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ABSTRACT: By using an approach that allows computing the free energy in
high-dimensional spaces together with a clustering technique capable of
identifying kinetic attractors stabilized by conformational disorder, we analyze
a molecular dynamics trajectory of the Villin headpiece from Lindorff-Larsen, K.;
et al. How fast-folding proteins fold. Science 2011, 334, 517−520. We compute
its free-energy landscape in the space of all its Cα carbons. This landscape has
the shape of a 12-dimensional funnel with the free energy decreasing
monotonically as a function of the native contacts. There are no significant
folding barriers. The funnel can be partitioned in five regions, three mainly
folded and two unfolded, which behave as Markov states. The slowest relaxation
time among these states corresponds to the folding transition. The second
slowest time is only twice smaller and corresponds to a transition within the
unfolded state. This indicates that the unfolded part of the funnel has a
nontrivial shape, which induces a sizable kinetic barrier between disordered
states.

■ INTRODUCTION

Protein folding is possibly the most biologically relevant and
studied conformational transition in biomolecules. The
development of molecular dynamics simulations played an
essential role in understanding this process. Indeed, protein
folding is a rapid and complex process and thus very hard to
study through experimental techniques, which either have a
good spatial resolution or a good temporal resolution, but
rarely both. The first simulation of a folding event in an explicit
solvent was obtained using the idle processing time of
thousands of personal computers.2 More recently, a computer
was specifically designed to perform molecular dynamics of
biomolecules on the millisecond timescale.3 By using this
computer, it was possible simulating the folding process of 12
small proteins.1 Other works from the same group followed,
increasing the availability of all-atom folding trajectories.4−7 All
this wealth of data can nowadays be used to derive more and
more reliable models of the folding process.
The possibly most famous and inspiring paradigm in the

field is the folding funnel.8,9 According to this theory, evolution
has shaped the energy landscape of proteins10,11 in such a way
that it resembles a funnel: the native state is at its bottom,
whereas the non-native local minima are small ripples on the
walls of the funnel. Going down along the funnel, the number
of possible states must decrease and the number of native
contacts must increase. This landscape allows the polypeptide
chain finding the folded structure through a large number of
pathways, “solving” Anfinsen’s paradox.12 Experimental data on
fast-folding proteins support the funnel paradigm pointing to

the so-called downhill folding scenario,13 in which the entropic
cost for forming native contacts is much smaller than the
energy gain, to the point that the barrier created by the
configuration entropy disappears.10

The most direct procedure to visualize the folding landscape
is projecting it on a one-dimensional reaction coordinate, for
example, the fraction of native contacts.1,4 However, the
projection on a single variable can bring to a description that is
thermodynamically meaningful but which does not capture the
complexity of the kinetics. In particular, the folding barrier
obtained by this procedure unavoidably depends on the
variable which is chosen for the projection. A more rigorous
procedure for describing kinetics is offered by Markov state
modeling (MSM).14 The core idea of this method is to
describe the dynamics as a Markov process between a few
metastable states. The most common procedure to obtain
these states involves first grouping the conformations in a high
number of microstates (e.g., using k-means clustering15 or the
Ward algorithm16). The microstates are then grouped in
Markov states, for example, using most probable path (MPP)
algorithm17 or Perron cluster cluster analysis (PCCA18/PCCA
+).19 The picture emerging from these studies is extremely
rich. For example, in refs 20 and 21, the native states act as
kinetic hubs. Indeed, according to these analyses, the native
state is easily reached from every unfolded state, whereas there
is a low flux between the unfolded states. Moreover, a
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systematic analysis performed by MSM on 14 protein
simulations (from refs 1, 3, 22) revealed significant deviations
from the two-state behavior.23 More recently, the folding
landscape of the double mutant of the Villin headpiece was
studied by an approach combining clustering in high
dimensions and an advanced dimensional reduction technique
based on the analysis of kinetic properties.17,24

