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Introduction  and  objectives:  Surrogate  biomarkers  of liver fibrosis  developed  in tertiary  care  are  increas-
ingly  used  in  general  populations.  We  evaluated  the  association  between  liver  stiffness  (LS) and  five
continuous  (AST/ALT,  APRI,  Forns  Index,  FIB-4,  GGT)  and  two  discrete  biomarkers  (BARD,  BAAT)  in a
general  population.
Patients and  methods:  636  (29%)  of  the  2159  citizens  of  the  Bagnacavallo  Study  had  LS  measured  by
transient  elastography.  Using  linear  regression  with  univariate  multiple  imputation,  we  evaluated  the
association  of  LS  with  the  above  biomarkers  in  the  total  sample  of 2159  citizens.
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iomarkers

Results: The  mean  change  of  LS  between  the  5 and  9 internal  percentile  of  any  continuous  biomarker
was  ≤1 kPa.  The  mean  change  of  LS between  scores  0 and  3 of BARD  and  scores  0 and  ≥3  of BAAT  was
>1  kPa  but  of  doubtful  clinical  relevance.
Conclusion:  We  found  a modest  association  between  LS and  seven  biomarkers  of liver fibrosis  in a  general
population.
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. Introduction

Many non-invasive serum markers of liver fibrosis have been
eveloped in tertiary care centers using liver biopsy as the reference

tandard [1]. These biomarkers are increasingly used to estimate
he prevalence of liver fibrosis in the general population, which is

 very different setting from the one in which they were developed
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[2,3]. Because liver biopsy is invasive and cannot be performed out-
side tertiary care centers, the true prevalence of liver fibrosis in the
general population is currently unknown [3,4].

Liver stiffness (LS), as measured by transient elastography (TE),
is an accurate surrogate index of liver fibrosis in tertiary care centers
[1]. Contrarily to liver biopsy, TE can be easily performed in the
general population. While it is plausible that a “high” value of LS
as detected by TE is associated with a higher probability or degree
of liver fibrosis in the general population, this association cannot
be evaluated against liver biopsy because of its invasiveness [3,5].
On the other hand, TE is expensive, time-consuming, and requires
substantial expertise [1].
A recent study [2], pooling 6925 individuals from four countries
[6–11], suggested that a TE cut-point LS of 9.1 kPa can be applied
to diagnose significant fibrosis (≥F2) in primary care. Expectedly,
however, only a minority (5%, n = 352) of the 6925 individuals had
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ndergone liver biopsy [12]. The Rotterdam study used, instead, a
ut-point of 8.0 kPa to diagnose liver fibrosis, detecting it in 5.6%
f 3041 consecutive participants aged ≥45 years who visited their
tudy center [13]. Because the TE cut-point of 8.0 kPa was  chosen
ased on a previous study of patients with non-alcoholic fatty liver
isease (NAFLD) performed in tertiary care [14], it was  pointed out
he need to consider the so-called spectrum bias, that is the fact
hat the performance of a diagnostic test is known to vary substan-
ially with the prevalence of the disease [12]. In addition, one has to
onsider the loss of efficiency and the classification problems aris-
ng from the dichotomization of intrinsically continuous variables
uch as LS [15].

In the present analysis of the general population of the Bag-
acavallo study [16], to avoid the problems of spectrum bias and
ichotomization [12,15], we evaluated the association between
S and seven commonly employed biomarkers of liver fibrosis
AST/ALT, APRI, Forns Index, FIB-4, GGT, BARD and BAAT) using
S and all the biomarkers where this was feasible (AST/ALT, APRI,
orns Index, FIB-4, GGT) as continuous and the other biomarkers
BARD and BAAT) as discrete.

