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We constrain cosmological parameters and galaxy-bias parameters using the combination of galaxy
clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey (DES) year-3 data. We
describe our modeling framework and choice of scales analyzed, validating their robustness to theoretical
uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy-bias model and
redMaGiC galaxy sample, we obtain 10% constraints on the matter density of the Universe. We also
implement a nonlinear galaxy-bias model to probe smaller scales that includes parametrization based on
hybrid perturbation theory and find that it leads to a 17% gain in cosmological constraining power. We
perform robustness tests of our methodology pipeline and demonstrate stability of the constraints to
changes in the theory model. Using the redMaGiC galaxy sample as foreground lens galaxies and adopting
the best-fitting cosmological parameters from DES year-1 data, we find the galaxy clustering and galaxy-
galaxy lensing measurements to exhibit significant signals akin to decorrelation between galaxies and mass
on large scales, which is not expected in any current models. This likely systematic measurement error
biases our constraints on galaxy bias and the S8 parameter. We find that a scale-, redshift- and sky-area-
independent phenomenological decorrelation parameter can effectively capture this inconsistency between
the galaxy clustering and galaxy-galaxy lensing. We trace the source of this correlation to a color-
dependent photometric issue and minimize its impact on our result by changing the selection criteria of
redMaGiC galaxies. Using this new sample, our constraints on the S8 parameter are consistent with
previous studies and we find a small shift in theΩm constraints compared to the fiducial redMaGiC sample.
We infer the constraints on the mean host-halo mass of the redMaGiC galaxies in this new sample from the
large-scale bias constraints, finding the galaxies occupy halos of mass approximately 1.6 × 1013 M⊙=h.

DOI: 10.1103/PhysRevD.106.043520

I. INTRODUCTION

Wide-area imaging surveys of galaxies provide cosmo-
logical information through measurements of galaxy clus-
tering and weak gravitational lensing. Galaxies are useful
tracers of the full matter distribution, and their spatial
clustering is used to infer the matter power spectrum. The
shapes of distant galaxies are lensed by the intervening
matter, providing a second way to probe the mass distri-
bution. With wide-area galaxy surveys, these two probes of
the late-time Universe have provided information on both
the geometry and growth of structure in the Universe. In
recent years, the combination of two-point correlations—
galaxy-galaxy lensing (the cross-correlation of lens galaxy

positions with background source galaxy shear) and the
angular autocorrelation of the lens galaxy positions—have
been developed in a theoretical framework [1–5] and used
to constrain cosmological parameters [6–13]. In practice,
two galaxy samples are used: lens galaxies tracing the
foreground large-scale structure and background source
galaxies whose shapes are used to infer the lensing
shear, and this combination of galaxy-galaxy lensing and
galaxy clustering is referred to as “2 × 2pt” data vector.
This is generally complemented with the two-point of
cosmic shear (the lensing shear autocorrelation, referred to
as 1 × 2pt). The Dark Energy Survey (DES) presented
cosmological constraints from their year-1 (Y1) dataset
from cosmic shear [14] and a joint analysis of all three
two-point correlations (henceforth called the “3 × 2pt” data
vector) [15].*shivamp@sas.upenn.edu
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This paper is part of a series describing the methodology
and results of DES year-3 (Y3) 3 × 2pt analysis. The
cosmological constraints are presented for cosmic shear
[16,17] and the combination of galaxy clustering and
galaxy-galaxy lensing using two different lens galaxy
samples (this paper and Refs. [18,19]), as well as the
3 × 2pt analysis [20]. These cosmological results are
enabled by extensive methodology developments at all
stages of the analysis from pixels to cosmology, which are
referenced throughout. This paper presents the modeling
methodology and cosmology inference from DES Y3
galaxy clustering [21] and galaxy-galaxy lensing [22]
measurements. We focus on the redMaGiC [23] galaxy
sample, described further below. A parallel analysis using a
different galaxy sample, the MagLim sample [24], is
presented in a separate paper [18].
Incomplete theoretical understanding of the relationship

of galaxies to the mass distribution, called galaxy bias,
has been a limiting factor in interpreting the lens galaxy
autocorrelation function [denoted wðθÞ] and galaxy-galaxy
lensing [denoted γtðθÞ]. At large scales, galaxy bias can be
described by a single number, the linear bias b1. On smaller
scales, bias is nonlocal and nonlinear, and its description is
complicated [25,26]. Perturbation theory (PT) approaches
have been developed for quasilinear scales ∼10 Mpc,
though the precise range of scales of its validity is a subtle
question that depends on the galaxy population, the
theoretical model, and the statistical power of the survey.
With a model for galaxy bias, wðθÞ and γt measurements,

together called the “2 × 2pt” data vector, can probe the
underlying matter power spectrum. They are also sensitive
to the distance-redshift relation over the redshift range of
the lens and source galaxy distributions. These two data
vectors constitute a useful subset of the full 3 × 2pt data
vector, since bias and cosmological parameters can both be
constrained [though the uncertainty in galaxy bias would
limit either wðθÞ or γtðθÞ individually].
A major part of the modeling and validation involves

PT models of galaxy bias and tests using mock catalogs
based on N-body simulations with various schemes of
populating galaxies. Approaches based on the halo occu-
pation distribution (HOD) have been widely developed and
are used for the DES galaxy samples. For the year-3 (Y3)
dataset of DES, two independent sets of mock catalogs
have been developed, based on the Buzzard [27] and MICE
simulations [28–30].
An interesting recent development in cosmology is a

possible disagreement between the inference of the expan-
sion rate and the amplitude of mass fluctuations (denoted
σ8) and direct measurements or the inference of these
quantities in the late-time Universe. The predictions are
anchored via measurements of the cosmic microwave
background (CMB) and use general relativity and a
cosmological model of the Universe to extrapolate to late
times. This cosmological model, denoted by ΛCDM, relies

on two ingredients in the energy budget of the Universe that
have yet to be directly detected: cold dark matter (CDM)
and dark energy in the form of a cosmological constant
denoted as Λ. The experiments that infer the cosmological
constraints using the lensing of source galaxies, particularly
using the cosmic-shear 2pt correlation, are unable to gen-
erally break the degeneracy between Ωm and σ8. A derived
parameter, S8 ¼ σ8ðΩm=0.3Þ0.5, is well constrained as it
approximately controls the amplitude of the cosmic-shear
correlation function. The value of S8 or σ8 inferred from
measurements of cosmic shear and the 3 × 2pt data vector
[14–17,20,31–33], from galaxy clusters [34,35] and the
redshift-space power spectrum [36] tends to be lower than
the CMB prediction. The significance of this tension is a
work in progress and crucial to the viability of ΛCDM. The
Hubble tension refers to the measured expansion rate being

