
An OSLC-based environment for system-level functional testing of

ERTMS/ETCS controllers

Roberto Nardone

a , ∗, Stefano Marrone

b , Ugo Gentile

a , Aniello Amato

c , Gregorio Barberio

c ,
Massimo Benerecetti a , Renato De Guglielmo

d , Beniamino Di Martino

e , Nicola Mazzocca

a ,
Adriano Peron

a , Gaetano Pisani c , Luigi Velardi d , Valeria Vittorini a

a Università di Napoli Federico II, DIETI, Napoli, Italy
b Università della Campania “Luigi Vanvitelli”, DMF, Caserta, Italy
c Mate Consulting s.r.l., Salerno, Italy
d Hitachi Rail STS, Napoli, Italy
e Università della Campania “Luigi Vanvitelli”, DIII, Aversa, Italy

Keywords:

Critical systems

Life-cycle collaboration

Model based testing

OSLC

Testing automation

a b s t r a c t

Product and application life-cycle management (PLM/ALM) are the processes that govern a product and a

software system, respectively, encompassing the creation, deployment and operation of a system from the

beginning to the end of its life. As both PLM and ALM require cross-discipline collaboration and coopera-

tion, tools integration and inter-operation are necessary to enable the efficient and effective usage of tool

suites supporting the management of the entire system life-cycle and overcome the limitations of all-in-

one solutions from one tool vendor. In this context, the Open Services for Life-cycle Collaboration (OSLC)

initiative proposes a set of specifications to allow a seamless integration based on linked data. This paper

describes the work performed within the ARTEMIS JU project CRYSTAL to develop an environment for

the functional system-level testing of railway controllers, relying on OSLC to enable inter-operation with

existing PLM/ALM tools. A concrete realization of the proposed architecture is described also discussing

some design and implementation choices. A real industrial case study is used to exemplify the features

and the usage of the environment in testing one of the functionalities of the Radio Block Centre, the vi-

tal core of the European Rail Traffic Management System/European Train Control System (ERTMS/ETCS)

Control System.

1

w

i

t

o

i

l

L

e

u

n

d

t

i

a

c

t

p

b

t

S

c

j

e

a
. Introduction

Fostering industrial innovation and competitiveness in global

orld scenarios requires to cope with collaboration, interoperabil-

ty and automation issues. In particular, sustainable innovation in

he field of critical systems is a serious challenge, as the devel-

pment of these systems is based on highly complex processes

nvolving specialized tools and different activities throughout the

ife-cycle. Product Life-cycle Management (PLM) and Application

ife-cycle Management (ALM) (Stark, 2015) are the processes that

ncompass the creation, deployment and operation of a prod-

ct/software system from the beginning to the end of its life. They

eed to be supported by set of tools, possibly from different ven-

ors, able to integrate the management of the entire life-cycle. In-

egration and collaboration effort s are growing both in manufactur-
∗ Corresponding author.

E-mail address: roberto.nardone@unina.it (R. Nardone). 6

1

ng and software industries toward building extended enterprises

nd promote life-cycle interoperability . The current aim, then, be-

omes the extension of traditional PLM/ALM solutions to manage

he process itself (Lacheiner and Ramler, 2011), intended as the

ossibility to instantiate development processes (or part of them)

y “connecting” multi-vendor methodologies, techniques and tools

hrough well-defined “interfaces” (Belkadi et al., 2010).

Several recent European projects (e.g., MBAT Nielsen, 2014 , CE-

AR Jolliffe, 2010 , iFEST, 1 R3-COP, 2 CRYSTAL 3) have taken up this

hallenge in the field of critical embedded systems, with the ob-

ective of defining and implementing multi-domain frameworks,

nabling data and resource sharing for sustainable collaboration

mong all the stakeholders. The multi-domain approach of some
1 http://www.artemis-ifest.eu
2 http://www.r3-cop.eu
3 http://www.crystal-artemis.eu/fileadmin/user _ upload/Deliverables/CRYSTAL _ D _

01 _ 022 _ v1.0.pdf

https://doi.org/10.1016/j.jss.2019.110478
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110478&domain=pdf
mailto:roberto.nardone@unina.it
http://www.artemis-ifest.eu
http://www.r3-cop.eu
http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf
https://doi.org/10.1016/j.jss.2019.110478

w

e

f

T

t

t

r

s

a

w

c

n

g

n

r

A

s

f

i

fi

A

m

t

3

i

n

s

t

a

o

e

c

t

o

a

m

i

a

b

a

c

e

d

i

t

t

S

d

a
of these projects promoted the migration of methods and practices

among domains. A key issue of this research has been the usage

and the extension of specific PLM/ALM solutions in the direction

of data integration, and in the definition of complex and customiz-

able tool chains. This is the approach of the Open Services for Life-

cycle Collaboration (OSLC) initiative 4 which is based on the linked

data principles.

This paper describes the results obtained in defining, design-

ing and implementing a testing environment within the CRYS-

TAL project and proposes a reference architecture exploiting OSLC

to enable inter-operation with existing PLM/ALM tools. The work

originates from the collaboration of four research units: twyo pub-

lic universities (Università di Napoli Federico II and Università della

Campania “Luigi Vanvitelli”), a world-wide company in the design

and realization of railway transportation systems (Ansaldo STS 5)

and an ICT SME (Mate Consulting). The focus of the work pre-

sented in this paper was on verification and validation (V&V) pro-

cesses, specifically on the automation of the system-level func-

tional testing of ERTMS/ETCS controllers. The novelties introduced

here, however, reside in the proposed OSLC-based architecture, and

its implementation realized in accordance with the vision of the

CRYSTAL project. Additionally, the components here described im-

plement innovative approaches for automatic generation of test

cases and test scripts.

The rest of this paper is organized as follows: Section 2 pro-

vides background information on the CRYSTAL project.

Section 3 defines the problem tackled in the paper and presents

the ERTMS/ETCS system and the system-level functional testing

process currently adopted in Ansaldo STS. Furthermore, the section

also illustrates the requirements assumed to define and develop

the approach. Section 4 provides background information on OSLC.

Section 5 proposes an abstract “reference” architecture of the

testing environment based on OSLC, which is then instantiated

into a “concrete” solution, while the description of the devel-

oped components and their interfacing with OSLC is described

in Section 6 . The approach and its implementation are applied

to a real ERTMS/ETCS case-study in Section 8 . Section 9 frames

this paper in its scientific context and Section 10 ends the paper

with a discussion on the most significant aspects arisen during

the project. Appendix A provides additional information about the

technologies used to develop the proposed architecture.

2. CRYSTAL

The ARTEMIS Joint Undertaking project CRYSTAL (CRitical sYS-

Tem engineering AcceLeration) is a project whose aim was to es-

tablish and realize a System Engineering Environment (SEE) to sup-

port the design, the development and the deployment of safety-

critical embedded systems. The SEE is conceived as a Collabora-

tive Engineering Development Environment and it is based on the

definition of a System Life-cycle Development and Management

Process. This allows for tool chains to be instantiated and set-

up by users through the integration of the resources made available

from different providers on computer networks , in order to meet de-

sired development goals within specific project scopes and develop

products in different application domains (e.g., aerospace, automo-

tive, health-care and rail). The project is ended in 2016, and it was

positively evaluated by the European Commission.

To this aim, the CRYSTAL project took up the challenge to es-

tablish a Reference Technology Platform (RTP) to provide an envi-

ronment for embedded systems, allowing loosely coupled tools to

share and interconnect their data based on standardized and open
4 http://open- services.net/specifications/core- 2.0
5 The company name is Hitachi Rail STS from April 1st, 2019. For consistency

with the CRYSTAL project, in this paper we use Ansaldo STS.

m

6

2

eb technologies . This objective can be pursued if a proper Interop-

rability Specification (IOS) is adopted that provides a specification

or achieving tool and data interoperability in heterogeneous SEEs.

he set of solutions, methods, and tools that can be integrated

o build the tool chains and to set-up the SEE itself constitutes

he CRYSTAL RTP. RTP and IOS, in turn, are defined by collecting

equirements from the industrial domains and concrete company

cenarios.

The CRYSTAL IOS 6 includes the specifications of:

• communication paradigms and protocols that must be used

for exchanging information between integrated tools and data

repositories;
• data exchange formats;
• the semantics of the information to be exchanged across tools

and data repositories.

As for the communication paradigm and the semantic layer, IOS

ddresses the usage of the OASIS OSLC standards (OASIS, 2013) ,

hich provide the definition of mostly IOS services, meaningful

oncepts and relationships among them. There is no single tech-

ology addressed for the exchange formats: widespread technolo-

ies on which IOS is based are RDF/XML, HTTP and core web tech-

ologies. This paper presents the results obtained in CRYSTAL with

espect to real scenarios from a rail company, specifically from

nsaldo STS, an international transportation leader in the field of

ignaling and integrated transport systems for passenger traffic and

reight operation. The company needs, as expressed by Ansaldo STS

n CRYSTAL, were geared towards improving the quality and the ef-

ciency of the system-level testing process for railway controllers.

s a consequence, the objective of this work was to develop a

ethodological approach and an interoperable testing environment

o be integrated in the RTP and IOS.

. Problem statement

The problem addressed by CRYSTAL was the integration and

nterconnection of tools to support collaboration between busi-

ess processes through the development of an open interoperability

pecification (driven by a large interest group, including represen-

atives from vendors, industrial companies as users, academicians

nd others stakeholders) and the usage of open and common inter-

perability technologies supported by the different tools that gen-

rate and provide access to data covering the entire product life-

ycle. In this broader context, the problem we dealt with, was how

o improve the efficiency and the quality of the system-level testing

f railway controllers, by realizing a complete testing environment,

ble to inter-operate with standard tools and repositories for require-

ent and quality management through the CRYSTAL RTP, and accord-

ng to the CRYSTAL IOS. This paper is centered on the proposed

rchitecture for the testing environment and presents one possi-

le implementation with a special focus on the components en-

bling its integration into a System Engineering Environment (in-

luding other PLM/ALM tools) according to an OSLC-based interop-

rability specification. Nonetheless, in order to provide a detailed

escription of the architecture, also the components implement-

ng the automated testing approach are introduced to a some ex-

ent. This Section provides the information needed to clearly state

he problem we addressed in the rest of the paper. Hence, the

ystem Under Test (SUT) is described and some details about the

evelopment life-cycle, in particular about the validation process

dopted in Ansaldo STS, are provided. More important, the require-

ents to be met in designing and realizing the testing environ-
6 http://www.crystal-artemis.eu/fileadmin/user _ upload/Deliverables/CRYSTAL _ D _

01 _ 022 _ v1.0.pdf

http://open-services.net/specifications/core-2.0
http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf

R. Nardone, S. Marrone and U. Gentile et al. / The Journal of Systems and Software 161 (2020) 110478 3

Fig. 1. An ERTMS/ETCS system.

m

t

3

C

o

l

i

i

a

t

p

C

s

t

t

u

fi

s

s

t

s

a

t

i

c

s

s

c

t

3

p

n

w

a

t

s

c

u

s

p

v

i

g

m

p

f

t

p

r

(

a

g

u

a

m

s

s

s

a

e

a

A

i

t

o

T

o

t

i

E
ent are introduced in Section 3.3 , these requirements have driven

he choices and the implementation described in the following.

.1. ERTMS/ETCS Radio Block Centre

The European Rail Traffic Management System/European Train

ontrol System (ERTMS/ETCS) is a standard for the interoperability

f the European railway signaling systems, ensuring both techno-

ogical compatibility among trans-European railway networks and

ntegration of the new signaling systems with the existing national

nterlocking systems (IXL). Exploiting ERTMS/ETCS, a train is en-

bled to run along the rail infrastructure, regardless of the country

he train is traveling in, the infrastructure manager and the sup-

lier providing the ERTMS/ETCS system (Fig. 1). The Radio Block

entre (RBC) system is the vital core of ERTMS/ETCS being respon-

ible for controlling the movements of the set of trains on the

rack area under its supervision to guarantee a safe inter-train dis-

ance. The main goal of RBC is to timely transmit to each train its

p-to-date Movement Authority (MA) and the related speed pro-

le. The MA contains information about the distance the train may

afely cover, depending on the status of the forward track. As de-

cribed in Fig. 1 , in ERTMS/ETCS Level 2 the RBC continuously in-

eracts with the on-board unit, by managing a communication ses-

ion according to the EURORADIO protocol on a GSM-R network,

nd receives information about the track by the interlocking sys-

ems (IXL). Finally, an automatic train supervision (ATS) system is

n charge of monitoring and controlling the trains to ensure its

ompliance with the intended schedule. Notice that different sub-

ystems can be produced by different suppliers. A single RBC can

imultaneously communicate with different trains and it is also in

harge of managing emergency situations, when the communica-

ion with one or more trains is compromised.

.2. Ansaldo STS validation process

Fig. 2 describes the development life-cycle as traditionally im-

lemented in Ansaldo STS for the development of both vital and

on-vital computer-based equipments. This life-cycle is compliant

ith the CENELEC EN50128 standard (CENELEC EN 50128, 2012)
3

nd follows the well known V-model, where the left-side reports

he decomposition of requirements leading to system low-level de-

ign and implementation, and the right-side reports the Verifi-

ation and Validation (V&V) activities that are executed contin-

ously throughout the development process. This represents the

tarting point of our analysis and intervention in the CRYSTAL

roject.