Here, we characterize explicitly the free-energy landscape of
a double mutant of the Villin headpiece1,13 as a function of the
coordinates of all the Cα carbons, demonstrating that it is
indeed funnel-shaped, namely, that the free energy of each
configuration is a monotonic function of the number of native
contacts. Moreover, by exploiting a clustering technique
capable of finding also kinetic attractors stabilized by
conformational disorder, we find that the funnel can be
partitioned in five subregions, which behave as Markov states.
The core of our approach is a technique that allows estimating
the free energy in spaces of high dimensionality,25 in particular,
the space defined by the positions of all the Cα carbons. The
effective dimension of this space, estimated by the approach in
ref 26, is approximately 12 for the Villin trajectory. We will
show that the manifold in which the data are embedded is
curved and topologically complex, which implies that it is not
possible to obtain an explicit expression of these 12
coordinates. However, by using our approach, one can
compute the free energy as an implicit function of these
coordinates. Our results are fully consistent with the funnel
theory but interpreting the free energy (calculated as a function
of the position of all Cα-s) as an efficacious conformational
energy. Indeed, the free energy of each configuration decreases
monotonically with the fraction of native contacts. The depth
of the native minimum is ≃15kBT, and all the barriers on the
funnel are of a few kBT. We then analyze the folding kinetics on
the funnel, by using an extension of Density Peak clustering
developed specifically for this work, capable to locate within
the same framework the enthalpic and entropic traps. In
concrete, our algorithm is able to detect directly the Markov
states without defining any collective variable and working
directly on the coordinates of the Cα carbons, without defining
the microstates, and without optimizing the properties of the
states using information on the dynamics. We find five relevant
states, neatly mapping different regions of the funnel: three
with a high fraction of native contacts and two unfolded. Our
model predicts four relevant relaxation times. The slowest is
associated with the folding−unfolding transition, and the

second one, only 2 times smaller, is associated with an internal
relaxation in the unfolded state.

■ RESULTS

We performed the analysis using two different sets of
coordinates and metrics. The two metrics are the Euclidean
distance of the backbone Ψ dihedral angles (imposing periodic
boundary conditions with a box size of 2π) and the root-mean-
square deviation (rmsd) of the backbone atoms. As we get
analogous results using the two different metrics, we choose to
present a detailed description of the results using the Euclidean
distance between the Ψ dihedral angles in the following
sections of the paper, summarizing in the Supporting
Information the ones obtained using the rmsd.
We use 122 μs of the trajectory of a double mutant of the

Villin headpiece from ref 1 (shortly “Villin”). We take one
frame every 4 ns. We measure the Ψ dihedral angles, discarding
the first and the last as their fluctuations are not related to the
structure of the protein. The simulation is thus summarized by
a set of 30 500 points in a space of 32 coordinates.
By using the approach in ref 26, we estimate an intrinsic

dimension (ID) in this space of approximately 12, indicating
that, on average, from every configuration the system can move
in 12 linearly independent directions. A similar value is
obtained by using the rmsd metric (see Supporting
Information).

Free-Energy Landscape. For each point of the dataset
(i.e., frame of the trajectory), we evaluated the free energy and
its uncertainty using the PAk estimator, described in ref 25.
This method allows estimating the free energy in a space where
the ID is lower than the number of coordinates (ID = 12 in our
case), without the need of specifying explicitly the collective
variables that define this reduced space. In this approach, the
free energy is evaluated using an extension of the k-nearest
neighbor density estimator27 where the optimal k, which
becomes position-dependent and is denoted as k̂, is chosen by
finding the largest neighborhood in which the free energy can
be considered constant within a confidence threshold. We
observe a strong anticorrelation between the free energy (F)
and the fraction of native contacts (Q): the folded state is the
free-energy minimum (see Figure 1, panel (a)). The free
energy is a monotonic function of Q. The free-energy
landscape is therefore a funnel in 12 dimensions, with the
global minimum corresponding to the crystallographic
structure and a wide area corresponding to the unfolded