FIG. 1. Comparison of simulated constraints on cosmological
parameters Ωm and S8 from cosmic shear alone (1 × 2pt), galaxy
clustering þ galaxy-galaxy lensing (2 × 2pt) and including all
three probes (3 × 2pt). This plot uses a simulated noiseless
baseline data vector (see Sec. IV B) and shows that 2 × 2pt
adds complementary information to cosmic-shear constraints,
particularly, providing stronger constraints on Ωm and w.
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higher than predicted by the CMB. The resolution of the
two tensions, and their possible relationship, is an active
area of research in cosmology and provides additional
context for the analysis presented here.
Figure 1, based on simulated data, shows the expected

constraints on S8 and Ωm from the 2 × 2pt data vector and
cosmic shear (1 × 2pt). It is evident that the two have some
complementarity, which enables the breaking of degener-
acies in both ΛCDM and wCDM cosmological models
(where w is the dark energy equation of state parameter and
w ≠ −1 points toward the departure from the standard
ΛCDM model). Particularly noteworthy are the signifi-
cantly better constraints compared to 1 × 2pt on the
parameter w and Ωm using 2 × 2pt in the wCDM and
ΛCDM models, respectively. Note that unlike in 1 × 2pt,
where all the matter in front of source galaxy contributes to
its signal, 2 × 2pt receives contribution only from galaxies
within the narrow lens redshift bins. Therefore, we attribute
better constraints on these cosmological parameters from
2 × 2pt to significantly more precise redshifts of the lens
galaxy sample. This allows for precise tomographic mea-
surements of 2 × 2pt data vector which constrains the
background geometric parameters like w and Ωm. With
data, these somewhat independent avenues to cosmology
provide a valuable cross-check, as the leading sources of
systematics are largely different.
The formalism used to compute the 2 × 2pt data vector is

presented in Sec. II. The description of the lens and source
galaxy samples, their redshift distributions and measure-
ment methodology of our data vector and its covariance
estimation are presented in Sec. III. In Sec. IV we validate
our methodology using N-body simulations and determine
the scale cuts for our analysis. Note that in this paper we
focus on validation of analysis when using the redMaGiC
lens galaxy sample and we refer the reader to Porredon
et al. [18] for validation of analysis choices for the MagLim
sample. The results on data are presented in Sec. V, and we
conclude in Sec. VI.

II. THEORETICAL MODEL

A. Two-point correlations

Here we describe the hybrid perturbation theory (PT)
model used to make theoretical predictions for the two-
point statistics wðθÞ and γtðθÞ.

1. Power spectrum

To compute the two-point projected statistics wðθÞ and
γtðθÞ, we first describe our methodology of predicting
galaxy-galaxy and galaxy-matter power spectra (Pgg and
Pgm, respectively). PT provides a framework to describe the
distribution of biased tracers of the underlying dark matter
field in quasilinear and linear scales. This framework
allows for an order-by-order controlled expansion of the
overdensity of biased tracer (here galaxies) in terms of the
overdensity of the dark matter field where successively
higher-order nonlinearities dominate only in successively
smaller-scale modes. Wewill analyze two PTmodels in this
analysis, a hybrid linear bias model (that is complete only at
first order) and a hybrid one-loop PT model (that is
complete up to third order).
For the linear bias model, we can write the galaxy-matter

cross spectrum as PgmðkÞ ¼ b1Pmm and autopower spec-
trum of the galaxies as PggðkÞ ¼ b21PmmðkÞ. Here b1 is the
linear bias parameter and PmmðkÞ is the nonlinear power
spectrum of the matter field. We use the nonlinear matter
power spectrum prediction from Takahashi et al. [37] to
model PmmðkÞ (referred to as Halofit hereafter). We use the
Bird, Viel, and Haehnelt [38] prescription to model the
impact of massive neutrinos in this Halofit fitting formula.
We refer the reader to Krause et al. [39] for robustness of
our results despite the limitations of these modeling choices
(cf. [40] for an alternative modeling scheme).
In the hybrid one-loop PT model used here, Pgm and Pgg

can be expressed as

Pgmðk; zÞ ¼ b1Pmmðk; zÞ þ
1

2
b2Pb1b2ðk; zÞ þ

1

2
bsPb1s2ðk; zÞ þ

1

2
b3nlPb1b3nlðk; zÞ þ bkk2Pmmðk; zÞ; ð1Þ

Pggðk; zÞ ¼ b21Pmmðk; zÞ þ b1b2Pb1b2ðk; zÞ þ b1bsPb1s2ðk; zÞ þ b1b3nlPb1b3nlðk; zÞ þ
1

4
b22Pb2b2ðk; zÞ

þ 1

2
b2bsPb2s2ðk; zÞ þ

1

4
b2sPs2s2ðk; zÞ þ 2b1bkk2Pmmðk; zÞ: ð2Þ

Here the parameters b1, b2, bs; b3nl and bk are the
renormalized bias parameters [41]. The kernels Pb1b2 ,
Pb1s2 , Pb1b3nl , Pb2b2 , Pb2s2 and Ps2s2 are described in Saito
et al. [42] and are calculable from the linear matter power
spectrum. We validated this model in Pandey et al. [43]
using 3D correlation functions, ξgg and ξgm, of redMaGiC

galaxies measured in DES-like MICE simulations [28–30].
These configuration space statistics are the Fourier trans-
forms of the power spectra mentioned above. We found this
model to describe the high signal-to-noise 3D mea-
surements on the simulations above scales of 4 Mpc=h
and redshift z < 1 with a reduced χ2 consistent with one.