System requirements are analyzed in the early phases of the de-

elopment process (i.e., during the system specification) and a crit-

cality level is assigned to each of them, with respect to the safety

oals, thus identifying safety-related requirements. System require-

ents are then apportioned to the different subsystems and com-

onents, ending the left-side with the system implementation. Dif-

erent verification techniques are applied during the right-side of

he development model, in order to verify the compliance of com-

onents, subsystems and of the integrated system with the cor-

esponding requirements. For safety related-requirements, ALARP

i.e., as low as reasonably practicable) principles (Baybutt, 2014) are

pplied, asking to demonstrate that each critical device must fulfill

iven thresholds for the maximum probability of dangerous fail-

res (Summers, 1998).

In general, four main kinds of activities are conducted to guar-

ntee that both safety and non-safety related requirements are

et: code inspection, functional testing, quantitative analysis and

ystem/acceptance testing. In particular, this paper addresses the

ystem functional testing, that is the system validation against its

pecification. This activity takes the system functional specification

nd the concrete implementation as its input and deals with the

xecution of test cases on the integrated system. The steps of this

ctivity are detailed in the gray area on the right side of Fig. 2 .

ccording to the CENELEC EN50128 guidelines, the system test-

ng must not be influenced by the development activities, hence

esters cannot access to the software code, but they have to rely

nly on the initial specification during the definition of test cases.

he system has to be considered as a black box, and the execution

f test cases consists in sending proper commands and signals to

he real system, evaluating the compliance of the observed behav-

or with its specification. As explicitly recommended by CENELEC

N 50128, models and other artifacts produced during this activ-

Fig. 2. Ansaldo STS validation process.

fi

b

fi

s

B

w

s

e

c

r

a

s

s

a

s

s

s

q

t

r

p

i

m

C

e

r

b

p
ity have to be specifically developed for V&V purposes , meaning that

they must be completely different from models which brought to

the implementation. The goal is to reach the complete coverage of

the system behavior, as described in its requirements.

Test specifications, which define the goals of test cases, are ob-

tained from system requirements. Based on the expertise of the

V&V engineers and on their past experience, test cases are de-

rived from both the system and test specifications. The entire set

of test cases is later revised so as to remove redundant test cases

or merge them when appropriate. The final test scripts are writ-

ten down for the accepted test cases. One of the metrics used

to understand the usefulness of a test specification is the cover-

age, i.e. the capability of the test to stimulate specific parts of the

SUT. More precisely, the goal of system-level functional testing is

to cover the entire set of possible behaviors that are specified in

the system specification. As said before, the V&V engineers can-

not access to software code, which has been already tested during

both component and integration testing , so they have to define test

cases by relying only on the system specification. It is important

to highlight that the system specification for this kind of systems

is complete and does not allow for non-deterministic behavior. In

this paper we assume completeness and coherence among require-

ments; the requirement engineering process is out of the scope

of the work here described. Starting from the system requirement

document, the complete coverage of all the possible behaviors is

mandatory. Since it is an hard task to accomplish manually, the

mechanisms able to automatically generate test specifications are

essential tools for testing teams. Some studies can be found in

literature coping with issues of non-deterministic system testing,

such as Boroday et al. (2007) which discusses on the applicability

of model checking also in this case.
4

The present work refers to coverage under two aspects. The

rst is requirement coverage that is a measure of the traceability

etween test cases and requirements: verifying that all the speci-

ed requirements have been covered by at least one test case. The

econd concept is related to the transition coverage of the State-

ased Testing (SBT) (Offutt et al., 2003) approach. In this cited

ork, some coverage metrics/testing levels are defined: (1) tran-

ition coverage; (2) full predicate coverage;(3) transition-pair cov-

rage; and (4) complete sequence. Without going in he details on

omparing such levels (see Ray et al., 2019) in this paper, we just

efer to transition coverage as an example of how the proposed

pproach could support such measures, too.

Test scripts are runnable items, possibly written for proprietary

imulation environments. They specify the sequences of external

timuli reproducing a desired system behavior, allowing also for

sserting internal conditions that need to be verified on the real

ystem. The execution of test scripts produces test logs, which de-

cribe the evolution of the system with respect to the external

timuli. If the system behaves as expected, no further action is re-

uired, otherwise a bug has been discovered in the implementa-

ion (under the hypothesis that the system specifications are cor-

ect). At last, test reports are produced from test logs in order to

rovide documentary evidence of the testing activity.

The discovered bugs are managed by the development team

n conjunction with the V&V team within a defect manage-

ent process: the V&V engineers formally create a Request For

hange (RFC) document that is taken in charge by the develop-

rs, Fig. 2 also illustrates this practice. A new software release is

eady when the problem is solved and fixed: the new release must

e tested again (also with the support of regression testing ap-

roaches) in order to close all the open RFCs by the V&V engi-

n

q

p

i

t

I

m

n

t

c

t

p

s

t

r

t

q

c

3

m

b

d

l

i

i

t

i

i

t

q

w

t

i

p

t

f

R

R

R

R

R

R

c

c

t

i

c

e

t

t

t

a

i

i

i

t

h

4

n

4

f

f

p

i

a

t

T

C

(

s

s

t

t

fi

a

i

u

n

i

d

g

i

C

R

s

t

eers. The detection of a defect that impacts on safety-related re-

uirements is a critical event, that could potentially affect all the

hases of the development process of the system. An unsolved bug,

n fact, may result in a denial of authorization to operate issued by

he Safety Authority for railways.

In general, testing activities are supported by a number of

T systems for requirement, architecture and quality manage-

ent. New Application Life-cycle Management (ALM) solutions are

eeded to allow independent software and product life-cycle tools

o integrate their data and workflow in support of end-to-end life-

ycle processes, thereby increasing productivity and reducing time

o market. A testing environment for the ERTMS/ETCS must sup-

ort the generation of the test cases, their transformation into test

cripts and the computer-aided analysis of the test logs. In doing

his, the environment must inter-operate with existing tools for

equirements, architecture and quality management and automate

he resulting workflow. In the next subsection we point out the re-

uirements a novel environment for system-level testing of railway

ontrollers has to fulfill.

.3. Requirements

The problem addressed in CRYSTAL as part of the railway do-

ain case study, was the definition of a complete and interopera-

le environment for system-level functional testing to be used in the

evelopment process of RBC systems, and the realization of the re-

ated prototype. Hence, we had to cope with both test automation

ssues, in particular the automated generation of test cases, and

nteroperability issues. In fact, the testing environment must au-

omate the steps described above and enable cross-border testing,

.e. it must support the verification of supplier-to-supplier compat-

bility to guarantee that the controller in charge of managing the

rains can communicate with any European on-board unit. Conse-

uently, interoperability of the testing environment is intended here

ith two different meanings: as i) the capability of supporting the

esting activities needed to verify the supplier-to-supplier compat-

bility; and as ii) the capability of inter-operate with diverse tools,

ossibly provided by different vendors. As to the aspects related

o tools inter-operation, the testing environment has to meet the

ollowing main requirements:

1 Limited impact and effort : When tackling the challenge of in-

troducing new approaches and technologies in well-established

life cycle processes, and in particular in the development pro-

cess of critical systems, their impact should be carefully con-

sidered. The ultimate goal is to innovate the processes, increase

interoperability and competitiveness but this should be reached

while also ensuring both quality and cost control.

2 Automation : the steps from the definition of the test specifica-

tions to the generation of the test reports should be automated.

3 Inter-operation : the environment should have the capability of

exploiting and using different available resources (artefacts,

tools, techniques, etc.) supporting the testing process and en-

abling the sharing of data. The resources may belong to differ-

ent companies/organizations and may be managed by propri-

etary dedicated tools.

4 Separation of domains : the artifacts produced during the testing

process (requirements, models, test specifications, test cases,

test scripts, logs, reports etc.) belong to different conceptual do-

mains (requirements management, definition of specifications,

quality). Explicit separation between domains guarantees the

necessary independence between the logical steps of the test-

ing process.

5 Traceability : as required by applicable standards, links among

the artifacts produced throughout the testing process should

be provided and properly handled. In general, the environment
5

must enable the traceability between test cases and related ex-

ecution traces, and between system requirements and the sets

of test cases used to validate them.

6 Customization : the test case generation should be independent

of the specific language used to write the test scripts. The en-

vironment should allow for easy integration of both standard

and proprietary script languages. In addition, the user should

be able to specify which information must be included into the

reports and the layout of the reports.

The requirements listed above can be divided into groups ac-

ording to different points of view. As the work was driven by the

ustomer’s needs, the business goals were considered.

According to a business perspective merely demanding short

ime to market and low costs, the primary requirements are lim-

ted impact and effort (R1), automation (R2), traceability (R5) and

ustomization (R6), so to obtain quality and flexibility at reduced

ffort.

According to a business perspective looking at both innova-

ion and competitiveness, the primary requirements are automa-

ion (R2), inter-operation (R3), separation of domains (R4) and

raceability (R5), so to obtain better products at a sustainable cost.

The intersection between these two groups contains automation

nd traceability, so these two requirements were of major interest

n defining and implementing the testing framework, as well as

nter-operation that was the key theme of the research conducted

n CRYSTAL.

This paper first proposes a possible reference architecture for the

esting environment and then describes the actual solution which

as been designed and implemented.

. Background

This section briefly introduces the basic concepts and the termi-

ology used throughout the paper, with a specific focus on OSLC.

.1. Basic concepts and terminology

A typical interoperability scenario requires an exchange of in-

ormation between stakeholders, tools, and data repositories. Arti-

acts internally managed by an engineering tool (hosted on a com-

uter over a network) are usually stored as files or data chunks

n databases. As explained in Section 2 , artifacts can be shared

nd they can be accessed via web services. The preferred architec-

ural style for web services in the IOS is the REpresentational State

ransfer (REST) (Fielding, 20 0 0) which allows for the mapping of

RUD (Create, Read, Update, Delete) operations into HTTP methods

e.g., Create/Post, Read/Get, Update/Put or Post, Delete/Delete). The

ervers providing services are called Providers and the clients con-

uming services are called Consumers . A Provider offers the func-

ionality to read, query and manipulate the exposed artifacts so

hat Consumers do not have direct access to them. The IOS de-

nes the basic services that can be used to manipulate the shared

rtifacts as well as the communication protocols for their serial-

zation. To bridge the gap between different semantics and syntax

sed internally to define the artifacts, specialized software compo-

ents (Adapters) are required. Adapters implement IOS compliant

nterfaces, map the internal artifacts to the syntax and semantics

efined by the IOS, and use the proprietary APIs (Application Pro-

ramming Interfaces) to connect to the back-end of the tool they

ntegrate. Adapters have to be developed on both Provider and

onsumer sides, in order to integrate the engineering tools into the

TP and enable the construction of tool chains. Many of the IOS

ervices are defined in the specifications of the OSLC standards;

hus, in the following, Adapters are referred as OSLC Adapters .

5

m

t

b

a

i

a

r

a

p

t

S

O

c

m

b

c

p

t

Q

5

a

O

c

i

d

c

(

t

o

i

v

s

t

4.2. The Open Services for Life-cycle Collaboration

OSLC is a set of specifications, based on the W3C Linked Data,

for integrating tools and easily building development environments

via REST-based (RESTful) web services. Linked Data is an approach

of publishing structured data, so that data from different sources

can be connected and queried. According to this, OSLC may en-

able the integration between life-cycle data and, in fact, it is a

key standard to define integrated Application Life-Cycle Manage-

ment (ALM) and Product Life-cycle Management solutions. In the

OSLC terminology a resource is any artifacts — in the life-cycle of

a product or software application — identified by an URI (Uni-

form Resource Identifier) and having an RDF (Resource Descrip-

tion Framework) representation. Resources are connected by using

URIs as resource names, including links to other URIs, using HTTP

URIs (URLs) to enable look up of names and providing informa-

tion about resources using standards (e.g., RDF) in accordance with

the four Tim Berners-Lee’s principles for linked data 7 . The main

services powered by the CRYSTAL IOS are defined by OSLC. They

are CRUD services, resource linking services using URIs, resource

querying services, and user interface preview and delegation.

An OSLC Resource is a resource whose type is defined in one of

the OSLC specifications. A Resource Type Definition consists of: a

name, a type URI, a set of properties and relationships defined by

OSLC or coming from other standards, and a set of specific prop-

erties and relationships. OSLC Services and Resource Types Defi-

nitions are clustered and they pertain to an OSLC domain. In this

paper the following domains are considered

8 :

• Quality Management (OSLC-QM) : it supports the integration in

quality management and testing, by allowing “tools in the soft-

ware life-cycle (such as requirements and change management

tools) to easily create, find, and retrieve resources in a Quality

Management system through RESTful APIs”9 ;
• Requirements Management (OSLC-RM) : it supports integration of

requirements management and requirements definition tools by

defining “a common set of resources, formats and RESTful ser-

vices”, enabling the effective use of requirements across a de-

velopment life-cycle 10 ;
• Architecture Management (OSLC-AM) : it supports integration re-

lated to models and other artifacts by defining “a common set

of resources, formats and RESTful services for use in modeling

and Application Life-cycle Management tools”. 11

OSLC provides two main techniques to integrate tools: (i) link-

ing data via HTTP and (ii) linking data via HTML User Interface.

