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A B S T R A C T 

The fiducial cosmological analyses of imaging surv e ys like DES typically probe the Universe at redshifts z < 1. We present the 
selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering 

measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian 

redshift scheme to define three tomographic bins with mean redshifts around z ∼ 0.9, 1.2, and 1.5, which extend the redshift co v er- 
age of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more 
than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including 

the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for 
correlations between galaxy density and surv e y observing conditions. The analysis of galaxy clustering measurements, with a 
total signal to noise S/N ∼ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in 

the Universe �m 

and the Hubble parameter h , �m 

h = 0 . 195 

+ 0 . 023 
−0 . 018 , and 2–3 per cent measurements of the amplitude of the galaxy 

clustering signals, probing galaxy bias and the amplitude of matter fluctuations, b σ 8 . A companion paper (in preparation) will 
present the cross-correlations of these high- z samples with cosmic microwave background lensing from Planck and South Pole 
Telescope, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work. 

Key words: galaxies: high-redshift – cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he combination of large-scale structure (LSS) and weak gravita-
ional lensing (WL) constitutes one of the main avenues to study
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osmology and to stress test the standard cosmological model. In
ecent years, several imaging surveys such as the Hyper Suprime-
am (HSC 

1 ), the Kilo-De gree Surv e y (KiDS 

2 ), and the Dark Energy
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urv e y (DES 

3 ), analysing data from more than 100 million galaxies,
ave used galaxy weak lensing to produce cosmological constraints 
hat ri v al in precision those from cosmic microwave background 
CMB) experiments like Planck (see Hikage et al. 2019 ; Heymans 
t al. 2021 ; DES Collaboration 2022 ; and references therein). These
nalyses have reported tensions between the amplitude of structures 
t late time and the predictions from the CMB (the so-called S 8 
ension). Ho we ver, the majority of these analyses probe the Universe
t low redshifts, z < 1. There exist at least three reasons for this.
irst, due to the faint nature of high-redshift galaxies, it is difficult
or imaging surv e ys to characterize such populations, both in terms
f redshift distributions and also in terms of mapping the effect 
f spatially varying observing conditions on the selection function. 
econdly, it is challenging to measure shapes of high-redshift sources 
or galaxy lensing at sufficient signal to noise. And third, even if those
alaxy sources could be defined, their lensing signals are still most
ensitive to mass structure at z < 1. On the other hand, if one can
et around the first of these issues and characterize high-redshift lens 
alaxy samples, then the use of CMB lensing will provide a solution
or the second and third problems. 

The definition and characterization of galaxy samples at higher 
edshifts would enable a more optimal combination with CMB 

ensing, whose sensitivity peaks around z = 2 and drops significantly 
t redshifts z < 1. In this way, a combination of galaxy clustering and
MB lensing at high redshift would be key to cosmology in several
ays. On the one hand, the regime at redshifts z ≥ 1.5 remains largely
nexplored by galaxy surveys in the context of the S 8 tension, and
 arious alternati ve dark energy models predict de viations from the
tandard model at high redshifts (Bull, White & Slosar 2021 ), which
ould be tested in this way. On the other hand, being able to make this
easurement is important to constrain large-scale observables like 

rimordial non-Gaussianity, which would open the window to the 
hysics of the early inflationary period sourcing the LSSs we see in
he Universe today (Schmittfull & Seljak 2018 ). Furthermore, CMB 

ensing is subject to different systematic errors than galaxy lensing 
the former measurement is not affected by intrinsic alignments 

r galaxy blending, and the redshift of the CMB is well known as
pposed to the case of galaxy sources. 
There exist numerous previous analyses that have explored the 

ombination of galaxy clustering and CMB lensing to probe cos- 
ology at redshifts z < 1 (Abbott et al. 2019 ; Marques & Bernui

020 ; Alonso et al. 2021 ; Hang et al. 2021 ; Chang et al. 2023 ).
ome analyses have also used the combination to probe cosmology 
t higher redshifts. In particular, the analysis of the unWISE sample 
Schlafly, Meisner & Green 2019 ; Krolewski et al. 2020 ; Krolewski,
erraro & White 2021 ) provided such measurements in three broad 
edshift bins, the last one with a median redshift around z = 1.5.
lso, the HSC surv e y has e xplored much higher redshift re gimes
sing dropout galaxies o v er smaller areas (Harikane et al. 2018 ; Ono
t al. 2018 ), probing the Universe at the 4 < z < 7 regime (Miyatake
t al. 2022 ). 

For the particular case of the DES, the analysis of Year 3 (Y3)
ata has so far used two different lens galaxy samples, MAGLIM 

nd REDMAGIC (Porredon et al. 2022 ; DES Collaboration 2022 ; 
 ande y et al. 2022 ). The MAGLIM sample is a magnitude-limited
alaxy selection, split into six redshift bins using the Directional 
eighbourhood Fitting algorithm (De Vicente, S ́anchez & Sevilla- 
oarbe 2016 ), and the first four bins of the sample, co v ering an

pproximate redshift range 0 < z < 1, were used as the fiducial lens
 darkenergysurvey.org 

I  

t  

w  
ample in the Dark Energy Surv e y Year 3 (DES Y3) analysis. The
EDMAGIC (Rozo et al. 2016 ) is a sample of bright Luminous Red
alaxies (LRGs), co v ering a similar redshift range in five redshift
ins, and was used in Y3 as an alternative lens sample. 
In this work, we push the limits of the DES Y3 data to explore

he regime at redshift z > 1. To this end, we select and characterize
high-redshift’ (high- z) samples of galaxies in the DES wide-field 
urv e y. This includes the estimation of the redshift distributions
f the samples and their uncertainties, corrections for variations in 
ompleteness across the surv e y footprint due to varying observing
onditions, and characterization of the lens magnification coefficients 
f the samples. The definition and characterization of these high- z 
amples differs from the process used for the fiducial DES Y3 lens
amples (Porredon et al. 2022 ; P ande y et al. 2022 ) in several ways: 

(i) We start from a fainter galaxy selection, already excluding all 
ens galaxies used in the DES Y3 fiducial analysis. 

(ii) Both the selection and redshift characterization of the sam- 
les are based on a Bayesian scheme using Self-Organizing Maps 
SOMs), and we use a new SOM algorithm, better suited for lower
/N galaxies (different than that used in Myles et al. 2021 ). 
(iii) We use a different redshift marginalization scheme, explicitly 

ccounting for uncertainties in low-redshift tails of the redshift 
istributions. 
(iv) We use a non-linear, machine-learning-based approach to 

ccount for correlations in the galaxy number density with surv e y
bserving properties. 

Steps (i) and (ii) are the ones responsible for the selection of high-
edshift galaxies, while steps (iii) and (iv) are necessary because of
hat faint, high-redshift selection. The definition and characterization 
f the high- z sample in this work is followed by the analysis of the
lustering measurements of the galaxies in the sample. The clustering 
easurements are used to place constraints on the cosmological 
odel, in particular as the shape of the clustering signal is sensitive

o the scale of matter–radiation equality in the mass power spectrum,
hich in turn depends on a combination of the matter density �m 

nd the Hubble constant h , close to the direction �m 

h (see e.g.
hilcox et al. 2021 ). The high- z samples defined in this work,
iven their redshift range and sky density, will make excellent lens
alaxy samples for CMB lensing. In this way, this paper will be
ollowed by a companion paper (in preparation) that will present the
ross-correlations between these high- z samples and CMB lensing 
rom Planck (Planck Collaboration VIII 2020 ) and the South Pole
elescope (SPT; Carlstrom et al. 2011 ), and use the combination of
lustering and CMB lensing to place constraints on the cosmological 
odel using information from high redshift. 
This paper is organized as follows. Section 2 describes the 

ifferent data products used for the analysis. Section 3 describes 
he redshift inference scheme and the method to select tomographic 
ins. Section 4 describes the way we correct for correlations between
alaxy density and surv e y observing properties. Section 5 presents
he characterization of redshift uncertainties, and the parametrization 
e use to marginalize o v er them in the clustering analysis. Section 6
escribes the characterization of lens magnification for the high- z 
amples. Finally, Section 7 presents the measurements and analysis 
f galaxy clustering, and we conclude in Section 8 . 

 DATA  

n this section, we describe and moti v ate the dif ferent data samples
o be used in this work. We begin with the DES Y3 wide-field data,
hich will contain our high- z samples, and then describe other data
MNRAS 525, 3896–3922 (2023) 
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Figure 1. The distribution of photometric colours in the DES wide-field griz 
bands, after a pre-selection cut of 22 < i < 23.5, using the data (Gold) and 
the artificial data (B ALROG ). 
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ets needed for the characterization of those samples: the DES deep-
eld data, and the external data used for redshift characterization. 

.1 DES wide-field data 

he high- z samples are subsets of the DES Year 3 Gold catalogue
f photometric objects (Sevilla-Noarbe et al. 2021 ), which has a
otal of nearly 400 million objects in about 5000 square degrees of
rea, co v ering the entire DES footprint. After removing stars and
pplying quality cuts (following Sevilla-Noarbe et al. 2021 ), the
atalogue consists of ∼227 million galaxies. For these objects, we
se single-object-fitting (SOF) photometry in the griz bands, which
ave magnitude limit (defined as the average SOF magnitude at
/N = 10) of 23.8, 23.6, 23.0, and 22.4, respectively. We apply
n initial i -band magnitude ‘pre-selection’ of 22 < i < 23.5. The
ower limit of this cut remo v es bright galaxies that are unlikely to
e at redshifts z > 1, and the faint limit excludes the region of
agnitude space where the DES Y3 Gold catalogue becomes highly

ncomplete. Please note that, even with the i < 23.5 cut, this selection
ncludes galaxies measured with S/N < 10 in the i band, pushing the
imits of the DES Y3 sample, and therefore the completeness of the
ample has significant spatial variations. The characterization of that
patial completeness is a key aspect of this work, and is described in
ection 4 . 
For the pre-selected sample, we apply the standard DES Y3 mask,

hich includes masking of astrophysical foregrounds (e.g. bright
tars and large nearby galaxies) and of regions with recognized data-
rocessing issues, as described in Sevilla-Noarbe et al. ( 2021 ). Given
hat we are pushing the limits of DES Y3 photometry, we apply some
dditional conserv ati ve cuts on the mask to a v oid regions where
ur completeness corrections would be less reliable: we remo v e the
 per cent of the footprint area with the highest stellar density, the
 per cent with the highest (worst) g -band seeing, and then we remo v e
he worst 10 per cent area in photometric depth, exposure times, and
ky brightness in each of the griz bands, some of which are correlated.
fter applying this mask, the 22 < i < 23.5 pre-selected galaxy

ample has a total of 77 million galaxies in 2621 square degrees of
rea. For comparison, the fiducial DES Y3 analysis uses 4143 square
egrees of total area. 
The analysis presented here will be followed by a companion

aper ( in preparation ) that will combine the clustering measurements
hown here with CMB lensing measurements from the Planck
atellite and the SPT. Due to SPT data being available only in the
outh region of the DES Y3 footprint, we will split the sample in
his work into two independent regions, ‘North’ (Dec. > −39 ◦) and
South’ (Dec. < −40 ◦), and test for the consistency of the two. For
hat test, we choose to leave a separation of 1 degree between the two
egions, which corresponds to the maximum angular separation used
ater on in the galaxy clustering measurements. A similar separation
f the DES footprint was made in the analyses studying CMB lensing
or the fiducial DES Y3 sample (Abbott et al. 2019 ; Baxter et al. 2019 ;
mori et al. 2019a , b ). 

.2 DES deep-field data and artificial wide-field data 

he scheme for redshift selection and characterization, described
n detail in Section 3 , makes e xtensiv e use of DES deep-field data,
escribed e xtensiv ely in Hartle y et al. ( 2022 ). In short, we use four
eep fields, named E2, X3, C3, and COSMOS (COS), co v ering areas
f 3.32, 3.29, 1.94, and 1.38 square de grees, respectiv ely (see fig. 2 in
yles et al. 2021 for a visual description). After masking regions with

rtefacts such as cosmic rays, artificial satellites, meteors, asteroids,
NRAS 525, 3896–3922 (2023) 
nd regions of saturated pixels, 5.2 square degrees of overlap with the
ltraVISTA and VIDEO near-infrared (NIR) surv e ys (McCracken

t al. 2012 ; Jarvis et al. 2013 ) remain. We remo v e stars based on
he kNN classification of Hartley et al. ( 2022 ), and additionally
y training a SOM and removing regions of colour space with a
ajority of stellar contamination according to the Laigle et al. ( 2016 )

atalogue. This yields 2.8M detections with measured ugrizJHK s 

hotometry with limiting magnitudes 24.64, 25.57, 25.28, 24.66,
4.06, 24.02, 23.69, and 23.58, substantially fainter than the faintest
alaxies in the sample of source galaxies. In this work, we frequently
efer to this sample and its photometry as deep (field) data. 

So far we have described the wide-field DES data to be used o v er
he full footprint and a set of deep-field photometry o v er a smaller
rea. In order to establish the relationship between these two data
ets we use the BALROG (Suchyta et al. 2016 ) software, which injects
imulated galaxies based on the DES deep fields into real images from
ES wide-field observations. For this analysis, BALROG was used to

nject model galaxies, with profiles fit to deep-field galaxies, into
he wide-field footprint (Everett et al. 2022 ). After injecting galaxies
nto images, the output is analysed by the DES Y3 photometric
ipeline (Morganson et al. 2018 ). Each deep-field galaxy is injected
ultiple times at different positions in the footprint. The resulting
atched catalogue of 3194 291 injection-realization pairs, which

ontains both deep and wide photometric information, is a key part
f our redshift calibration scheme since it quantitatively connects
he two photometric spaces. This catalogue will be referred to as
he Deep/ BALROG Sample, and contains a total of 432 657 unique
eep-field galaxies having at least 1 BALROG realization that passes
he wide-field selection criteria. 

Because we will use the BALROG sample to establish the relation-
hip between wide and deep photometry in DES Y3, it is important
hat BALROG wide-field detections follow similar photometric dis-
ributions to the actual DES Y3 wide-field data in the Gold sample.
ig. 1 shows the distribution of colours in the DES Y3 photometry
or the data (Gold) and for the artificial realizations of deep galaxies
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B ALROG ) for the pre-selected sample described in Section 2.1 (22
 i < 23.5). As desired, the colour distributions of data and artificial

ealizations of deep galaxies are in excellent agreement. 