DARK ENERGY SURVEY YEAR 3 RESULTS: CONSTRAINTS ON … PHYS. REV. D 106, 043520 (2022)

043520-5



Our tests also showed that, at the projected precision of this
analysis, two of the nonlinear bias parameters (bs and b3nl)
can be fixed to their coevolution values given by bs ¼
ð−4=7Þðb1 − 1Þ and b3nl ¼ ðb1 − 1Þ; while bk can be fixed
to zero. We will use this result as our fiducial modeling
choice for the one-loop PT model.
We note that there are alternative ways of modeling the

scale-dependent nonlinear biasing of galaxies. For exam-
ple, Simon and Hilbert [44] used a template fitting
procedure using the Millennium simulation suite [45],
using a semianalytic galaxy model [46] and obtaining a
significantly higher resolution of interhalo physics.
However, in order to validate the bias model on the scales
above 4 Mpc=h on mock catalogs, the simulation volume
(to minimize cosmic variance) and realistic galaxy selection
are more important than resolution within individual halos.
Due to the larger volume of the Buzzard flock compared to
the Millennium simulation, and detailed DES galaxy
selection modeling in Buzzard and MICE, we believe that
the bias modeling validation performed in Pandey et al.
[43] (and in Sec. IV C) is more direct (not affected by
model imperfections of an intermediate fitting function),
more stringent (due to lower cosmic variance) and more
specific (due to DES-specific galaxy selection). Finally, as
described in Goldstein et al. [47], our two-parameter model
also fits the 3D correlations measurements between matter
and galaxy catalogs at various limiting magnitudes at 2%
level, in both configuration and Fourier spaces in a high-
resolution simulation suite.

2. Angular correlations

In order to calculate our observables wðθÞ and γtðθÞ, we
project the 3D power spectra described above to angular
space. The projected galaxy clustering and galaxy-galaxy
lensing angular power spectra of tomography bins i, j are
given by

Cij
ABðlÞ ¼

2

π

Z
dχ1Wi

Aðχ1Þ
Z

dχ2W
j
Bðχ2Þ

×
Z

dkk2PAB½k; zðχ1Þ; zðχ2Þ�jlðkχ1Þjlðkχ2Þ;

ð3Þ

where AB ¼ gg models galaxy clustering and AB ¼ gκ,
where κ denotes the convergence field, models galaxy-
galaxy lensing. Here Wi

gðχÞ ¼ nigðzðχÞÞdz=dχ is the nor-
malized radial selection function of lens galaxies for
tomographic bin i, and Wi

κ is the tomographic lensing
efficiency of the source sample

Wi
κðχÞ ¼

3ΩmH2
0

2

Z
∞

χ
dχ0n0s½zðχ0Þ�

χ

aðχÞ
χ0 − χ

χ0
; ð4Þ

with nig=sðzÞ the normalized redshift distribution of the
lens or source galaxies in tomography bin i. For the
galaxy-galaxy lensing observable, we use the Limber
approximation [48,49] which simplifies Eq. (3) to

Cij
gκðlÞ ¼

Z
dχ

Wi
gðχÞWj

κðχÞ
χ2

Pgκ

�
k¼ lþ 1=2

χ
; zðχÞ

�
: ð5Þ

In the absence of other modeling ingredients that are
described in the next section, we have Cij

gκðlÞ≡ Cij
gmðlÞ

(similarly Pgκ ≡ Pgm). As described in Fang et al. [50],
even at the accuracy beyond this analysis, it is sufficient to
use the Limber approximation for the galaxy-galaxy
lensing observable, while for galaxy clustering this may
cause significant cosmological parameter biases.
To evaluate galaxy clustering statistics using Eq. (3), we

split the predictions into small and large scales. The non-
Limber correction is only significant on large scales where
nonlinear contributions to the matter power spectra as well
as galaxy biasing are subdominant. Therefore we use the
Limber approximation for the small-scale nonlinear cor-
rections and use non-Limber corrections strictly on large
scales using linear theory. Schematically, i.e., ignoring
contributions from redshift-space distortions and lens
magnification (see [39] for details), the galaxy clustering
angular power spectrum between tomographic bins i and j
is given by

Cij
ggðlÞ ¼

Z
dχ

Wi
gðχÞWj

gðχÞ
χ2

�
Pgg

�
lþ 0.5

χ
; χ

�
− bi1b

j
1Plin

�
lþ 0.5

χ
; χ

��

þ 2

π

Z
dχ1bi1W

i
gðχ1ÞD½zðχ1Þ�

Z
dχ2b

j
1W

j
gðχ2ÞD½zðχ2Þ�

Z
dk
k
k3Plinðk; 0Þjlðkχ1Þjlðkχ2Þ; ð6Þ

where DðzðχÞ) is the growth factor and Plin is the linear
matter power spectrum. The full model of galaxy cluster-
ing, including the contributions from other modeling
ingredients like redshift-space distortions and lens

magnification that we describe below, is detailed in Fang
et al. [50] and Krause et al. [39].
The real-space projected statistics of interest can be

obtained from these angular correlations via
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wijðθÞ ¼
X 2lþ 1

4π
Pl½cosðθÞ�Cij

ggðlÞ; ð7Þ

γijt ðθÞ ¼
X 2lþ 1

4πlðlþ 1ÞP
2
l½cosðθÞ�Cij

gκðlÞ; ð8Þ

where Pl and P2
l are bin-averaged Legendre polynomials

(see Friedrich et al. [51] for exact expressions).

B. The rest of the model

To describe the statistics measured from data, we have to
model various other physical phenomena that contribute to
the signal to obtain unbiased inferences. In this section, we
describe the leading sources of these modeling systematics.
We have also validated in Krause et al. [39] that higher-
order corrections do not bias our results.