Figure 1. (a) Free energy (F) vs fraction of native contacts (Q) for each trajectory frame. Q is evaluated comparing the contact matrix of a structure
with the contact matrix of the crystallographic structure (PDB_id 2F4K); two heavy atoms form a contact if their distance is less than 4.5 Å. (b)
Probability distribution of the free energy. At an intermediate free energy (F ≈ −18), corresponding to Q ≈ 0.75, there are fewer states than at high
and low free energies.
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region. Moreover, we see in panel (b) that there are few states
with a free energy of ≃−17 (corresponding to the transition
region): the funnel has a bottleneck with a lower number of
available states in the “intermediate” region.
Kinetic Attractors on the Funnel. We then attempted

analyzing the free-energy landscape using the approach
described in ref 28. This method is an extension of Density
Peak clustering,29 in which each free-energy minimum
corresponds to a cluster, and the connections among clusters
are obtained measuring the height of the free-energy barriers
between the minima.
This procedure, the results of which are presented in detail

in the Supporting Information, identifies the folded state, but it
is hindered by some serious pitfalls. The key problem is that
there are no free-energy minima corresponding to the unfolded
state: the position of the cluster centers is shown with blue
dots in the F versus Q plane in Figure S1 (panel a). There are

no centers with Q < 0.6. Indeed, the unfolded state is
composed by configurations that are significantly different
from each other, with very little or no secondary structure.
Clearly, an algorithm attempting to find free-energy minima in
the space of the Cα positions is not an appropriate tool for
studying such a system.

k̂-Peak Clustering. In order to address this problem, we
developed a procedure which allows performing clustering on
systems in which some of the metastable states are stabilized
by conformational disorder. To find these states, we consider,
for each frame i, the number of neighbors k̂i for which the free
energy can be considered constant within a given level of
confidence. The idea is that there are two situations in which k̂i
assumes high values. The first one is in the free-energy minima,
where the high density of points leads to a high value of k̂i. The
second one is in the flat regions of the free-energy landscape,
where the low variation of the density of points leads also to

Figure 2. Comparison between DP clustering and k̂-peak clustering. (a) Funnel-shaped two-dimensional free-energy distribution. (b,c) Results of

the comparison for the toy model in panel (a): (b) free energy of each point vs an order parameter = −
−

s d
d

1 ( / 0.3)

1 ( / 0.3)

3

6 , where d is the distance from the

origin; the cluster analysis, performed with DP clustering,28 finds only one cluster; (c) optimal value of the nearest neighbors of each point (k̂) vs s.
The cluster analysis, performed with k̂-peak clustering, finds two clusters. (d,e) Results of the comparison for the Villin trajectory: (d) fraction of
native contacts Q vs the free energy F for the frames belonging to the three most populated clusters found with DP clustering; (e) fraction of native
contacts Q vs the optimal number of neighbors (k̂) for the five most populated clusters found with k̂-peak clustering. In panels (b−e), the cluster
centers are shown as points with bigger radius.
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high values of k̂i. Therefore, we propose that in order to
characterize the kinetics of a system in which at least one state
is stabilized by conformational disorder, it is convenient to
look for the peaks of k̂i. The approach for finding the clusters is
identical to the one described in ref 28, with the optimal
number of neighbors k̂ playing the role of the free energy in the
original implementation. The centers of the clusters therefore
are the local maxima of k̂. The algorithm is as follows.

• Estimation of k̂i and of rk̂i for each frame, using the

approach in ref 25. rk̂i is the radius of the neighborhood
in which the density is approximately constant.

• Estimation of the uncertainty σi of k̂i as the standard
deviation of k̂ among the points which are inside the
constant density neighborhood of point i.

• Search of the peaks of gi = k̂i − σi. The local maximum of
gi (defined putative center) is a cluster center if two
conditions are satisfied: (1) δi > rk̂i, where δi is the
distance from the nearest point with higher g and (2) the
point i does not belong to the constant density
neighborhood of any other point with higher g.

• Assignation of all the points that are not centers to the
same cluster as the nearest point with higher gi. This
assignation is performed in the order of decreasing gi.

• Search of the saddle points, which are the points with
highest g among the border points. A point i belonging
to cluster A is at the border between cluster A and B if
(1) its distance to the closest point j belonging to B is
less than rk̂i and (2) i is the closest point to j belonging
to A.

• Merging of the clusters which are not meaningful. In
particular, cluster A is merged with cluster B if: k̂AB − k̂A
< Z(σk̂A + σk̂AB), where k̂AB is the optimal number of
neighbors of the saddle point between cluster A and B,
k̂A is the optimal number of neighbors of the center of
cluster A, and σk̂AB and σk̂A are the corresponding
uncertainties. Z is a free parameter of our approach.