. Material and methods

.1. Study design

The protocol and the primary outcome of the Bagnacavallo study
re reported in detail elsewhere [16]. The study was approved by
he Ethical Committee of Area Vasta Romagna – IRST (reference
umber 112), and all subjects gave their written informed con-
ent. Briefly, 3933 citizens of Bagnacavallo (Ravenna, Italy) aged
0–60 years, were studied between October 2005 and March 2009.
ltered liver enzymes (ALE) were defined as alanine transaminase

ALT) > 40 U/l and/or aspartate transaminase (AST) >37 U/l, i.e. the
pper limit of normal (ULN) of the laboratory. After the exclusion
f subjects with HBV infection, HCV infection, and lack of ultra-
onography, the main Bagnacavallo analysis was performed on 349
LE+ and 1810 ALE− citizens [16]. The same 2159 (349 + 1810) cit-

zens were analyzed here. 636 (29%) of them had consecutively
ndergone TE between November 2008 and March 2009 [17].

(A previous analysis of TE in the Bagnacavallo cross-section was
erformed only in a subsample of 331 “healthy” subjects selected
mong 780 citizens who had undergone TE between October
008 and May  2009 [17]. Our starting sample of citizens with TE
vailability (n = 636) is lower than that employed in the previous
eport (n = 780) [17] because of different selection criteria [16]. The
resent analysis was performed by strictly applying the designed
riteria of the Bagnacavallo Study [16]).

.2. Clinical and laboratory assessment

All participants underwent a detailed clinical history and phys-
cal examination, as described in detail elsewhere [18]. Alcohol
ntake was assessed by interview [16]. Weight and height were

easured following international guidelines [19], and waist cir-
umference was measured at the midpoint between the last rib
nd the iliac crest [18]. Body mass index (BMI) was  calculated as
eight (m)/height (m)2 and classified according to the National

nstitutes of Health (NIH) guidelines [20]. The performed blood
ests included: (1) glucose; (2) triglycerides; (3) total cholesterol;

4) high-density lipoprotein (HDL) cholesterol; (5) low-density
ipoprotein (LDL) cholesterol; (6) ALT; (7) AST; (8) GGT; (9)
latelets. The metabolic syndrome (MS) was diagnosed using the
armonized international definition [21].
tology 19 (2020) 380–387 381

2.3. Liver ultrasonography

Liver ultrasonography was  performed by five experienced
physicians, as described in detail elsewhere [16]. After the exclu-
sion of HBV and HCV infection, NAFLD was defined as fatty liver (FL)
associated with ethanol intake ≤20 g/day in women and ≤30 g/day
in men  [22].

2.4. Transient elastography

LS (kPa) was measured with FibroScan (Echosens, Paris, France)
by two  experienced operators. All measurements were performed
with the M probe because the XL probe, which was developed
specifically for obese individuals [1], was not available when the
study was performed. LS was measured on the right hepatic lobe
through intercostal spaces with the patient lying in dorsal decu-
bitus position and with the right arm maximally abducted [1].
Following current recommendations, a measurement was consid-
ered valid if it was repeated at least 10 times, and the [(75th − 25th

percentile)/median ratio] was ≤0.30 [1].

2.5. Biomarkers

We calculated all the biomarkers of liver fibrosis that could be
obtained from the Bagnacavallo study database: (1) AST/ALT ratio;
(2) APRI; (3) Forns index; (4) FIB-4; (5) GGT; (6) BARD; (7) BAAT
[1].

2.6. Statistical analysis

2.6.1. Descriptive statistics
Most continuous variables were not Gaussian-distributed and

all are reported as median (50th percentile) and interquartile range
(IQR; 25th and 75th percentiles). Discrete variables are reported
as the number and proportion of subjects with the characteristic
of interest. Between-group comparisons of discrete variables were
performed using Pearson’s Chi-square test and those of continuous
variables using median regression with heteroskedasticity-robust
standard errors [18,23].

2.6.2. Regression modeling
The relationship between LS and each of the seven biomarkers

was quantified using a multivariable linear regression model (LRM)
with robust confidence intervals [24]. The LRM used LS (continuous,
kPa) as response variable and ALE (discrete, 0 = no; 1 = yes) and the
biomarker of interest as predictors. All the biomarkers were mod-
eled as continuous, with the exception of BARD and BAAT, which are
intrinsically discrete [1]. ALE was used as predictor because of the
design of the Bagnacavallo study, which enrolled separately ALE+
and ALE− citizens [16]. Because LS was  available only for 636 (29%)
of the 2159 citizens and had a univariate missingness pattern [25],
we fitted the LRM using multiple imputation (MI) estimates of LS
[26].