The former is a common tool protocol for CRUD life-cycle data. It

can be used by a Consumer to communicate with any tool that im-

plements the OSLC specifications: resources are linked by enclos-

ing the HTTP URL of one resource in the representation of another

resource.

The latter protocol allows a Consumer to display part of the

web User Interface of a Provider, so that a human user can link

to a resource in the tool from the Provider or access preview infor-

mation. The development of the testing environment illustrated in

this paper requires exploiting both these techniques and involves

resources and/or service definitions from OSLC-QM, OSLC-RM and

OSLC-AM.
7 https://www.w3.org/DesignIssues/LinkedData
8 http://open-services.net/bin/view/Main/WebHome
9 http://open- services.net/wiki/quality- management

10 http://open-services.net/wiki/requirements-management
11 http://open-services.net/wiki/architecture-management

t

h

6

. An interoperable testing environment

According to the Section 2 , the CRYSTAL project addressed two

ain problems: the definition of a suitable approach to automate

he RBC functional testing and the development of an interopera-

le environment in which all the required tools can be integrated

nd exposed to the CRYSTAL RTP.

The former has been addressed by developing suitable model-

ng languages and tools to automate the generation of test cases

nd test scripts, as described in Benerecetti et al. (2017) , where

eaders can find all the details about the system model and the

utomatic generation of test cases including test-data. This pa-

er, instead, focuses on the design and implementation of the

esting environment that addresses the requirements described in

ection 3.3 . This section describes a reference architecture for the

SLC-based automatic testing environment. It is related to the pro-

ess depicted in Fig. 2 and provides a concrete and feasible imple-

entation of it in a real industrial setting. Hence, any tool chain

ased on this architecture is well integrated into the system life-

ycle, as it does not change the workflow of the activities but im-

roves an existing process. In particular, the main connections with

he product life-cycle are realized through the Requirement and

uality Management Resources.

.1. A reference architecture

The proposed reference architecture is depicted in Fig. 3 .

Its main components are: i) engineering Components used to

utomate the testing activities, ii) Resource containers storing the

SLC Resources produced or consumed during the validation pro-

ess, iii) ALM/PLM tools providing data management or implement-

ng OSLC automation scenarios. In this architecture, a conceptual

istinction is made between OSLC Providers (PLM/ALM tools), in

harge of providing access to OSLC Resources, and OSLC Consumers

 Components) that execute the activities needed to automate the

esting process. In general a concrete tool can play both the roles

f Provider and Consumer. Moreover, it can be conceived for OSLC

ntegration and expose OSLC Services or it can be extended to pro-

ide tool integration through proper OSLC Adapters .

Components may be existing tools already used in the industrial

etting or they may be specifically developed. The proposed archi-

ecture includes:

• Human Machine Interface (HMI) , which implements the user in-

terface, and serves as model editor as well as the control con-

sole for the testing process;
• Model Verifier in charge of analyzing the specification of the SUT

against the syntax and the semantics of the formal notation

used to model its behavior;
• Test Case Generator (TCG) that produces sequences of abstract

steps (test cases) with the associated input values and the ex-

pected output values (i.e., test-data) that can lead the system to

reach the test goal, starting from its initial state;
• Test Writer to transform test cases into low-level test scripts

that are executable on the SUT adding pre-setup test steps and

post test procedures;
• Execution Adapter in charge of launching the execution of the

test scripts, collecting the execution traces and creating the

traceability links between the execution traces and the test

scripts;
• Trace Analyzer , which is responsible for the analysis of the exe-

cution traces and the production of reports.

Fig. 3 also shows the Artifacts produced during the process and

heir relationships, i.e. the traceability information that should be

andled. The dotted arrows represent traceability links between

https://www.w3.org/DesignIssues/LinkedData
http://open-services.net/bin/view/Main/WebHome
http://open-services.net/wiki/quality-management
http://open-services.net/wiki/requirements-management
http://open-services.net/wiki/architecture-management

Fig. 3. An interoperable testing environment.

Table 1

Artifacts description table.

Artifact Description Related OSLC Resource and

Domain

Traceability notes

Requirement Specification List of the functional requirements expressed in

natural language against which the system has

to be validated

Requirement Collection

(OSLC-RM)

none

System Model Formal description of the expected behavior of

the SUT, expressed through a state-based

formalism

Architecture Management

Resource (OSLC-AM)

A model element (i.e., a syntactical

element of the formalism) that is in

turn an AM-OSLC Resource can refer to

one or more requirements.

Test Specification Description of the test goal. Test Case Resource (OSLC-QM) A Test Specification can contain a

reference to one or more requirements

and must refer to a System Model.

Test Case Ordered sequence of abstract steps (i.e., steps to

be realized into test scripts including test-data

for each step) needed to execute the test.

Test Case Resource (OSLC-QM) A Test Case must refer to a Test

Specification and it can contain

references to one or more model

elements.

IOP Script Encoding of a Test Case into an Executable

Interoperable Notation

Test Script Resource

(OSLC-QM)

An IOP Script must point to its source

Test Case.

Execution Trace List of events occurred during the execution of a

IOP Script

Test Result Resource

(OSLC-QM)

An Execution Trace must refer to an IOP

Script.

A

m

n

p

a

D

A

t

t

r

s

c

i

t

v

i

u

a

i

t

0

s

h

i

M

c

m

m

a

a

R

v

o

m

a

o

5

rtifacts : the source of the arrow must contain traceability infor-

ation about the target. Artifacts may be shared with, or by, exter-

al environments. Hence, concerning the OSLC Domains, the im-

lementations of this architecture should use or implement suit-

ble tools, or extensions of existing tools, in the RM, AM, and QM

omains, in order to enable the sharing of data as OSLC Resources.

ccording to the OSLC Core Specification, OSLC adopts the conven-

ion to provide access to resources through RDF/XML representa-

ions. Hence OSLC services should provide and accept RDF/XML

epresentations for each OSLC Resource. Since the attributes of

ome Artifact s (such as System Model s, Test Case s and IOP script s),

ould not be mapped over common properties of OSLC Resources,

t could be necessary to manage Attachment files and associate

hem with the corresponding OSLC Resources. Also in the current

ersion 3.0 of the OSLC standard, the management of attachments

s not precisely defined. An OSLC Attachment Descriptor may be

sed to describe properties of the attached file. This mechanism

llows for the creation of attachments to an OSLC Resource by us-

ng the HTTP POST method and to update or delete them by using

he methods HTTP PUT and HTTP DELETE, respectively. 12
12 http://docs.oasis- open.org/oslc- core/oslc- core/v3.0/oslc- core- v3.

- part5- attachments.html

a

t

d

7

Table 1 illustrates the mapping between Artifacts and OSLC Re-

ources and Domains. System Model and Test Specification do not

ave an equivalent resource type in OSLC. However, given the def-

nitions of the OSLC domains, it seems natural to assign System

odel to the Architecture Management Domain and Test Specifi-

ation to the Test Case resource type. As a consequence of this

apping, the models produced to derive the test cases should be

anaged by an AM tool and the test specifications by a QM tool,

s shown in Fig. 3 . Table 1 for each Artifact also sets the trace-

bility links that should be specified by the corresponding OSLC

esource.

Finally, as functional testing is part of a wider verification and

alidation process within the life cycle management, a workflow

f activities that encompasses further steps of the development

ay be defined. OSLC also addresses workflow automation issues

s part of a current work-in-progress, but this is out of the scope

f this paper.

.2. Architecture instantiation

The testing environment described above has been instantiated

nd applied to the Ansaldo STS Use Case. The instantiation must

ake into account technological constraints from the application

omain and the adopted technologies, but also business constraints

http://docs.oasis-open.org/oslc-core/oslc-core/v3.0/oslc-core-v3.0-part5-attachments.html

p

s

i

E

A

t

R

p

o

P

t

I

d

Q

a

b

A

p

p

a

T

p

u

o

g

s

c

s

o

O

v

g

a

t

T

s

t

T

f

t

i

a

t

a
arising from the specific industrial setting. So, when instantiating

the reference architecture described above, some difficulties could

not be easily overcome, as it will be explained later in this sec-

tion. As a consequence, the implementation described here differs

from the reference architecture in two points: i) it does not imple-

ment the OSLC services in the OSLC-AM domain; ii) it customizes

the management of attachments concerning the adopted OSLC-QM

Resource container.

To better explain how the testing environment has been im-

plemented, let us briefly summarize the test cases generation pro-

cess developed within the CRYSTAL project. This process exploits

model checking techniques to automatically derive test sequences

from a test model of the SUT (Gargantini and Heitmeyer, 1999)

and model or text transformations to realize a chain of automatic

generations. The SUT is modeled by using the Dynamic STate Ma-

chine (DSTM) formalism (Benerecetti et al., 2017), a novel state-

based language for modeling control systems. The DSTM formal-

ism is an extension of hierarchical state machines, adding the

following main key features: (1) a novel semantics for fork and

join constructs that allows for the dynamic and recursive instan-

tiation of machines, (2) the introduction of preemptive termina-

tion and the possibility of passing parameters to machines at in-

stantiation time. DSTM defines also a formal syntax for the data

flow, offering modelers a set of basic data-types (provided the lan-

guage), the possibility to define enumeration types and more com-

plex data structures, declare variables and communication chan-

nels among machines. Hence, this formal data flow have to be used

to annotate triggers, conditions and actions of transitions inside

machines. Interested readers can find additional details on DSTM

in Appendix B . After the modeling activity, the produced System

Model (in the DSTM formalism) is verified against the DSTM syn-

tax and semantics and then translated into a network of pro-

cesses written in Promela (the model specification language of the

model checker Spin Holzmann, 2004). The detailed transforma-

tion process is detailed in Benerecetti et al. (2019) . Similarly, the

test specifications are translated into properties, written in Tem-

poral Logic (Baier and Katoen, 2008). The Spin model checker is,

then, used to check the properties against the Promela model and

to extract counterexamples to violated properties. A counterexam-

ple is an execution path of the Promela model that begins at a

valid initial state and witnesses the violation of the temporal prop-

erty. It also provides the flow of data values for that execution

(i.e., the test data). As a consequence, a counterexample to a prop-

erty that negates a test goal actually provides a correct test se-

quence for that test goal. To turn counterexamples generated by

the model checker into abstract test cases, they need to be trans-

lated into a proper format, suitable to be used in an actual test-

ing environment. To this end, TESQEL is used, one of the languages

specifically developed while defining the entire approach in CRYS-

TAL. Note, however, that different encodings are possible and quite

easy to implement. The final step is to obtain runnable test scripts

from the abstract test cases. Again, they are produced by trans-

lating the abstract test cases into a proper script notation, where

the necessary information needed to automate the execution of

the test case is added. The complete generation approach is pre-

sented in Benerecetti et al. (2017) ; Nardone et al. (2014, 2015) ;

Gentile et al. (2014) ; Flammini et al. (2012) ; Barberio et al. (2014) .

With respect to the reference architecture in Fig. 3 , the follow-

ing Components have been developed:

• HMI : it provides the Graphical User Interface (GUI), named

RailModel GUI , used to build DSTM models as well as the func-

tionality that integrates the tools involved in the testing process

and supports the user in the testing activities.
• Model Verifier : it is a software component, named DSTM Verifier ,

which is in charge of performing lexical, syntactic and semantic
8

analysis of DSTM models and of producing suitable error mes-

sages when appropriate.
• TCG : the test case generator is a complex toolset, which in-

cludes the model transformations from DSTM to Promela, the

generation of property specifications as well as the software

components handling the invocations of Spin and the transfor-

mation of the counterexamples into abstract test cases.
• Test Writer : this component, called IOP Test Writer , is imple-

mented by plug-ins to provide a flexible and extensible conver-

sion functionality from Test Cases to Test Scripts. It currently

allows for producing both human-understandable Test Scripts

and Test Scripts used for automatic execution written in the

Ansaldo STS proprietary language. IOP Test Writer can be easily

extended to support other script languages, including a future

standard, when it will be available.

As to the Trace Analyzer , a third-party tool is currently used to

roduce analysis reports from Test Scripts and Test Results, as de-

cribed in the following. The automatic execution of test scripts

s performed by an Ansaldo STS proprietary environment and the

xecution Adapter (Fig. 3) is implemented by the so-called RTP

dapter , which provides traceability links among test Results and

est scripts and implements the functionality needed to store Test

esults Resources into an OSLC-QM Resource container.

Services and Interfaces. The concrete implementation of the

roposed OSLC-based testing environment starts from the choice

f suitable OSLC Service Provider. According to OSLC, a Service

rovider embodies a repository of resources that are hosted by a

ool. In this case, two commercial ALM/PLM tools, belonging to the

BM Rational software family, have been adopted: DOORS , used to

efine and handle system requirements and their life-cycle; and

uality Manager (RQM in the following) that maintains and man-

ges test cases, test scripts and execution traces.

The UML deployment diagram in Fig. 4 shows the relationships

etween the main components of the implemented architecture.

s both DOORS and RQM can host OSLC Service Providers, the pro-

osed implementation is based on the operations that these tools

rovide to applications that consume services from the OSLC-RM

nd OSLC-QM domains for data sharing. The functionality of the

race Analyser is partially provided by RQM, which allows for ex-

orting test reports into user-defined Microsoft Excel templates.