1. Intrinsic alignment

Galaxy-galaxy lensing aims to isolate the percent-level
coherent shape distortions, or shear, of background source
galaxies due to the gravitational potential of foreground
lens galaxies. The local environment, however, including
the gravitational tidal field, can also impact the intrinsic
shapes of source galaxies and contribute to the measured
shear signal. This interaction between the source galaxies
and their local environment, generally known as “intrinsic
alignments” (IA), is nonrandom. When there is a nonzero
overlap between the source and lens redshift distributions,
IA can have a nonzero contribution to the galaxy-galaxy
lensing signal. To account for this effect, we model IAs
using the “tidal alignment and tidal torquing” (TATT)
model [52]. Ignoring higher-order effects, such as lens
magnification (see [19,22]), IA contributes to the galaxy-
shear angular power spectra through the correlation of
lens density and the E-mode component of intrinsic source
shapes: Cij

gκðlÞ → Cij
gκðlÞ þ Cij

gIE
ðlÞ. The Cij

gIE
ðlÞ term is

detailed in Krause et al. [39], Secco et al. [17], Prat et al.
[22], and Blazek et al. [52]. Within our implementation
of the TATT framework, Cij

gIE
ðlÞ for all tomographic bin

combinations i and j can be expressed using five IA
parameters—a1 and a2 (normalization of linear and quad-
ratic alignments); α1 and α2 (their respective redshift
evolution); and bta (normalization of a density-weighting
term)—and the linear lens galaxy bias. Therefore this
model captures higher-order contributions to the intrinsic
alignment of source galaxies as compared to the simpler
nonlinear linear alignment (NLA) model that was used in
the DES Y1 analysis [15,53–55]. In principle, there are also
contributions at one-loop order in PT involving the non-
linear galaxy bias and nonlinear IA terms. However, in this
analysis, we neglect these terms as we expect them to be
subdominant, and they can be largely captured through
the free bta parameter (see Blazek et al. [56] for further
discussion of these terms).

2. Magnification

All the matter between the observed galaxy and the
observer acts as a gravitational lens. Hence, the galaxies
get magnified, increasing the size of galaxy images (para-
metrized by the magnification factor μ) and increasing their
total flux. The galaxy magnification decreases the obser-
ved number density due to stretching of the local sky,
whereas increasing the total flux results in an increase in
number density (as intrinsically fainter galaxies, which
are more numerous, can be observed). This changes the
galaxy-galaxy angular power spectrum to Cij

ggðlÞ →
Cij
ggðlÞ þ 2Cij

μgðlÞ þ Cij
μμðlÞ and the galaxy-shear angular

power spectrum to Cij
gκðlÞ → Cij

gκðlÞ þ Cij
μIE
ðlÞ þ Cij

μκðlÞ.
The auto- and cross-power spectra with magnification
are again given by Eq. (3). For example, Cij

μgðlÞ¼
2ðμi−1ÞCij

gκðlÞ, where, as described below, we fix μi for
the five tomographic bins to ½1.31;−0.52; 0.34; 2.25; 1.97�.
We refer the reader to Krause et al. [39] for the detailed
description of the equations for each of the power spectra.
The magnification coefficients are computed with the

BALROG image simulations [57,58] in a process described
in Elvin-Poole et al. [19]. Galaxy profiles are drawn from
the DES deep fields [59] and injected into real DES images
[60]. The full photometry pipeline [61] and redMaGiC
sample selection are applied to the new images to produce
a simulated redMaGiC sample with the same selection
effects as the real data. To compute the impact of magni-
fication, the process is repeated, this time applying a
constant magnification to each injected galaxy. The mag-
nification coefficients are then derived from the fractional
increase in number density when magnification is applied.
This method captures both the impact of magnification on
the galaxy magnitudes and the galaxy sizes, including all
numerous sample selection effects. A similar procedure is
repeated to estimate the magnification coefficients for the
MagLim sample. We refer the reader to Elvin-Poole et al.
[19] for further details about the impact of magnification on
our observable and their constraints from data.

3. Nonlocality of galaxy-galaxy lensing

The configuration-space estimate of the galaxy-galaxy
lensing signal is a nonlocal statistic. The galaxy-galaxy
lensing signal of sourcegalaxy at redshift zs bymatter around
the galaxy at redshift zl at transverse distance R is related to
the mass density of matter around the lens galaxy by

γtðR; zg; zsÞ ¼
ΔΣðR; zgÞ
Σcritðzg; zsÞ

; ð9Þ

where Σcrit is the critical surface mass density given by

Σcritðzg; zsÞ ¼
c2

4πG
DAðzsÞ

DAðzgÞDAðzg; zsÞ
: ð10Þ
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HereDA is the angular diameter distance, zl is the redshift of
the lens and zs is the redshift of the source. In Eq. (9),
ΔΣðR; zgÞ ¼ Σ̄ð0; R; zgÞ − ΣðR; zgÞ, ΣðR; zgÞ is the surface
mass density at a transverse separation R from the lens and
Σ̄ð0; RÞ is the average surface mass density within a
separation R from that lens. Through the Σ̄ð0; RÞ term, γt
at any scale R is dependent on the mass distribution at all
scales less than R. This makes γt highly nonlocal, and any
model that is valid only on large scales above some rmin will
break down more rapidly than for a more local statistic like
wðθÞ. However, as the dependence on small scales is through
the mean surface mass density, the impact of the mass
distribution inside rmin on γtðθÞ can be written as

γtðR; zg; zsÞ ¼
1

Σcritðzg; zsÞ
�
ΔΣmodelðzgÞ þ

BðzgÞ
R2

�
; ð11Þ

where ΔΣmodel is the prediction from a model (which is
given by PT here) that is valid on scales above rmin (also
see [2]). Here, B is the effective total residual mass below
rmin and is known as the point-mass (PM) parameter. In
this analysis we use the thin redshift bin approximation
(see Appendix A for details of this validation) and hence
the average γt signal between lens bin i and source bin j
can be written as

γijt ¼ γijt;model þGij=θ2; ð12Þ

where

Gij ¼ Bi

Z
dzgdzsnign

j
sΣ−1

critðzg; zsÞχ−2ðzgÞ≡ Biβij: ð13Þ

Here Bi is the PM for lens bin i, nig is the redshift

distribution of lens galaxies for tomographic bin i, and njs
is the redshift distribution of source galaxies for tomo-
graphic bin j.
However, instead of directly sampling over the parameters

Bi for each tomographic bin, we implement an analytic
marginalization scheme as described inMacCrann et al. [62].
We modify our inverse covariance when calculating the
likelihood as described in Sec. III D 2. We note that this
scheme of adding andmarginalizing over the PMparameters
is equivalent to alternative procedures [63,64] for mitigating
the impact of unmodeled nonlinear small-scale physics to the
large scales.