2.6.3. Multiple imputation
Under the assumption that LS was missing at random (MAR),

we used univariate multiple imputation (MI) to create several com-
plete versions of LS by replacing its missing values with plausible
data values [27]. Theoretically, when the complete-data model is
an LRM with outcome Y and predictors Xs and the missing data
occur in Y only as in the present case, complete case analysis (CCA)
and MI  are equivalent [26,28]. However, MI  gains an advantage

over CCA if additional predictors of Y are available that are not
part of Xs, as it is the case for the present analysis [26,28]. Fol-
lowing current guidelines, we nonetheless performed a CCA and
compared its findings to those of MI  [27]. The target variable of
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Table 1
Measurements of the subjects with and without availability of transient elastography (FibroScan). Continuous variables are reported as 50th, 25th and 75th percentiles. Discrete
variables are reported as the number and proportion of subjects with the characteristic of interest.

TE not available
(n = 1523)

TE available
(n = 636)

p-Valuea

Altered liver enzymes 285 (18.7%) 64 (10.1%) <0.001
Male  sex 778 (51.1%) 301 (47.3%) 0.11
Age  (years) 49 (41; 56) 50 (42; 56) 0.093
BMI  (kg/m2) 25.9 (23.4; 29.7) 24.6 (22.4; 27.3) <0.001

BMI  class (NIH) <0.001
Underweight 14 (0.9%) 5 (0.8%)
Normal weight 601 (39.5%) 336 (52.8%)
Overweight 548 (36.0%) 229 (36.0%)
Obesity class 1 257 (16.9%) 54 (8.5%)
Obesity class 2 81 (5.3%) 12 (1.9%)
Obesity class 3 22 (1.4%) 0 (0.0%)

Fatty  liver 684 (44.9%) 212 (33.3%) <0.001

Fatty  liver degree <0.001
None  839 (55.1%) 424 (66.7%)
Light  384 (25.2%) 151 (23.7%)
Moderate 206 (13.5%) 47 (7.4%)
Severe  94 (6.2%) 14 (2.2%)

Fatty  liver type <0.001
No  FL 839 (55.1%) 424 (66.7%)
NAFLD 440 (28.9%) 127 (20.0%)
AFLD  244 (16.0%) 85 (13.4%)

Waist  circumference (cm) 102.0 (95.0; 110.0) 98.0 (93.0; 105.0) <0.001
High  waist circumference 1089 (71.5%) 406 (63.8%) <0.001
Glucose  (mg/dl) 90 (84; 97) 89 (83; 96) 0.070
High  fasting glucose 310 (20.4%) 106 (16.7%) 0.048
Triglycerides (mg/dl) 104 (74; 157) 95 (67; 142) 0.007
High  triglycerides 419 (27.5%) 145 (22.8%) 0.023
Total  cholesterol (mg/dl) 206 (183; 234) 213 (189; 236) 0.003
HDL  cholesterol (mg/dl) 58 (48; 69) 63 (51; 75) <0.001
Low  HDL 219 (14.4%) 64 (10.1%) 0.007
LDL  cholesterol (mg/dl) 128 (105; 152) 128 (107; 150) 1.000
Systolic  blood pressure (mm Hg) 130 (120; 140) 125 (120; 135) 0.025
Diastolic blood pressure (mm  Hg) 80 (80; 90) 80 (80; 90) 1.000
High  blood pressure 959 (63.0%) 364 (57.2%) 0.013
Metabolic syndrome 481 (31.6%) 134 (21.1%) <0.001

Metabolic syndrome score <0.001
0  156 (10.2%) 79 (12.4%)
1  443 (29.1%) 211 (33.2%)
2  443 (29.1%) 212 (33.3%)
3  298 (19.6%) 93 (14.6%)
4  142 (9.3%) 34 (5.3%)
5  41 (2.7%) 7 (1.1%)

Platelets (*109̂) 237 (202; 276) 239 (205; 274) 0.472
ALT  (U/l) 22 (16; 34) 21 (16; 29) 0.117

