to the enema, although a washout period of 24–
72 hours is required following the final CDI antibiotic dosage. RBX2660 has completed a 
phase III study (PUNCH CD3) (717) and received FDA clearance in November 2022 for the 
prevention of CDI recurrence in patients over the age of 18 who have been treated with 
antibiotics for recurrent CDI (718). A phase III open-label experiment (PUNCH CD3-OLS) is 
now recruiting a more diversified group of patients (719, 720).

Three phase II studies have been conducted for RBX2660: PUNCH CD (713), PUNCH 
Open Label (715), and PUNCH CD2 (721). In the PUNCH-CD2 (open-label, non-compa
rative) trial, RBX2660 was effective in preventing CDI recurrence in 87.1% of patients 
who received two doses. The results were confirmed in the PUNCH Open Label study, 
with 78.9% of patients undergoing RBX2660 administration achieved 8-week SCR when 
compared to 30% of the historical control group (715). Regarding the appropriate 
dosage, the PUNCH CD2 (double-blind/placebo-controlled) trial confirmed that one 
dosage of RBX2660 was sufficient to achieve SCR when compared to placebo (721), 
which was further confirmed by the phase III study (PUNCH CD3), where a single dose 
was sufficient to determine 8-week SCR in 71.2% of patients (717). A secondary Bayesian 
analysis indicated a treatment superiority probability of 99.1% if compared to placebo 
to achieve 8-week SCR (717). Results from PUNCH CD3-OLS study showed that 75% 
of patients receiving RBX2660 achieved 8-week SCR, without severe adverse events 
attributable to RBX2660, thus demonstrating its safety in a real-world population (719, 
720).

Multiple secondary analysis of phase II and phase III trial data uncovered additional 
effects related to RBX2660 administration. For example, patients exhibited beneficial 

TABLE 3 FDA-approved and late-stage live biotherapeutic products for CDI

Product Content Phase Route Posology Clinical cure (8 weeks) Safety

RBX2660 Suspension of microbiota (from HD) III Enema One enema once 71%–79% Good
SER109 Pure Firmicutes bacterial spores (from HD) III Oral 4 cp Daily for 3 days 87%–91% Good

VE303
Consortium of eight non-pathogenic Clostridia (from 

HD) II Oral 10 cp Daily for 14 days >95% Good
acp, capsules; HD, healthy donors.
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microbiome modifications toward post-treatment predominance of Bacteroides and 
Clostridia classes (722–724) despite both RBX2660 and the placebo increased micro
biome alpha diversity without relation to CDI recurrence. However, in the PUNCH CD3 
study, RBX2660 was associated with improved bile acid composition (722–724), and 
reduction in antimicrobial resistance for at least 6 months after administration, with 
72.7% of patients with previous colonization by vancomycin-resistant Enterococcus in 
their stool resulting negative following RBX2660 treatment (725).

Vowst (SER-109)

SER109 (Vowst), developed by Seres Therapeutics, is an oral capsule that includes 
live, pure Firmicutes bacterial spores collected from healthy donor feces, incorporat
ing ethanol spore purification to reduce the potential risk of pathogen transmission. 
Firmicutes were chosen for their capacity to compete with C. difficile for vital nutrients 
and/or modify bile acid profiles, therefore reestablishing resistance to colonization (563, 
726, 727). Prior to administration, bowel preparation with magnesium citrate is required 
to reduce the intestinal concentration of CDI-active antibiotics (563). Upon administra
tion, four capsules daily over a 3-day course produce around 3 × 107 spore colony-form
ing units. SER109 has completed phase II (ECOSPOR) (727) and phase III (ECOSPOR III) 
(563) studies and has early data from an open-label study (ECOSPOR IV) for patients who 
suffered recurrence after therapy with SER109 in ECOSPOR III (728, 729). In September 
2022, the FDA received a Biologics License Application, and the product was approved 
on 26 April 2023 (564, 730).