III. DATA DESCRIPTION

A. DES Y3

The full DES survey was completed in 2019 using the
Cerro Tololo Inter-American Observatory 4-m Blanco
telescope in Chile and covered approximately 5000 square
degrees of the South Galactic Cap. This 570-megapixel
dark energy camera [65] images the field in five broadband

filters, grizY, which span the wavelength range from
approximately 400 to 1060 nm. The raw images are
processed by the DES data management team [66,67]
and after a detailed object selection criteria on the first
three years of imaging data (detailed in Abbott et al. [15]),
the Y3 GOLD dataset containing 400 million sources is
constructed (single-epoch and coadd images are available
[68] as data release 1). We further process this GOLD
dataset to obtain the lens and source catalogs described in
the following subsections.

1. redMaGiC lens galaxy sample

The principal lens sample used in this analysis is selected
with the redMaGiC algorithm [23] run on DES year-3 data.
redMaGiC selects luminous red galaxies according to
the magnitude-color-redshift relation of red-sequence gal-
axies, calibrated using an overlapping spectroscopic sam-
ple. This procedure is based on selecting galaxies above a
threshold luminosity that fit (using χ2RM as goodness-of-fit
criteria) this redMaGiC template of magnitude-color-red-
shift relation to a threshold better than χ2RM < χ2max. The
value of χ2max is chosen such that the sample has a constant
comoving space density and is typically less than 3. The
full redMaGiC algorithm is described in Rozo et al. [23],
and after application of this algorithm to DES Y3 data, we
have approximately 2.6 million galaxies.
Rodríguez-Monroy et al. [21] found that the redMaGiC

number density fluctuates with several observational prop-
erties of the survey, which imprints a noncosmological bias
into the galaxy clustering. To account for this we assign a
weight to each galaxy, which corresponds to the inverse of
the angular selection function at that galaxy’s location. The
computation and validation of these weights are described
in Rodríguez-Monroy et al. [21].

2. MagLim lens galaxy sample

DES cosmological constraints are also derived using a
second lens sample, MagLim, selected by applying the
criterion i < 4zþ 18 to the GOLD catalog, where z is the
photometric redshift estimate given by the directional
neighborhood fitting (DNF) algorithm [69]. This selection
is shown by Porredon et al. [24] to be optimal in terms of its
2 × 2pt cosmological constraints. We additionally apply a
lower magnitude cut, i > 17.5, to remove contamination
from bright objects. The resulting sample has about 10.7mil-
lion galaxies.
Similarly to redMaGiC, we correct the impact of

observational systematics on the MagLim galaxy clustering
by assigning a weight to each galaxy, as described and
validated in Rodríguez-Monroy et al. [21]. This sample is
then used in Porredon et al. [18] to obtain cosmological
constraints from the combination of galaxy clustering and
galaxy-galaxy lensing from DES Y3 data. We refer to
Porredon et al. [18] for a detailed description of the sample
and its validation.
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3. Source galaxy shape catalog

To estimate the weak lensing shear of the observed
source galaxies, we use the Metacalibration algorithm
[70,71]. This method estimates the response of a shear
estimator to artificially sheared galaxy images and incor-
porates improvements like better point-spread function
(PSF) estimation [72], better astrometric methods [61]
and inclusion of inverse variance weighting. The details
of the method applied to our galaxy sample are presented in
Gatti et al. [73]. This methodology does not capture the
object-blending effects and shear-dependent detection
biases and we use image simulations to calibrate this bias
as detailed in MacCrann et al. [74]. The galaxies that pass
the selection cuts designed to reduce systematic biases (as
detailed in Gatti et al. [73]) are used to make our source
sample shape catalog. This catalog consists of approxi-
mately 100 million galaxies with an effective number
density of neff ¼ 5.6 galaxies per arcmin2 and an effective
shape noise of σe ¼ 0.26.

B. Buzzard simulations

The Buzzard simulations are N-body light cone simu-
lations that have been populated with galaxies using the
Addgals algorithm [75], endowing each galaxy with
positions, velocities, spectral energy distributions, broad-
band photometry, half-light radii and ellipticities. In order
to build a light cone that spans the entire redshift range
covered by DES Y3 galaxies, we combine three light cones
constructed from simulations with box sizes of 1.05, 2.6 and
4.0ðh−3Gpc3Þ, mass resolutions of 3.3×1010, 1.6×1011,
and 5.9 × 1011h−1 M⊙, spanning redshift ranges 0.0 <
z ≤ 0.32, 0.32 < z ≤ 0.84 and 0.84 < z ≤ 2.35, respec-
tively. Together these produce 10000 square degrees
of unique light cone. The light cones are run with the
L-Gadget2 N-body code, a memory optimized version of
Gadget2 [45], with initial conditions generated using 2LPTIC

at z ¼ 50 [76]. From each 10000 square degree catalog, we
can create two DES Y3 footprints.
The Addgals model uses the relationship, PðδRjMrÞ,

between a local density proxy δR and absolute magnitude
Mr measured from a high-resolution subhalo abundance
matching (SHAM) model in order to populate galaxies into
these light cone simulations. The Addgals model repro-
duces the absolute-magnitude-dependent clustering of the
SHAM. Additionally, we employ a conditional abundance
matching model, assigning redder spectral energy distri-
butions (SEDs) to galaxies that are closer to massive dark
matter halos, in a manner that allows us to reproduce the
color-dependent clustering measured in the Sloan Digital
Sky Survey main galaxy sample [75,77].
These simulations are ray-traced using the spherical-

harmonic transform (SHT) configuration of CALCLENS,
where the SHTs are performed on an Nside ¼ 8192 HealPix

grid [78]. The lensing distortion tensor is computed at each

galaxy position and is used to deflect the galaxy angular
positions, apply shear to galaxy intrinsic ellipticities, includ-
ing effects of reduced shear, and magnify galaxy shapes and
photometry. We have conducted convergence tests of this
algorithm and found that resolution effects are negligible on
the scales used for this analysis [27].
Once the simulations have been ray-traced, we apply