We fixed the value of the merging parameter to Z = 0.2. If Z
is increased, the description becomes less detailed; if Z is
increased, it becomes more detailed. We verified that the
description does not change significantly if Z is lowered to 0.1

Figure 3. (a) Diagrams representing the dihedral angle values and their variance for the core set structures of each cluster. Next to the diagrams, the
structures of the centers of the clusters are shown. The arrows link the clusters involved in the relevant transitions; for each transition, a color code
is assigned, and the relaxation times (τ1, τ2, τ3, τ4) are written over the arrows. (b) Logarithm of the negative cumulative distribution [i.e., log(1 −
cumulative)] of the permanence times (Δt) in each of the five clusters. (c) Relaxation times obtained from the transition matrix, as a function of the
time lag. (d) Self-transition probabilities as a function of the time lag for the five clusters. Dots represent probabilities obtained directly from the
trajectory and lines represent probabilities obtained from the rescaling of the matrix Π(dt = 120 ns).
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or increased to 0.3, indicating that our results are robust with
respect to the choice of this parameter. Even if Z is set to zero,
the most populated clusters are the same as the ones in Z =
0.2, but there are several additional clusters with very small
populations, or which are explored only once during the
dynamics, and are therefore likely to be numerical artifacts. We
choose to present the results, fixing Z = 0.2, as this value allows
a detailed description of the system, maintaining a high level of
statistical significance: the relevant states are visited a
significant number of times (>14), and each state has a
significant population.
In order to test the new algorithm, we devise a toy model in

which the free-energy distribution has a funnel shape (Figure 2,
panel a). We generated ≃15 000 points in the x, y plane (x, y ⊂
[−1, 1]), from the density distribution given by the sum of a
narrow Gaussian centered at the origin and a uniform
distribution. We then applied both the density peak
algorithm28 and the k̂-peak algorithm, giving as input the
coordinates. The results are compared in Figure 2. In panel
(b), we show, for each point, the dependence of its free energy
on an order parameter s, defined as a function of the distance
from the origin which is close to 1, if the distance is small, and
close to zero, if the distance is large. Clearly, the free energy
has a single minimum; thus, the density peak algorithm finds a
single cluster. On the other hand, the optimal number of
neighbors (k̂), as a function of s (panel d), has two peaks, one
at the center of the Gaussian (s ≈ 1) and the other at the
maximum distance from this center (s ≈ 0). Two clusters are
thus found by the k̂-peak algorithm: the point assignations to
these two clusters are shown with two different colors in panel
(d). These results show the ability of the algorithm to localize
within the same framework a metastable state stabilized by the
(free) energy and a metastable state stabilized by conforma-
tional disorder, namely a flat area of the (free) energy
landscape.
Encouraged by the results obtained with the toy model, we

applied the k̂-peak algorithm to study the Villin trajectory. In
Figure 2 (panel e), the points of the five biggest clusters are
shown in the k̂ versus Q plane. These clusters alone contain
93% of all the trajectory frames. In this representation, we see
the presence of several peaks of k̂ as a function of Q, both for
low and high values of Q. The crystallographic state is easily
identified in cluster 5, which contains the frames with the
highest Q. There are other two peaks with a high value of Q,
corresponding to clusters 2 and 4. These two clusters
specifically select a region with 0.75 < Q < 0.85. The unfolded
region is mainly represented by clusters 1 and 3. These two
clusters almost do not contain any structure with Q > 0.75.
There is a significant overlap in the Q value between the two
unfolded clusters, but this is not surprising: Q is a good
reaction coordinate for describing the folding process, not the
dynamics within the unfolded state. Also, the value of Q of
clusters 2 and 4 overlaps with the value in cluster 5: indeed, as
we will see, these two clusters correspond to the defective
folded states, with only a few non-native contacts.
In panel (a) of Figure 3 we present the average values of the

dihedral angles (Ψ) and their variance for the core set
structures of each cluster. The structure i is assumed to belong
to the cluster core if its value of k̂ is sufficiently high (k̂i ≥ 25)
and if the following or the previous configuration satisfying the
first condition belongs to the same cluster. The first condition
selects the frames which are within the lower part of the basin
defining the cluster. The second condition discards isolated