During the phase Ib study, patients having at least three CDI episodes during 
3 months previous to enrollment were administered up to 15 SER109 capsules per 
day (726), with 86.7% of patients not showing recurrence within the 8-week follow-
up period. As expected, 16S rRNA sequencing demonstrated a persistent increase in 
microbiome diversity, with predominant growth of Firmicutes and amplification of 
potentially beneficial phyla not present in SER109 composition, such as Bacteroidetes, 
for up to 24 weeks after delivery. Of notice, SER109 failed to exhibit superiority over 
placebo in avoiding 8-week CDI recurrence without age stratification prior to analysis. 
In fact, subgroup analysis of patients aged 65 and older showed a significant benefit if 
treated with SER109 when compared to the placebo group (727). To address these initial 
concerns, the ECOSPOR III trial was conducted administering higher dosage of SER109, 
adding a positive toxin assay to the inclusion criteria. However, the COVID-19 pandemic 
resulted in the early termination of the trial, despite showing that 88.6% of patients 
treated with SER109 (vs 60.2% in the placebo group) achieved clinical remission 8 weeks 
after administration (563), data which were later confirmed by an open-label ECOSPOR IV 
extension study that reported clinical for 24-week remission in 91.3% of patients treated 
with SER109, with no remarkable safety concerns (563, 726, 727, 731).

A recent post hoc analysis on ECOSPOR III assessed the rate of rCDI for subgroups, 
including Charlson categories, baseline creatinine clearance, number of CDI episodes, 
exposure to non-CDI targeted antibiotics after dosing, and acid-suppressant medication 
use at baseline. Across all subgroups analyzed, SER109-treated subjects had a lower RR of 
rCDI compared with placebo (732).

Phage therapy

Bacteriophages (or phages) are viruses that infect and replicate in bacterial cells. Their 
host range is usually narrow and limited to a single bacterial species or a specific 
strain within a species. Their clinical use as antibacterial agents predates the advent 
of penicillin; however, their variable activity and impractical time-consuming production 
have limited their use until the advent and worldwide diffusion of multidrug-resistant 
organisms, usually as “last chance” agents (733). Moreover, as the disruption of the gut 
“microbiological barrier” by antibiotics is pivotal in the pathogenesis of CDI, their narrow 
host range makes phages an interesting option as anti-C. difficile agents, preventing 
further dysbiosis. Indeed, a recent in vitro colonic model recently confirmed that specific 
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phages do not alter the microbiota composition (734). Phage therapy against CDI 
might have further advantages over antibiotic therapy. As infective particles, phages 
amplify their effective dose replicating in the site of infection and are able to penetrate 
the complex biofilm found in C. difficile-associated pseudomembranous plaques (735). 
Furthermore, it was also suggested that the transfer of gut phage communities (gut 
virome) might play a yet unrecognized role in the efficacy of fecal microbiota transplant 
in CDI therapy (736). C. difficile is susceptible to multiple genetically diverse phages (i.e., 
siphophages and myophages, belonging to the Caudovirales family) (737, 738).

However, despite being intriguing, the therapeutic use of phages against CDI is 
hindered by several drawbacks. Some drawbacks are determined by technical difficul
ties in phage “delivery” (i.e., the phage pharmacokinetic) and phage “action”: lack of 
knowledge on the fundamental relationship between virus and its host, and lack of 
clinical trials.

For instance, molecular characterization of phage entry in C. difficile cells is not 
completely understood. Recently, the role of C. difficile surface layer protein A as one of 
the most important phage receptors was studied, which was previously only hypothe
sized (737). Moreover, in the case of phages, there is a general lack of knowledge 
regarding efficient processes of drug formulation, encapsulation, storage, and delivery 
(738). Regarding clinical efficacy, to our knowledge, phages have not yet been studied 
in vivo in humans, but some experimental data in vitro and in vivo models have been 
collected. A therapeutic model involves the use of a single specific phage (“single-phage 
therapy”) (739). Phage CD140 has shown promising clinical efficacy in a hamster model 
and in other hosts (mice, Galleria mellonella wax worm), even though this therapy has not 
been shown to be protective against CDI relapses as single-phage therapy is prone to 
“phage resistance” (739, 740). CRISPR-engineered phages are a novel potential therapy, 
but their clinical efficacy has yet to be tested. Another therapeutic strategy is the use 
of “phage cocktails.” For instance, an in vitro study has shown that phage cocktails 
reduce C. difficile cell count without harming the other commensal bacteria, potentially 
preventing CDI relapses (741). However, the “optimal” phages combination is yet unclear, 
and human clinical studies have yet to be published.