ALT/ULN (rounded to next integer) <0.001
<1  ULN 1244 (81.7%) 574 (90.3%)
≥1  & <2 ULN 242 (15.9%) 52 (8.2%)
≥2  & <3 ULN 32 (2.1%) 10 (1.6%)
≥3  & <4 ULN 3 (0.2%) 0 (0.0%)
≥4  & <5 ULN 1 (0.1%) 0 (0.0%)
≥5  ULN 1 (0.1%) 0 (0.0%)

AST  (U/l) 22 (18; 26) 21 (18; 25) 0.002
GGT  (U/l) 20 (13; 34) 18 (12; 29) 0.002
Alcohol  intake (units/day) 2 (0; 4) 2 (0; 4) 1.000
AST/ALT  0.9 (0.7; 1.2) 1.0 (0.8; 1.2) <0.001
APRI  0.23 (0.18; 0.31) 0.22 (0.18; 0.28) 0.085
Forns  index 3.5 (2.7; 4.4) 3.4 (2.7; 4.2) 0.085
FIB-4  0.91 (0.71; 1.20) 0.94 (0.75; 1.17) 0.232

BARD  <0.001
0  212 (13.9%) 94 (14.8%)
1  992 (65.1%) 458 (72.0%)
2  302 (19.8%) 77 (12.1%)
3  17 (1.1%) 7 (1.1%)

BAAT  <0.001
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Table  1 (Continued)

TE not available
(n = 1523)

TE available
(n = 636)

p-Valuea

0 484 (31.8%) 228 (35.8%)
1  531 (34.9%) 255 (40.1%)
2  365 (24.0%) 120 (18.9%)
3  140 (9.2%) 32 (5.0%)
4  3 (0.2%) 1 (0.2%)

Stiffness (kPa) 4.70 (3.90; 5.60) NA

Stiffness (kPa, rounded to next integer) NA
2  – 26 (4.1%)
3  – 144 (22.6%)
4  – 214 (33.6%)
5  – 125 (19.7%)
6  – 74 (11.6%)
7  – 23 (3.6%)
8  – 11 (1.7%)
9  – 3 (0.5%)
10  – 4 (0.6%)
11  – 5 (0.8%)
12  – 5 (0.8%)
13  – 2 (0.3%)

Abbreviations: TE = transient elastography; BMI  = body mass index; NIH = National Institutes of Health; FL = fatty liver; NAFLD = non-alcoholic fatty liver disease;
A ity lip
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FLD  = alcoholic fatty liver disease; HDL = high-density lipoprotein; LDL = low-dens
minotransferase (40 U/l); AST = aspartate aminotransferase; GGT = gamma-glutam

a Pearson’s Chi-square test for discrete variables and median regression for conti

he MI  model was LS and the predictors were the seven biomark-
rs (AST/ALT, APRI, Forns index, FIB-4, GGT, BARD and BAAT) in
ddition to the other variables available in the study database
sex, age, weight, height, BMI, waist circumference, glucose, triglyc-
rides, cholesterol, HDL-cholesterol, LDL-cholesterol, systolic blood
ressure, diastolic blood pressure, ALT, AST, GGT, platelets, alco-
ol intake, fatty liver, metabolic syndrome and its components).
ecause LS had a non-Gaussian distribution, it was imputed using
redictive mean matching with 5 knots on 100 MI  datasets and the
bayomi procedure was used to check the agreement between the
bserved, imputed and complete values [26,29]. The imputer and
he analyst were the same person and the scope of the MI  model
as narrow, i.e. it was devised for testing only the present study
ypothesis [26]. Taking into account the design of the Bagnacav-
llo study, MI  was performed separately in ALE+ and ALE− citizens
26]. We  checked the linearity of the association of LS with the con-
inuous biomarkers of liver fibrosis using fractional polynomials
or MI  [30]. Evidence of non-linearity was detected only for GGT,
hich was transformed using natural logarithms (lnGGT). To aid

he clinical interpretation of the results, we calculated and plot-
ed the marginal probabilities of LS corresponding to the 5th, 25th,
0th, 75th and 95th internal percentile of each biomarker for ALE+
nd ALE− citizens [31,32]. Statistical analysis was  performed using
tata 16.1 (Stata Corporation, College Station, TX, USA).