.3 Redshift data 

ur analysis relies on the use of galaxy samples with known 
edshift and deep-field photometry. To this end, we use catalogues 
f both high-resolution spectroscopic and multiband photometric 
edshifts, and we develop an experimental design that allows us to 
est uncertainty in our redshift calibration due to biases in these 
amples. The spectroscopic catalogue we use contains both public 
nd pri v ate spectra from the follo wing surv e ys: zCOSMOS (Lilly
t al. 2009 ), C3R2 (Masters et al. 2017 , 2019 ; Stanford et al.
021 ), VVDS (Le F ̀evre et al. 2013 ), and VIPERS (Scodeggio et al.
018 ). We use two multiband photo- z catalogues from the COSMOS
eld (Scoville et al. 2007 ): the COSMOS2015 30-band photometric 
edshift catalogue (Laigle et al. 2016 ), which includes 30 broad, 
ntermediate, and narrow bands co v ering the UV, optical, and IR
egions of the electromagnetic spectrum, and the PAUS + COSMOS 
6-band photometric redshift catalogue (Alarcon et al. 2021 ) from 

he combination of PAU Surv e y data (Eriksen et al. 2019 ; Padilla
t al. 2019 ) in 40 narrow-band filters and 26 COSMOS2015 bands
xcluding the mid-infrared. We build a redshift calibration sample in 
he deep fields from the o v erlapping redshift information we find in
hese surv e ys. We prioritize information coming from spectroscopic 
urv e ys (S), then PAUS + COSMOS (P) and finally COSMOS2015
C), and we call this redshift sample SPC. 4 

 REDSHIFT  M E T H O D O L O G Y  

his section describes our redshift inference scheme, which allows us 
o select and characterize samples of high- z galaxies using the data
escribed in the previous section. The next sections will describe 
he characterization of the uncertainties in the angular and redshift 
istributions of these high- z samples. 
We work under the framework presented in S ́anchez & Bernstein

 2019 ), in which galaxy ‘types’ are defined by observed properties
ather than rest-frame properties, and we call them phenotypes . We 
ill use the lo w-noise, se veral-band photometry available in the 
eep fields to define our phenotypes, and we will discretize such 
hotometry using a SOM (Kohonen 1982 ; Masters et al. 2015 ). In
his way, every cell in the Deep SOM will be a phenotype, and we will
ndex them with c . This approach, proposed initially in S ́anchez &
ernstein ( 2019 ), has now been successfully used in several analyses
oth using simulations (Buchs et al. 2019 ; Alarcon et al. 2020 ) and
eal data (Myles et al. 2021 ; Giannini et al. 2022 ). 

We also discretize the wide-field photometry into a SOM, with 
ide cells inde x ed by ˆ c . With this discretized mapping of deep and
ide photometric spaces, we can estimate the redshift distribution 
f a given wide cell ˆ c , passing a wide selection ˆ s , by marginalizing
 v er deep-field information c : 

( z| ̂ c , ̂  s ) = 

∑ 

c 

p( z| c , ̂  c , ̂  s ) p( c | ̂ c , ̂  s ) . (1) 

The first term on the right contains information about the redshift
f deep phenotypes, while the second term connects the deep and 
ide photometric spaces. Having the expression for the redshift 
istribution of a wide cell, we can construct a sample of galaxies
 An identical notation was used in Myles et al. ( 2021 ). 

i
t
u

y joining wide cells ˆ c into tomographic bins ˆ b , and their redshift
istribution will simply become the sum of its constituents weighted 
y the occupation of wide cells: 

( z| ̂  b , ̂  s ) = 

∑ 

ˆ c ∈ ̂ b 
p( z| ̂ c , ̂  s ) p( ̂ c | ̂ s , ̂  b ) , (2) 

∝ 

∑ 

ˆ c ∈ ̂ b 

∑ 

c 

p ( z| c, ̂  c , ̂  s ) p ( c| ̂ c , ̂  s ) p ( ̂ c | ̂ s ) , (3) 

≈
∑ 

ˆ c ∈ ̂ b 

∑ 

c 

p ( z| c, ̂  b , ̂  s ) p ( c| ̂ c , ̂  s ) p ( ̂ c | ̂ s ) . (4) 

oing from equations ( 2 ) to ( 3 ), we use the fact that p( ̂ c | ̂  b , ̂  s ) =
 ( ̂ c | ̂ s ) / (∑ 

ˆ c ∈ ̂ b p ( ̂ c | ̂ s ) ) for ̂  c ∈ 

ˆ b , and and in the last line we ap-
roximate p( z| c, ̂  c , ̂  s ) ≈ p( z| c, ̂  b , ̂  s . ) The need for conditioning on
in membership rather than wide-cell measurement [going from 

quations ( 3 ) to ( 4 )], and the accuracy of this approximation, will
e investigated in Section 5 and Appendix A3 . The final expression
omputes the redshift distribution of tomographic bins made of wide- 
eld SOM cells. We use different samples to estimate the different

erms in it, as we describe next: 

(i) p( ̂ c | ̂ s ) is computed from our wide sample, which consists of all
alaxies in the DES Year 3 Gold catalogue passing the pre-selection
erformed in Section 2 (22 < i < 23.5). 
(ii) p( c| ̂ c , ̂  s ) is computed from our Deep and BALROG Samples,

hich consist of all detected and selected BALROG realizations of the
alaxies in the Deep Sample. We call this term the transfer function .

(iii) p( z| c, ̂  b , ̂  s ) is computed from the Redshift Sample subset of
he Deep Sample, for which we have reliable redshifts, 8-band deep
hotometry, and wide-field BALROG realizations. 5 

The redshift scheme followed in this work is similar to that used
n Myles et al. ( 2021 ) for the selection and characterization of
eak lensing source galaxy samples, but there exist some important 
ifferences: 

(i) We perform a pre-selection cut on our sample of 22 < i < 23.5,
o remo v e bright galaxies at low redshift and low S/N faint galaxies,
utting the bright end of the 18.5 < i < 23.5 used in Myles et al.
 2021 ). 

(ii) In this work, we use DES griz wide photometry, while the
nalysis in Myles et al. ( 2021 ) uses riz information only. 

(iii) We also use a different SOM algorithm, impro v ed to better
andle the classification of lower S/N galaxies. This will be described
n detail in Section 3.1 . 

(iv) The tomographic bins for this work are selected using both the
ean redshifts of the Wide SOM cells and also their estimated low-

edshift fraction, to a v oid ha ving large low- z tails in the tomographic
ins. The selection in Myles et al. ( 2021 ) relies only on mean redshift
nformation. 

.1 The Deep SOM 

n this work, we a use SOM to characterize and discretize the deep
hotometric space, described in Section 2.2 . The SOM algorithm 

ses unsupervised learning to project the eight-dimensional (8D) 
eep photometric data ( ugrizJHK s ) on to a lower dimensional
MNRAS 525, 3896–3922 (2023) 

s small and it is not representative of the observing conditions found across 
he whole surv e y footprint, which are much more well sampled by making 
se of BALROG . 
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Figure 2. Visualization of various properties of the Deep SOM described in Section 3.1 . In particular, we show the photometric properties of the map, namely 
the mapping of i -band magnitude and seven of the photometric colours, using the DES deep galaxy sample described in Section 2.2 . We also show the SOM 

galaxy occupation, N c , and the redshift mapping of the SOM using SPC redshift galaxies matched to DES deep photometry. A zoomed-in version of the Deep 
SOM redshift mapping is given in Fig. A3 . 
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rid, in our case a two-dimensional (2D) grid, while attempting
o preserve the topology of the 8D space. This means that similar
bjects in the 8D space will be grouped together in the SOM,
nabling a visual understanding of features, especially in a 2D SOM.
ach of the cells in the Deep-SOM 2D grid will be considered a
alaxy phenotype in our scheme. 

There is considerable flexibility in the implementation of the
OM algorithm. We alter the SOM algorithm from that used in
revious DES analyses (such as Myles et al. 2021 ; Giannini et al.
022 ) with the purpose of improving the classification of galaxies
f the low- and modest-S/N photometry used in this work. This is
one by altering the distance metric used by the SOM algorithm
o incorporate flux uncertainties. We also allow magnitude (or flux)
nformation, not just colours, to be used in redshift estimation, and
e do not impose periodic boundary conditions on the map. This
OM algorithm was introduced and is described in detail in the
ppendix of S ́anchez et al. ( 2020 ). 

There is also flexibility in the size of the SOM. A larger number
f SOM cells can impro v e the representative power of the map, and
ence can be used to describe more complex spaces and resolve
ner redshift distinctions. Using too many cells can, ho we ver, cause
 v erfitting, with the map modelling noisy features of the data. The
eep SOM in this work uses a 48 × 48 SOM. For comparison
urposes, the Deep SOM describing the DES Year 3 space in Myles
t al. ( 2021 ) was 64 × 64 in size. We use a smaller SOM size since
he wide-field pre-selection cut-off 22 < i < 23.5 we apply to our
ample reduces the volume of our wide-field photometric space, and
ur Deep SOM only uses deep galaxies whose BALROG injections
ave passed this criteria at least once (see Section 2.2 ). 
Fig. 2 shows several properties of the Deep SOM used in this work.

t is worth noting that the particular structure of the map depends on
andomized initial conditions and training, but the o v erall topological
tructure will be similar across different runs. The figure shows differ-
nt photometric properties of the SOM, mapping colours and i -band
agnitude. The u − g colour mapping shows how most of the map has
 near-constant value of u − g , but there are well-defined areas show-
ng strong positive (red) values of u − g , corresponding to breaks in
he spectrum of galaxies such as the Lyman and Balmer breaks (these
ehaviour is also seen in other SOM analyses such as Masters et al.
NRAS 525, 3896–3922 (2023) 
015 ). The z − J colour shows a different structure across the map,
ho wing v ariation across the regions where u − g was constant and
lose to zero. We also show the mapping of i -band magnitude across
he map. In this case, it is worth noting that even though our target
ample has a selection of 22 < i < 23.5, galaxies fainter than i = 23.5
ave a non-zero probability of being selected in our sample because
f noise fluctuations. Since we are including in the Deep SOM all
eep galaxies whose artificial injections make the selection at least
nce, that means that we include some galaxies as faint as i � 25. 

Fig. 2 also shows the Deep SOM galaxy occupation, n ( c ), the
ensity of galaxies as a function of position in the deep photometric
pace probed by the SOM. Perhaps most importantly, the lower left-
and panel shows the redshift mapping of the Deep SOM. For this
anel, we use the subset of deep galaxies that have a match in the SPC
edshift sample (described in Section 2.3 ), and compute the mean
edshift of the galaxies occupying each SOM cell. This plot depicts
 smooth mapping of redshift in the SOM, reasonably smoother than
he mapping of some colours or magnitudes, even though redshift
nformation is never used in the SOM training. 

Since we are mainly concerned about high redshift in this work, it
s interesting to explore the regions of the map that correspond to that
e gime. There e xist two main areas of high- z galaxies in the SOM.
here is a first high- z region in the upper part of the SOM, with a
mooth gradient to middling redshifts in the central part of the map.
ig. 2 shows the upper high- z region to have a small u − g colour
no break between the u and g bands), with positive and smoothly
arying z − J colour, and faint magnitudes in the i band. There is a
econd ‘island’ in the lower centre of the SOM where very high- z
alaxies live, surrounded by low-redshift galaxies. This region has
arge (red) u − g colour and also large (faint) i -band magnitude, i.e.
s the part of photometric space where we encounter Lyman-break
alaxies at high redshift. It also hosts faint Balmer-break galaxies
t low redshift, and these two galaxy populations are known to
resent important degeneracies in the colour–redshift relation. That
e generac y is also responsible for a large redshift scatter in that part
f the SOM. Finally, regarding the redshift mapping of the Deep
OM, it is important to point out that the vast majority of cells

n the map contain galaxies from the SPC redshift sample, with
nly a four cells (out of 2304) containing no redshift information.
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Figure 3. Visualization of various properties of the Wide SOM described in 
Section 3.2 . In particular, we show the photometric properties of the map, 
namely the mapping of i -band magnitude and three of the wide photometric 
colours, using the DES wide galaxy sample described in Section 2 . The bottom 

left-hand panel shows the redshift mapping of the Wide SOM, using SPC 

redshift galaxies matched to DES deep photometry and the BALROG transfer 
function between deep and wide photometry, as described in equation ( 1 ) and 
Section 3.2 . Overlaid we can see the cells of the Wide SOM that constitute the 
three tomographic bins used in this work, following the procedure described 
in Section 3.3 and Fig. 4 . The bottom right-hand panel shows the mapping of 
the estimated low redshift ( z < 0.5) fraction of each Wide SOM cell, as also 
shown in Fig. 4 . 
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Figure 4. Visualization of the tomographic bin selection as groups of Wide- 
SOM cells, as described in Section 3.3 . The plot shows the estimated low 

redshift ( z < 0.5) fraction versus mean redshift for each Wide-SOM cell with 
mean redshift abo v e 0.7. Cells selected for high- z bin 0 are marked in orange, 
cells for bin 1 are marked in blue, and cells selected for bin 2 are marked in 
red. 
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n Section 5 , when we characterize the redshift uncertainties in the
efined tomographic bins, we will use the BALROG sample to estimate 
ow the tomographic bin photometric spaces map into the Deep 
OM, and quantify the (small) impact of deep galaxies in cells with
o redshift information. 

.2 The Wide SOM 

e now turn to characterizing the DES wide space, using the same
OM algorithm as for the deep space. We now use griz DES wide
hotometry as described in Section 2.1 to construct a Wide SOM
aving 22 × 22 cells. By comparison, the Wide SOM describing the 
ES Year 3 space in Myles et al. ( 2021 ) was 32 × 32 in size and was

onstructed using riz photometry (because the g band was not used 
or galaxy selection in the weak lensing analysis). We use a smaller
OM size due to the pre-selection cut-off 22 < i < 23.5 applied to
ur wide-field sample. Fig. 3 shows the photometric properties of 
he Wide SOM, including the mapping of i -band magnitude and the
hree observed colours. 
Given the characterization of galaxy phenotypes in the Deep SOM 

nd its redshift mapping using the SPC redshift sample, we can use
he BALROG sample to characterize the redshift mapping of the Wide
OM using equation ( 1 ). This equation yields a probability density
unction for the redshift of each Wide SOM cell, using the redshift
apping of the Deep SOM with the SPC redshift sample and the

ransfer function between Wide and Deep spaces characterized with 
he B ALROG sample. This is shown in the lower left-hand panel of
ig. 3 , where we can see a good separation between low- and high- z
egions in the Wide SOM, and now we can use this redshift mapping
f the Wide SOM to perform the selection of our redshift bins. 