Butyrate-producing bacteria

Butyrate is the most abundant SCFA in the human gut (along with acetate and pro
pionate), with a luminal concentration of 10–20 mM and a pivotal role in the metab
olism of colonocytes and enterocytes, which use butyrate as their dominant energy 
source via β-oxidation and the tricarboxylic acid cycle, while enterocytes use mainly 
glucose and glutamate but also butyrate (742). Butyrate is synthesized by several 
species of commensal gram-positive bacteria from dietary starch and fiber, and its 
systemic absorption is low, as butyrate is readily consumed by the epithelial cells via 
a carrier-mediated cell entry (742). Butyrate plays an important role in the modulation 
of colonocyte proliferation and epithelial inflammation, and its role in the pathogenesis 
and treatment of intestinal neoplasms, inflammatory bowel diseases, and malabsorptive 
states is increasingly being studied (742).

Butyrate inhibits C. difficile proliferation with a complex mechanism. While in a recent 
study, it was shown that butyrate might directly inhibit C. difficile proliferation (743), its 
direct antimicrobial effect remains controversial. Butyrate’s main protective mechanism 
against CDI is thought to be the reduction of epithelial permeability and bacterial 
translocation, the stabilization of proinflammatory cytokines levels, and the modulation 
of regulatory T cells and neutrophils in the colonic lamina propria (744, 745).

Butyrate as a therapeutic agent has been studied in several formulations: as tributyrin, 
dietary supplementation of SCFA, or as butyrate-enriched microbiota (745–748). In 
recent years, butyrate-enriching bacterium C. butyricum, known as a probiotic used as 
antidiarrheal treatment in Asia, was recently studied as a potential alternative as trophic 
agent vs antibiotic growth promoters in agriculture (749, 750). Although exceptionally 
described as a potential pathogen (751), C. butyricum MIYAIRI 588 strain (CBM 588) 
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was able to reduce antibiotic-induced gut epithelial damage in a murine in vivo study, 
the epithelial necrosis, and the presence of inflammatory cells (752). In particular, in 
a murine CDI model, mice treated with a combination of fidaxomicin and CBM 588 
acquired enhanced resistance to C. difficile colonization and attenuated gut inflammation 
compared to mice where fidaxomicin was used as monotherapy. In this study, CBM 588 
modulation of the gut microbiome (i.e., increasing Lactobacillus spp. and Lactococcus 
spp. composition) resulted in decreased gut succinate concentrations, with suppression 
of C. difficile proliferation. Moreover, CBM 588 enhanced the synthesis of pathogen-spe
cific IgA by upregulating IL-17A-producing CD4+ cells in the colonic lamina propria 
(752). Despite its widespread consumption, especially in Asia, the clinical efficacy of 
C. butyricum against human CDI is understudied. For instance, in a recent Taiwanese 
retrospective study in medical wards, in 99 mild-moderate CDIaffected patients, the 
addition of C. butyricum to metronidazole resulted in a nonsignificant decrease in 
diarrhea duration in comparison to monotherapy with metronidazole alone (3.5 ± 2.4 
vs 4.2 ± 3.5 days: P = 0.71) (753). In another study, available in the Japanese language 
literature and cited by the English language literature, in 71 patients affected by CDI, the 
co-administration of CBM 588 and vancomycin reduced stool frequency in comparison 
to vancomycin alone (3.9 vs 2.6 times/day: P < 0.05), shortened the treatment periods, 
and this effect was not confirmed when vancomycin was co-administered with products 
containing E. faecium (754, 755).