RailModel GUI offers functionalities to retrieve Requirements by

sing the OSLC services provided by DOORS, supports the devel-

pment of DSTM test models and the execution of the test cases

eneration process, the creation or modification of OSLC-QM Re-

ources, by using the OSLC services provided by RQM, and specifi-

ally, Test Cases and Test Plans. Hence, RailModel GUI acts as a Con-

umer concerning DOORS and RQM.

In a full OSLC scenario, RailModel GUI should also play the role

f an OSLC Architecture Management Provider and implement the

SLC services needed to share the Artifacts relevant to the de-

elopment steps of DSTM models. This solution would require a

reat effort and would affect the existing testing process without

ny concrete advantages. Since RailModel GUI is an OSLC Consumer,

he interoperability and flexibility in the usage of DSTM Verifier and

CG is guaranteed by exposing their functionalities through REST web

ervices. Thus, RailModel GUI interacts with DSTM Verifier and TCG

hrough RESTful APIs. The DSTM Verifier can be invoked directly by

CG , so as to allow the DSTM model of the SUT to be verified be-

ore executing the test case generation.

RailModel GUI creates and updates the OSLC Resources related

o test cases by interacting with RQM. As test cases are documents

n TESQEL format, the associated TESQEL file should be provided as

n attachment to the corresponding OSLC Resource, if needed. At

he time when the testing environment was developed, the man-

gement of Attachments to OSLC Resources was still under discus-

Fig. 4. Interfaces.

Fig. 5. Traceability links among artefacts.

s

s

y

s

s

R

i

A

R

a

d

i

A

O

b

O

s

t

O

a

b

t

b

t

T

r

e

c

a

i

C

t

ion

13 and, to the best of our knowledge, even the current ver-

ion 3.0 of the standard does not provide normative indications

et. Hence, a customized solution has been adopted, which con-

ists in specifying the URI of the concrete TESQEL file through the

pecific element provided by the RDF/XML Resource Descriptor of

QM. A similar solution has been adopted for the Test Writer , that

nteracts with RQM to handle Test Script Resources, and for RTP

dapter , which enables the interaction with RQM to handle Test

esults. In conclusion, two OSLC Adapters have been developed to

llow RailModel GUI to inter-operate with DOORS and RQM. An ad-

itional OSLC Adapter has been implemented to enable data shar-

ng between Test Writer and RQM, whereas RTP Adapter is an OSLC

dapter itself, provided to share Test Results via RQM.

Fig. 5 depicts the traceability relationships among Artifacts and

SLC Resources as implemented by this instantiation. The three

oxes refer to the three different domains involved: OSLC RM,

SLC QM and the Inner domain that is realized by a not-OSLC

erver. While not all the traceability links are defined between
13 http://open- services.net/pipermail/oslc- core _ open- services.net/2011- February/

hread.html

9

SLC Resources, all the necessary traceability information is guar-

nteed.

The relationships among Resources (OSLC-RM and OSLC-QM

oxes) and their multiplicities are defined by the OSLC specifica-

ions 14 . They are created and maintained using suitable OSLC APIs,

oth intra and inter OSLC Domains. The other links are defined by

he adopted modeling languages and notations, i.e., the DSTM and

ESQEL meta-models explicitly enable the specification of linked

esources using suitable attributes.

The resulting OSLC-based environment, though not fully OSLC,

nables, nonetheless, a step-by-step application of OSLC to a real

ritical industrial process and at the same time allows exploiting the

dvantages of OSLC regarding traceability and the possibility of shar-

ng resources .

Further details about the implementation of the instantiated

omponents and their related Adapters are provided in the next sec-

ion.
14 https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html

http://open-services.net/pipermail/oslc-core_open-services.net/2011-February/thread.html
https://archive.open-services.net/bin/view/Main/QmSpecificationV2.html

t

p

T

i

d

s

e

o

T

a

f

t

b

M

v

S

a

o

l

a

s

b

t

c

o

t

t

l

t

i

s

6

u

I

s

R

v

H

a

a

B

v

t

r

a

C

p

v

a

o

v

a

L

o
6. Components implementation

This section covers the most crucial aspects of the implementa-

tion of Components and OSLC Adapters . The aim of the section is to

provide a general picture of the languages, frameworks and tech-

nologies involved in the development of the testing environment,

including the automated test cases generation process. To help un-

derstanding this description, a glossary of all technical terms used

throughout is provided in the Appendix. The section ends empha-

sizing how the implementation meets the user requirements re-

ported in Section 3.3 .

6.1. RailModel GUI

RailModel GUI provides the user with a graphical environment

for composing DSTM models and generating test cases. It enables

the development of a complete DSTM model over multiple files in

order to realize a flexible collaborative environment, also imple-

menting exclusive file lock and model comparison mechanisms. It

also helps the V&V engineers with typical features such as syntax

highlight and automatic graphical arrangements.

RailModel GUI has been entirely realized by using the Eclipse

Modeling Framework (EMF) (Steinberg et al., 2008) and the Graph-

ical Modeling Framework (GMF). 15 Both these frameworks allow

to define ad-hoc domain specific modeling languages and generate

graphical interfaces.

Two OSLC Adapters have been realized in order to provide

RailModel GUI with the capability to access a generic Requirement

Management Service Provider and a Quality Management Service

Provider (DOORS and RQM in the proposed instantiation).

The first adapter, called RM-Adapter , enables the creation of

traceability links between elements of the DSTM model and Re-

quirement resources. Thanks to a specific functionality of RailModel

GUI , the user can configure the parameters of any external OSLC-

RM Service Provider, by specifying the base URL of the applica-

tion server, the authentication parameters and project details. By

means of the RM-Adapter, RailModel GUI can access the list of Re-

quirements, retrieve their unique identifiers and additional details.

The modeler can examine the available information when build-

ing the system specification and she can annotate the Requirement

identifiers over structural elements of DSTM models (transitions or

states), in this way creating traceability links between elements of

the test model and Requirements. All the Requirements available

for the project specified in the configuration data are loaded into

the RailModel GUI cache, thereby avoiding repeated requests and

speeding up response times. The RM-Adapter also implements a

notifications-based functionality, which is triggered whenever the

Requirements are updated on the Service Provider. Separation of

domains is preserved, by disallowing to edit, add or remove Re-

quirements in the OSLC-RM Service Provider through RailModel

GUI .

The second adapter, called QM-Adapter , is in charge of the com-

munication between RailModel GUI and a Quality Management Ser-

vice Provider. In this way, the set of Test Cases generated from the

system specification can be stored and handled as QM Resources

by means of any OSLC-QM Service Provider. The QM-Adapter allows

RailModel GUI to create or update Test Plans , and to add Test Cases

to Test Plans . Again, RailModel GUI implements a specific function-

ality to configure the connection with any Service Provider.

6.2. IOP Test Writer and RTP Adapter

The main functionality of IOP Test Writer is the automatic gener-

ation of test scripts from test cases. The ultimate goal is to derive
15 https://www.eclipse.org/gmf-tooling

o

s

L

10
est scripts in an interoperable testing language in order to sup-

ort cooperative testing of ERTMS/ETCS systems. The input to IOP

est Writer is the set of test cases produced and written by TCG

n an ad-hoc defined XML format. Currently, IOP Test Writer pro-

uces both test scripts understandable by an human user and test

cripts written in a proprietary language from Ansaldo STS. How-

ver, IOP Test Writer has been designed to be easily extensible to

ther target languages by means of suitable plug-ins and Model-to-

ext transformations. In particular, it can be extended to interoper-

ble languages possibly provided in the future by an organization

or standardization (e.g., UNISIG, the industrial consortium created

o develop the ERTMS/ETCS technical specifications). The tool has

een developed as a Windows GUI using the version 4.5.1 of the

icrosoft.NET Framework. It communicates with an OSLC-QM Ser-

ice Provider to retrieve the Test Cases and write the resulting Test

cripts , creating and updating the related traceability links. Hence,

n OSLC Adapter enables loading, selecting and displaying previews

f Test Cases from an OSLC-QM Service Provider. In addition, it al-

ows to generate, save, show and export Test Scripts . Provider. In

ddition, it allows to generate, save, show and export Test Scripts .

The main goal of the RTP Adapter is the computer-aided analy-

is of the test outcomes and their storage over a OSLC-QM tool,

y providing the user with means to select the test execution

races maintained by the Service Provider. The RTP Adapter pro-

esses the Test Execution Records , generated during the execution

f Test Scripts , and extracts the information to collect the informa-

ion needed to create Test Result . The aim of the RTP Adapter is

o store test Test Result on the OSLC-QM Service Provider and al-

ow the test cases to be tagged as passed or failed, so managing

he needed traceability links. For this reason, the RTP Adapter also

mplements an OSLC Adapter that plays the role of an OSLC Con-

umer.

.3. OSLC Adapters implementation hints

In implementing the Adapters, HTTP integration services are

sed to perform typical C.R.U.D. operations, whereas an HTML User

nterface integration service is used to produce a preview of RM re-

ources in a human-readable format (e.g., to visualize details about

equirements).

An OSLC Service Provider offers two main HTTP integration ser-

ices, namely Query Capability and Creation Factory), and two main

TML User Interface integration services, namely Creation Dialog

nd Selection Dialog .

Query Capability is used for querying resources, by performing

n HTTP GET, and provides the base URL for composing queries.

oth the RM-Adapter and QM-Adapter use the Query Capability ser-

ice to access the Requirements list and the Test Plan list, respec-

ively. The Creation Factory provides the URL used to create new

esources, by performing an HTTP POST. For example, the QM-

Adapter uses the Creation Factory for creating a new Test Plan. It

lso uses the Update Resource/Create Resource service to add a Test

ase to an existing Test Plan.

Creation Dialog and Selection Dialog allow the Consumer to dis-

lay a fragment of the web interface of the tool hosting the Ser-

ice Provider. For instance, the RM-Adapter uses the Selection Di-

log service to get a preview of Requirement details. Analogously,

ne of the features implemented by IOP Test Writer uses the UI Pre-

iew of OSLC to show user in-context information when displaying

 link to a Test Case or a Test Script resource.

The OSLC Adapters have been implemented by using the Eclipse

yo or OSLC4Net SDKs, depending on the used language: the first

ne supports the development of OSLC solutions in Java, the sec-

nd one supports solutions in.NET. The listings report some code

nippets that show the interactions described above. In particular,

isting 1 shows some methods of the OSLCRequirementLoader class

https://www.eclipse.org/gmf-tooling

Listing 1. Requirement loader code snippet.

t

c

c

g

P

M

t

(

a

r

6

r

c

a

A

R

s

l
hat loads the requirements from RQM on the RailModel GUI appli-

ation. The getRequirements() method uses basic query-related Lyo

lasses (OslcQueryParameters, OslcQuery, OslcQueryResult) while

etRequirementUI(...) uses UI delegation (ClientResponse, Compact,

review) Lyo classes.

Listing 2 shows the TestPlanCreation(...) method of the Quality-

anager class in the QM-Adapter of RailModel GUI . In this method

he following phases can be distinguished: invocation of the TCG

TestCaseGenerator.generate(...)); creation of a OSLC-RQM TestPlan;

ssignment of each Test Case to the Test Plan; and saving of the

elated TESQEL file on the storage repository.
11
.4. DSTM Verifier and TCG

DSTM Verifier is in charge of checking if a model is correct with

espect to syntax and semantics of the DSTM formalism. This phase

an be carried out during the editing phase (i.e., it is used as

n on-line checker) as well as before the test generation phase.

s shown in Fig. 4 , DSTM Verifier does not communicate with

ailModel GUI and TCG through OSLC Adapters , but via RESTful web

ervices.

DSTM Verifier has been entirely realized in Java, using the EMF

ibrary. Classical EBNF parsing techniques have been used for ver-

Listing 2. Requirement loader code snippet.

T

c

s

q

s

a

C

o

w

E

S

o

M

t

r

6

ifying data definitions and transition decorations. An open source

parser and compiler generator (SableCC

16) has been used to sup-

port the development. Data exchange with other components has

been realized by using the lightweight data-interchange JSON for-

mat.

TCG is in charge of generating test cases from the DSTM model

of the SUT, as sketched in Section 5.2 . TCG is also based on a

client-server paradigm: it operates and communicates with the

other components by exposing its functionality through RESTful

web services.

The main tasks performed by TCG are: (1) model merging , which

combines the two separate components (the data definition and

the model structure) of a DSTM model before applying the trans-

formation that translates the DSTM model into a Promela mode;

(2) flattening of the hierarchical structure of a DSTM model, since

Promela does not allow hierarchical specifications; (3) transforma-

tion , where three steps are performed (cross compiling, abstract

syntax translation and concrete syntax generation) in order to

obtain an actual Promela model that can be automatically ana-

lyzed; (4) claim generation , which automatically derives the prop-

erty specifications to be checked on the Promela model from the
16 http://www.sablecc.org/

t

r

i

12
est Specifications; (5) invocation , where the proper sequence of

ommands to invoke the Spin model checker is built (including

uitable options and parameters), so as to obtain the set of test se-

uences (counterexamples); (6) post-processing , in which the test

equences are processed to obtain abstract test cases written in

n EMF-based language. This language, developed as a task within

RYSTAL project, is named TESQEL (TEst SeQuEnce Language). The

utputs of TCG are TESQEL files containing the generated test cases,

hich are, then, returned to RailModel GUI via RESTful APIs.