.3 Selecting tomographic bins 

ince each Wide galaxy can be placed in a cell of the Wide SOM, and
e have an estimate of the redshift distribution p( z| ̂ c ) within each
ide-SOM cell, we can construct tomographic bins as groups of 
 ide SOM cells. W ith the goal of constructing tomographic bins at

igh redshift with the least possible low-redshift contamination, we 
ompute the mean redshift of each Wide-SOM cell and the fraction
f the redshift distribution at low redshift z < 0.5. We choose to
efine three tomographic bins at mean redshifts around 0.9, 1.2, and
.5 that minimize the low-redshift contamination. We do this by 
nspecting these properties using Fig. 4 , also considering the width
f the p( z| ̂ c ). For the reproduction of the specific selection used in
his paper, see Data Availability section at the end of the paper. The
esulting selected cells in the Wide SOM that make up each redshift
in are depicted in the lower right-hand panel of Fig. 3 . From that
epresentation, we see how the first redshift bin comes from the upper
ight-hand part of the Wide SOM and hence contains galaxies with
trong (red) u − g and g − r colours, and as the selection mo v es
o the second and third redshift bins the corresponding galaxies will
ave smaller (blue) u − g colours and fainter i -band magnitudes (the
verage i -band magnitude for bins 0, 1, 2 is 22.6, 22.9, and 23.1,
espectively). To visualize these trends directly, Fig. 5 shows a small
andom sample of galaxy images images from each of the redshift
ins, which confirm the characteristics of each bin inferred from the
ide SOM in Fig. 3 . 
It is notable that the Wide-SOM cells ˆ c selected for the high- z 

amples largely exclude galaxies from cells c in the second ‘island’
MNRAS 525, 3896–3922 (2023) 
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Figure 5. Visualization of colour images of random galaxies from each of the three redshift bins defined in Section 3.3 . As apparent from Fig. 3 , the first bin is 
made predominantly of red galaxies and then the selection mo v es to bluer and fainter galaxies for the second and third bin. 

Figure 6. Comparison of the redshift distributions used in the fiducial 
DES Year 3 lens galaxy sample ( MAGLIM , upper panel) with the redshift 
distributions of the three tomographic bins defined in this work (Section 3.3 , 
bottom panel). The three high- z redshift bins defined in this work considerably 
extend the lens redshift range probed by the DES Year 3 data sample. The 
number of g alaxies, g alaxy density, and mean redshift of these samples can 
be found in Table 1 . 
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Table 1. Summary description of the lens galaxy samples defined using DES 
Year 3 data, as a comparison to the samples defined in this work. The fiducial 
lens sample in the DES Year 3 analysis consists of the first four MAGLIM bins. 
The other two MAGLIM bins and the REDMAGIC sample bins are marked in 
red as they were not part of the fiducial analysis. The table shows N gal as the 
number of galaxies in each redshift bin, n gal as the galaxy number density in 
units of gal arcmin −2 , and 〈 z〉 as the mean redshift of each bin. 

Redshift bin N gal n gal 〈 z〉 
DES Year 3 fiducial MAGLIM sample 

0 2236 473 0.150 0.30 
1 1599 500 0.107 0.46 
2 1627 413 0.109 0.62 
3 2175 184 0.146 0.77 
4 1583 686 0.106 0.89 
5 1494 250 0.100 0.97 

DES Year 3 REDMAGIC sample 
0 330 243 0.022 0.27 
1 571 551 0.038 0.43 
2 872 611 0.058 0.58 
3 442 302 0.029 0.73 
4 377 329 0.025 0.85 

DES Year 3 high- z sample (this work) 

0 3929 803 0.416 0.90 
1 2551 780 0.270 1.21 
2 2397 667 0.254 1.49 
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f high- z galaxies in the Deep SOM, which contains the Lyman-break
alaxies (LBGs). This is likely because the absence of u -band data in
he wide sample makes it difficult to localize wide-field galaxies into
his Deep SOM island. Hence, the DES Y3 high- z sample defined in
his paper is notably orthogonal to many previous high- z catalogues
hat emphasized LBGs at z > 2. 

Given these tomographic bin selections as lists of Wide SOM cells,
e can now use equation ( 4 ) to estimate the redshift distribution
f each of these bins. Fig. 6 shows the three resulting redshift
istributions, and compares them with the four tomographic bins
f the fiducial DES Year lens galaxy sample, the so-called MAGLIM

ample (Porredon et al. 2022 ). As apparent from that figure, the
hree tomographic bins defined in this work significantly extend
he redshift range probed by the DES Year 3 Fiducial lens galaxy
ample. Besides extending the redshift range, the three tomographic
NRAS 525, 3896–3922 (2023) 
ins from this work also provide larger number of galaxies and
alaxy number densities than the MAGLIM fiducial DES lens sample,
nd also the REDMAGIC galaxy sample (P ande y et al. 2022 ; see
able 1 ). The characterization of the uncertainties associated with

hese three redshift distributions, and the way we will parametrize
uch uncertainties, will be described in detail in Section 5 . 

 C H A R AC T E R I Z I N G  T H E  COMPLETENESS  

F  T H E  SAMPLES  IN  T H E  FOOTPRI NT  

ue to the faint, low-S/N nature of the galaxies in the three
omographic bins defined in Section 3 , it is expected that their
election function will fluctuate across the surv e y footprint because
f varying observing conditions (such as exposure time, seeing,
irmass) and also due to astrophysical fluctuations (such as stellar
ensity or extinction). These variations in the selection function will
nduce correlations between galaxy density and surv e y properties
or the different tomographic bins. Any such fluctuations will induce
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purious signal in the measurement of galaxy clustering, exacerbated 
y patterns in e.g. surv e y observing strate gies or Galactic structure.
e must correct the high- z density maps for the surv e y selection

unction if we want to reco v er accurate measures of the high- z
ntrinsic galaxy clustering. 

These kind of corrections due to varying observing properties have 
een studied e xtensiv ely in DES and elsewhere (Leistedt et al. 2016a ;
oss et al. 2017 ; Elvin-Poole et al. 2018 ; Weaverdyck & Huterer
021 ; Rodr ́ıguez-Monroy et al. 2022 ). In many of these cases, the
elationship between surv e y properties and galaxy selection rates 
as close to linear, and therefore, the correction methodologies 

ssumed a linear relationship. The samples in this work, ho we ver,
resent significant non-linearities in that relationship. Therefore, we 
se a non-linear, neural-network-based approach for characterizing 
he completeness of the sample with respect to the different surv e y
roperties, as in Rodr ́ıguez-Monroy et al. ( 2022 ; see also Rezaie
t al. 2020 for a similar approach applied to the DECaLS DR7 data
ample). 

In this section, we describe the different surv e y properties we
onsider, the methodology used to correct for their correlations with 
alaxy density for the different tomographic bins, and the validation 
f the results. The outcome of this procedure will be a derived
orrection weight for each galaxy in the different tomographic bins, 
nverse to the selection rate in its vicinity. This weight will then
e used throughout the analysis, for the characterization of redshift 
istributions and uncertainties in Section 5 , for the estimation of
ens magnification in Section 6 , and for the calculation of correlation
unctions in Section 7 . 

.1 Maps of sur v ey properties 

he DES collaboration develops spatial templates for different ob- 
erving conditions and potential contaminants in the surv e y footprint
y creating HEALPIX (Gorski et al. 2005 ) sky maps (at NSIDE
 4096, corresponding to a pixel resolution of 0.86 arcmin; see 
eistedt, Mortlock & Peiris 2016b for details on the implementation). 
e will refer to these maps as surv e y property (SP) maps and we will

se them to characterize and remo v e an y possible correlations with
he observed density fields of each tomographic bin. In particular, 
n this analysis we consider maps of the following surv e y observing
roperties, each of them having a different map for each observed 
hotometric band griz : 

(i) Depth: Mean surv e y depth, computed as the mean magnitude 
or which galaxies are detected at S/N = 10. 

(ii) Sky variance: Estimated sky brightness, or more precisely, the 
tandard deviation of sky pixels due to shot noise and read noise,
easured in units of electrons/second/pixel. 
(iii) Exposure time: Total exposure time at a given point in the 

urv e y footprint, measured in seconds. 
(iv) Airmass: Mean airmass, computed as the optical path length 

or light from a celestial object through Earth’s atmosphere (in the 
ecant approximation), relative to that at the zenith for the altitude 
f the telescope site. 
(v) Seeing: Mean seeing, measured in arcseconds, computed as 

he full-width at half maximum of the flux profile. 

Those make 20 SP maps of observing properties. Additionally, we 
onsider two maps of potential contaminants: 

(i) Galactic extinction: We use the SFD dust extinction map from 

chlegel, Finkbeiner & Davis ( 1998 ), which measures the E ( B − V )
eddening, in magnitudes. 
(ii) Stellar density: We use a map of stellar density, in deg −2 , using
tellar sources from Gaia EDR3 (Gaia Collaboration 2021 ). 

This amounts to a total of 22 surv e y property maps that we will use
n this analysis. For a technical description of these surv e y observing
roperties, please see Leistedt et al. ( 2016b ), Sevilla-Noarbe et al.
 2021 ), and Rodr ́ıguez-Monroy et al. ( 2022 ). In principle, these
Ps should be a complete list of all factors that could affect
alaxy detectability. The images themselves should be completely 
pecified by the passband (which is constant, with very minor airmass 
ariation), the background noise level of the images (a.k.a. sky 
rightness), the point spread function (primarily seeing FWHM), 
nd the shot noise from the sources (primarily exposure time). The
alactic dust and stellar background are the two astrophysical effects 

xpected to alter the detectability of background galaxies. The depth 
ap should be redundant but we include it to perhaps ease the task

f training the neural network. 

.2 Correction method 

e aim to model the relationship between the surv e y property maps
efined abo v e and the observ ed galaxy count maps for each of the
omographic bins defined in Section 3 . For this, we will use a neural
etwork (NN), with the 22 SP maps being the features and the
bserved galaxy count maps being the label . Naturally, the network
ill be able to model a non-linear relationship between the SP maps

nd the raw galaxy counts. It is important to note, ho we ver, that we
o not include any spatial information in the process, since we do
ot want the network to learn about the clustering of galaxies. 
The neural network is asked to predict whether or not a particular

ealpixel (at the same NSIDE = 4096 resolution) contains any 
alaxies [that is, p ( n ≥ 1)] based on the SP values for that pixel. The
oss function for the network is the binary cross-entropy between 
he predicted pixel occupancy and the occupancy of the training set.
ote that this ignores any distinctions between Healpixels with n =
 versus n = 2 or more galaxies. This helps prevent the network
rom learning any intrinsic galaxy clustering. At the resolution of 
SIDE = 4096, most pixels contain either zero or one galaxies

the average number of galaxies per pixel for bins 0, 1, and 2 is
.307, 0.200, and 0.187, respectively). The number of pixels with 
 ( n ≥ 2) in each tomographic bin is 4.6 per cent, 2.0 per cent, and
.7 per cent, while the number expected from a uniform density and
 Poisson distribution is 3.9 per cent, 1.7 per cent, and 1.6 per cent,
hich represents an excess due to intrinsic clustering of 20 per cent,
6 per cent, and 10 per cent, respectively, while the usual change in
ensity imprinted by surv e y property maps in our conserv ati ve mask
s usually under 5 per cent (Fig. 8 ). On the other hand, pixels with
arge number of galaxies are likely to be due to intrinsic density peaks
ather than surv e y observing property fluctuations, for example p ( n

5) in our samples exceeds the Poisson uniform probability by 20 ×,
 ×, and 3 ×, respectively. 
The architecture of the network is based on our guess that the

election function scales primarily as some power-law combination 
f the SPs. To this end, the input SP values are all logarithmically
caled (except those, such as depth, which are already logarithmic 
uantities), and the output of the network is exponentiated to form the
election probability. The network output is a sum of two branches:
he first branch is a simple linear combination of the 22 scaled SPs,
ince we expect this to capture most of the functional variation. The
econd branch is intended to capture departures from a simple power
aw: it takes the input layer of 22 dimensions through 3 hidden layers
f 64, 32, and 4 fully connected neurons, respectively, and a single
MNRAS 525, 3896–3922 (2023) 
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Figure 7. Upper row: Examples of four of the SP maps described in Section 4.1 . In particular, we show the depth and sky variance maps in the i band, and the 
maps of stellar density and dust extinction. Lower row: Maps of the derived weight maps using the neural network approach described in Section 4.2 , for the 
three tomographic bins in this work. 
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euron on the output layer, each with relu acti v ation. The output
f the network, for each tomographic bin, consists of a single value
or each Healpixel within our mask, which will be used to weight
he galaxies accordingly. Fig. 7 shows the resulting weight maps for
ach tomographic bin, as well as four examples of survey property
aps. 
To prevent the network from o v erfitting, it is constructed with

 -fold cross-validation, which works in the following way: The
SIDE = 4096 maps are re-binned into a coarser grid of
SIDE split = 16 (with a resolution of about 4 degrees). We

hen randomly divide these cells into k equal-area groups. To derive
he weights for a given fold k , we train the NN on the other folds,
sing fold k as a validation sample (the training halts when the
raining metric no longer impro v es on the validation set). This cross-
alidation scheme will only work to prev ent o v erfitting on scales
elow the resolution defined by NSIDE split , in this case around 4
egrees. In Appendix C , we test the method using unaltered simulated
ata and find any residual overfitting to be small compared to the
tatistical uncertainty on angular scales below 1 degree. Therefore,
e keep the galaxy clustering analysis in this work to angular

cales below one degree, and additionally test the robustness of the
aximum angular scale in Section 7.3.3 . 

.3 Validation of the deri v ed correction weights 

ifferent surv e y property maps show significant correlations with
he raw galaxy density in each of the tomographic bins. Using the
eural network implementation described abo v e, Fig. 8 shows these
orrelations, and how the derived set of weights is able to correct for
ny correlations between SP maps and galaxy density. Fig. 8 shows
nly a limited number of examples of these correlations, for easier
isualization, but we also compute the χ2 for the null hypothesis for
ll correlations between the 22 SP maps and the corrected galaxy
ensity, using a jackknife approach to estimate the corresponding
ncertainties. The distribution of these null χ2 values, for each of
he tomographic bins, can be found in Fig. 9 , and we do not find
vidence of significant correlations between the SP maps and the
NRAS 525, 3896–3922 (2023) 
orrected (weighted) galaxy density. The median null χ2 values for
he corrected case in the three tomographic bins are 11.6, 3.4, and 7.5
or 10 degrees of freedom. On the other hand, for the raw, uncorrected
ase the median null χ2 values for the three bins are 92.1, 35.0, and
1.6 for 10 degrees of freedom, clearly inconsistent with the null
ypothesis. 