Ribaxamase and other antibiotic inhibitors

In general, beta-lactamase are known to be among the main causes of antibiotic 
resistance as these naturally occurring enzymes degrade beta-lactam antibiotics. 
Overcoming this obstacle has been the goal of the development of beta-lactam/beta-
lactamase inhibitor combinations, such as, for instance, amoxicillin/clavulanate, 
ampicillin/sulbactam, piperacillin/tazobactam, ceftolozane/tazobactam, etc. However, 
beta-lactams, one of the main classes of antibiotic used in the treatment of human 
diseases promote gut dysbiosis, one of the major risk factors in the pathogenesis 
of CDI. Moreover, parenteral beta-lactams might be secreted through the bile in the 
small intestine. To reduce the collateral damage of intravenous antibiotic therapy, the 
possibility of using a synthetic beta-lactamase had already been investigated in 2003: 
an oral penicillinase purified from Bacillus licheniformis was used in combination with 
intravenous ampicillin, decreasing the gut concentration of ampicillin to an undetectable 
level while preserving serum concentration (756). Ribaxamase was developed as an 
extended spectrum beta-lactamase able to degrade both penicillins and cephalosporins. 
Formulated as a pH dependent for better release in the small intestine, derivative of the 
original modified B. licheniformis penicillinase (P1A), SYN-004, later referred as ribaxa
mase, was originally studied in in vivo animal models, where it degraded ceftriaxone 
in the gut of dogs and protected the microbiome of pigs from ceftriaxone-induced 
dysbiosis (757). Its spectrum of activity includes inhibition of penicillins, ceftriaxone, 
cefazolin, cefuroxime, cefoperazone, cefepime, and, at a higher concentration, cefotax
ime and ceftazidime (757). Phase I clinical studies demonstrated ribaxamase safety, 
tolerability, and sporadic and negligible serum concentration (758). Phase IIa clinical 
studies confirmed the degradation, below quantification threshold, of luminal (measured 
in the participants’ chyme) ceftriaxone co-administered with oral ribaxamase, independ
ently by the assumption of the proton pump inhibitor esomeprazole but with highly 
variable chyme concentration of ribaxamase (759). In a subsequent phase IIb randomized 
placebo-controlled multicenter trial (NCT02563106) on 413 lower respiratory tract-infec
ted patients, ribaxamase administered during, and for 72 hours after, treatment with 
ceftriaxone significantly reduced (from 3.4% to 1%; 95% CI −0.6 to 5.9; one-sided P 
= 0.045) the risk of CDI up to 4 weeks after treatment (760). However, in this study, 
mortality was higher in the ribaxamase group (11 deaths vs 5 deaths in the placebo 
group) and attributed by the authors to an imbalance in the underlying comorbidities 
of the patients. A subsequent study on fecal samples collected during the previous 
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clinical phase IIb study, analyzing the presence of antimicrobial resistance genes using 
whole-genome shotgun sequencing, revealed that ribaxamase reduced changes to the 
gut resistome, with significantly lesser genes encoding for beta-lactamase or vancomycin 
resistance in the ribaxamase vs the placebo arm (761). Ribaxamase has yet to be studied 
in a phase III clinical study as CDI prevention agent. However, a phase Ib/IIa trial is 
seeking to repurpose the drug as microbiome-protecting agent in allogeneic hemato
poietic cell-transplanted patients who developed fever after conditioning therapy and 
are treated with intravenous beta-lactam antibiotics (meropenem, piperacillin/tazobac
tam, or cefepime) (NCT04692181), but the results are not yet available (762). It is 
important to remark that the ribaxamase activity spectrum does not include carbape
nems. In order to expand the activity of orally administered beta-lactamase, a Bacillus 
cereus-derived metallo-beta-lactamase (SYN-006) is currently being studied as a potential 
gut microbiome protective therapy, but clinical studies on human subjects are not 
available (763).

Another recent strategy of beta-lactamase delivery was employed using engineered 
LBP. A strain of Lactococcus lactis was engineered in order to secrete a heterodimeric 
beta-lactamase, encoded via a genetically unlinked two-gene biosynthesis strategy that 
is thought to not be susceptible to dissemination by horizontal gene transfer, prevent
ing both the increase in antimicrobial resistance genes and the loss of colonization 
resistance against C. difficile in a mouse model treated with ampicillin (764).

Regarding other antibiotic inhibitors, although it does not have enzymatic activity 
but rather presents as an activated-charcoal-based product, DAV132 has been studied 
in absorption of fluoroquinolones (moxifloxacin, levofloxacin, and ciprofloxacin) showing 
promising results (765, 766).

Vaccines

The advent of bezlotoxumab as the first monoclonal antibody marketed against CDI 
recurrences has highlighted the importance of drugs designed to enhance immunity 
against C. difficile. As passive immunity wanes weeks after exposure to the specific 
therapeutic antibody, a more promising approach is focused on active immunity. 
Protective response to vaccination against human diseases was shown to last longer 
than passive immunization, or even lifelong.