DES Y3-specific masking and photometric errors. To mask
the simulations, we employ the Y3 footprint mask but do
not apply the bad region mask [61], resulting in a footprint
with an area of 4143.17 square degrees. Each set of three
N-body simulations yields two Y3 footprints that contain
520 square degrees of overlap. In total, we use 18 Buzzard
realizations in this analysis.
We apply a photometric error model to simulate wide-

field photometric errors in our simulations. To select a lens
galaxy sample, we run the redMaGiC galaxy selection on
our simulations using the same configuration as used in the
Y3 data, as described in Rodríguez-Monroy et al. [21]. A
weak lensing source selection is applied to the simulations
using PSF-convolved sizes and i-band SNR to match the
nontomographic source number density, 5.9 arcmin−2,
from the Metacalibration source catalog. This matching
was performed using a slightly preliminary version of the
Metacalibration catalog, so this number density is slightly
different from the final Metacalibration catalog that is used
in our DES Y3 analyses. We employ the fiducial redshift
estimation framework (see Sec. III C 3) to our simulations
in order to place galaxies into four source redshift bins with
number densities of 1.46 arcmin−2 each. Once binned, we
match the shape noise of the simulations to that measured
in the Metacalibration catalog per tomographic bin, yield-
ing shape noise values of σe ¼ ½0.247; 0.266; 0.263; 0.314�.
Two-point functions are measured in the Buzzard sim-

ulations using the same pipeline used for the DES Y3 data,
where we set Metacalibration responses and inverse vari-
ance weights equal to 1 for all galaxies, as these are not
assigned in our simulation framework. We have opted to
make measurements without shape noise in order to reduce
the variance in the simulated analyses using these mea-
surements. Lens galaxy weights are produced in a manner
similar to that done in the data and applied to measure our
clustering and lensing signals. The clustering and galaxy-
galaxy lensing predictions match the DES redMaGiC
measurements to 10%–20% accuracy over most scales
and tomographic bins, except for the first lens bin, which
disagrees by 50% in wðθÞ. We refer the reader to Fig. 4 in
DeRose et al. [79] for a more detailed comparison.

C. Tomography and measurements

In this section we detail the estimation of the photometric
redshift distribution of our source galaxy sample and two
lens galaxy samples. These three samples are qualitatively
different and have different redshift attributes, requiring
different redshift calibration methods detailed below.
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1. redMaGiC redshift methodology

We split the redMaGiC sample into Nz;g ¼ 5 tomo-
graphic bins, selected on the redMaGiC redshift point
estimate quantity ZREDMAGIC. The bin edges used are
z ¼ 0.15, 0.35, 0.50, 0.65, 0.80, 0.90. The first three bins
use a luminosity threshold of Lmin > 0.5L� and are known
as the high-density sample. The last two redshift bins use a
luminosity threshold of Lmin > 1.0L� and are known as the
high-luminosity sample. The galaxy number densities (in
the units of arcmin−2) for the five tomographic bins are
hngi ¼ 0.022, 0.038, 0.059, 0.03, 0.025.
The redshift distributions are computed by stacking four

samples from the probability density function (PDF) of
each redMaGiC galaxy, allowing for non-Gaussianity of
the PDF. We find an average individual redshift uncertainty
of σz=ð1þ zÞ < 0.0126 in the redshift range used from the
variance of these samples. We refer the reader to Rozo et al.
[23] for more details on the algorithm of redshift assign-
ment for redMaGiC galaxies and to Cawthon et al. [80] for
more details on the calibration of redshift distribution of the
Y3 redMaGiC sample.

2. MagLim redshift methodology

We use DNF [69] for splitting the MagLim sample into
tomographic bins and estimating the redshift distributions.
DNF uses a training set from a spectroscopic database as
reference and then provides an estimate of the redshift of
the object through a nearest-neighbor fit in a hyperplane in
color and magnitude space.
We split the MagLim sample into Nz;g ¼ 6 tomographic

bins from z ¼ 0.2 and z ¼ 1.05, selected using the DNF
photometric redshift estimate. The bin edges are
½0.20; 0.40; 0.55; 0.70; 0.85; 0.95; 1.05�. The galaxy num-
ber densities (in units of arcmin−2) for the six tomographic
bins of this sample are hngi ¼ 0.15, 0.107, 0.109, 0.146,
0.106, 0.1. The redshift distributions in each bin are then
computed by stacking the DNF PDF estimates of each
MagLim galaxy. See Porredon et al. [18] for a more
comprehensive description and validation of this method-
ology and Giannini et al. [81] for estimation of redshift
distributions of this sample using the same methodology as
used for source galaxies that is described below.

3. Source redshift methodology

The description of the tomographic bins of source
samples and the methodology for calibrating their photo-
metric redshift distributions are summarized in Myles et al.
[82]. Overall, the redshift calibration methodology involves
the use of self-organizing maps [82], clustering redshifts
[83] and shear-ratio [84] information. The self-organizing
map photometric redshift (SOMPZ) methodology lever-
ages additional photometric bands in the DES deep-field
observations [59] and the BALROG simulation software [85]
to characterize a mapping between color space and

redshifts. This mapping is then used to provide redshift
distribution samples in the wide field, after including the
uncertainties from sample variance and galaxy flux mea-
surements in a way that is not subject to selection biases.
The clustering redshift methodology performs the calibra-
tion by analyzing cross-correlations between redMaGiC
and spectroscopic data from Baryon Acoustic Oscillation
Survey (BOSS) and its extension (eBOSS). Candidate
nsðzÞ distributions are drawn from the posterior distribution
defined by the combination of SOMPZ and clustering-
redshift likelihoods. These two approaches provide us the
mean redshift distribution of source galaxies and uncer-
tainty in this distribution. The shear-ratio calibration uses
the ratios of small-scale galaxy-galaxy lensing data, which
are largely independent of the cosmological parameters but
help calibrate the uncertainties in the redshift distributions.
We include it downstream in our analysis pipeline as an
external likelihood, as briefly described in Sec. III C 5 and
detailed in Sánchez et al. [84].
Finally, we split the source catalog into Nz;s ¼ 4 tomo-

graphic bins. The mean redshift distribution of redMaGiC
lens galaxies and source galaxies are compared in Fig. 2.
We refer the reader to Porredon et al. [18] for MagLim
sample redshift distribution.