Beyond being successful at correcting for all the correlations
etween galaxy density and surv e y property maps, we need to ensure
he derived neural network weights did not learn any ph ysical g alaxy
lustering at the training phase. For that purpose, we compute the
ross-correlation between the weight maps as shown in Fig. 7 and
everal tracers of the LSS of the Universe. In particular, in this
ork we perform the correlation of the three weight maps with the

onvergence field estimated from CMB lensing (using both Planck,
lanck Collaboration VIII 2020 ; and SPT, Omori et al. 2023 ), the
igh- z mass map from the DES Year 3 analysis (Jeffrey et al. 2021 )
nd the Planck Compton y map (Planck Collaboration XXII 2016 ).
hese are all tracers of the physical LSS and hence they should not
resent correlations with SP maps or the derived weight maps. A
ignificant correlation would mean there has been some undesired
eakage of LSS into our weights. Fig. 10 shows these correlations
etween weight maps and tracers of the LSS, and Table 2 shows
he χ2 values for the null hypothesis, demonstrating no significant
orrelations between weight maps and LSS tracers. 

At this point, we have now tested for the correlation of the weighted
alaxy density with SP maps and the correlation of weight maps with
nown tracers of structure, and found a null signal in both cases.
o we ver, it is still possible that the residuals in the estimation of the
eight maps could affect the clustering measurements. To account

or this potential effect in the clustering analysis, we will marginalize
 v er an additiv e constant in the correlation function, as done in
.g. Kwan, S ́anchez et al. ( 2017 ; see also Ross et al. 2011 ). This
rocedure, which will be described in Section 7.3 , will account for
 potential spurious systematic effect in the clustering at first order,
nd it is a conserv ati ve way to marginalize o v er this uncertainty in the
nalysis. In that section, we will also explore the impact of the choice
f maximum angular scale in the galaxy clustering measurements. 
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Figure 8. Visualization of the correlation between SPs and the observed galaxy density (relative to the mean galaxy density o v er the full footprint), before 
(red) and after (blue) the correction using the galaxy weights described in Section 4.2 . We show this relationship for depth, exposure time (in seconds), sky 
variance (in electrons s −1 pixel −1 ) and seeing (in arcseconds), all estimated in the i band, and also with stellar density (in stars deg −2 ), in 10 bins of equal area. 
The uncertainties come from jackknife resampling, and the grey-shaded region in the plot corresponds to a 1 per cent deviation. The distribution of the null χ2 

values for these relationships, including all the 22 SP maps and for each of the tomographic bins, can be found in Fig. 9 . 

Figure 9. Distribution of the null hypothesis χ2 values for the relationship 
between surv e y property maps and the corrected (weighted) galaxy density, 
including all the 22 SP maps and for each of the tomographic bins. The 
median null χ2 values in the three tomographic bins are 11.6, 3.4, and 7.5 
for 10 degrees of freedom. For the raw, uncorrected case the median null χ2 

values for the three bins are 92.1, 35.0, and 51.6 for 10 degrees of freedom. 
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 C H A R AC T E R I Z I N G  REDSHIFT  

NCERTAINTIES  

n this section, we will describe the various sources of uncertainty in
he distributions of redshift N ( z) within each of the three bins defined
n Section 3.3 , and how we will propagate them into cosmological
nalyses. We will follow a similar procedure to that in Myles et al.
 2021 ), and propagate uncertainty arising from (i) sample variance 
SV) and shot noise (SN) from the finite area co v ered by the deep
elds; (ii) biases in the individual redshift estimates of deep-field 
alaxies having multiband photometry ( COSMOS2015 and PAUS + 

OSMOS ) but no spectroscopic redshift (PZ); (iii) uncertainty in the
hotometric calibration (zero-point) of deep-field galaxies (ZP); and 
iv) uncertainties from the ‘bin conditionalization’ approximation in 
quation ( A6 ) ( BCE ). 

To model SV and SN, we use the approximate 3SDIR model (a
roduct of three Dirichlet distributions), first presented in S ́anchez 
t al. ( 2020 ) and then further developed in Myles et al. ( 2021 ).
athematically, the model describes p( { f zc }|{ N zc } ) ≈ 3SDIR , where
 zc are the number counts of galaxies that have been observed to be
t redshift bin z and colour phenotype c , and with { f zc } a finite set of
oefficients indicating the probability in the redshift bin z and colour
henotype c , where 

∑ 

zc f zc = 1 and 0 ≤ f zc ≤ 1. For extensive details
f the model, we refer the interested reader to appendices D and
 in Myles et al. ( 2021 ). The 3SDIR method yields realizations of

he f zc , which then can be summed into equation ( A6 ) to yield N ( z)
stimates. The mean of these realizations is the fiducial N ( z). 

We smooth the fiducial N ( z) distribution with a Savitzky–Golay 
lter: sample variance and shot noise from the small area of the
alibration deep fields manifests in the N ( z) as rapid fluctuations in
edshift and enter squared in the galaxy clustering signal, while the
rue redshift distribution o v er a larger area is smoother as these
ariations average out. We try different smoothing lengths and 
nd compatible constraints on the main parameters of interest (see 
ppendix A6 ). 
Deviations from the nominal N i ( z) will be modelled with three

arameters: a shift �z i , a stretch parameter σ i 
z , and an adjustment

 

i 
low −z of the low-redshift tail of N i ( z). The main peak of the
MNRAS 525, 3896–3922 (2023) 
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M

Figure 10. Cross-correlation of weight maps of the three tomographic bins 
and convergence field from three tracers of the LSS: CMB lensing (from the 
Planck satellite), DES Y3 mass maps, and Planck Compton y . Uncertainties 
come from jackknife resampling. The null hypothesis χ2 values can be found 
in Table 2 , all consistent with no correlation. 

Table 2. Values of χ2 
null /dof for different correlations between 

galaxy weights and tracers of the LSS of the Universe, for the 
three high- z bins defined in this work. We find no significant 
correlations between weight maps and LSS tracers. 

Bin0 Bin1 Bin2 

Planck CMB lensing 9.6/9 6.4/10 6.8/10 
DES mass map 8.2/9 9.9/10 16.1/10 
Planck Compton y 7.3/9 5.9/10 2.7/10 
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Figure 11. Visualization of the parametrization of redshift uncertainties, 
using the third tomographic bin as an example. The different rows show 

examples of how we account for shifts, stretches and variations in the low 

redshift fraction of the redshift distributions. 
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istribution is altered according to 

( z) → N ( σ i 
z ( z − �z i − z̄ ) + ̄z ) (5) 

nd the fraction of galaxies at low redshift ( z < 0.5) is altered as 

 ( z) → 

{
n ( z) A 

i 
low −z z ≤ 0 . 5 

n ( z) (1 − A 

i 
low −z ) z > 0 . 5 

. (6) 

etails of this transformation are in Appendix A1 . Fig. 11 illustrates
he effects of each of these parameters. 

Priors on the N ( z) alteration parameters θi = { �z i , σ i 
z , A 

i 
low −z } are

hosen to represent the potential effects of the systematic errors by 

(i) Quantifying the possible effects of the PZ, BCE , and ZP
ystematic errors on the input catalogues to the redshift calibration
rocess, as detailed in Appendices A2 , A3 , and A4 , respectively. 
NRAS 525, 3896–3922 (2023) 
(ii) Creating realizations of the input catalogues drawing from
hese systematic errors and realizing the SV and SN variations with
he 3SDIR process. 

(iii) Measuring the mean, width, and low- z fractions of each
ealized N i ( z). 

(iv) Creating a prior for the θ i based on the distribution of these
roperties of the realizations. 

Fig. 12 shows the resultant distributions of the N i ( z) recalibration
arameters when various sources of systematic errors are included,
nd values of their means and standard deviations are listed in
able 3 . Sample variance/shot noise, redshift biases and zero-point
ncertainty all contribute significantly to the uncertainty in the mean
edshift. On the other hand, the stretch uncertainty is dominated
y sample variance at low redshift (Bin 0), with the zero-point
ncertainty significantly increasing its importance in in the highest
edshift bin. Finally, the low-redshift probability uncertainty is
rimarily dominated by sample variance and shot noise. Similar
esults for redshift uncertainties are found from the North and South
ubsets of the data. 

 C H A R AC T E R I Z I N G  W E A K  LENSI NG  

AGNI FI CATI ON  

n this section, we study the impact of lensing magnification on
he observed angular correlations of our high- z galaxy samples. On
op of distorting the image shapes, gravitational lensing from the
oreground large-scale structure of the Universe also magnifies the
mages without changing the surface brightness, creating two effects:
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Figure 12. Prior distributions for each redshift uncertainty parameter. Each column shows the parameters for each tomographic bin (left: Bin 0; middle: Bin 
1, right: Bin 2). Each row shows a different parameter (top: �z i ; centre: σ i 

z , bottom: A 

i 
low −z ). The different lines show the cumulative uncertainty on each 

parameter from considering dif ferent ef fects. The dotted line shows the uncertainty from Sample Variance and Shot Noise in the calibration fields (SV + SN). 
The dot–dashed line adds the uncertainty from redshift biases in the redshift calibration samples (PZ). The dashed line adds uncertainty from redshift selection 
effects ( BCE ). The solid lines adds the zero-point photometric uncertainty in the deep field photometry (ZP). The distributions are measured from individual N ( z ) 
samples generated to include these uncertainties. For p ( �z i ), we measure the mean redshift of individual samples and subtract the mean redshift of the fiducial 
N ( z ). For p( σ i 

z ) we measure the N ( z ) width of individual samples and divide by the width of the fiducial N ( z ). For p( A 

i 
low −z ), we measure the integral of each 

individual sample at z < 0.5. See Section 5 and Appendix A for details. 

Table 3. Estimates of the parameters describing our uncertainties 
on the redshift distributions, as described in Section 5 , for the 
three tomographic bins defined in this work. The parametrization 
is described visually in Fig. 11 . We also show the estimates for the 
entire footprint we use, and for the independent splits of North and 
South regions, which will be used in Section 7 for consistency tests. 

z-bin �z σz A low −z 

Entire footprint (All) 
0 0.0 ± 0.0051 0.997 ± 0.068 0.0044 ± 0.0013 
1 0.0 ± 0.0075 0.999 ± 0.041 0.0091 ± 0.0023 
2 0.0 ± 0.0208 0.998 ± 0.044 0.0383 ± 0.0.0059 

North region ( Planck ) 
0 0.0 ± 0.0054 0.995 ± 0.068 0.0043 ± 0.0015 
1 0.0 ± 0.0078 0.999 ± 0.041 0.008 ± 0.0023 
2 0.0 ± 0.0223 0.998 ± 0.044 0.038 ± 0.0.0065 

South region (SPT) 
0 0.0 ± 0.0052 0.998 ± 0.051 0.0041 ± 0.0015 
1 0.0 ± 0.0114 0.996 ± 0.081 0.009 ± 0.0027 
2 0.0 ± 0.0224 0.998 ± 0.048 0.0337 ± 0.0.0065 
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i) a dilution of the source density due to the locally stretched image;
nd (ii) an increased flux of individual galaxies making them more
ikely to be detected (Bartelmann & Schneider 2001 ; M ́enard et al.
003 ; Hildebrandt, van Waerbeke & Erben 2009 ; Garcia-Fernandez 
t al. 2018 ; Gaztanaga et al. 2021 ; von Wietersheim-Kramsta et al.
021 ; Euclid Collaboration 2022 ). This effect creates an additional
lustering signal of the background sample that contaminates esti- 
ates of its intrinsic density fluctuations. Following the approach 

sed in the fiducial DES Y3 analysis (DES Collaboration 2022 ),
e model the observed projected (lens) galaxy density contrast of 

omographic bin i , δi 
obs , as a combination of the projected galaxy

ensity contrast δi 
g and the modulation by lens magnification δi 

μ and 
edshift-space distorsions (see Section 7.1 for more details): 

The change in density contrast due to magnification can be shown
o be proportional to the convergence experienced by the lens galaxies 
i 
l (Elvin-Poole et al. 2023 ): 

i 
μ( θ ) = C 

i κi 
l ( θ ) . (7) 

he constant of proportionality C 

i is given by the response of the
umber of selected galaxies per unlensed area, and it can be split in
wo terms, one fixed term corresponding to the change of area and
nother term corresponding to changes in the light flux distribution 
MNRAS 525, 3896–3922 (2023) 
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Table 4. Estimates of the lens magnification coefficients C sample 

using the BALROG and data-based methods described in Section 6 , 
for the three tomographic bins defined in this work. The last column 
shows the final estimates of the coefficients from the combination of 
the two different methods. We also show the estimates for the entire 
footprint we use, and for the independent splits of North and South 
regions, which will be used in Section 7 for consistency tests. 

z-bin C 

Data 
sample C 

Balrog 
sample C 

Final 
sample 

Entire footprint (All) 
0 − 0.21 ± 0.03 0.32 ± 0.40 0.05 ± 0.48 
1 2.20 ± 0.04 3.02 ± 0.63 2.61 ± 0.75 
2 3.88 ± 0.04 4.70 ± 0.59 4.29 ± 0.72 

North region ( Planck ) 
0 − 0.19 ± 0.03 0.29 ± 0.46 0.05 ± 0.52 
1 2.15 ± 0.04 2.67 ± 0.66 2.41 ± 0.71 
2 3.79 ± 0.05 4.85 ± 0.65 4.32 ± 0.83 

South region (SPT) 
0 − 0.23 ± 0.04 0.34 ± 0.43 0.05 ± 0.52 
1 2.23 ± 0.06 3.33 ± 0.97 2.78 ± 1.12 
2 3.95 ± 0.04 4.54 ± 0.69 4.25 ± 0.75 
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f galaxies, which will affect their selection in different samples: 

 

i = C area + C 

i 
sample , (8) 

here C area = −2 regardless of the sample selection. In this way,
he characterization of lens magnification amounts to estimating
he C 

i 
sample term for each tomographic bin. This term can be

stimated empirically by artificially magnifying a galaxy sample and
easuring the change in number density with respect to the applied
agnification. In particular, if we apply some extra convergence δκ

o the images, the proportionality constant can be written as 

 sample = 

δn 

n δκ
, (9) 

here δn / n corresponds to the fractional change in number density
f a given sample meeting selection criteria due to the applied
agnification. In this work, we will follow the approach of Elvin-
oole et al. ( 2023 ) and estimate C sample in two different ways, using

he BALROG sample and directly perturbing the measured fluxes in
he data. 