Reflecting the pathogenesis of CDI, vaccines against C. difficile are categorized as 
toxoid based and non-toxoi -based. In general, the rationale behind the development 
of a toxoid-based vaccine candidate is that high serum antitoxin-IgG (in particular, 
antibodies against toxin B) are inversely correlated with the severity and recurrence 
of CDI (767). However, antibodies against C. difficile toxins are not able to clear gut 
colonization. Moreover, toxin B-based vaccines are impaired by the variety of toxin B 
isotypes, as up to 12 subtypes of toxin B have been identified (767).

As toxoid-based vaccine candidates might protect against C. difficile disease severity 
and rCDI, and non-toxoid-based vaccine candidates theoretically might protect against 
gut colonization by C. difficile, the ideal vaccine candidate needs to have both these 
functions. Therefore, apart from stimulating a robust and lasting immune response, 
a theoretically ideal vaccine candidate might be bivalent or might require multiple 
combinations of antibodies.

Pfizer Inc.’s bivalent toxoid vaccine PF06425090 contains detoxified forms of C. difficile 
toxin A and B. It is the first vaccine to have completed both phase II (NCT02561195) 
and phase III (NCT03090191) (768, 769). In the phase II study, 855 healthy people 
between the ages of 65 and 85 were randomized to receive either one of two doses 
of PF06425090 or a placebo (768, 769). The primary effectiveness outcome was the 
measurement of neutralizing serum toxin A and B antibodies at certain time periods. 
The predetermined threshold for toxin A neutralizing antibody was attained in 95.6% of 
individuals in the 200 mcg dose regimen used for phase III trials (0, 1, and 6 months), 
compared to 1.9% of participants in the placebo group. In addition, 87.3% of those 
who received the vaccination and 7.5% of those who received the placebo met the 
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predetermined threshold for toxin B-neutralizing antibodies. In the phase III CLOVER 
Trial, PF06425090 was compared to a placebo in individuals aged 50 or older who had 
taken systemic antibiotics during the preceding 12 weeks or were at a higher risk of 
healthcare system interaction (768, 769). The unpublished results of the phase III CLOVER 
Trial (NCT03090191) have preliminarily suggested that vaccine efficacy (compared to 
placebo) within 3 years following dose 2 and dose 3 was 28.6% (96.4% CI 28.4%–61.0%) 
and 31% (96.4% CI 38.7%–66.6%), respectively (770). In this study, 7,707 participants 
were inoculated with the three doses of vaccine, and 17 developed a primary episode 
of CDI, while 25 out of 7,805 participants who had been inoculated with the placebo 
developed a primary episode of CDI. However, none of 17 patients in the vaccine arm 
sought medical attention for CDI, while 11 out of 25 patients sought medical attention 
in the placebo group. Moreover, median CDI duration was shorter in the vaccine arm (1 
vs 4 days), and no unanticipated safety issues were reported. Although unpublished, the 
results of this study are encouraging.

Another vaccine has been tested in a phase III study. This unnamed vaccine candidate 
by Sanofi Pasteur is another bivalent-based toxoid vaccine comprising formalin-inacti
vated C. difficile toxin A and toxin B, tested in a phase II study (NCT01230957). Six 
hundred and sixty-one individuals aged 40–75 who were hospitalized within 60 days of 
enrollment or who resided in long-term care or rehabilitation institutions were enrolled. 
In three unique dosing regimens, they were randomly assigned to receive two different 
doses of the vaccine or a placebo, with or without an Al(OH)3 (aluminum hydroxide) 
adjuvant (769). The primary effectiveness goal was the rate of patients who achieved a 
predetermined serum toxin A and B neutralizing antibody threshold 60 days after the 
initial vaccination dose. Patients who were randomized to receive the dose regimen 
used for phase III studies (100 mcg with an Al(OH)3adjuvant at 0, 7, and 30 days) had 
seroconversion rates of 97% and 92% for toxin A and B, respectively, compared to 
7.9% and 13.0% in the placebo group. The phase III “Cdiffense study” compared the 
vaccination vs placebo in patients aged 50 years or older, with at least two previous 
hospital visits and systemic antibiotic usage during the previous 12 months, or who 
were anticipating hospitalization for prespecified elective procedures within 60 days of 
enrollment. Researchers randomized participants 2:1 to receive either the vaccination 
(n = 6,201) or a placebo (n = 3,101) and compared the incidence of CDI within 3 years 
of the third dose (771). Among the mITT population, 34 out of 6,173 participants who 
received at least one vaccine injection were diagnosed within 3 years following dose 3 
with CDI (by stool PCR or by endoscopic confirmation of PMC). On the other hand, only 
16 out of 3,085 participants inoculated with the placebo were diagnosed with CDI, and 
the estimated vaccine efficacy was −5.2% (95% CI 10.4%–43.5%) (772), prompting the 
independent data monitoring committee to suggest that this research be terminated 
due to futility.