configurations classified as core states. Once the core set of the
clusters are determined, the remaining frames are assigned to
the cluster of the previous visited core state. At the end of this
procedure, we discard all the clusters that have less than five
visits. This is done as a minimum number of visits is necessary
to have a sufficient statistics in order to describe the dynamics.
The blue thick line in the figure represents the value of the

dihedral angles for the crystallographic structure. Looking at
the crystallographic dihedral angles, we see the presence of
helices when their value is Ψ ≈ −0.8. This happens in three
different regions: from residue 2 to 8, from 13 to 16, and from
21 to 30. The presence of folded clusters (5, 4, 2) and of
unfolded clusters (1, 3), already seen in Figure 2 (panel e), is
confirmed in this representation. The folded region is
characterized by structures very similar to each other as the
dihedral variance is small. Cluster 5 corresponds to the
crystallographic Villin, with the formation of three helices. The
other two folded clusters (2 and 4) are characterized by
structures that are almost totally folded, except for the final
part of the C-terminal helix. This kind of structure has already
been seen as a possible intermediate state between the folded
and the unfolded ones, both experimentally,30 in a computer
simulation of triplet-triplet energy transfer experiments,4 and in
an MSM built on the same trajectory.23 The unfolded clusters
are characterized by a high value of the dihedral variance, but
their core sets contain structures which are different from each
other. Cluster 1 is characterized by structures in which the N-
terminal helix (1 < res < 8) and the first part of the C-terminal
helix (21 < res < 24) are formed, whereas the rest of the
protein is basically unfolded. Cluster 3 mainly contains totally
unfolded frames. As we will see, this distinction has an impact
on the relaxation kinetics within the unfolded state.

Kinetics. Using the k̂-peak clustering algorithm, we have
partitioned the entire conformation space into five clusters
which, as we will see, allow describing satisfactorily also the
dynamics. In panel (b) of Figure 3, we show the negative
cumulative distribution of the permanence times (Δt) in each
of the five clusters in a semilogarithmic scale. These curves are
well fitted by straight lines. This means that the probability
distribution P(Δt) is approximately exponential, and the
process of moving from one cluster to another is a Poisson
process.
We then built an MSM directly on the five states. The

kinetics is assumed to be a memoryless jump process between
the five clusters, and it is summarized using a 5 × 5 transition
probability matrix (Π). A matrix element Πij represents the
conditional probability that the system is in state j at time t +
dt (dt is the lag time), given that it was in state i at time t. The
matrix Π is thus dependent on the parameter dt. However, if
the conformation space partition has been done in a correct
way, there should be an interval of time lag dt, in which all the
dynamics predicted by Π are invariant. Analyzing the spectrum
of Π, we get the relaxation times of the system (from the
eigenvalues) and the connections between the clusters (from
the eigenvectors). In panel (c) of Figure 3, we show that there
is a wide range of dt for which the relaxation times τi are almost
constant. This proves that our model is approximately
Markovian. Specifically, there are four relaxation times related
to transitions between different clusters. None of them is low
enough compared to the others:

• τ1 ≈ 640 ns. This value represents the main relaxation
time of the system. Indeed, the corresponding transition
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is the general folding/unfolding transition, between
clusters (1, 3) and clusters (5, 4, 2). The eigenvector is
shown in Figure S4 of the Supporting Information.

• τ2 ≈ 280 ns. The second largest relaxation time is
internal in the unfolded state, between cluster 3
(containing totally unfolded structures) and cluster 1
(containing unfolded structures but with the N-terminal
helix formed and C-terminal helix partially formed).

• τ3 ≈ 220 ns. The corresponding transition is another
internal transition in the folded state, from cluster 5
(crystallographic state) and clusters 2 and 4 (containing
folded structures but with the C-terminal helix partially
unformed).

• τ4 ≈ 150 ns. The corresponding transition is between
clusters 2 and 4.