. Results

Table 1 compares the features of the citizens with (n = 636) and
ithout (n = 1523) TE. This comparison is aimed at studying the
attern of missing data and at identifying their potential predic-
ors [26,27]. The interpretation of this data must take into account
he fact that the Bagnacavallo study was designed to perform liver
ltrasonography in 100% of ALE+ and in 50% of ALE− citizens, reach-

ng 97% of the former and 52% of the latter [16]. Thus, ALE+ citizens
ere virtually sampled in their entirety by the study design. No
atient had decompensated liver cirrhosis, heart failure, or ALT

reater than five times the ULN.

Table 2 reports and Fig. 1 plots the LRMs used to evaluate the
ssociation between LS and the seven biomarkers. Because there
ere just 4 citizens with BAAT = 4 (Table 1), we collapsed the
oprotein; ALT = alanine aminotransferase; ULN = upper limit of normal of alanine
sferase.

 variables.

categories 3 (n = 172) and 4 (n = 4) of BAAT to one category (≥3,
n = 176) for further modeling. LS was significantly associated with
APRI, Forns index, lnGGT, BARD and BAAT but not with ALT/AST and
FIB-4.

Table 3 reports and Fig. 2 plots the marginal means and robust
95% confidence intervals of LS estimated by the LRM for the 5th,
25th, 50th, 75th, and 95th internal percentile of each continuous
biomarker. As shown in Table 3, LS was always higher in ALE+ than
in ALE− citizens. It can be readily appreciated from both Table 1 and
Fig. 1 that the mean change of LS between the 5th and 95th internal
percentile of any continuous biomarker was ≤ 1 kPa. Table 1 and
Fig. 1 also show that the mean change of LS between scores 0 and
3 of BARD and between scores 0 and ≥3 of BAAT was  >1 kPa but
of doubtful clinical relevance. In the case of BARD and BAAT, the
imprecision of the estimates is partly attributable to their discrete
nature [15].

4. Discussion

In the present analysis of the Bagnacavallo study [16], we have
shown that the mean change in LS associated with an increase from
the 5th to the 95th internal percentile of AST/ALT ratio, APRI, Forns
index, FIB-4, and LnGGT is ≤1 kPa and of doubtful biological rele-
vance. While the mean change of LS between scores 0 and 3 of BARD
and scores 0 and ≥3 of BAAT is ≥1 kPa, it is of doubtful clinical rel-
evance. Thus, under the assumption that LS, as measured by TE, is
a surrogate index of liver fibrosis in the general population [3], our
findings cast some doubts on the ability of biomarkers developed
in tertiary care centers to detect liver fibrosis in the general popula-
tion. The most likely reason for this finding is the so-called spectrum
bias, i.e. the fact that the performance of a diagnostic test is known
to vary substantially with the prevalence of the underlying disease
[12].

Our study has several strengths. First, LS was measured on
a random subsample of citizens from the general population,
who are expected to differ from individuals enrolled in primary,

secondary, and tertiary care [33]; second, we analyzed LS as contin-
uous, avoiding the loss of efficiency and generalizability produced
by dichotomization [15]; third, we  took missing data into account
using MI  [27]. Our study has, nonetheless, some limitations. First,
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Table 2
Association between liver stiffness as measured by transient elastography (FibroScan) and seven non-invasive markers of liver fibrosis. Values are regression coefficients and robust 95% confidence intervals from linear regression
coupled  to univariate multiple imputation of liver stiffness (see Statistical analysis for details).

Liver stiffness (kPa)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

ALE 1
.3*** [0.7 to 1.9]

1
.0** [0.4 to 1.7]

1
.3*** [0.7 to 1.9]

1
.4*** [0.8 to 2.0]

1
.1*** [0.5 to 1.7]

1
.5*** [0.9 to 2.1]

1
.2*** [0.6 to 1.8]

AST/ALT  −0
.4 [−0.9 to 0.0]

– – – – – –

APRI  – 2
.0* [0.5 to 3.5]

– – – – –

Forns  index – – 0
.2** [0.1 to 0.3]

– – – –

FIB-4  – – – 0
.3 [−0.1 to 0.7]