The development of TCG exploits the following technologies:

MF library for processing both DSTM and TESQEL artifacts,

ableCC for parsing and translating data files and transition dec-

rations, ATL (Atlas Transformation Language) for implementing

odel-to-Model transformations, and Acceleo as a Model-to-Text

ransformation. Data exchange with other components has been

ealized by using JSON.

.5. Matching user’s requirements

Before describing the application of the testing environment to

he Ansaldo STS case study, let us discuss how the initial user’s

equirement, introduced in Section 3.3 , are indeed satisfied by the

mplementation described.

http://www.sablecc.org/

R

R

R

R

R

R

7

t

t

a

a

i

t

g

l

t

i

t

t

i

h

d

a

a

f

e

p

i

o

w

t

O

p

t

s

o

w

a

i

(

t

t

p

t

e

t

i

r

s

c

u

t

r

t

8

a

i

t

u

a

t

b

o

s

p

1 Limited impact and effort . This requirement has been met by re-

alizing the testing environment so that a smooth transition to

effective tool integration strategies is possible. The joint adop-

tion of OSLC and REST web services enables the instantiation

and the inter-operation of the testing environment with a num-

ber of commonly adopted ALM/PLM tools (DOORS and RQM

are an example of OSLC Service Providers compliant with the

Ansaldo STS processes). The adoption of widespread technolo-

gies for the development of the framework, based on standard

and interoperable formats, also supports the efficient and seam-

less integration of the testing environment with other life cycle

tools used in Ansaldo STS, thereby minimizing the impact on

other phases of the production process.

2 Automation . The steps from the specification model to the

test reports, as well as the interface with the OSLC Service

Providers, are fully automated. As OSLC is a set of standard

specifications, the implementation of the Adapters is indepen-

dent from the specific tools providing access to the OSLC ser-

vices.

3 Inter-operation . This requirement has been satisfied by using

OSLC and other open specifications and programming stan-

dards. OSLC allows to access shared resources available over

a network from different management tools and build tool

chains, as each component providing a management service can

be replaced by a different one, as long as it provides an equiv-

alent service.

4 Separation of domains . As a consequence of the adoption of

OSLC, different conceptual domains (e.g., requirements, models,

test cases, etc.) are clearly distinguished in the proposed envi-

ronment.

5 Traceability . Backward traceability is guaranteed from Test Re-

sults to Requirements across the chain of different tools: OSLC

supports the specification of traceability links and this mech-

anism has been integrated with the features of the modeling

languages and notations used to implement the testing process.

Moreover, the developed components RailModel GUI, IOP Test

Writer and RTP Adapter , implement the software code needed

to manage automatically OSLC traceability links, updating them

after changes in the artifacts (e.g., after a re-generation of test

cases and re-execution of test scripts) as described before.

6 Customization . This requirement has been taken into account

at different levels, by exploiting the advantages of decoupling

the input/output formats in the tool chain, by means of model-

to-text and text-to-text transformations. In particular, the spe-

cific notation in which Test Scripts are written does not depend

on the notation used to write the abstract Test Cases, allow-

ing the extension of the environment to support several script

languages. The customization of the final Reports in our instan-

tiation is provided by the Quality Management ALM/PLM tool.

. Discussion

In this section a brief discussion about the work described in

he paper is provided. Regardless of the specific implementation of

he interoperable testing framework, two main issues need to be

ddressed: a) the quality aspects of the resulting framework that

re considered relevant by the target company/industry that is go-

ng to use it; and b) the level of maturity of the adopted standards,

echnologies and tools.

As to the first point, automation, traceability and ease of inte-

ration are crucial requirements, as discussed in Section 3.3 . This

eads to the second point, as seamless tools interoperability is hard

o obtain. A vertical approach , in which a single leading technology

s adopted throughout the tool chain, is the simplest solution, but

his is far from the aims of this work, as explained in Section 2 . In

urn, an enabling and “above the fray” interoperability framework
13
s needed to implement a horizontal approach , thus leveraging the

eterogeneity of software systems and tools. OSLC allows indepen-

ence from different vendors, technologies and standards. OSLC is

 good solution to meet integration and traceability requirements,

nd it is the only way, at the time of writing, to achieve the goal

ollowing standard specifications. The OSLC standard is powerful

nough to allow for modeling the main aspects of a cross-domain

roduct life-cycle, and it also provides customization facilities to

mplement specific needs, despite the non-normative management

f attachments, introduced in the current version 3.0.

On the other hand, based on the authors’ experience, the

idespread adoption of OSLC could require further effort to fill

he gap between the concrete industrial setting and the vision that

SLC envisages. In this respect, some interesting remarks are re-

orted in Leitner et al. (2016) . The implementation proposed in

his paper suggests that an hybrid solution, partially based on as-

essed and commonly used technologies, may have the advantage

f supporting a gradual migration of the industry processes to-

ards life-cycle collaboration. Indeed, when adopting an horizontal

pproach two complementary aspects have to be considered, that

s the support provided by tool vendors to the enabling framework

i.e., OSLC in this case) and the effort to develop suitable adapters,

o make the components of the architecture interoperable through

he mechanisms provided by the enabling framework. These as-

ects are strictly related, since the greater the support, the lower

he effort, so that the success of the solutions based on interop-

rability specifications depends on the real interest that tools and

echnologies vendors have and on the confidence they have in the

mpartiality of the specific enabling framework. Hence, one of the

esults achieved with this work, beside the definition and the in-

tantiation of a general architecture for automating the testing pro-

ess of ERTMS controllers, is precisely the experience gained in

sing OSLC to integrate life-cycle tools and to enable cross team

raceability and collaboration. This is an important result in the di-

ection of stimulating customers to ask for technologies enabling

he realization of life-cycle integration strategies.

. The RBC’s COMM functionality

In order to illustrate the applicability of the proposed approach

nd its concrete instantiation, here a real implementation of RBC

s considered. Specifically, this section refers to the Communica-

ion Management functionality (COMM), selected by Ansaldo STS as

se case in the CRYSTAL project. COMM is in charge of establishing

nd managing the communication with trains under the RBC con-

rol. The communication is organized in sessions, which have to

e managed so as to guarantee a proper safety level, even in case

f temporary or permanent failures. Three phases are performed,

tarting from the moment a train enters in the area under the su-

ervision of RBC:

• Communication establishment : when a train wants to establish a

safe connection with RBC, it sends a proper connection request

message. RBC may accept or refuse this request according to the

number of trains already connected, which is limited for safety

reasons. RBC must manage the communication with the trains

under its control, while waiting for further connection requests

from other trains.
• Session establishment : once a connection request has been ac-

cepted, RBC must follow a specific protocol with the train, be-

fore granting it a suitable Movement Authority. This protocol

mainly depends on the state of the train (i.e., if it was previ-

ously stopped or if it is coming from a non-ERTMS area).
• Management of the train movement : when a session is safely

established, RBC periodically sends the Movement Authority

to the train, checking the presence of possible human-raised

Fig. 6. Rail Model GUI - CommSession machine.

o

(

e

s

c

t

c

d

c

s

c

c

h

s

D

t

c

t

D

a

w

t

v

q

t

p

i

s

t

o

a

t

e

a
alarms at the same time. The Movement Authority contains in-

formation about the distance the train can safely cover (i.e., the

following area free from trains). This is crucial to guarantee a

safe distance between trains.

A reliable communication channel between RBC and EVC is of

vital importance for the safety of the train march. Possible haz-

ards are due to the loss of communication, as well as to the

absence of related diagnostic mechanisms, and the consequent

impossibility of the train to receive speed restriction and emer-

gency braking messages from RBC. In case of loss of communi-

cation, after a given lapse of time EVC shall start proper brak-

ing procedures and RBC shall consider that the train is no longer

under its supervision. Additional details on this functionality are

in Benerecetti et al. (2017) and UIC (2008) .

In the following part of the Ansaldo STS Use Case is used as a

case study to validate the proposed environment addressing safety-

related requirements. The generation of test cases and their ex-

ecution is out of the scope of this paper (interested readers can

found additional details on the DSTM model of the COMM and

on the automatic test case generation in Benerecetti et al. (2017) ;

Nardone et al. (2015)). Here the focus is on the usage of the

proposed environment. Specifically, some usage scenarios are ad-

dressed to show how the environment supports:

1. the annotation of requirements on the DSTM test model;

2. the automatic generation of test cases;

3. the automatic translation of test cases into (human-readable)

test scripts to enable their execution;

4. the computer-aided analysis of the test logs;

5. the production of a synthetic test report.

Test model and annotation of requirements A DSTM model of the

COMM procedure has been defined on the basis of the behavior

described by the system-level functional requirements. The entire

DSTM model consists of six state machines.

Figs. 6 and 7 show the CommSession machine and models the

session establishment phase. The model was specified by means
14
f RailModel GUI : in particular, Fig. 6 represents the DSTM model

made of state machines) and has been created by the graphical

ditor, while Fig. 7 represents the data model specifying the data

tructures and the variables used in the model to specify triggers,

onditions and actions of transitions between states.

This machine has three nodes (the gray rounded rectangles)

hat represent the three steps needed to instantiate the communi-

ation session. An initial node (the black circle) corresponds to the

efault starting point of the machine, an entering node (the white

ircle) represents an additional entry point that can be explicitly

pecified when calling the machine. Three exit nodes (the crossed

ircles) model three different termination modes. Each transition

an be annotated with a trigger, a condition and actions, which

ave to be written as strings following the provided DSTM formal

yntax. Once the model is specified, the V&V engineer calls the

STM Verifier to check the compliance of the defined model with

he formal syntax and semantics of DSTM, including the syntacti-

al correctness of triggers, conditions and actions annotated over

ransitions.

As explained in Section 6.1 , both states and transtion of the

STM model can be further annotated with requirements that

re stored and managed by DOORS. RailModel GUI inter-operates

ith DOORS through the OSLC RM Adapter , allowing the modeler

o retrieve, preview and select the requirements from a graphical

iew.

Fig. 8 reports a screenshot of DOORS, showing the list of re-

uirements associated with the COMM procedure and details about

he requirement with identifier 132, which states the actions to be

erformed when the safe connection between RBC and the train

s lost. Transition comm02T02 of CommSession in Fig. 6 models the

ituation when of the safe connection is lost. By clicking on this

ransition, the list of requirements retrieved from DOORS is shown

n a window of RailModel GUI , so that the modeler can select and

dd requirement 132 to the list of requirements that annotates

ransition comm02T02 (see the left-hand side of Fig. 9). The mod-

ler can view the details of a requirement by double clicking over

 single item in the lists. In this case, a delegated User Interface is

Fig. 7. Rail Model GUI - Data model.

Fig. 8. Requirement view and REQ 132.

r

e

t

T

W

t

u

o

R

A

R

R

c

in Section 5.2 .
ealized to get a preview of the Resource (right side of Fig. 9), as

xplained in Section 6.1 .

Generation of test cases. Once a DSTM model has been anno-

ated, it is ready to be fed to the test case generation process.

CG is invoked by RailModel GUI , through a suitable menu entry.

hen the user starts the test case generation, RailModel GUI re-

rieves the list of the existing Test Plans from RQM and asks the

ser to choose if he/she wants to add the new Test Cases to one
15
f them or create a new Test Plan (Fig. 10). In the latter case,

ailModel GUI creates the new Test Plan in RQM via the OSLC QM

dapter . In both cases, for each test case automatically generated,

ailModel GUI also creates a corresponding Test Case Resource in

QM via the OSLC QM Adapter and inserts in it the URI of the asso-

iated test case file, which is maintained by a server, as explained

Fig. 9. Annotation of REQ 132 over transition comm03T02 .

Fig. 10. Generate test cases in a new test plan.

t

g

c

p

s

i

n
In the current implementation, the test generation criterion

focuses on transitions coverage: if a transition is annotated with

at least one requirement, a corresponding test case is generated,

which describes one behavior of the modeled system that starts

from an initial state and leads to the execution of that transition.

The set of test cases covering all the transitions of the CommSes-

sion machine (18 test cases) have been generated in about 3 min

on a server equipped with a Intel Core 2 Duo processor and 4GB
of RAM. (

16
Fig. 11 shows a screenshot of RailModel GUI after the genera-

ion of the test cases. The generated test cases are automatically

rouped in a folder of the project. The generated folders of test

ases are shown on the left of the editor, in the view Package Ex-

lorer . In this folder, each test case takes the name of the last tran-

ition reached by the test itself. A single test case can be viewed

n the main view of the editor, showing the details of its inter-

al steps. In Fig. 11 the test case named CommSession.comm02T02

reaching the transition comm02T02 of the machine CommSession

Fig. 11. Test case and details.

Fig. 12. IOP Test Writer - test script generation.

a

i

m

H

a

t

c

a

a

d

T

t

r

e

s
s last transition) is shown in details. We recall here that DSTM

s a state-based formalism, allowing for concurrent execution of

achines (for details on the formalism refer to the Appendix B).

ence, the internal steps of test cases, named Compound Firing s,

re group of Firing s of a single machine transition. For each firing,

he test case shows the name of the transition fired, the related

urrent and next states. Moreover, the test data enabling the firing

re given for each firing, also specifying which shall be the events
17
nd the values of variables to make true the trigger and the con-

ition of the transition.