In panel (a), the arrows represent the transitions. The
relaxation times are indicated above the arrows. The longest
relaxation time we found (τ1 = 640 ns) is of the same order of
magnitude as that of the one from ref 23 (three-state MSM on
the same trajectory, τ = 400 ns).
In order to evaluate the folding time and compare it with the

analysis from ref 1, we gathered our five clusters into two
states: the folded one (clusters 2, 4, and 5) and the unfolded
one (clusters 1 and 3). We then evaluated the folding time (tf)
as the average time spent in the unfolded state and the
unfolding time (tu) as the average time spent in the folded
state. We obtained tf = 2.26 μs and tu = 0.915 μs, in good
agreement with the ones obtained in ref 1. This folding time is
however bigger than the experimental one, estimated to be ∼1
μs.13,31

We then performed an extra Markovianity test on the five-
state model. We compared the transition probabilities between
states (Πij) as a function of the time lag (dt), evaluated in two
different ways:

1 Directly counting the number of transitions from the
trajectory (method 1)

2 Scaling the transition matrix evaluated at a fixed time lag
(Π(dt = 120 ns) = Π(120), method 2)

Indeed, if the model is Markovian, the Chapman−
Kolmogorov equation should hold: Π(dt) = (Π(1))dt =
Π(120)dt/120. The rescale of Π(120) is performed from its
eigenvalues (λ) and left and right eigenvectors (Ψleft, Ψright):
Πij(t) = ∑αλα

t/120 Ψi
left Ψj

right. We choose to scale the matrix
Π(120), as in this range the relaxation times of the system are
independent of the time lag. In panel (d) of Figure 3, we
compare the self-transition probabilities for the five clusters,
evaluated from method 1 (shown with dots) and from method
2 (shown with lines). For low time lags, there is a perfect
correspondence for all clusters, and the correspondence holds
until ≃200 ns in the worst case (cluster 4) and until ≃300/400
ns for the other clusters. This shows that the Markovianity is
respected for a wide range of time lags. The same test has been
performed on the three-state MSM from ref 23, where a similar
high-quality agreement is observed only at long timescales
(>100 ns).
In Figure S3 from the Supporting Information, we instead

compare the self-transition probabilities among different
clusters, obtained with methods (1) and (2). The corre-
spondence is good for a low lag time, but it is however lost at a
large time lag. This is due to the fact that there are fewer
transitions among different clusters than self-transitions; the
statistics is poorer, and so the counts from the trajectory can

deviate from the theoretical curve. Indeed, we see that the best
correspondence is for transition 1 → 3, which has good
statistics as it is among clusters that are highly populated and
similar to each other (both unfolded). In summary, this test is
a strong proof of Markovianity and of the precision of our five-
state model.
We finally evaluated the heights of the free-energy barriers

between each couple of clusters. The free energy-barrier
between cluster A and cluster B is given by ΔFA−B = FAB − FA,
where FA is the free energy of the center of the cluster A and
FAB is the free energy of the saddle point between cluster A and
cluster B. In agreement with the experimental picture of a
downhill free-energy landscape,31 all the barriers from unfolded
to folded clusters are really low (around 1 KT). This is not
surprising: indeed, the folding process in this system is not a
rare event because of the presence of a barrier but rather
because of the structure of the free-energy landscape, which
resembles the one of the toy model in Figure 2. In this model,
there are no barriers, and yet finding the (only) free-energy
minimum is a rare event, as it requires diffusing through a large
region where the free energy is approximately flat. On the
other hand, the barriers between the folded clusters and
unfolded ones are large: the highest unfolding barrier,
corresponding to the depth of the funnel, is of ∼15 KT,
between cluster 3 and cluster 5. Finally, the barriers between
the folded state and the two defective folded states (clusters 4
and 5) are of the order of 4 KT.