.1 Estimate from artificial galaxy injections 

 number of BALROG catalogues were produced for the DES Year
 analysis (Everett et al. 2022 ). In this analysis, we have already
sed BALROG to estimate the transfer function between the deep and
ide photometric spaces (parametrized with SOMs), as described in
ection 3 . In this part, we use an additional BALROG run, in which the
xact same deep field objects are injected at the same coordinates as
n the fiducial run, but now with a 2 per cent magnification applied to
ach galaxy image, μ0 = 1.02 ( κ0 ∼ 0.01). For all cases, we account
or the galaxy correction weights defined in Section 4 and shown in
ig. 7 . 
We apply the tomographic bin selections described in Section 3.3

n both the fiducial κ = 0 BALROG run (label i , for intrinsic ) and the
= κ0 run (label o , for observed ). In order to estimate C sample , we

eed, for each tomographic bin selection: 

(i) N i : Selected number of galaxies in the BALROG κ = 0 run.
ccounting for galaxy weights w 

j 

i , it becomes N i = 

∑ 

j w 

j 

i , where
 runs o v er all selected galaxies. 

(ii) N o : Selected number of galaxies in the magnified BALROG

un, which applies a constant magnification to the galaxy images.
ccounting for galaxy weights w 

j 
o , it becomes N o = 

∑ 

j w 

j 
o . 

At this point, the estimate is simply the fractional difference
etween the two: 

 sample = 

N o − N i 

κ0 N i 

. (10) 

his estimate should capture the impact of magnification on the
pecific colour selection of the high- z bins defined in Section 3.3 ,
nd also include possible contributions due to size selections such
s the star – galaxy separation cuts. We compute the uncertainties
n these estimates by following a jackknife approach, splitting the
ootprint o v er 150 re gions. 

.2 Estimate from perturbing measured fluxes 

he second method we consider uses the data itself to estimate the
ux gradient of the samples. In this case, we add a constant offset
 m to all photometric magnitudes in our sample: 

m = −2 . 5 log 10 (1 + 2 �κ) , (11) 
NRAS 525, 3896–3922 (2023) 
here �κ = 0.01 is the constant magnification difference we are
pplying to each galaxy. 

Using this new magnified data sample, we repeat the assignment
f the detected galaxies to the three high- z bins, and estimate C sample 

rom the differential in the resultant counts in each bin, directly
rom equation ( 9 ), again accounting for individual galaxy weights
rom Section 4 . This method provides an additional estimate of the
agnification coefficients using only the magnification effect on

he fluxes, hence ignoring other possible contributions from size
election or observational systematics. 

.3 Results 

able 4 shows the estimates of C sample using the BALROG and data-
ased methods described abo v e, for the three tomographic bins
nd the North and South regions defined in this work. Since we
ave two independent methods to estimate these values, we use the
verage of the two methods as our final estimates C 

Final 
sample . For the

ssociated uncertainties, we follow a conservative approach and add
he uncertainties of the methods in quadrature, in addition to the
tandard deviation between the methods: 

Final 
C = 

√ (
σ

Balrog 
C 

)2 
+ 

(
σ Data 

C 

)2 + ( C 

Balrog 
sample − C 

Data 
sample ) 2 / 4 . (12) 

he derived magnification coefficients and their associated uncertain-
ies will be used as Gaussian priors in the galaxy clustering analysis
resented in the next section. 

 G A L A X Y  CLUSTERI NG  A N D  CONSTRAINTS  

N  C O S M O L O G Y  A N D  G A L A X Y  BI AS  

n this section, we present the analysis of galaxy clustering in the
omographic bins defined in this work. We describe the model we use,
he choice of scales, the measurements and covariance, and finally
he constraints we obtain on the cosmological model and the galaxy
ias of each tomographic bin, and their robustness under different
nalysis choices. 
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.1 Model 

ollowing the galaxy clustering analysis of the DES Year 3 fiducial 
ample (Rodr ́ıguez-Monroy et al. 2022 ), we model the observed 
rojected galaxy density contrast δi 

obs ( ̂  n ) of galaxies in tomography 
in i at position ˆ n as 

i 
g, obs ( ̂  n ) = δi 

g, D ( ̂  n ) + δi 
g, RSD ( ̂  n ) + δi 

g,μ( ̂  n ) . (13) 

he first term is the line-of-sight projection of the three-dimensional 
alaxy density contrast, δ(3D) 

g ; the other terms correspond the con- 
ributions from linear redshift-space distortions (RSD) and magni- 
cation ( μ), which are described in detail in Krause et al. ( 2021 ).
e relate the galaxy density to the matter density assuming a local,

inear galaxy bias model (Fry & Gaztanaga 1993 ), δg ( x ) = b δm ( x ),
ith δY ≡ ( Y ( x ) − Ȳ ) / ̄Y . We assume the galaxy bias to be constant

cross each tomographic bin b i , and we discuss more about this
ssumption later in this section. 

Given the three terms in equation ( 13 ), the angular power spectrum
 

ii 
δg, obs δg, obs 

( 
 ) has six different components, corresponding to the auto- 
nd cross-power spectra of galaxy density, RSD, and magnification. 
or the accuracy of the DES Year 3 analysis, it was shown by
rause et al. ( 2021 ) that the commonly used Limber approximation

s insufficient to estimate these terms, and therefore we use the non-
imber algorithm of Fang et al. ( 2020 ). 6 Using the full expressions

or the angular power spectrum, including RSD and magnification, 
rom Fang et al. ( 2020 ), the angular correlation function is given by 

 

i ( θ ) = 

∑ 


 
2 
 + 1 

4 π P 
 ( cos θ ) C 

ii 
δg, obs δg, obs 

( 
 ) , (14) 

here P 
 are the Legendre polynomials. For the implementation 
f these calculations, we use the COSMOSIS framework 7 (Zuntz 
t al. 2015 ), which in turn uses CAMB (Lewis & Bridle 2002 )
o obtain the evolution of linear density fluctuations and HALOFIT 

Takahashi et al. 2012 ) to convert to a non-linear matter power
pectrum. The modelling of redshift uncertainties has been described 
n detail in Section 5 , and that parametrization has been implemented
n COSMOSIS for this analysis. 

In addition, as explained in Section 4 , we marginalize o v er an
dditive constant parameter, parametrized by R 

i , in the galaxy angular 
orrelation function: 

 

i ( θ ) → w 

i ( θ ) + 10 R 
i 

. (15) 

his parametrization accounts for potential residuals in the calcula- 
ion of galaxy weights affecting the galaxy clustering measurements 
Kwan et al. 2017 ). Later in Section 7.3 , we will explore the impact
f the choice of maximum angular scale in the galaxy clustering 
easurements. 

.1.1 Choice of scales 

iven the fact that we assume a linear galaxy bias model for this
nalysis, we are required to remo v e small-scale information that can
otentially be affected by non-linearities. We follow the approach of 
he DES Year 3 fiducial analysis (DES Collaboration 2022 ) and we
emo v e all galaxy clustering information below 8 h −1 Mpc (Krause
t al. 2021 ) (corresponding to a minimum angular scale of 12.9,
0.5, and 9.0 arcmin for the three tomographic bins in this work,
espectively). We also test for the robustness of the results to a
inimum scale of 12 h −1 Mpc. The maximum angular scale we 
 https:// github.com/xfangcosmo/ FFTLog- and- beyond 
 https:// bitbucket.org/ joezuntz/cosmosis 

4

8

se is set to 60 arcmin for all measurements. This choice is driven
y the correction method of obtaining galaxy weights, described 
n Section 4 , in particular by the cross-validation scheme to a v oid
 v erfitting, which shows no signs of o v erfitting at angular scales
elow 1 degree. 

.2 Measurements and co v ariance 

quation ( 14 ) shows the modeling of the galaxy angular 2-point
orrelation function, w( θ ). For the measurement of this galaxy 
lustering observable, we use HEALPIX maps ( nside = 4096) 
f the corrected galaxy density contrast for each tomographic bin, 
ncluding the correction weights described in Section 4 , and then
se a pixel-based version of the Landy–Szalay estimator (Landy & 

zalay 1993 ), following the notation of Crocce et al. ( 2016 ): 

ˆ  ( θ ) = 

N pix ∑ 

i= 1 

N pix ∑ 

j= 1 

( N i − N̄ ) · ( N j − N̄ ) 

N̄ 

2 
ω i ω j  i, j ( θ ) , (16) 

here N i is the galaxy number density in pixel i , and ω i is the weight
f each pixel i (see Section 4 ). N̄ is the corrected mean galaxy
umber density o v er all pixels within the footprint and  i, j is a top-
at function which is equal to 1 when pixels i and j are separated by an
ngle θ within the bin size �θ . In practice, these correlation functions
re computed using TREECORR 

8 (Jarvis, Bernstein & Jain 2004 ). Fig.
3 shows the w( θ ) measurements for the galaxy autocorrelations of
he three redshift bins considered in this work. 

We estimate the covariance matrices using two complementary 
ethods: using Gaussian simulations, and using Jackknife. The 
aussian simulations are generated following the procedure de- 

cribed in Giannantonio et al. ( 2008 ; see Appendix B for details).
e generate 100 realizations of a set of four correlated maps

ia HEALPIX ANAFAST routine. These maps, three for galaxy 
 v erdensity and one for CMB κ , are generated using the non-
inear ( HALOFIT ) power spectrum with our fiducial cosmology. Each
ap includes its respective (uncorrelated) noise contribution. The 

dvantage of this simulation-based approach is that it allows us to
ave an accurate estimation of the effects of the mask, and angular
inning. The main downside is that this approach does not account for
he non-Gaussian terms of the covariance. In order to cross-check the
alidity of this approach, we also estimate the covariance using the
ackknife technique, defining 150 subsamples for the measurements 
n TREECORR . We find that both approaches are in good agreement
ithin the range of scales used for this work, pointing to a negligible

ontribution of the non-Gaussian terms for this particular study. A 

etailed comparison can be found in Appendix B . 
Defining these data measurements as ˆ D ≡ { ̂  w 

ij ( θ ) } and the co-
ariance C , we use the following expression to compute the signal
o noise of the measurements: 

 / N = 

√ 

ˆ D C 

−1 ˆ D 

T − n d f , (17) 

here n d f is the number of degrees of freedom, which equals the
umber of data points passing the scale cuts defined in Section 7.1.1 .
or reference, the fiducial DES Year 3 analysis had a galaxy
lustering S/N = 63 (Rodr ́ıguez-Monroy et al. 2022 ). For the sample
n this work, the total S/N, including the three autocorrelations after
pplying scale cuts, is S/N = 70. Breaking this into the individual
easurements, the autocorrelations for bins 0, 1, and 2 get S/N =

3, 49, and 37, respectively. 
MNRAS 525, 3896–3922 (2023) 
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Figure 13. Upper panels : Measurements of the autocorrelations of angular galaxy clustering for the three redshift bins (0, 1, 2) defined in this work, for the 
entire DES Y3 footprint we use. Filled coloured points correspond to the measurements passing the scales cuts defined in Section 7.1.1 . The methodology for 
the measurements and covariance, and the calculation of the corresponding signal to noise, can be found in Section 7.2 . The solid lines show the best-fitting 
theory for the fiducial analysis choices, as described in Section 7.3 . The goodness of fit in that case corresponds to χ2 /dof = 8.3/8.6. Error bars are smaller than 
the symbols, if not indicated. Lower panels : Residuals of the measurements given the best-fitting theory model shown in the upper panels. 
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Table 5. The model parameters and their priors used in the fiducial 
flat � CDM analysis, using the entire DES Y3 footprint. The 
parameters are defined in Section 7.3 . 

Parameter Prior 

Cosmology 
�m 

Flat (0.1, 0.9) 
10 9 A s Flat (0.5,5.0) 
n s Flat (0.87, 1.07) 
�b Flat (0.03, 0.07) 
h Flat (0.55, 0.91) 
10 3 �νh 2 Flat (0.60, 6.44) 
Galaxy bias 
b i ( i ∈ [0, 2]) Flat (0.8, 3.0) 
Weight residuals 
R 

0 Flat ( −8, −2) 
R 

1 Flat ( −8, −2) 
R 

2 Flat ( −8, −2) 
Lens magnification 
C 

0 Gaussian (0.0275, 0.24) 
C 

1 Gaussian (1.305, 0.375) 
C 

2 Gaussian (2.145, 0.36) 
Redshifts 
�z 0 Gaussian (0.0, 0.0051) 
�z 1 Gaussian (0.0, 0.0075) 
�z 2 Gaussian (0.0, 0.0208) 
σ 0 

z Gaussian (0.997, 0.068) 
σ 1 

z Gaussian (0.999, 0.041) 
σ 2 

z Gaussian (0.998, 0.044) 
A 

0 
low −z Gaussian (0.0044, 0.0013) 

A 

1 
low −z Gaussian (0.0091, 0.0023) 

A 

2 
low −z Gaussian (0.0383, 0.0059) 
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.3 Analysis and results 

.3.1 Parameter inference 

n this part, we are interested in placing model constraints given the
easured two-point functions of galaxy clustering shown in Fig. 13 .

n general, given our model M , we want to infer parameters p from the
et of measured two-point correlation functions in our data, ˆ D . The
heoretical model prediction for the two-point correlation functions,
omputed using the parameters p of the model M , is T M 

( p ) ≡ { w 

ij ( θ ,
 ) } . We compare the measurements and model predictions using a
aussian likelihood, using the data covariance, C , defined above: 

 ( ̂  D | p , M) ∝ e 
− 1 

2 

[ 
( ̂ D −T M ( p ) ) T C −1 ( ̂ D −T M ( p ) ) 

] 
. (18) 

n this way, the posterior probability distribution for the parameters
 of the model M given the data ˆ D is given by 

 ( p | ̂  D , M) ∝ L ( ̂  D | p , M) P ( p | M) , (19) 

here P ( p | M ) is the prior probability distribution on the parameters.
We sample the posterior of the galaxy clustering measurements

n the flat Lambda cold dark matter ( � CDM) model, using the
ame parameter space as the DES Year 3 fiducial analysis (DES
ollaboration 2022 ). The six cosmological parameters we vary are

isted in Table 5 , together with their respective uniform priors.
hese prior ranges are chosen to encompass at least five times the
8 per cent C.L. from rele v ant external constraints. Also, e ven though
e sample the amplitude of primordial scalar density perturbations
 s , sometimes we will refer to the amplitude of density perturbations
t z = 0 in terms of the RMS amplitude of mass on scales of 8 h −1 Mpc
n linear theory, σ 8 . In addition to these cosmological parameters,
ur fiducial analysis includes 18 nuisance parameters to describe:
alaxy bias (see Section 7.1 ), potential residuals in the galaxy weight
alculation (see Section 4 ), lens magnification (see Section 6 ) and
ncertainties in the redshift distribution of our three redshift bins (see
ection 5 ), all of them described in Table 5 . 
NRAS 525, 3896–3922 (2023) 
.3.2 Blinding procedure 

n order to minimize a potential impact of experimenter bias, we
ave adopted a blinding procedure throughout this work. In that way,
e have kept the results on the main parameters constrained in this

nalysis (those depicted in Figs 14 and 15 ) blinded to the analysis
ntil the robustness tests performed in Section 7.3.3 satisfied the
ension metrics reported there. An internal re vie w committee set-up
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Figure 14. Constraints on the combination of cosmological parameters and galaxy bias derived from out measurements of galaxy clustering for various analysis 
configurations. The left-hand panel shows the fiducial constraints using the entire footprint (All), compared to the constraints using the independent splits in 
North and South regions. The right-hand panel shows the comparison between the fiducial constraints and three analysis variations, one with conservative 
redshift priors ( ×2 width in all redshift parameter priors), one with conserv ati ve magnification priors ( ×2 width in all magnification parameter priors), and 
larger minimum angular scales. 