Another toxoid-based vaccine candidate, VLA84, has been developed by Valneva 
Austria GmbH and has completed a phase II trial (NCT02316470). This vaccine candidate 
consists of an adjuvant-free genetic fusion of the cell-binding domains from toxin A 
and toxin B (773), but phase III trials have yet to be started. Lastly, a non-toxoid-based 
vaccine candidate is GSK2904545A (GlaxoSmithKline), which is based on the F2 antigen, 
a cleavage fragment of toxin A (774). This vaccine candidate is still in phase I clinical trial 
(NCT04026009): participant recruitment is completed, but results are not yet available 
(775).

Although promising in reducing the frequency of CDI relapses, toxoid-based vaccines 
are not likely to prevent colonization of the host and prevent infection at an early stage. 
Non-toxoid-based strategies are currently being studied in preclinical investigations. A 
detailed list of potential non-toxoid-based vaccines has been widely reviewed elsewhere 
(767, 776); the candidate antigens are categorized as spore surface proteins, vegeta
tive surface proteins, surface glycopolymeric targets, flagellar proteins, and intracellular 
proteins. As the spore surface protein is present before C. difficile starts to synthesize 
toxin A and toxin B, eliciting an immune response against C. difficile spores appears 
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to be the most promising strategy. However, only a fraction of the spore surface 
proteins is highly immunogenic, and, as shown by the human anthrax vaccines, it is 
unlikely that immunity against spore surface proteins alone is enough to protect against 
primary episodes of CDI (777). Another potential strategy, to target both C. difficile 
toxins and its colonization/adhesion factors, is the employment of genetically modified 
non-toxic anaerobes. For instance, a non-toxic C. difficile strain was genetically modified 
to express a chimeric protein (mTcd138), comprising the glucosyltransferase and cysteine 
proteinase domains of toxin B and the receptor-binding domain of toxin A (778). In 
this study, oral immunization with spores of non-toxic C. difficile-expressing mTcd138 
provided mice with full protection against infection with the hypervirulent C. difficile 
RT027 and significantly decreased the lethality of CDI in a hamster model. Another 
example is the employment of genetically modified toxin A-expressing Bacillus subtilis in 
order to generate an immune cross-reaction to the coat of C. difficile spores and the cell 
surface of vegetative cells (779).

Overall, costeffectiveness of a theoretical C. difficile vaccine candidate has been 
studied using two decision analytic Monte Carlo computer simulation models (780), and 
results suggest that a C. difficile vaccine could be costeffective over a wide range of C. 
difficile risk, vaccine costs, and vaccine efficacies, especially when being used post-CDI 
treatment to prevent recurrent disease. Strikingly, even at a cost of $1,600, a vaccine 
efficacy of 75% in reducing recurrences was estimated to be costeffective. However, 
vaccination strategies with a rational resource allocation approach might include the 
vaccination of certain at-risk populations, such as people with multiple hospitalizations 
or anticipated exposures to broad-spectrum antibiotics, candidates to elective surgical 
procedures, or patients who might be admitted into long-term care facilities and nursing 
homes (773).

CONCLUSIONS

The infection caused by C. difficile has become increasingly complex, partly due to 
intrinsic factors (027 strain with reduced susceptibility) and partly due to the growing 
population of vulnerable individuals (transplant recipients, chemotherapy patients, IBD 
patients, etc.). In recent decades, there has been a growing interest in demonstrating the 
distant damages induced by toxins (extraintestinal manifestations) and in finding ways 
to address them (e.g., bezlotoxumab). The “bacteria-free” fecal transplantation has made 
us realize that there is still much to discover about this disease, particularly in the areas 
of phages, antimicrobial peptides, lesser-known metabolites, and fatty acids. It remains 
a challenging infection from both a clinical and research perspective. Complications can 
be formidable and need to be promptly anticipated and addressed through a profound 
understanding of the clinical aspects of this disease. Hopefully, this treatise will be 
helpful for those seeking a broad view of the microbiological and clinical aspects of this 
pathology.
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