Generation of test scripts. Fig. 12 shows a screenshot of IOP

est Writer during the test script generation. For each test case,

he main view shows a preview of the translation into (human-

eadable) test scripts. Each step of the test case is transformed into

ither an assert to be checked or an action to be performed on the

ystem in order to execute the test script. The V&V engineer can

Listing 3. Excerpt of generated PRV files.

t

t

fi

t

a

d

t

I

m

(

i

D

C

h

d

p

t

s

m

s

T

s

i

l

1

b

I

p

s

l

a

a

t

a

9

t

T

o

c

f

f

w

t

t

i

B

e

t
choose to select all the test cases and generate the corresponding

test scripts by clicking on the button Generate QM (selected) . IOP

Test Writer performs the translation of the entire set of test cases

and, for each test script, also creates the corresponding Test Script

Resource in RQM through its OSLC Adapter and inserts in it the URI

of the associated test script file maintained by a server. After this

step, test scripts can be executed, generating the relative test logs.

Even if the generation of the concrete scripts is not the core

of this paper, it is important to give some technical details to

demonstrate the approach is feasible. In this concrete case, the

IOP Test Writer generates the script according to the “PRV” lan-

guage originally used by Ansaldo STS’s engineers to manually gen-

erate test scripts. These scripts are than interpreted by a pro-

prietary test engine — which stands a the Test Execution Envi-

ronment of Fig. 3 — which interfaces with hardware-in-the-loop

and/or simulted ERTMS/ETCS subsystems (e.g., RBC, EVCs, the IXLs).

This interfaces deal both with stimulations (sending of test mes-

sages, changing of the values of internal variables) and verifications

(waiting until some messages are not sent or until some internal

variables get some values). An excerpt of the concrete test script

generated by the IOP Test Writer is in Listing 3 .

The generation is enabled by a configuration repository where

specific strings translating the high level messages coming from

the TESQUEL model are resolved allowing the IOP Test Writer

to determine the correct configuration of messages and message

variables according to the specific system. It is important to un-

derline that a meaningful part of this repository can be shared

among similar projects (e.g., ERTMS/ETCS messages are, bu defi-

nitions, standard). The PRV language has importing primitives (i.e.,

the EXECUTE command) by which common (predefined) proce-

dures can be recalled and executed. This mechanism also allows

pre-test and post-test procedures. In the practice of Ansaldo STS,

such procedures are in general shared among all the tests of a

functional scenario (e.g., COMM, braking, emergency management,

etc.).

Analysis of test logs Test logs are properly managed by the RTP

Adapter . Fig. 13 reports a screenshot, showing that three test cases

are marked as passed (green tick), while the remaining test cases

are tagged with a red “x”, since no test logs have been found in the

selected log folder with reference to them. Again, RTP Adapter cre-

ates on RQM the related Test Result Resources and inserts in each

Test Result the URI of its associated log file stored in a separate

server.

Production of test reports . At the end, the V&V engineer can gen-

erate synthetic tables, reporting the results of the test campaign

and the traceability information between the outcomes of the test

execution and the source requirements. RQM provides the users

with specific functions to generate custom summary tables.

Two templates have been defined, according to which these

information can be reported, as shown in Figs. 14 and 15 .

Fig. 14 summarizes the results of a the test campaign reporting,

for each requirement, the test cases that have been completed and

the corresponding results. Instead, Fig. 15 reports the requirements

which are impacted by each test case. By analyzing these reports,
 f

18
he V&V engineer can easily obtain information on the test cases

hat did not pass and/or the requirements that still must be veri-

ed.

Traceability among artifacts In this paragraph we highlight how

he traceability links (depicted in Fig. 5) are enforced by the re-

lized environment among the different artifacts involved in the

escribed case study. As previously described, the greater part of

raceability links is managed by RailModel GUI and by its Adapters.

n fact, RailModel GUI offers the possibility to retrieve require-

ents from DOORS and annotate them over each model element

i.e., over each state or transition) of the DSTM model . As shown

n Fig. 9 , the requirement REQ 132 (which details are stored in

OORS) has been annotated over the transition comm03T02 of the

ommSession machine in the case study. Moreover, RailModel GUI

andles also the traceability links related to the test cases. In the

escribed case study, when the user asks to create a new test

lan during the generation of the test cases, RailModel GUI au-

omatically creates the proper QM-Resources (i.e., Test Plan and a

et of Test Case s) in RQM and links them with the related attach-

ents (i.e., TESQEL test case s), also uploading these last in a central

erver. At last, RailModel GUI also handles the traceability between

est Case s and Requirement s and between TESQEL test case s and the

ource DSTM model . In fact, after the generation of test cases, RQM

s populated with the resources representing test cases, which are

inked properly to requirements (as demonstrated by Figs. 14 and

5).

The traceability links between Test Case s and Test Script s, and

etween Test Script s and the IOP Script s are instead managed by

OP Test Writer. In fact, after the generation of test scripts (de-

icted in Fig. 12), the tool automatically creates the related re-

ources in RQM. Similarly, RTP Adapter handles the traceability

inks between Test Result s and Test Script s and between Test Result s

nd Test Log s. Resources are created once again in RQM, after the

nalysis of logs. In fact, at the end of the entire process, RQM con-

ains all the data and the information needed to produce reports,

s shown in Figs. 14 and 15 .

. Related work

The advent of Industry 4.0 and Internet of Things (IoT) has in-

roduced new challenges in the products life-cycle management.

he increasing complexity of requirements related to the demand

f integrated software and services raises the need to meet both

ustomers demand and industry strategies (Song, 2017), so asking

or the integration of PLM and ALM features. Integrated PLM-ALM

rameworks allow to link the life-cycles of hardware products, soft-

are applications and data modules; this leads to better planning

he development, testing and release activities, to reduce specifica-

ion errors and to save time and effort for development, especially

n case of late changes of the initial requirements (Ebert, 2013).

ig companies as well as small and medium enterprises can ben-

fit from the integration of ALM-PLM frameworks in terms of au-

omation of the business processes, communication, reduction of

ailure costs, enhancement of traceability. This last aspect is es-

Fig. 13. RTP Adapter - test log analysis.

Fig. 14. IBM RQM - requirement report.

s

q

s

P

a

P

c

c

s

i

p

m

a

t

i

A

p

A

t

t

17 https://polarion.plm.automation.siemens.com/products/polarion-alm
ential to evaluate the satisfaction of the requirements and the

uality of the final product. Recent academic and industrial re-

earch trends, demonstrate that there is a wide interest in the

LM-ALM integration. The work in Dekhtiar et al. (2018) defines

n approach to integrate deep learning algorithms into an existing

LM tool in the manufacturing domain. The goal is to develop a de-

ision support system able to support the visual inspection of me-

hanical parts, based on the previous knowledge collected in thou-

and item CADs and operational datasets. The approach described

n Essamlali et al. (2017) integrates concurrent engineering princi-

les into PLMs to improve the efficiency of the life-cycle manage-

ent for the development of wearable smart products, with the
19
im to reduce the development effort and place the product on

he market as soon as possible. The work in Deuter et al. (2018) ,

nstead, focuses on the requirements to be satisfied to integrate an

LM tool and the existing PLM of an electrical manufacturing com-

any. Finally, Siemens acquired the Polarion ALM tool 17 to integrate

LM concepts in existing processes of the automotive domain.

A common principle emerging from the literature review is

hat the integration between PLM and ALM can be facilitated by

he definition of a shared model of the system. Model-based ap-

https://polarion.plm.automation.siemens.com/products/polarion-alm

Fig. 15. IBM RQM - test report.

R

p

e

m

p

o

p

s

a

L

t

i

g

O

e

o

t

a

d

q

b

i

q

v

J

t

n

e

fi

t

fi
proaches cope with the system complexity by allowing to work

at an high level of abstraction and by facilitating the system de-

velopment, with an overall enhancement of efficiency and qual-

ity (Ebert, 2013). In this context, PLM-ALM environments support-

ing Model-Based testing (MBT) are highly desirable.

The effort spent on testing critical systems usually ac-

counts for more than fifty percent of the total development

costs (Sommerville, 2006) since a missing or poor testing activ-

ity may impact on a quota close to eighty percent of the overall

system costs (Tassey, 2002). MBT can reduce such effort by de-

riving test cases from a specification of the System Under Test

(SUT) (Utting and Legeard, 2007). Several MBT approaches have

been assessed and implemented to support automated test genera-

tion (Zander et al., 2011; de Niz et al., 2006; Dias Neto et al., 2007;

Anand et al., 2013) and a number of commercial tools are currently

available from different vendors (e.g., Ansys, 18 Conformiq, 19 Math-

Works, 20 Systemite 21). In PLM-ALM environment the integration of

MBT can be achieved in different ways: through common data rep-

resentations (e.g., using standard languages such as UML and stan-

dard UML formats, such as XMI) (Thomas and Nejmeh, 1992), by

providing a common middleware for data and control integration

(e.g., ModelBus Hein et al., 2009) or by designing for extensibility

(e.g., the Eclipse platform). Two complementary strategies can be

adopted: the horizontal and the vertical. The horizontal integra-

tion pursues tools inter-operation on one among the three main

aspects of ALM (governance, development and maintenance), by

sharing platform guidelines and common components (e.g., Eclipse

and Microsoft Visual Studio). Vertical tools integration allows for

cooperation across the life-cycle and provides solutions specific to

a domain, an industry or a group of stakeholders, by sharing data,

control and presentation layers (e.g., Microsoft Visual Studio, IBM
18 http://www.esterel-technologies.com/products/scade-suite
19 https://www.conformiq.com/products
20 https://it.mathworks.com/discovery/model- based- testing
21 https://www.systemweaver.se

p

v

20
ational and IBM’s Jazz initiative 22). Public APIs or plug-ins may be

rovided in order to support the development of extensions. How-

ver, the increasing complexity of modern critical systems requires

any specialized tools, which have to inter-operate to manage and

erform the activities throughout the life-cycle, beyond the devel-

pment of point-to-point integrations and proprietary bridges or

latforms. The need for more efficient and effective approaches to

eamless tools interoperability is leading to the definition and the

doption of new standards and protocols. The Open Services for

ife-cycle Collaboration (OSLC) initiative 23 is a joint effort between

he academia and the industry to develop specifications for tools

nter-operation, based on assessed and standardized web technolo-

ies and W3C Linked Data. Several works describe the use of

SLC (Aichernig et al., 2014; Seceleanu and Sapienza, 2013; Marko

t al., 2015; Kaiser and Herbst, 2015; El Salloum, 2015). However,

nly a few of them focus on test automation and test case genera-

ion. In Marinescu et al. (2013) , the design and implementation of

n OSLC adapter is proposed for achieving tool interoperability in

eriving executable tests from East-ADL architectural models. Re-

uirements engineering, analysis and test case generation are com-

ined in the methodology presented in Aichernig et al. (2014) and

ts supporting tool MoMuT: the integration of MoMuT and a re-

uirement management tool (e.g., IBM Rational DOORS) is realized

ia OSLC. Both these works were developed within the ARTEMIS

U project MBAT (Nielsen, 2014), which, in turn, partially relied on

he results of CESAR (Jolliffe, 2010), whose objective was the defi-

ition of a framework to facilitate tighter integration among differ-

nt tools and enhanced traceability. In this direction, CRYSTAL de-

ned a Reference Technology Platform (RTP) and a harmonized in-

eroperability specification (IOS), incorporating various open speci-

cations and standards, such as OSLC. Concerning these works, this

aper focuses on the definition and the realization of a testing en-

ironment supporting all the phases of a testing process, from the
22 https://jazz.net/products/clm
23 http://open- services.net/specifications/core- 2.0

http://www.esterel-technologies.com/products/scade-suite
https://www.conformiq.com/products
https://it.mathworks.com/discovery/model-based-testing
https://www.systemweaver.se
https://jazz.net/products/clm
http://open-services.net/specifications/core-2.0

g

e

w

t

1

c

f

w

A

m

s

m

d

A

a

a

s

s

t

a

p

w

r

f

f

h

a

f

f

h

n

t

c

v

A

C

t

a

p

K

m

E

(

A

b

c

t

m

t

c

m

eneration of test cases to the production of test reports. The ref-

rence architecture introduced in Section 5 proposes a solution,

hose implementation can be compliant with the OSLC specifica-

ions.

0. Conclusion and future work

This paper has presented a reference architecture and a spe-

ific implementation of an OSLC-based interoperable environment

or system-level functional testing of ERTMS/ETCS controllers. The

ork described in the paper has been conducted within the

RTEMIS project CRYSTAL. An application of the realized imple-

entation to concrete activities, daily performed in an industrial

etting, has been provided to exemplify the usage of the environ-

ent, demonstrate the feasibility of the approach and give evi-

ence of the readiness level reached by the software framework.

s for the testing automation, it relies on a model-driven approach

nd model checking. A chain of transformations hides to the user

ll the steps needed to derive the test cases from an initial de-

cription of the SUT behavior. As to the proposed architecture, data

haring and tools inter-operation is obtained by the usage of web

echnologies and OSLC, a recent standard for enabling interoper-

bility and integration of life-cycle tools, so illustrating how to ex-

loit linked data and the specifications provided by OSLC to cope

ith a concrete case in the railway domain.

Future work will address two main points of improvement with

espect to the current implementation.

The first pertains to the management of the attachments, in

act the solution here adopted is functionally effective but it is not

ully compliant with the philosophy underlying OSLC. This limit

as been mentioned in the discussion and in Section 5 where the

ctual solution is described.