Figure 15. Comparison of the parameter constraints from galaxy clustering 
using different choices for the maximum angular scale, as well as not 
marginalizing o v er an additiv e constant in the galaxy clustering measure- 
ments. 
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y the DES collaboration was in charge of o v erviewing this procedure
nd allowing for the unblinding of the constraints. 

.3.3 DES Y3 high- z results and robustness tests 

ext, we analyse the model constraints from the measurements of 
alaxy clustering. In this case, there exists a strong degeneracy 
etween galaxy bias and the amplitude of matter fluctuations, σ 8 , 
nd therefore, the analysis presented here is not sensitive to σ 8 . 
he combination of clustering and weak gravitational lensing can 
e used to break these degeneracies, and that will be presented in a
ompanion paper ( in preparation ), using CMB lensing from the SPT
nd Planck . Ho we ver, for the clustering-only case analysed here, the
hape of the galaxy clustering measurements is sensitive to the scale
f matter–radiation equality in the matter power spectrum, which 
n turn depends on a combination of the matter density �m 

and the
ubble constant h , close to the direction �m 

h (see e.g. Philcox et al.
021 ). 
Fig. 14 shows the constraints we obtain for the parameters we

re sensitive to, namely �m 

h and the product of σ 8 b i for the three
edshift bins we use. The fiducial constraints use the entire surv e y
ootprint, the autocorrelations shown in Fig. 13 , the scale cuts
escribed in Section 7.1.1 and the priors shown in Table 5 , and
hey result in constraints on a combination of the fraction of matter
n the Universe �m 

and the Hubble parameter h , �m 

h = 0 . 195 + 0 . 023 
−0 . 018 ,

nd 2–3 per cent measurements of the amplitude of the galaxy
lustering signals for the three redshift bins, probing galaxy bias 
nd the amplitude of matter fluctuations, b σ 8 . The best-fitting theory
odel for this fiducial case is shown together with the measurements

n Fig. 13 , and the corresponding χ2 / n d f is 8.3/8.1, where n d f is the
stimated ef fecti v e number of de grees of freedom. Using the Update
ifference in Mean tension metric from Lemos et al. ( 2021 ), we find

he posterior constraints to be compatible with the redshift prior, with
 tension of 0.34 σ , and also compatible with the magnification prior,
ith a tension at 0.03 σ . 
In addition, to assess the robustness of the results, in Fig. 14 we

how constraints for various alternative cases. First, we analyse the 
onstraints we obtain from the independent North and South regions, 
here we split the data into two independent patches: ‘North’ (Dec.
 −39 ◦) and ‘South’ (Dec. < −40 ◦). This is moti v ated by the fact

hat we will combine the clustering measurements shown here with 
MB lensing measurements from Planck and SPT in a companion 
aper (in preparation) . Since SPT only covers the South region
n this split, we do this test to check for the consistency of the
MNRAS 525, 3896–3922 (2023) 
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Figure 16. Comparison of the constraints on the parameter combination �m 

h 
from galaxy clustering analyses using three different lens samples in DES 
Y3. The constraints from the DES Y3 Fiducial sample, also called MagLim 

sample [ref], are shown in blue; the constraints from the redMaGiC sample 
are showing in yellow and the constraints from the High- z sample described 
in this work are shown in red. The Planck 2018 constraint is shown in black. 
The inset panel on the right of the plot depicts the different redshift range 
probed by the three DES Y3 lens samples. 
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lustering measurements. In this test, the redshift and magnification
riors are computed specifically for each re gion, although the y are
argely consistent (see Tables 3 and 4 ), and the galaxy clustering

easurements are also performed separately for the two regions.
he analysis of the North and South regions yields best-fitting theory
odels with χ2 / n d f is 10.1/8.6 and χ2 / n d f is 15.7/8.6, respectively.
hen using the entire parameter space, the constraints from the two

ndependent regions are in agreement, with an estimated tension
f 0.65 σ , using the non-Gaussian parameter difference tension
etric from Lemos et al. ( 2021 ) and Raveri & Doux ( 2021 ). When

estricting the set of parameters to �m 

, �m 

h , b 0 σ 8 , b 1 σ 8 , b 2 σ 8 , the
onstraints from the independent North and South regions are also
n agreement, with an estimated tension of 0.41 σ . 

Fig. 14 also shows the galaxy clustering constraints under some
ifferent analysis choices. In particular, we study the impact of
edshift and magnification priors, both described in Table 5 , by
tudying the conserv ati ve case of doubling the width these priors.

hen broadening the width of redshift priors by a factor of 2, the
onstraints on b 0 σ 8 , b 1 σ 8 , and b 2 σ 8 widen by a factor of 1.47, 1.41,
nd 1.27, respectively. When broadening the width of magnification
riors by a factor of 2, the constraints on b 2 σ 8 broaden by a factor
f 1.20. Therefore, redshift priors are rele v ant for all bins, especially
or bins 0 and 1, while lens magnification is only rele v ant in bin 2,
t higher redshift. None of these changes has an important effect on
m 

h , which shows very robust constraints under all different analysis
hoices. Using larger minimum angular scales, corresponding to
2 h −1 Mpc, as opposed to the fiducial 8 h −1 Mpc, broadens the
onstraints on b i σ 8 by a factor of 1.28, 1.21, and 1.17 for bins i = 0,
, and 2, while having no significant effect on �m 

h . 
We also explore the impact of the choice of maximum angular

cale on the clustering analysis. The fiducial value for the maximum
ngular scale is 60 arcmin, driven by the method used to correct
or correlations between galaxy density and surv e y properties. In
rder to account for any residuals coming from that method, we
lso marginalize o v er an additive constant parameter for each
omographic bin R 

i (see equation 15 ). Fig. 15 shows the galaxy
lustering constraints when limiting the maximum angular scale to
0 and 30 arcmin, and also, for the latter case, when not marginalizing
 v er additiv e constants. The figure sho ws ho w the galaxy clustering
onstraints are robust to these choices. The constraints on �m h are
ot sensitive to the variations, and the main impact of limiting the
aximum angular scale is a ∼20 per cent decrease in constraining

ower for b 2 σ 8 . Regarding the posterior values of R 

i , we find
 

0 = −5 . 13 + 0 . 84 
−1 . 93 , R 

1 = −3 . 42 + 0 . 31 
−0 . 65 , R 

2 = −3 . 21 + 0 . 06 
−0 . 09 . We can see

ow this parameter is constrained to be very small for the first bin,
nd its importance grows with redshift (and i -band magnitude) of the
omographic bin. 

.3.4 Comparison with other DES Y3 clustering analyses 

iven the parameter constraints obtained in the analysis of galaxy
lustering with the DES Y3 High- z sample presented in this work,
e can now compare how these constraints compare with the

orresponding clustering analyses of the other DES Y3 lens samples
lready defined and used in other works. The fiducial DES Y3 lens
ample is the so-called MAGLIM sample (Porredon et al. 2021 ),
hile the alternative lens sample is REDMAGIC (P ande y et al.
022 ; see Table 1 for a comparison of the number densities of the
hree samples). Fig. 16 shows the constraints on the cosmological
arameter combination of �m 

h provided by each of the three DES
3 lens samples, together with the Planck 2018 constraint. The
NRAS 525, 3896–3922 (2023) 
gure shows the DES Y3 constraints to be in agreement between
he three samples, and with the Planck result, and also having similar
onstraining po wer. Ho we ver, while the constraints from MAGLIM

nd REDMAGIC probe similar redshift ranges, the High- z constraints
ome from significantly higher redshifts, extending the redshift range
robed by the DES Y3 data. This results demonstrate the robustness
f the clustering measurements in this work and our ability to produce
 well-characterized high-redshift sample, which is complimentary to
he DES fiducial analysis in terms of the redshift range it probes. Note
hat the upcoming analyses combining the High- z galaxy clustering
resented in this work with cross-correlation with weak gravitational
ensing will be able to break the de generac y between galaxy bias
nd the amplitude of matter fluctuations, σ 8 , allowing us to place
onstraints on the latter at higher redshifts than probed in the fiducial
ES analysis. 

 SUMMARY  A N D  O U T L O O K  

he cosmological analysis of imaging galaxy surv e ys pro vides
owerful measurements of the amplitude of matter fluctuations in
he late time Universe. In recent years, the analyses of different
urv e ys like DES, KiDS and HSC, probing the regime at z < 1,
ave reported persistent tensions with the predicted value from the
MB, a problem known as the S 8 tension. Measurements at a higher

edshift regime (1 < z < 3) would be crucial for understanding the
rigin of this tension. In addition, such measurements would probe
he matter-dominated epoch and would shed light on dynamical dark
nergy models that can mimic a cosmological constant at late times
ut differ substantially during the matter-dominated era. 

In this work, we describe the selection and characterization of
hree galaxy samples co v ering the approximate redshift range 0.8 <
 < 2.5 (see Fig. 6 ) using data from the third year of the Dark Energy
urv e y Year 3 (DES Y3). To enable the selection and characterization
f these high- z samples, which push the limits of DES Y3 data, we
ntroduce several changes with respect to the fiducial DES Y3 lens
alaxy sample: 
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(i) We start from a fainter galaxy selection, excluding all lens 
alaxies used in the DES Y3 fiducial analysis. The average i -band
agnitude of the three High- z redshift bins is 22.6, 22.9, and 23.1,

espectively, while all four redshift bins used in the fiducial analysis 
ad average i -band magnitudes brighter than i = 22. 

(ii) Both the selection and redshift characterization of the samples 
re based on a principled, Bayesian scheme using a no v el SOM
lgorithm better suited for the characterization of lower S/N galaxies 
S ́anchez et al. 2020 ). 

(iii) We use a redshift marginalization scheme that explicitly 
ccounts for uncertainties in the tails of redshift distributions. 

(iv) We use a non-linear, machine-learning-based approach to 
orrect for correlations between galaxy number density and surv e y 
bserving properties like depth, stellar density, and sky noise. 

Out of this list of changes with respect to the fiducial analysis,
teps (i) and (ii) are responsible for the selection of high redshift
alaxies, and steps (iii) and (iv) are required due to the faint, high-
edshift selection. The procedure results in the definition of three 
edshift bins with mean redshifts around z = 0.9, 1.2, and 1.5, which
ignificantly extend the redshift coverage of the fiducial DES Year 3 
nalysis. In addition, these samples contain a total of about 9 million
alaxies, resulting in a galaxy density that is more than 2 times
igher than those in the DES Year 3 fiducial case (Porredon et al.
022 ). 
After the selection and characterization of the high- z galaxy 

amples, we perform an analysis of their galaxy clustering autocorre- 
ation measurements. The analysis provides robust constraints on the 
roduct of the fraction of matter in the Universe �m 

and the Hubble
arameter h , �m 

h = 0 . 195 + 0 . 023 
−0 . 018 , and 2–3 per cent measurements

f the amplitude of the galaxy clustering measurements for the 
hree redshift bins, probing galaxy bias times the amplitude of 

atter fluctuations, b σ 8 . The constraints on �m 

h are compatible 
nd show comparable uncertainties to the clustering analyses on 
he fiducial and alternative lens galaxy samples using DES Y3 
ata (Porredon et al. 2022 ; P ande y et al. 2022 ), but probing a
omplementary, much higher redshift range. This part also showcases 
he robustness of the galaxy clustering analysis, which is highly 
on-trivial when using galaxy samples going as faint as i ∼ 23 in
ES Y3 data. 
The definition and characterization of high-redshift galaxy sam- 

les in this work represents the first step to analyse the 0.8 < z

 2.5 redshift range made by DES and other Stage III surv e ys. It
herefore develops the tools that will enable similar analyses with 
ther data sets, including Rubin LSST and Euclid , and it opens the
oor to a range of scientific analyses exploiting the unique nature of
he selections. In subsequent publications, we will explore this set of
pplications using the samples defined in this work. We will present 
he cross-correlation of High- z galaxies with CMB lensing maps 
rom SPT and Planck , providing crucial constraints on S 8 at high
edshift (Planck Collaboration VIII 2020 ; Omori et al. 2023 ). We will
lso study their cross-correlations with galaxy lensing, probing S 8 , 
ensing magnification and intrinsic alignments at high redshifts, and 
he clustering cross-correlations with lower redshift galaxies, probing 
ensing magnification and the redshift evolution of galaxy bias. The 
edshift regime of these samples is also well suited to study the star
ormation history using cross-correlations with the cosmic infrared 
ackground (Jego et al. 2023a , b ). The outcome of these analyses
ill provide important information about this particularly unexplored 
eriod in the Universe, and will set the tools and expectations for
uture analyses with more powerful data sets. 
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PPENDIX  A :  REDSHIFT  DISTRIBU TION  

NCERTAINTIES  

n this section, we go o v er the redshift calibration presented in
ection 5 in detail. 