FIG. 2. Comparison of the normalized redshift distributions of
various tomographic bins of the source galaxies and redMaGiC
lens galaxies in the data.
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4. 2pt measurements

For galaxy clustering, we use the Landy-Szalay estima-
tor [86] given as

wðθÞ ¼ DD − 2DRþ RR
RR

; ð14Þ

where DD, DR and RR are normalized weighted number
counts of galaxy-galaxy, galaxy-random and random-ran-
dom pairs, respectively, within angular and tomographic
bins. For lens tomographic bins, we measure the autocor-
relations in Nθ ¼ 20 log-spaced angular bins ranging from
2.5 to 250 arcmin. Each lens galaxy in the catalog (gi) is
weighted with its systematic weight wgi . This systematic
weight aims to remove the large-scale fluctuations due to
changing observing conditions at the telescope and
Galactic foregrounds. Our catalog of randoms is 40 times
larger than the galaxy catalog. The validation of this
estimator and systematic weights of the lens galaxies is
presented in Rodríguez-Monroy et al. [21]. In total we have
NwðθÞ ¼ Nz;g × Nθ ¼ 100 measured wðθÞ data points.
The galaxy-galaxy lensing estimator used in this analysis

is given by

γtðθÞ ¼
P

kwrkP
iwgi

P
ijwgiwsje

LS
t;ijP

kjwrkwsj

−
P

kjwrkwsje
RS
t;kjP

kjwrkwsj

; ð15Þ

where eLSt;ij and e
RS
t;kj are the measured tangential ellipticity of

source galaxy j around lens galaxy i and random point k,
respectively. The weight wgi is the systematic weight of the
lens galaxy as described above, wrk is the weight of random
point that we fix to 1 and wsj is the weight of the source
galaxy that is computed from inverse variance of the shear
response weighted ellipticity of the galaxy (see Gatti et al.
[73] for details). This estimator has been detailed and
validated in Singh et al. [87] and Prat et al. [22]. We
measure this signal for each pair of lens and source
tomographic bins and hence in total we have NγtðθÞ ¼
Nz;g × Nz;s × Nθ ¼ 400 measured γtðθÞ data points.
We analyze both of these measured statistics jointly and

hence we have in total Ndata ¼ NwðθÞ þ NγtðθÞ ¼ 500 data
points. Our measured signal to noise (SNR),1 using
redMaGiC lens sample, of wðθÞ is 171 [21] and of γtðθÞ
is 121 [22], giving a total joint total SNR of 196. In Sec. IV,
we describe and validate different sets of scale cuts for the
linear bias model [angular scales corresponding to
ð8; 6Þ Mpc=h for wðθÞ and γtðθÞ, respectively] and the
nonlinear bias model [ð4; 4Þ Mpc=h]. After applying these
scale cuts, we obtain the joint SNR, that we analyze for

cosmological constraints, as 81 for the linear bias model
and 106 for the nonlinear bias model.2

5. Shear ratios

As will be detailed in Sec. IVA 3, in this analysis, we
remove the small scales’ nonlinear information from the 2pt
measurements that are presented in the above subsection.
However, as presented in Sánchez et al. [84], the ratio of
γtðθÞ measurements for the same lens bin but different
source bins is well described by our model (see Sec. II)
even on small scales. Therefore we include these ratios
(referred to as shear ratio henceforth) as an additional
independent dataset in our likelihood. In this shear-ratio
data vector, we use the angular scales above 2 Mpc=h and
less than our fiducial scale cuts for 2pt measurements
described in Sec. IVA 3 (we also leave two data points
between 2pt scale cuts and shear-ratio scale cuts to remove
any potential correlations between the two). The details of
the analysis choices for shear-ratio measurements and the
corresponding covariance matrix are detailed in Sánchez
et al. [84] and DES Collaboration [20].

D. Covariance

In this analysis, the covariance between the statistic wðθÞ
and γtðθÞ (C) is modeled as the sum of a Gaussian term
(CG), trispectrum term (CNG) and supersample covariance
term (CSSC). The analytic model used to describe (CG) is
described in Friedrich et al. [51]. The terms CNG and CSSC
are modeled using a halo model framework as detailed in
Krause and Eifler [88] andKrause et al. [55]. The covariance
calculation has been performed using the CosmoCov pack-
age [89], and the robustness of this covariance matrix has
been tested and detailed in Friedrich et al. [51]. We also
account for two additional sources of uncertainties that are
not included in our fiducial model using the methodology of
analytical marginalization [90] as detailed below.

1. Accounting for large scale structure (LSS) systematics

As described in Rodríguez-Monroy et al. [21], we
modify the wðθÞ covariance to analytically marginalize
over two sources of uncertainty in the correction of survey
systematics: the choice of correction method and the bias of
the fiducial method as measured on simulations.
These systematics are modeled as

w0ðθÞ ¼ wðθÞ þ A1ΔwmethodðθÞ þ A2wr:s: biasðθÞ; ð16Þ

where ΔwmethodðθÞ is the difference between two
systematics correction methods: iterative systematic

1The SNR is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD⃗C−1D⃗Þ

q
, where D⃗ is the data

under consideration and C is its covariance.

2Using a more optimal SNR estimator, SNR ¼
ðD⃗dataC−1D⃗modelÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD⃗modelC−1D⃗modelÞ

p , where D⃗data is the measured data and D⃗model

is the best-fit model, we get SNR ¼ 79.5 for the linear bias model
scale cuts of ð8; 6Þ Mpc=h.