The second improvement is the integration in the testing

ramework of tools for data analysis on test failures. Providing the

ramework with the capability of performing mining on logs and

istorical data series to analyze the trends of testing failures was

ot taken into account at first. This can be now considered with

he aim of driving the generation and the execution of specific test

ases, so improving the quality of the process while shortening the

alidation time.

cknowledgments

This paper has been partially supported by research project

RYSTAL (Critical System Engineering Acceleration), funded from

he ARTEMIS Joint Undertaking under grant agreement no 332830

nd from ARTEMIS member states Austria, Belgium, Czech Re-

ublic, France, Germany, Italy, Netherlands, Spain, Sweden, United

ingdom. The work of some authors is also supported by Depart-

ent of Electrical Engineering and Information Technology (DI-

TI) of University of Naples Federico II under the project MODAL

 MOdel-Driven AnaLysis of Critical Industrial Systems).

ppendix A. A Glossary of the enabling technologies

A strength of the proposed architecture is that it takes the

est of breed of technologies adopted in academic and industrial

ontexts. This section lists and defines languages, frameworks and

ools referred throughout the paper. Fig. A.16 provides a conceptual

ap of technologies and tools according to the context in which

hey have been used to implement the testing framework: specifi-

ation, programming, tool integration and analysis. In addition, the

ap also includes third party tools.

1. Specification
• EBNF (Extended Backus–Naur form) is used in the definition

of Dynamic STate Machines (DSTMs).
21
• Ecore (Steinberg et al., 2008) is a meta-model included in

the Eclipse Modeling Framework (EMF) for describing mod-

els and run-time support for the models, used in the devel-

opment of all the languages involved in the test automation

process.
• JSON (JavaScript Object Notation) is an open-standard file

format to specify the format of the data exchanged between

the web services implementing the proposed architecture.
• Promela (Holzmann, 2004) is the specification language of

the Spin model checker used to automate the test cases gen-

eration process.
• XMI (XML Metadata Interchange) is the well-know OMG

standard for exchanging meta-data information in XML for-

mat used to exchange models between different frameworks

and tools.

2. Programming
• ATL (Atlas Transformation Language) (Jouault and

Kurtev, 2005) is a model transformation language de-

veloped on top of the Eclipse platform to derive a set of

target models from a set of source models. It is used to

realize the transformations chain from DSTM test models to

test cases.
• Eclipse is a powerful Integrated Development Environment

(IDE), used both as a development environment and as an

integration platform to develop the testing framework.
• EMF (Eclipse Modeling Framework) (Steinberg et al., 2008)

is a stable Eclipse framework which provides code genera-

tion facilities for building toolsets and Java applications from

model specifications described in XMI.
• GMF (Graphical Modeling Framework) is an eclipse-based

framework which provides facilities to generate graphical

editors from Ecore-based model specifications.
• LINQ (Language-Integrated Query) is a component of the Mi-

crosoft.NET framework, used to develop IOP Test Writer and

RTP Adapter .
• Log4Net is part of the Apache Logging Services project, used

to perform logging activities for IOP Test Writer and RTP

Adapter .
• SableCC (Gagnon and Hendren, 1998) is a parser generator

used in the development of DSTM Verifier .

3. Integration
• Eclipse Lyo is an Eclipse SDK introduced to support the de-

velopment of OSLC-compliant tools.
• OSLC (Open Services for Lifecycle Collaboration) is a set of

open specifications for tools integration in support of end-

to-end life-cycle processes through the integration of data

and workflows.
• OSLC4Net is an SDK used in.NET development to support the

development of OSLC-compliant tools used to implement

the OSLC integration with IBM Rational Doors and Quality

Manager.
• REST is an architectural style for the development of dis-

tributed systems adopted to develop the part of the frame-

work based on web services.

4. Analysis
• Spin Holzmann (2004) is a powerful model checking tool,

widely used for formal verification of concurrent and dis-

tributed systems and adopted in the proposed architecture

to generate the test sequences from Promela models.

5. External tools
• IBM Rational Doors is a client-server framework for the man-

agement of requirements usually adopted to increase col-

laboration and traceability within an enterprise. DOORS was

used as a OSLC Requirement Management Provider.
• IBM Rational Quality Manager is a test management tool. It

allows to store test cases and the outcomes of their execu-

Fig. A.16. Conceptual map of the adopted technologies.

f

c

v

v

a

a

s

t

fi

i

C

t

s

b

p

o

a

f

s

n

t

v

o

s

o

n

t

a

t

R

A

A

tion, and provides facilities to trace results on the system

requirements. RQM has been used as OSLC Quality Manage-

ment Provider.

Appendix B. The DSTM formalism

This section provides an overview of the DSTM formalism,

adopted in the RailModelGUI to produce the system model. For a

complete account of the formal syntax and semantics of DSTM we

refer to Benerecetti et al. (2017) .

A Dynamic STate Machine (DSTM) model is a sequence of ma-

chines communicating over a set of global variables and a set of

(typed and buffered) global communication channels. The commu-

nication channels are grouped into internal and external channels.

The former are channels where machines can send and read (con-

suming or non consuming) the message. The latter have a simi-

lar behavior but, if it is empty for a step, a message can be non-

deterministically chosen from the set of possible messages com-

pliant with the channel data structure. This mechanism simulates

the presence of an external environment that can send messages

to the modeled system with any value in any sequence.

One machine in a DSTM model is the initial (i.e., main) machine,

namely the initial process of the model. Each machine, with ex-

cept of the initial one, may be parametric. Parameters are aliases

for channels and variables names and are actualized when the ma-

chine is instantiated, allowing also for multiple instantiations of

the same machine with different parameter values. Each machine

is defined as a state-transition diagram. With respect to traditional

formalisms, DSTM defines a novel semantics for the fork and join

operators. In fact, a fork allows for the instantiation of machines

either in a synchronous of in an asynchronous way. In former case,

the forking machine is suspended and waits for the activated pro-

cesses to terminate, while in the latter the forking machine con-

tinues its activity, executing concurrently to the newly-activated

processes. Consequently, a join closes an instantiation of machines,

and synchronizes the control flows. A transition connects a source

and a destination vertex in a machine; it is decorated with a trig-

ger (an input event originating from the external environment or
22
rom other machines, e.g. the presence of messages on a given

hannel), a guard (a Boolean condition on the current contents of

ariables and channels) and an action (one or more statements on

ariables and channels). A transition fires if its trigger is fulfilled

nd its guard satisfied by the current status of channels and vari-

bles. When a transition fires, its action is executed with possible

ide-effects.

DSTM defines a complete type system, which is used to define

ypes of variables and of channel messages. Three types are de-

ned: basic types, compound types and multi-types . The basic types

ncludes the Boolean and the integer types, the channel type (i.e.,

hn for channel names, and a set of user-defined enumeration

ypes. Compound types are tuples of basic types , so defining data

tructures. A multi-type is a type defined as composition of both

asic and compound types. Variables can be typed as basic or com-

ound types; similarly, internal channels can convey only messages

f basic or compound types, while external channels can convey

lso multi-type messages. This last mechanism is used to model

or the presence of an external environment that can send mes-

ages to the modeled system of a different type.

The evolution of a DSTM consists in a sequence of instanta-

eous reactions called steps . A step is a maximal set of transitions

hat are triggered by the current system state and by the current

alue of channels. The firing of a transition can have side effects

n the available channels and variables. The content sent during a

tep on an external channel, unlike for internal ones, can only be

bserved in the next step. As previously anticipated, if an exter-

al channel is empty at the end of a step, the semantics allows for

he generation of a random message, non-deterministically chosen

mong the possible set of messages compliant with the channel

ype (possibly, multi-type).

eferences

ichernig, B.K. , Hörmaier, K. , Lorber, F. , Nickovic, D. , Schlick, R. , Simoneau, D. ,

Tiran, S. , 2014. Integration of requirements engineering and test-case genera-
tion via OSLC. In: Quality Software (QSIC), 2014 14th International Conference

on. IEEE, pp. 117–126 .
nand, S. , Burke, E.K. , Chen, T.Y. , Clark, J. , Cohen, M.B. , Grieskamp, W. , Harman, M. ,

Harrold, M.J. , Mcminn, P. , Bertolino, A. , et al. , 2013. An orchestrated survey of

http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002

B
B

B

B

B

B

B

C

D

D

D

E

E

E

F

F

G

G

G

H

H

J

J

K

L

L

M

M

N

N

N

d

O

O

R

S

S

S

S

S

S

T

T

U

U

Z

R

U
2

H
i

u

a
r

S

v

f

n

w

U
(

U
o

c
t

a

r
p

methodologies for automated software test case generation. J. Syst. Softw. 86
(8), 1978–2001 .

aier, C. , Katoen, J. , 2008. Principles of Model Checking. MIT Press .
arberio, G. , Martino, B.D. , Mazzocca, N. , Velardi, L. , Amato, A. , Guglielmo, R.D. , Gen-

tile, U. , Marrone, S. , Nardone, R. , Peron, A. , Vittorini, V. , 2014. An interopera-
ble testing environment for ERTMS/ETCS control systems. In: Computer Safety,

Reliability, and Security - SAFECOMP 2014 Workshops: ASCoMS, DECSoS, DEV-
VARTS, ISSE, ReSA4CI, SASSUR. Florence, Italy, September 8–9, 2014. Proceed-

ings, pp. 147–156 .

aybutt, P. , 2014. The alarp principle in process safety. Process Saf. Progress 33 (1),
36–40 .

elkadi, F. , Troussier, N. , Eynard, B. , Bonjour, E. , 2010. Collaboration based on prod-
uct lifecycles interoperability for extended enterprise. Int. J. Interact. Des.Manuf.

4 (3), 169–179 .
enerecetti, M., De Guglielmo, R., Gentile, U., Marrone, S., Mazzocca, N., Nardone, R.,

Peron, A., Velardi, L., Vittorini, V., 2017. Dynamic state machines for modelling

railway control systems. Sci. Comput. Programm. 133, 116–153. doi: 10.1016/j.
scico.2016.09.002 .

enerecetti, M. , Gentile, U. , Marrone, S. , Nardone, R. , Peron, A. , Starace, L.L.L. , Vit-
torini, V. , 2019. Dynamic state machines for modelling railway control systems.

In: Proc. of 26th International SPIN Symposium on Model Checking of Software
(SPIN), 11636 .

oroday, S. , Petrenko, A. , Groz, R. , 2007. Can a model checker generate tests for

non-deterministic systems? Electron. Not. Theor. Comput. Sci. 190 (2), 3–19 .
ENELEC EN 50128 , 2012. Railway applications - communication, signalling and pro-

cessing systems - software for railway control and protection systems. Book EN
50128 .

ekhtiar, J., Durupt, A., Bricogne, M., Eynard, B., Rowson, H., Kiritsis, D., 2018. Deep
learning for big data applications in cad and plm, research review, opportunities

and case study. Comput. Ind. 100, 227–243. doi: 10.1016/j.compind.2018.04.005 .

euter, A., Otte, A., Ebert, M., Possel-Dölken, F., 2018. Developing the requirements
of a PLM/ALM integration: an industrial case study. In: Intelligent, Flexible and

Connected Systems in Products and Production - 4th International Conference
on System-Integrated Intelligence, 24, pp. 107–113. doi: 10.1016/j.promfg.2018.

06.020 .
ias Neto, A.C. , Subramanyan, R. , Vieira, M. , Travassos, G.H. , 2007. A survey on mod-

el-based testing approaches: a systematic review. In: Proceedings of the 1st

ACM international workshop on Empirical assessment of software engineering
languages and technologies: held in conjunction with the 22nd IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE) 2007. ACM,
pp. 31–36 .

bert, C., 2013. Improving engineering efficiency with plm/alm. Softw. Syst. Model.
12 (3), 4 43–4 49. doi: 10.1007/s10270- 013- 0347- 3 .

l Salloum, C., 2015. Seamless integration of test information management and cal-

ibration data management in the overall automotive development process. In:
2015 IEEE 8th International Conference on Software Testing, Verification and

Validation (ICST), pp. 1–3. doi: 10.1109/ICST.2015.7102629 .
ssamlali, M.T.E., Sekhari, A ., Bouras, A ., 2017. Product lifecycle management so-

lution for collaborative development of wearable meta-products using set-
based concurrent engineering. Concurr. Eng. 25 (1), 41–52. doi: 10.1177/

1063293X16671386 .
ielding, R.T. , 20 0 0. Architectural Styles and the Design of Network-based Software

Architectures . AAI9980887

lammini, F. , Marrone, S. , Mazzocca, N. , Nardone, R. , Vittorini, V. , 2012. Model-driven
V&V processes for computer based control systems: A unifying perspective. In:

Leveraging Applications of Formal Methods, Verification and Validation. Appli-
cations and Case Studies - 5th International Symposium, ISoLA 2012, Heraklion,

Crete, Greece, October 15–18, 2012, Proceedings, Part II, pp. 190–204 .
agnon, E.M. , Hendren, L.J. , 1998. Sablecc, an object-oriented compiler frame-

work. In: TOOLS 1998: 26th International Conference on Technology of Objec-

t-Oriented Languages and Systems, 3–7 August 1998, Santa Barbara, CA, USA,
pp. 140–154 .

argantini, A., Heitmeyer, C., 1999. Using model checking to generate tests from
requirements specifications. SIGSOFT Softw. Eng. Not. 24 (6), 146–162. doi: 10.