1 Redshift uncertainty parametrization 

e can express the parametric N ( z ) error model as 

 i ( z, θ
i , A 

i 
low −z ) = C N i ×

{
G i A 

i 
low −z z ≤ 0 . 5 

G i (1 − A 

i 
low −z ) z > 0 . 5 

G i ( z, θ
i ) = C G i 

×
{

F i ( y) | z − z̄ i | ≤ 2 � z i 

F i ( z) | z − z̄ i | > 2 � z i 

y = σ i 
z ( z − �z i − z̄ ) + ̄z 

z̄ i = 

∫ 
z F i ( z) dz 

� z i = 

√ ∫ 
( z − z̄ i ) 2 F i ( z) d z 

F i ( z) = i -th Fiducial redshift distribution 

θ i = { �z i , σ i 
z } 

( C N i ) 
−1 = 

∫ 
N i ( z, θ

i , A 

i 
low −z ) d z 

( C G i 
) −1 = 

∫ 
G i ( z, θ

i ) d z (A1) 

ith �z i the shift, σ i 
z the stretch and A 

i 
low −z the low redshift fraction

ree parameters of the model. 
A visualization of the shift, stretch and low- z fraction parameters 

an be seen in Fig. 11 . On the one hand, the galaxy clustering
ignal cares both about the mean redshift of the distribution but 
lso of its spread in redshift, as the more spread out galaxies are
he less physically correlated they become, reducing the clustering 
ignal. On the other hand, the majority of the selected galaxies live
rimarily at high redshift, but with griz colours a population of
ow- z galaxies leaks into the selection, especially in our highest 
edshift bin, producing a distinct clustering signal than that of the 
igh redshift galaxies. Furthermore, we smooth the fiducial redshift 
istribution with a Savitzky–Golay filter: sample variance and shot 
oise from the small area of the calibration deep fields manifests
n the N ( z) as rapid fluctuations in redshift and enter squared in the
alaxy clustering signal, while the true redshift distribution o v er a
arger area is way more smooth as these variations average out. We
ry different smoothing lengths and find compatible constraints on 
he main parameters of interest (see Appendix A6 ). 

2 Redshift biases 

o measure the colour–redshift relation in the deep fields, we build
ur redshift sample from a combination of the redshift information 
hat we ha ve a vailable from spectroscopic and multiband photo-

etric redshifts, SPC (see Section 2.3 ). Whenever a galaxy has
pectroscopic measurements, we use them. Alternatively, we use 
hotometric redshifts from the PAUS + COSMOS , and when that is
ot available we use redshifts from COSMOS2015 . After removing 
olour regions with significant stellar contamination and retraining 
he Deep SOM (see Section 3 ), we find that only 9 out of 2304 cells
0.4 per cent) do not hav e an y o v erlapping redshifts, but relativ e to
he probability of finding galaxies in these cells p ( c ), they amount
o only 0.1 per cent of the probability. Each tomographic bin relates
ith different probability to each deep cell, and when we take that

nto account the relative probability without redshift information in 
ach tomographic bin is 0.1 per cent, 0 per cent, and 0 per cent. 

We only use high-quality spectroscopic redshifts; therefore, we as- 
ume the spectroscopic redshifts are accurate and precise. Ho we ver, 
he photo- z from COSMOS2015 and PAUS + COSMOS are estimated
rom multiband photometric band data, with band filters spanning 
 wide range in wavelength and with multiple intermediate and 
arro w bands. The indi vidual p ( z) from these catalogs are broader,
ut their width is still negligible compared to the redshift resolution
rom noisier wide field observations with griz broad bands, and so
e simply stack the individual p ( z). Stacking the p ( z) is statistically

ncorrect, and for galaxies where the p ( z) is degenerate between two
ifferent redshift values, or if the p ( z) were wider, then a more correct
echnique should be used (e.g. Leistedt et al. 2016b ; S ́anchez &
ernstein 2019 ; Alarcon et al. 2020 ; Malz & Hogg 2022 ; Rau et al.
022 ). We defer the application of such techniques for future work. 
An additional concern is whether the photo- z estimates from these

atalogs are systematically biased from an incorrect modeling of 
he galaxy SEDs (e.g. Joudaki et al. 2020 ; Myles et al. 2021 ; van
en Busch et al. 2022 ). Here, we measure the bias by comparing
he photo- z estimates of individual objects in both catalogues to
 v erlapping spectroscopic measurements (described in Section 2.3 ). 
or each of these objects, we calculate ( z phot − z spec )/(1 + z spec ),
ith z phot the mode of the p ( z), and we plot the distributions. By
isual inspection, we find that the distributions of COSMOS2015 and 
AUS + COSMOS are generally unimodal, but sometimes slightly 
iased. We define the median bias as a function of the DES deep field
 -band magnitude as 

( i) = Median 

(
z phot − z spec 

1 + z spec 
| i 
)

. (A2) 

Fig. A1 shows b ( i ) from both catalogues: we find a slight positive bias
 ( i ) ∼ 0.002 at faint magnitudes in the PAUS + COSMOS catalogue,
hile the COSMOS2015 catalogue presents a ne gativ e bias reaching
 minimum value of b ( i = 22.5) ∼ −0.005. We model the redshift
ias uncertainty in these samples with a parameter α that shifts the
ndividual p ( z) of COSMOS2015 or PAUS + COSMOS galaxies
one α parameter for each catalogue). This α parameter shifts p ( z)

 p ( z − δ( α, i ) · (1 + z)) by an amount δ that is proportional to the
MNRAS 525, 3896–3922 (2023) 
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M

Figure A1. Median photo- z bias as a function of the deep field DES i -band. 
The bias is calculated for COSMOS2015 and PAUS + COSMOS for galaxies 
where a spectroscopic measurement also exists, with �z = z phot − z spec . This 
measured bias is used to estimate the redshift bias of this catalogues and is 
marginalized o v er in our analysis. See Section A2 for more details. 
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9 We follow the notation introduced in Myles et al. ( 2021 ). 
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edian bias of a galaxy of magnitude i : 

( α, i) = α b( i) (A3) 

e place a Gaussian prior on this parameter and marginalize o v er
t, p( α) = N ( μ = 1 , σ = 1). Therefore, our most likely guess for
he systematic bias is centred at the measured median bias b ( i ), but
e assign an uncertainty equal to the magnitude of b ( i ). Note that

he value α is the same for all galaxies in the same catalog, but the
agnitude of the shift to the p ( z) ultimately depends on both the

edshift and magnitude of each galaxy: δ( α, i ) · (1 + z). 

3 Selection biases 

e empirically measure the prior on the colour–redshift relation
rom the galaxies in the deep field that hav e o v erlapping redshifts.
ince we do not parametrize this prior and let the parameters update
ierarchically with wide field galaxies, it is crucial to include all
election effects for the final estimate to be unbiased. B ALROG

njects versions of these galaxies into the wide field and allows us
o measure the probability they will be selected into each of our
omographic bins, and therefore to correct for these selection effects.
o we ver, due to the limited number of B ALROG injections, we

annot al w ays measure these ef fects accurately, leading to se veral
pproximations to the SOMPZ methodology described in Section
 . In this section we explain these approximations and their validity,
nd provide a way to marginalize over the potential systematic
iases that they might introduce. 
The first row of panels (from the top) of Fig. A2 show the

istribution of deep field galaxies in the Deep SOM weighted by their
robability of being selected in each tomographic bin as measured by
 ALROG . This distribution is different than the one presented in Fig.
 , where we show the distribution of deep field galaxies weighted
y their probability of being selected at 22 ≤ i ≤ 23.5 according to
 ALROG . Note how in each panel the distribution peaks around Deep
OM cells with high redshift and has little to no o v erlap with cells at

ower redshift, as expected (compare to Fig. A3 for the distribution
f mean redshift in the Deep SOM). 
The redshift distribution of each Deep SOM cell formally depends

n the pre-selections ̂  s and on the Wide SOM cell where galaxies are
elected, p( z| c, ̂  c , ̂  s ), see equation ( A5 ): 
NRAS 525, 3896–3922 (2023) 
( z| ̂  b , ̂  s ) = 

∑ 

ˆ c ∈ ̂ b 
p( z| ̂ c , ̂  s , ˆ b ) p( ̂ c | ̂ s , ̂  b ) (A4) 

= 

∑ 

ˆ c ∈ ̂ b 

∑ 

c 

p ( z| c, ̂  c , ̂  s ) p ( c| ̂ c , ̂  s ) p ( ̂ c | ̂ s , ˆ b ) (A5) 

≈
∑ 

ˆ c ∈ ̂ b 

∑ 

c 

p ( z| c, ̂  b , ̂  s ) p ( c| ̂ c , ̂  s ) p ( ̂ c | ̂ s , ˆ b ) (A6) 

≈
∑ 

ˆ c ∈ ̂ b 

∑ 

c 

p ( z| c, ˆ B , ̂  s ) p ( c| ̂ c , ̂  s ) p ( ̂ c | ̂ s , ˆ b ) (A7) 

≈
∑ 

ˆ c ∈ ̂ b 

∑ 

c 

p ( z| c, ̂  s ) p ( c| ̂ c , ̂  s ) p ( ̂ c | ̂ s , ˆ b ) . (A8) 

Using B ALROG we can empirically measure how often deep field
alaxies c will get through our pre-selections ˆ s and also how often
hey get selected in the different wide field cells ˆ c . However, due
o the limited number of B ALROG injections it is not possible to
ccurately measure the relation between all ( z, c, ˆ c ). Following
yles et al. ( 2021 ), we use the approximation shown in equation

 A6 ) for our fiducial estimation of the redshift distribution of deep
ells using p( z| c, ̂  c ) ≈ p( z| c, ̂  b ), with ˆ b representing the set of ˆ c of
 tomographic bin. When no redshift galaxy satisfies both c and ˆ b
hen we use p( z| c, ˆ B , ̂  s ) (equation A7 ) using redshift information
rom galaxies that are selected into any of the tomographic bins
ˆ 
 ≡ { ̂  b 0 , ˆ b 1 , ˆ b 2 } , or else p( z| c, ̂  s ) (equation A8 ), using redshift

nformation from any galaxies satisfying our pre-selection ˆ s . 
The second row of panels of Fig. A2 shows the difference in

he mean redshift of each cell from including the tomographic bin
election, showing: 

 〈 z〉 i ≡
∫ 

z p( z| c, ̂  b i , ̂  s ) d z −
∫ 

z p( z| c, ̂  s ) d z 

≡ 〈 z | ˆ b i 〉 − 〈 z〉 . (A9) 

ote how the � 〈 z〉 i values tend to be close to 0 where the distribution
f p ( c | b i ) peaks (top panels), as most galaxies from these cells get se-
ected very often into that tomographic bin. Ho we ver, note that � 〈 z〉 i 
hows larger differences at the tails of the p ( c | b i ) distribution. In such
ells, generally speaking, galaxies with a redshift that is closer to the
verage redshift of the tomographic bin get preferentially selected,
nd consequently cells with a 〈 z〉 smaller than the average redshift
f the bin tend to have a positive � 〈 z〉 i , and vice versa. This effect
s very clear in bin 0, where cells at the lower part of the SOM have
 〈 z〉 that is smaller than the typical redshift of galaxies in bin 0, and
hey show a positive � 〈 z〉 0 , implying that additionally conditioning
n the tomographic bin tends to increase the mean redshift of these
ells. We find the contrary for cells at the top of the SOM, which
ave a 〈 z〉 that is larger than the typical redshift of galaxies in this bin
nd they present a ne gativ e � 〈 z〉 0 that lowers the average redshift of
he cell when we condition their selection to the bin. 

This highlights how important it is to at least include the so-
alled bin conditionalization , 9 i.e. using p( z| c, ̂  b , ̂  s ) instead of just
( z| c, ̂  s ). Otherwise one will introduce important selection effect
iases, as those found by Buchs et al. ( 2019 ), where they found a
ositive bias for low redshift bins relative to the average redshift
nd a ne gativ e bias for high redshift bins, as a result of just using
( z| c, ̂  s ). More quantitatively, the average difference in mean redshift
er tomographic bin, measured as 

∑ 

c p( c| ̂  b i )( 〈 z | ˆ b i 〉 − 〈 z〉 ), is ( −
, 11, 12) × 10 −3 , which is non-negligible. 
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Figure A2. The redshift selection effects and the extrapolated �z selection effect bias. Each column shows a different tomographic bin. The first row of panels 
shows the pdf of deep field cells conditioned on each tomographic bin, p( c| ̂ b i ). The second row of panels shows the mean redshift difference of deep field cells 
when galaxies are additionally conditioned to be observed by B ALROG into our each tomographic bin. The third row of panels shows which cells have some 
galaxy with redshift information selected into the bin by B ALROG (i), which do not (ii)–(iii), and also which do not have any z information (iv) (only five cells 
for bin 0, four for bin 1 and one for bin 2). The fourth row of panels show an extrapolated redshift bias. The redshift bias due to the additional selection of 
galaxies into the bin is extrapolated from (i) cells that have galaxies selected into the bin to cells (ii)–(iii)–(iv) that do not. See Section A3 for more details. 
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The third row of panels in Fig. A2 shows with a colour code which
ells have redshift estimates that include accurate tomographic bin 
election effects. The colour code goes as follows: 

(i) Dark green : Cells that have at least one redshift galaxy that has
een selected by B ALROG into the corresponding tomographic bin, 
e use equation ( A6 ), p( z| c, ̂  b , ̂  s ). 
(ii) Light green : Cells that have do not have any galaxy selected

nto the corresponding tomographic but at least one redshift galaxy 
hat has been selected by B ALROG into one of the other two
omographic bins, we use equation ( A7 ), p( z| c, ˆ B , ̂  s ). 
(iii) Light red : Cells that have do not have any galaxy selected
nto any tomographic bin, but at least some galaxy satisfying our
re-selection ˆ s . We use equation ( A8 ), p( z| c, ̂  s ). 
(iv) Dark red : Cells that have do not have any redshift galaxy

atisfying our pre-selection ˆ s . We do not have direct redshift 
nformation for these cells. 