– – –

LnGGT  – – – 0
.4*** [0.2 to 0.6]

– –

BARD  = 1a – – – – – 0
.0 [−0.3 to 0.4]

–

BARD  = 2a – – – – – 0
.8** [0.3 to 1.4]

–

BARD  = 3a – – – – – 1
.7* [0.0 to 3.5]

–

BAAT  = 1b – – – – – – 0
.2 [−0.1 to 0.4]

BAAT  = 2b – – – – – – 0
.7*** [0.4 to 1.0]

BAAT  ≥ 3b – – – – – – 1
.4*** [0.8 to 2.1]

Intercept  5
.4*** [4.9 to 5.9]

4
.5*** [4.2 to 4.9]

4
.4*** [4.0 to 4.8]

4
.6*** [4.2 to 5.0]

3
.8*** [3.2 to 4.4]

4
.7*** [4.4 to 5.1]

4
.7*** [4.5 to 4.8]

N  2159 2159 2159 2159 2159 2159 2159

Abbreviations: ALE = altered liver enzymes; Ln = natural logarithm.
a Reference group is BARD = 0.
b Reference group is BAAT = 0.
* p < 0.05

** p < 0.01
*** p < 0.001
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Fig. 1. Association between liver stiffness and seven biomarkers of liver fibrosis. Values are regression coefficients and robust 95% confidence intervals from linear regression
(see  Table 3). Abbreviations: ALE = altered liver enzymes; Ln = natural logarithm. Values whose 95%CI do not cross the 0 line have an associated p-value < 0.05.

Table 3
Marginal means and robust 95% confidence intervals of liver stiffness estimated from linear regression for the 5th, 25th, 50th, 75th, and 95th internal percentiles of the
continuous biomarkers (AST/ALT, APRI, Forns index, FIB-4, lnGGT) and the original scores of the discrete (BARD, BAAT) biomarkers. The underlying regression models are
given  in Table 2.

Liver stiffness (kPa)
ALE− citizens

Percentilea 5th 25th 50th 75th 95th

AST/ALT 5.2 (4.9–5.4) 5.1 (4.9–5.3) 5.0 (4.9–5.1) 4.9 (4.8–5.0) 4.7 (4.5–5.0)
APRI  4.8 (4.6–4.9) 4.9 (4.7–5.0) 5.0 (4.9–5.1) 5.1 (5.0–5.3) 5.4 (5.1–5.8)
Forns  index 4.6 (4.4–4.9) 4.8 (4.7–5.0) 5.0 (4.9–5.1) 5.1 (5.0–5.3) 5.3 (5.1–5.6)
FIB-4  4.8 (4.6–5.0) 4.9 (4.7–5.0) 4.9 (4.8–5.1) 5.0 (4.9–5.2) 5.2 (4.9–5.5)
LnGGT 4.6 (4.4–4.8) 4.8 (4.7–4.9) 5.0 (4.9–5.1) 5.2 (5.0–5.3) 5.6 (5.2–5.9)
Scoreb 0 1 2 3 ≥3c

BARD 4.7 (4.4–5.1) 4.8 (4.7–4.9) 5.6 (5.2–6.0) 6.5 (4.8–8.2) –
BAAT  4.7 (4.5–4.8) 4.8 (4.6–5.0) 5.4 (5.1–5.7) – 6.1 (5.5–6.8)

ALE+ citizens

Percentilea 5th 25th 50th 75th 95th

AST/ALT 6.5 (5.9–7.0) 6.4 (5.8–6.9) 6.3 (5.7–6.9) 6.2 (5.6–6.8) 6.0 (5.4–6.7)
APRI  5.8 (5.1–6.5) 5.9 (5.2–6.6) 6.0 (5.4–6.6) 6.1 (5.6–6.7) 6.5 (5.9–7.0)
Forns  index 6.0 (5.3–6.6) 6.2 (5.6–6.7) 6.3 (5.7–6.9) 6.4 (5.9–7.0) 6.7 (6.1–7.2)
FIB-4  6.2 (5.6–6.8) 6.3 (5.7–6.8) 6.3 (5.8–6.9) 6.4 (5.9–7.0) 6.6 (6.0–7.2)
LnGGT 5.7 (5.0–6.4) 5.9 (5.3–6.6) 6.1 (5.4–6.7) 6.3 (5.7–6.8) 6.7 (6.1–7.2)
Scoreb 0 1 2 3 ≥3c