1145/318774.318939 .
entile, U. , Marrone, S. , Mele, G. , Nardone, R. , Peron, A. , 2014. Test specification pat-

terns for automatic generation of test sequences. In: Formal Methods for In-

dustrial Critical Systems - 19th International Conference, FMICS 2014, Florence,
Italy, September 11–12, 2014. Proceedings, pp. 170–184 .

ein, C. , Ritter, T. , Wagner, M. , 2009. Model-driven tool integration with modelbus.
In: Workshop Future Trends of Model-Driven Development, pp. 50–52 .

olzmann, G.J. , 2004. The SPIN Model Checker - Primer and Reference Manual. Ad-
dison-Wesley .

olliffe, G. , 2010. Cost-efficient methods and processes for safety relevant embedded

systems (CESAR) - an objective overview. In: Making Systems Safer - Proceed-
ings of the Eighteenth Safety-Critical Systems Symposium, Bristol, UK, February

9–11, 2010, pp. 37–50 .
ouault, F. , Kurtev, I. , 2005. Transforming models with atl. In: International Confer-

ence on Model Driven Engineering Languages and Systems, pp. 128–138 .
aiser, C. , Herbst, B. , 2015. Smart engineering for smart factories: How OSLC could

enable plug & play tool integration. In: Mensch und Computer 2015 - Work-

shopband, Stuttgart, Germany, September 6–9, 2015, pp. 269–278 .
acheiner, H. , Ramler, R. , 2011. Application lifecycle management as infrastructure

for software process improvement and evolution: experience and insights from
industry. In: Software Engineering and Advanced Applications (SEAA), 2011 37th

EUROMICRO Conference on. IEEE, pp. 286–293 .
23
eitner, A. , Herbst, B. , Mathijssen, R. , 2016. Lessons learned from tool integration
with OSLC. In: Information and Software Technologies - 22nd International Con-

ference, ICIST 2016, Druskininkai, Lithuania, October 13–15, 2016, Proceedings,
pp. 242–254 .

arinescu, R. , Saadatmand, M. , Bucaioni, A. , Seceleanu, C. , Pettersson, P. , 2013. East-
-adl Tailored Testing: From System Models to Executable Test Csases. Technical

Report. Mälardalen University, Technical Report ISSN 1404-3041 ISRN MDH-M-
RTC-278/2013-1-SE .

arko, N. , Leitner, A. , Herbst, B. , Wallner, A. , 2015. Combining xtext and oslc for in-

tegrated model-based requirements engineering. In: 2015 41st Euromicro Con-
ference on Software Engineering and Advanced Applications, pp. 143–150 .

ardone, R. , Gentile, U. , Benerecetti, M. , Peron, A. , Vittorini, V. , Marrone, S. , Maz-
zocca, N. , 2015. Modeling railway control systems in Promela. In: Formal Tech-

niques for Safety-Critical Systems - Fourth International Workshop, FTSCS 2015,
Paris, France, November 6–7, 2015. Revised Selected Papers, pp. 121–136 .

ardone, R. , Gentile, U. , Peron, A. , Benerecetti, M. , Vittorini, V. , Marrone, S. , De

Guglielmo, R. , Mazzocca, N. , Velardi, L. , 2014. Dynamic state machines for for-
malizing railway control system specifications. In: International Workshop on

Formal Techniques for Safety-Critical Systems. Springer, pp. 93–109 .
ielsen, B. , 2014. Towards a method for combined model-based testing and anal-

ysis. In: 2014 2nd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), pp. 609–618 .

e Niz, D. , Bhatia, G. , Rajkumar, R. , 2006. Model-based development of embedded

systems: The sysweaver approach. In: 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 2006), 4–7 April 2006, San Jose, Cal-

ifornia, USA, pp. 231–242 .
ASIS, 2013. Last access: 2017-11-17. Open Services for Lifecycle Collaboration core

specification version 2.0.
ffutt, J., Liu, S., Abdurazik, A., Ammann, P., 2003. Generating test data from state-

based specifications. Softw. Test. Verif. Reliab. 13 (1), 25–53. doi: 10.1002/stvr.

264 .
ay, M., Patnaik, S., Pradhan, S., 2019. Coverage criteria for state-based testing: a

systematic review. Int. J. Inf. Technol. Proj. Manag. 10 (1), 1–20. doi: 10.4018/
IJITPM.2019010101 .

eceleanu, T. , Sapienza, G. , 2013. A tool integration framework for sustainable em-
bedded systems development. IEEE Comput. 46 (11), 68–71 .

ommerville, I. , 2006. Software Engineering: (Update) (8th Edition) (International

Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA .

ong, W., 2017. Requirement management for product-service systems: status re-
view and future trends. Comput. Ind. 85, 11–22. doi: 10.1016/j.compind.2016.11.

005 .
tark, J. , 2015. Product Lifecycle Management. In: Product Lifecycle Management.

Springer, pp. 1–29 .

teinberg, D. , Budinsky, F. , Merks, E. , Paternostro, M. , 2008. EMF: Eclipse Modeling
Framework. Pearson Education .

ummers, A.E. , 1998. Techniques for assigning a target safety integrity level. ISA
Trans. 37 (2), 95–104 .

assey, G. , 2002. The economic impacts of inadequate infrastructure for software
testing. TheEconomic Impactsof Inadequate Infrastructure for Software Testing .

Cited By 642
homas, I. , Nejmeh, B.A. , 1992. Definitions of tool integration for environments. IEEE

Softw. 9 (2), 29–35 .

IC, 2008. ERTMS/ETCS Application Level 2 - Safety Analysis. Part 1 - Functional
Fault Tree. Ref. SUBSET-088 part 1 issue 2.3.0.

tting, M. , Legeard, B. , 2007. Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA .

ander, J. , Schieferdecker, I. , Mosterman, P.J. , 2011. Model-Based Testing for Embed-
ded Systems, 1st ed. CRC Press, Inc., Boca Raton, FL, USA .

oberto Nardone received his M.D. and Ph.D. in Computer Engineering from the

niversity of Naples Federico II, Naples, Italy, in 2009 and 2013, respectively. From
018, he is an Assistant Professor at Mediterranean University of Reggio Calabria.

e was a post-doctoral researcher at University of Naples Federico II. His research
nterests include quantitative evaluation of non-functional properties, with a partic-

lar focus on dependability and performability assessment and threat propagation

nalysis, by means of model-based and model-driven techniques. He is involved in
esearch projects with both academic and industrial partners.

tefano Marrone is an assistant professor in Computer Engineering at Seconda Uni-
ersità di Napoli, Italy. His interests include the definition of model driven processes

or the design and the analysis of transportation control systems, complex commu-
ication networks and critical infrastructures. He is involved in research projects

ith both academic and industrial partners.

go Gentile is a Post-Doctoral researcher in the Engineering Department at CERN
Geneva, Switzerland). He got is PhD in Computer and Automation Engineer at the

niversity of Naples Federico II focusing his research on verification and validation
f safety-critical systems. His main research topics include the application of ma-

hine and deep learning for the data analysis of complex industrial systems and
he application of model-driven principles to support the life cycle of ICT systems

nd infrastructures. He has authored different publications in international peer-

eviewed journals and he has been actively involved in different FP7 international
rojects as MASSIF, CRYSTAL and SVEVIA.

http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0006
https://doi.org/10.1016/j.scico.2016.09.002
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0010
https://doi.org/10.1016/j.compind.2018.04.005
https://doi.org/10.1016/j.promfg.2018.06.020
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0013
https://doi.org/10.1007/s10270-013-0347-3
https://doi.org/10.1109/ICST.2015.7102629
https://doi.org/10.1177/1063293X16671386
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0019
https://doi.org/10.1145/318774.318939
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0034
https://doi.org/10.1002/stvr.264
https://doi.org/10.4018/IJITPM.2019010101
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0038
https://doi.org/10.1016/j.compind.2016.11.005
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30252-3/sbref0046

24 R. Nardone, S. Marrone and U. Gentile et al. / The Journal of Systems and Software 161 (2020) 110478

2

fi
C

R
h

N

m

a

A

m

w

a

u

t

p

t

t

a
i

Aniello Amato is a software engineer in Mate Consulting, a digital technology com-
pany. After graduating in computer science at University of Salerno, he was chosen

for a research position for the Modern project (Architectural Models for the Defi-
nition, Execution and Reconfiguration of User-Centric Processes in Enterprise 2.0).

One of the most challenging work experience is the CRYSTAL project (CRitical sYS-
Tem engineering AcceLeration). Currently, he is working on different projects for

the development of web-based applications.

Gregorio Barberio is the head of technology for Business Application department at
Mate Consulting, a digital and technology consultancy company. He has more than

0 years of experience in IT industry and a huge experience in leadership. Currently,
he is coordinating and working on different research and development projects.

Massimo Benerecetti is currently serving as Associate Professor in Computer Sci-
ence at the Department of Electrical Engineering and Information Technologies of

the Università di Napoli Federico II. His main research topics include Formal Veri-

cation and Synthesis of reactive, real-time and cyber-physical systems, Logics for
omputer Science, Artificial Intelligence and Multi-Agent Systems.

enato De Guglielmo is the Head of the RAMS Tools Unit in Hitachi Rail STS. He
as more than 10 years of experience in software development for railway con-

trollers. He got his degree in Computer Engineering from the University of Naples

Federico II in 2006. He has been involved in different European research projects
aiming at improving the efficiency of software tools in the railway lifecycle.

Beniamino Di Martino is Full Professor at University of Campania, Engineering
Dept. He is author of 14 international books and more than 300 publications in

international journals and conferences. He has been Coordinator of EU funded FP7-
ICT Project mOSAIC, and participates to various international research projects. He

is Editor / Associate Editor of seven international journals and EB Member of sev-

eral international journals. He is vice Chair of the Executive Board of the IEEE CS
Technical Committee on Scalable Computing. He is member of: IEEE WG for the

IEEE P3203 Standard on Cloud Interoperability, IEEE Intercloud Testbed Initiative,
IEEE Technical Committees on Scalable Computing (TCSC) and on Big Data(TCBD),

Cloud Standards Customer Council, Cloud Computing Experts’ Group of the Euro-
pean Commission.

icola Mazzocca is a full professor of High-Performance and Reliable Computing

at University of Naples Federico II, Italy. He was the head of the Department of
Electrical Engineering and Information Technologies. He served as coordinator in

several national and international research projects. His research activities include
ethodologies and tools for design/analysis of distributed systems, secure and reli-

ble systems and dedicated parallel architectures.
24
driano Peron is full professor in Computer Science at the Department of Electri-
cal Engineering and Information Technologies of the Università degli Studi di Napoli

Federico II. He got a Ph.D. in Computer Science from University of Pisa. His research
activity mainly focus on the development and application of techniques for the

specification and verification of inherent properties of concurrent and distributed
systems with a particular attention to their real time aspects. A keyword of inter-

est is model checking of finite and infinite state systems with respect to pointbased
and interval based temporal logics.

Gaetano Pisani is Business Application Team Leader for Mate Consulting. He takes

care of requirement analysis and development of web-oriented applications. He has
ore than 10 years of experience in software development and currently he is

orking on different projects for the development of web-based applications.

Luigi Velardi got his Master’s degree in Computer engineering in 20 02. In 20 04

he gained a Post Master’s degree on “Computer-based Systems in safety critical in-

dustrial application”. He is working in Hitachi Rail STS since 2004, first as RAMS
engineer, performing validation and verification activities on Italian national STM

(SCMT), then, from 2009, he moved to the Product Development department to
manage the System Integration and the Testing for Wayside Signalling Systems, such

s ERTMS RBC, Railway and Metro Interlocking and CBTC Metro Systems. In Prod-
ct Development, he worked also on project to increase the Standardization and

he Modularization of the developed systems, and on several European funded R&D

rojects to improve the V&V and testing tools and methodologies used in Hitachi
Rail STS.

Valeria Vittorini is Associate Professor at University of Naples Federico II since

2005. She received her M.D. in Mathematics and her Ph.D. in Computer Engineer-
ing from the University of Naples Federico II in 1991 and 1995, respectively. She

eaches computer programming, formal modeling, workflow and process automa-
ion. Her current research interests include dependability and performance evalu-

tion of computer systems, validation and verification of critical systems, critical
nfrastructures protection with a special focus on railway transportation systems.

	An OSLC-based environment for system-level functional testing of ERTMS/ETCS controllers
	1 Introduction
	2 CRYSTAL
	3 Problem statement
	3.1 ERTMS/ETCS Radio Block Centre
	3.2 Ansaldo STS validation process
	3.3 Requirements

	4 Background
	4.1 Basic concepts and terminology
	4.2 The Open Services for Life-cycle Collaboration

	5 An interoperable testing environment
	5.1 A reference architecture
	5.2 Architecture instantiation

	6 Components implementation
	6.1 RailModel GUI
	6.2 IOP Test Writer and RTP Adapter
	6.3 OSLC Adapters implementation hints
	6.4 DSTM Verifier and TCG
	6.5 Matching user’s requirements

	7 Discussion
	8 The RBC’s COMM functionality
	9 Related work
	10 Conclusion and future work
	Acknowledgments
	Appendix A A Glossary of the enabling technologies
	Appendix B The DSTM formalism
	References