■ DISCUSSION
In this work, we described a procedure which gives a detailed
description of the free-energy folding landscape and of the
kinetics on this landscape, avoiding the definition of any
collective variable and the use of information from the
dynamics for deriving the model. Our procedure consists of
two main steps. The first one is the free-energy calculation for
each frame of the trajectory using the method described in ref
25; the second one is the analysis of the free-energy landscape
using the k̂-peak algorithm, described in this work. The salient
feature of our technique is the capability of identifying both the
flat regions of the free-energy landscape, corresponding to the
unfolded states, and the minima of the free energy
corresponding to the native or near-native states. The main
difference with the other procedures for building an MSM is
that the relevant kinetic states are here identified simply by
analyzing the structure of the free-energy landscape, without
using kinetic information to optimize the partition or for choosing
the number of states.
Applying our algorithm to the MD simulation of Villin from

Anton, we observe that the free-energy landscape as a function
of the 32 dihedral coordinates of the protein is actually funnel-
shaped. This sheds a new light on the works from Wolynes and
Onuchic:8,9 our method allows an explicit calculation of the
efficacious energy function which describes the folding process.
Like in ref 9, this function is defined as a function of the
coordinates of the Cα carbons. We find that, as predicted in
these works, the free energy is a monotonic function of the
fraction of native contacts Q. However, at variance with what
was observed in the model in ref 9, the number of states is not
a monotonic function of Q: indeed, the scatter plot of the value
of Q versus the value of the free energy F (Figure 1) indicates
that a bottleneck is present at the intermediate values of Q and
F (F ≈ −20 and Q ≈ 0.75 in the figure). Moreover, our work
allows characterizing explicitly the shape of the funnel: even if
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the coordinate space is 32-dimensional, the presence of
correlations makes the manifold on which the funnel is
defined 12-dimensional. In order to investigate the structure of
this manifold, we performed an analysis of the trajectory using
ISOMAP, an approach which allows recovering an explicit
representation of a manifold when it is topologically equivalent
to a hyperplane. We find that the spectrum of the ISOMAP
covariance matrix does not show any visible gap (see
Supporting Information). Therefore, a meaningful dimensional
reduction cannot be performed on this system using this
technique. This suggests that the manifold on which the data
are lying is not isomorphic to a hyperplane.
Studying the kinetics, we obtain five main states. Three of

these states are folded: one of them corresponds to the native
state and two of them to near-native states in which the C-
terminal helix is partially unraveled. The remaining two states
are unfolded: one contains totally unfolded conformations and
the other contains unfolded conformations but with the
tendency of having parts of the N-terminal and C-terminal
helices folded. The permanence times in these two states are
long, meaning that these two states are separated by a well-
defined kinetic barrier. In the trajectory we analyzed, we
observe 117 direct transitions between the two states, without
visiting the native state in between. This implies that the
description that we present is not consistent with the kinetic
hub scenario.20 To the best of our knowledge, the existence of
two well-defined kinetic attractors in the unfolded state of
Villin has never been reported before.
The predicted folding time is similar to the one obtained in

ref 1, which is however longer than the experimental one (from
refs 13 and 31). The folding barriers between the unfolded
states and folded ones are really low (<KT), in agreement with
the experimental results of a downhill folding landscape.
The Markovianity of our model is assessed by various tests

(panel b−d of Figure 3 and Figure S3 from the Supporting
Information). We remark that in our approach Markovianity is
not imposed iteratively but is only verified a posteriori.
In order to evaluate the reliability of our results, we applied

our procedure to a second trajectory of the same protein,
obtained with a different force field (from ref 4). The whole
analysis is presented in the Supporting Information In this
second simulation, performed at the same temperature, the
relative time spent by the system in the folded state is ≃70%,
much more than that in the simulation performed with the
other force field. Despite this difference, there is an important
consistency between the two analyses: in both cases, the main
relaxation time corresponds to the folding−unfolding tran-
sition and the second one corresponds to a transition internal
in the unfolded state. The presence of two kinetic attractors in
the unfolded state is observed with two different force fields.
The same trajectory was analyzed by Sittel and Stock.24 They
first performed a dimensional reduction with principal
component analysis, followed by a density-based clustering
and a final step of dynamic clustering using MPP. After this
procedure, they obtained 12 metastable states, described
according to the secondary structure propensity of each
residue. Some of the states they found are similar to ours. A
precise comparison on the description of the kinetics is not
possible, as the relevant relaxation times of their model and the
states involved in the main transitions are not indicated.
In conclusion, thanks to the high quality of the description

and to the simplicity of the method, we believe our algorithm
will become a popular tool for the study of the structure of

(free)-energy landscapes, in particular when these landscapes
include metastable states stabilized by conformational disorder.
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