BARD 6.3 (5.7–6.9) 6.3 (5.7–6.8) 7.1 (6.4–7.8) 8.0 (6.3–9.8) –
BAAT  5.9 (5.3–6.4) 6.0 (5.4–6.6) 6.6 (6.0–7.2) – 7.3 (6.5–8.1)

 a BA

o
w
f
r
s

a Internal percentile for continuous predictors
b original score values for discrete predictors
c BAAT scores 3 and 4 were collapsed because of the low number of subjects with

nly 29% of our subjects had undergone measurement of TE. This
as determined mostly by the availability of FibroScan in the last
ew months of the study, which can be plausibly considered a
andom event. The amount of missing data is not a problem per
e provided that the MAR  assumption is met  [26]. To increase the
AT score of 4 (see also Table 1).

plausibility of the MAR  assumption, we built an MI model taking
into account all the variables available in the study dataset [26]. We

also performed a CCA, which confirmed the results of the MI  analy-
sis (data not shown). Second, the Bagnacavallo study population is
a general population, and as such, it represents the “population at
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ig. 2. Values of liver stiffness corresponding to the 5th, 25th, 50th, 75th and 95th in
iomarkers (see Table 2). Abbreviations: ALE = altered liver enzymes.

isk” of the so-called “ecology of care model” [16,33]. This implies
hat our findings do not necessarily extend to populations made
f subjects consulting a physician for primary care, as are most
f the studied populations [2], i.e. populations made of “subjects
onsulting a physician” according to the ecology of care model
33]. Third, although we performed standardized measurements of
E [1], the XL probe was not available during the study period. Not
urprisingly, TE availability was less common among obese citizens
Table 2) and BMI  is one of the predictors we took into account
o make the MAR  assumption of MI  more plausible. However, the

 probe used in the present study overestimates LS by a median
f 1.4 kPa [1] so that, to the degree that they are influenced by
besity, our estimates of LS (Table 3) are biased upward, meaning
hat our conclusion of the low performance of biomarkers in the
eneral population would be reinforced by such systematic error.

TE cut-points of 8 or 9 kPa are presently suggested for the
iagnosis of liver fibrosis in the general population [2,3]. Even if
ichotomization always involves a loss in efficiency and reduces the
eneralizability of the findings [12,15], it is of interest that the 95%CI
f the mean LS did not include 8 kPa for all continuous biomarkers
Table 3 and Fig. 2). While the 95%CI of the mean LS included 8 kPa
or a BARD score of 3 in ALE− citizens, they were wide, ranging from
.8 to 8.2 kPa (Table 3 and Fig. 2). More interestingly, in ALE+ citi-
ens, the mean LS corresponding to a BARD score of 3 was 8.0 kPa,
ven if its 95%CI were again wide (6.3–9.8 kPa) (Table 3 and Fig. 2).
he fact that the 95%CI of mean LS included 8 for a BAAT score ≥3 is
ess relevant because of its wide 95%CI (6.5–8.1) (Table 3 and Fig. 2).

. Conclusion
In conclusion, in the Bagnacavallo Study, we found only modest
ssociations between LS as measured by TE and seven commonly
mployed biomarkers of liver fibrosis.
 percentiles of the continuous biomarkers and to the original scores of the discrete

Abbreviations
95%CI 95% confidence interval
AFLD alcoholic fatty liver disease
ALE altered liver enzymes
ALT alanine aminotransferase
AST aspartate aminotransferase
BMI  body mass index
FL fatty liver
GGT gamma-glutamyl-transferase
HBV hepatitis B virus
HCV hepatitis C virus
HDL high density lipoprotein
IQR interquartile range
LDL low density lipoprotein
LRM linear regression model
LS liver stiffness
MAR  missing at random
MI multiple imputation
MS  metabolic syndrome
NAFLD non-alcoholic fatty liver disease
NIH National Institutes of Health
TE transient elastography
ULN upper limit of normal
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