Note how the � 〈 z〉 i from the second row of panels can only
e calculated for (i)/Dark Green cells in the third row of panels.
he remaining cells do not have any galaxy selected by B ALROG

nto the corresponding tomographic bin, and bin conditionalization 
MNRAS 525, 3896–3922 (2023) 
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M

Figure A3. Deep SOM mean redshift. The modified terrain colour map high- 
lights the different mean redshift levels, with the flooded area roughly showing 
redshifts below our samples and our high- z galaxies lifting out of the oceans 
of low- z galaxies. The grassy area roughly shows the redshifts of our first two 
tomographic bins, while the north-northwest hill shows the area of our highest 
redshift bin. Going south we find the snowed peaky island showing the area of 
very high redshift Lyman-break galaxies, with very low redshift Balmer-break 
galaxies lurking below the icy glaciers of Lyman-break galaxies. 
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Figure A4. Mean redshift difference for each wide field cell between 
using cell conditionalization (cellcond) or bin conditionalization (bincond). 
Cellcond refers to conditioning the redshift distribution of Deep SOM cells to 
galaxies that are selected into each Wide SOM cell (i.e. using equation A5 ). 
In contrast, Bincond only requires galaxies to have been selected into any 
Wide SOM cell belonging to the tomographic bin (i.e. using equation A6 ). 
As expected, Wide SOM cells with lower redshift within the bin have a lower 
estimated mean redshift when we additionally require deep field galaxies to be 
selected into that particular Wide SOM cell. See Section A3.1 for more details. 
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annot be estimated directly, which is a source of potential systematic
ncertainty. We test this effect by calculating the mean redshift bias
n Dark Green cells from neglecting the bin conditionalization, and
xtrapolating it to other nearby cells using a Gaussian smoothing. The
ast row of panels in Fig. A2 shows the bias values from extrapolation
or every deep cell, showing that certain groups of cells have
nder-/o v erestimated mean redshifts. We parametrize this possible
ystematic bias with the same parameter ε that shifts the p ( z| c ) →
 ( z − ε( β, c ) | c ) of each deep cell; with ε( β, c) = β b( c); and b ( c )
he estimated systematic bias from the last row of panels in Fig. A2 .

e place a Gaussian prior on this parameter and marginalize o v er it,
( β) = N ( μ = 1 , σ = 1). Fig. 12 shows that this missing selection
ffect (labelled as BCE in the figure) has a v ery ne gligible effect to
ll the N ( z) parameters relative to the other sources of uncertainty. 

3.1 Cell conditionalization 

n additional source of systematic error comes from the approxima-
ion of using bin conditionalization (or bincond, equation A6 ) instead
f the exact cell conditionalization (or cellcond, equation A5 ). Fig.
4 explores the difference in mean redshift for (i)/Dark Green cells
etween using cellcond and bincond. We find a clear (but somewhat
oisy) trend, where cells within a tomographic bin with a lower than
verage mean redshift have an overestimated mean redshift, and vice
 ersa, as e xpected. The o v erall trend within the same tomographic
in is centred around 0, as bincond already corrects for most of the
 v erall redshift selection effect bias. 
We have calculated the N ( z) using cellcond, and despite the large

iased trend seen in Fig. A4 , we have found that the resulting n ( z)
rom using cellcond presents very similar mean redshift, width and
ow redshift fraction values to those obtained from just using bincond.
pon closer inspection, the p ( z| c, ̂  c ) and p ( z| c, ̂  b ) distributions differ

t their tails, which produces significant changes to their mean
edshifts 〈 z| c, ̂  c 〉 and 〈 z| c, ̂  b 〉 , but this effect ends up cancelling
ut after adding up the contributions from each deep field cell to
NRAS 525, 3896–3922 (2023) 
alculate the final N ( z) for each bin. Although this effect cancels for
hese samples and for the summary statistics rele v ant to this work,
e suggest it should be verified for other galaxy samples. 

4 Zero-point uncertainty 

s measured in Hartley et al. ( 2022 ), the deep field photometry
as some residual photometric zero point error. This error is largest
n the u -band (0.055), and much smaller in the other bands: 0.005
n griz and 0.008 in JHK (table 5 in Hartley et al. ( 2022 )). This
n principle impacts our analysis in two ways. First, most of the
edshift information is in the COSMOS fields, while X3, C3, E2 have
ittle or no redshift information. Therefore, we are extrapolating the
edshift information measured in one field to the colours of all fields,
nd measuring the colour abundance from all fields. The zero-point
ncertainty affects the accuracy of this extrapolation, as well as the
easured deep colour abundance. On the other hand, a zero-point

rror on the deep field fluxes introduces an error in the input injected
odel fluxes used by B ALROG , which in turn will induce a slight

rror on the distribution of reco v ered wide field B ALROG fluxes.
ince the error in the u band is the largest, there is no u band in the
ide field, and the zero-point errors in griz are small, we assume

he former is the only form of zero-point error we need to worry
bout. 

Since the zero-point photometric uncertainty is mainly measured
rom the variance of the stellar and red galaxy loci between each
and and field (for full details see Hartley et al. 2022 ), we perturb
he zero-point magnitude of each deep field (X3, C3, E2, COSMOS)
nd band by an amount drawn from a Gaussian distribution with
ero mean and variance equal to the measured variance from Hartley
t al. ( 2022 ). Since only the relative zero-point matters, we fix the
ero-point of one of the fields (COSMOS) and perturb the zero-
oint of the remaining fields (X3, C3, E2). We marginalize o v er this
ncertainty by (i) drawing 3 zero-point shifts for each X3, C3, E2
eld, (ii) we modify the fluxes and flux errors by the corresponding
mount, (iii) we reassign each galaxy to the Deep SOM based on the
erturbed fluxes, and (iv) we re-calculate the n ( z ) based on this new
ssignment. 
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Figure A5. Wide SOM mean redshift variance from zero-point photometric 
uncertainty. The top panel shows the scatter in the mean redshift of each 
Wide SOM cell σ zp from perturbing the fluxes of Deep SOM galaxies with 
the zero-point photometry uncertainty, weighted by 1 + 〈 z〉 zp , with the latter 
being the average mean redshift from the same variations. The bottom panel 
shows 〈 z〉 zp for each Wide SOM cell for reference. Overlaid we can see the 
cells of the Wide SOM that constitute the three tomographic bins used in 
this work, following the procedure described in Section 3.3 and Fig. 4 . See 
Section A4 for more details. 
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Figure A6. Visualization of the smoothing procedure applied to the raw 

redshift distributions using a Savitzsky Golay (SG) filter. A fiducial set of 
distributions is presented, along with two alternative sets using lower (higher) 
amounts of smoothing, as described in Appendix A6 . 

Figure A7. Comparison of the parameter constraints from galaxy clustering 
using higher and lower amounts of N ( z) smoothing, and no smoothing, as 
described in Appendix A6 , demonstrating the small impact of the smoothing 
step in the analysis. 
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Fig. A5 shows the resulting variance in mean redshift for each 
ide SOM cell in the top panel, as a result of perturbing the fluxes

f the deep field galaxies. The average mean redshift shown in 
he bottom panel for reference, with the cells pertaining to each 
omographic bin indicated with different colours. As expected, we 
nd a large effect in cells with a low redshift, as the u -band
ncertainty is the largest, which affects the classification of low 

edshift galaxies. We also find a large effect in some of the wide cells
hat have a high mean redshift but that are next to wide cells with
ow redshift, i.e. cells that are near colour-redshift degeneracies. 

5 Redshift uncertainty parameter priors 

o estimate the priors p ( �z i ), p( σ i 
z ) and p( A 

i 
low −z ) on these pa-

ameters we draw { n k ( z) } samples from the sources of uncertainty
escribed in this Appendix, and for each individual realization k 
e calculate its summary statistics { � 

i,k 
z , σ i,k 

z , A 

i,k 
low −z } . We find
MNRAS 525, 3896–3922 (2023) 
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Figure B1. Comparison of the diagonal elements of the theory and jackknife 
covariance matrices for the autocorrelations of angular galaxy clustering for 
the three redshift bins (0,1,2) defined in this work. The methodology for the 
measurements and covariance can be found in Section 7.2 and Appendix B . 
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hat the sampled distributions look nearly Gaussian (Fig. 12 ), and
herefore we assume a Gaussian distribution for each p ( �z i ), p( σ i 

z )
nd p( A 

i 
low −z ), and calculate their mean and width from the average

nd standard deviation of the sampled values. 
In total, we have 24 zero point systematic shifts (8 bands and 3 out

f 4 fields), two redshift systematic shifts (one for COSMOS2015 and
ne for PAUS + COSMOS ) and one selection effect bias parameter.
e draw 100 samples in quantile space using Latin hypercube

ampling, a stratified random sampling technique for generating
ear-random samples of parameter values that is more efficient than
 pure random sampling. For each of these 100 samples we shift the
 ( z) of individual galaxies, we shift the deep fluxes of galaxies and
eassign them to deep cells. Then for each of these 100 samples we
enerate 5,000 N(z) samples using 3SDIR . We properly weight deep
eld galaxies injected by Balrog by the clustering weight (Section 4 )
f the spot where they were injected. We produce samples for all the
rea, and the North ( Planck ) and South (SPT) regions. 

The fiducial redshift distribution F ( z) of equation ( A1 ) is the av-
rage N ( z) of the distribution samples with an additional smoothing.
e apply a Savitzky-Golay filter on the average N ( z), using a 0.21

moothing length in redshift for Bins 0 and 1, while for Bin 2 we use
 combination of two smoothing lengths: we use a length of 0.21 at
 < 0.5 and a length of 0.45 for z > 0.5. 

6 Smoothing of the redshift distributions 

he redshift inference methodology described in Section 3 is subject
o effects of shot noise and especially sample variance in the redshift
amples (S ́anchez et al. 2020 ), which result in noisy estimates of the
edshift distributions of our tomographic bins. The uncertainties com-
ng from these effects are properly taken into account in Section 5 .
n addition, we also apply a smoothing procedure to the redshift
istributions used in this work, since noise in the redshift distributions
ight cause instabilities in the analysis of galaxy clustering. For that

urpose, we apply a Savitzsky Golay (SG) filter with a third-order
olynomial to the raw redshifts distributions, as depicted in Fig. A6 .
n our fiducial case, the length of the filter window is set to 0.21 in
edshift for the low redshift part of the distributions ( z < 0.5), and
.45 in redshift for the higher redshift part of the distributions ( z
 0.5). In order to test the stability of our results to the particular

moothing filter choices, we define two alternative sets of smoothed
edshift distributions, corresponding to lower (higher) smoothings,
sing SG filters with window lengths of 0.15 (0.27) in redshift for
he low redshift part of the distributions ( z < 0.5), and 0.27 (0.55) in
edshift for the higher redshift part of the distributions ( z > 0.5). The
omparison between the raw estimates and the smoothed versions of
he redshift distributions for the three tomographic bins is shown in
ig. A6 . Then, in Fig. A7 , we test the impact of the smoothing step in

he parameter constraints from the galaxy clustering measurements
sed in this paper, and find negligible impact, even for the case of no
moothing of the redshift distributions. 

PPENDIX  B:  C O M PA R I S O N  BETWEEN  J K  

N D  T H E O RY  C OVA R I A N C E  

n this section, we compare the two covariance estimates (based on
aussian simulations, and based on Jackknife estimates) presented

n Section 7 . In order to generate each realization of the Gaussian
imulations, we generate a set of four maps following the procedure
etailed in Giannantonio et al. ( 2008 ). In order to obtain correlated
aps with the correct power spectrum, we have to generate a set

f correlated (in-phase) screens with an amplitude T i , k , where the
NRAS 525, 3896–3922 (2023) 
ubindex i refers to the final map, and k to the phase. So we
dd all contributions with the same index i to get the i th map,
nd all screens that have the same index k are generated using
he same random seed (are in-phase). Each screen is generated
sing hp.anafast(T ∗∗2 ij, nside) . The amplitudes T ik are
alculated as follows: 

 1 a = 

√ 

C 

00 

 , (B1) 

 2 a = 

C 

01 

 

T 1 a 
, (B2) 

 2 b = 

√ 

C 

11 

 − T 2 2 a , (B3) 

 3 a = 

C 

02 

 

T 1 a 
, (B4) 

 3 b = 

C 

12 

 − T 2 a 

T 3 a 
, (B5) 

 3 c = 

√ 

C 

22 

 − T 2 3 a − T 2 3 b , (B6) 

 4 a = 

C 

0 κ

 

T 1 a 
, (B7) 

 4 b = 

C 

1 κ

 − T 2 a T 4 a 

T 2 b 
, (B8) 

 4 c = 

C 

2 κ

 − T 3 a T 4 a − T 3 b T 4 b 

T 3 c 
, (B9) 

 4 d = 

√ 

C 

κκ

 − T 2 4 a − T 2 4 b − T 2 4 c . (B10) 

e generate 100 realizations of these maps, and get their covariance.
e compare the resulting covariance with the Jackknife estimate in
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ig. B1 . In this figure, we can see that the diagonal terms from both
ovariance estimates are in excellent agreement in the range of scales 
hat we are considering. 

PPENDIX  C :  FA LSE  C O R R E C T I O N  TEST  O F  

N - W E I G H T S  

n this section, we verify that the neural network architecture and 
he k-fold cross-validation described in Section 4.2 do not introduce 
ignificant artificial correlations due to o v erfitting or from treating 
ixels with n > 2 galaxies as n = 1. In general, correction methods
ork by removing the spurious clustering introduced by varying 
bserving conditions, therefore reducing the amplitude of w( θ ) after 
orrection has been applied. Here, we use unaltered simulations to 
est if the NN introduces any overcorrection. 

We use the public MICEv2 simulations (Fosalba et al. 2015 ) 
nd perform the following cuts: 0 . 8 < z cgal < 1 . 0 and 18 <
es asahi full i true < 23 . 5. Since MICE only spans one 
ctant, which we replicate and mirror it 8 times so it spans the full
ky, after which we apply the High-z redshift samples mask and 
ubsample to the galaxy density of Bin 0. We use this unaltered
ock catalog, together with the same DES surv e y property maps

rom Section 4.1 , to train the neural network weights. We do this
ultiple times to account for possible run-to-run variations of the 
N best-fitting weights. 
Fig. C1 shows the ratio between the simulated w( θ ) and the

orrected one after training the NN and applying the resulting 
eights. The black bands show the distribution for different multiple 

raining runs. Values greater than unity indicate an o v ercorrection of
he neural network training. We find the o v ercorrection is well within
he statistical uncertainty in the scales of interest, al w ays lower than
0 per cent of the statistical uncertainty at an y giv en used scale,
nd much smaller than that in the combined set of used angular
cales. 

igure C1. False detection bias in unaltered mock catalogues. It shows the
imulated angular clustering from the unaltered mock catalog w 

true ( θ ) divided
y the same angular clustering corrected by the NN-weights w 

weighted ( θ ). The
lack bands show the ±1 σ distribution for multiple runs of the NN. Values
reater than unity indicate an o v ercorrection of the neural network training.
he yellow bands indicate the statistical uncertainty using the diagonal of the
ov ariance, relati ve to the measured angular clustering of Bin 0. The bias is
ell within the statistical uncertainty, and al w ays less than 40 per cent of the

tatistical uncertainty in our fiducial scales. 
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