DARK ENERGY SURVEY YEAR 3 RESULTS: CONSTRAINTS ON … PHYS. REV. D 106, 043520 (2022)

043520-11



decontamination (ISD) and elastic net, andwr:s: biasðθÞ is the
residual systematic bias measured on log-normal mocks.
Both terms are presented in detail in Rodríguez-Monroy
et al. [21]. Also note that here A1 and A2 are arbitrary
amplitudes.

We analytically marginalize over these terms assuming a
unit Gaussian as the prior on the amplitudes A1 and A2.
The measured difference is a 1σ deviation from the prior
center. The final additional covariance term to be added to
the fiducial covariance is

ΔC ¼ ΔwmethodΔwmethod
T þ wr:s:biaswr:s:bias

T: ð17Þ

The systematic contribution to each tomographic bin is
treated as independent so the covariance between lens
bins is not modified. However, we verified that both 0%
correlation and 100% correlation between the tomographic
bins (hence bounding the likely effect) on a simulated
analyses resulted in negligible differences in the cosmo-
logical parameter constraints.

2. Point-mass analytic marginalization

As mentioned in Sec. II B 3, we modify the inverse
covariance to perform analytic marginalization over the PM
parameters. As detailed in MacCrann et al. [62], using the
generalization of the Sherman-Morrison formula, this
procedure changes our fiducial inverse covariance C−1 to
C−1
wPM as follows:

C−1
wPM ¼ C−1 − C−1UðI þ UTC−1UÞ−1UTC−1: ð18Þ

Here C−1 is the inverse of the halo-model covariance
as described above, I is the identity matrix and U is a
Ndata × Nz;g matrix where the ith column is given by σBi ⃗ti.
Here σBi is the standard deviation of the Gaussian prior on
point-mass parameter Bi and ⃗ti is given as

ðt⃗iÞa ¼

8>>><
>>>:

0 if ath element does not correspond

to γtðθÞ and if lens redshift of ath

element ≠ i;

βijθ−2a otherwise;

ð19Þ

where the expression for βij is shown in Eq. (13).We evaluate
that term at fixed fiducial cosmology as given in Table I.
In our analysis we put a wide prior on PM parameters Bi

by choosing σBi ¼ 10000 which translates to the effective
mass residual prior of 1017 M⊙=h [see Eq. (A1)].

E. Blinding and unblinding procedure

We shield our results from observer bias by randomly
shifting our results and data vector at various phases of
the analysis [91]. This procedure prevents us from knowing
the impact of any particular analysis choice on the inferred
cosmological constraints from our data until all analysis
choices have been made. This procedure, as well as the
decision tree used to unblind, is detailed in DES Colla-
boration [20], which is also employed here. Therefore,
all of our cosmology results acquired with fiducial galaxy

TABLE I. The parameters varied in different models, their prior
range used (U½X; Y�≡ Uniform prior between X and Y;
G½μ; σ�≡ Gaussian prior with mean μ and standard deviation
σ) in this analysis and the fiducial values used for simulated
likelihood tests.

Model Parameter Prior Fiducial

Cosmology

Common
parameters

Ωm U½0.1; 0.9� 0.3
As × 10−9 U½0.5; 5� 2.19

Ωb U½0.03; 0.07� 0.048
ns U½0.87; 1.06� 0.97
h U½0.55; 0.91� 0.69

Ωνh2 × 10−4 U½6.0; 64.4� 8.3
Intrinsic alignment

a1 U½−5.0; 5.0� 0.7
a2 U½−5.0; 5.0� −1.36
α1 U½−5.0; 5.0� −1.7
α2 U½−5.0; 5.0� −2.5
bta U½0.0; 2.0� 1.0

Lens photo-z
Δz1g G½0.006; 0.004� 0.0
Δz2g G½0.001; 0.003� 0.0
Δz3g G½0.004; 0.003� 0.0
Δz4g G½−0.002; 0.005� 0.0
Δz5g G½−0.007; 0.01� 0.0

σz5g G½1.23; 0.054� 1.0
Shear calibration

m1 G½−0.0063; 0.0091� 0.0
m2 G½−0.0198; 0.0078� 0.0
m3 G½−0.0241; 0.0076� 0.0
m4 G½−0.0369; 0.0076� 0.0

Source photo-z
Δz1s G½0.0; 0.018� 0.0
Δz2s G½0.0; 0.015� 0.0
Δz3s G½0.0; 0.011� 0.0
Δz4s G½0.0; 0.017� 0.0

Point mass
Bi i ∈ ½1; 5� G½0.0; 104� 0.0

Cosmology

wCDM w U½−2;−0.33� −1.0
Galaxy bias

Linear bias bi1 i ∈ ½1; 3� U½0.8; 3.0� 1.7
bi1 i ∈ ½4; 5� U½0.8; 3.0� 2.0

Galaxy bias

Nonlinear bias bi1σ8 i ∈ ½1; 3� U½0.67; 2.52� 1.42
bi1σ8 i ∈ ½4; 5� U½0.67; 2.52� 1.68
bi2σ

2
8 i ∈ ½1; 3� U½−3.5; 3.5� 0.16

bi2σ
2
8 i ∈ ½4; 5� U½−3.5; 3.5� 0.35
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samples described in this section are achieved using
analysis choices that were validated prior to unblinding
(see Sec. IV). The results obtained by changing analysis
choices (and with a different galaxy sample), after unblind-
ing, are confined to Secs. V G and V H of the main article
and in Appendix C.

IV. VALIDATION OF PARAMETER INFERENCE

We assume the likelihood to be a multivariate Gaussian

lnLðD⃗jΘÞ ¼ −
1

2
½D⃗ − T⃗ ðΘÞ�TC−1

wPM½D⃗ − T⃗ ðΘÞ�: ð20Þ

Here D⃗ is the measured γtðθÞ and wðθÞ data vector of
length Ndata (if we use all the angular and tomographic

bins), T⃗ is the theoretical prediction for these statistics for
the parameter values given by Θ, and C−1

wPM is the inverse
covariance matrix of shape Ndata × Ndata (including mod-
ifications from the PM marginalization term).
For our analysis we use the Polychord sampler with the

settings described in Lemos et al. [92]. The samplers probe
the posterior [PðΘjD⃗Þ] which is given by

PðΘjD!Þ ¼ LðD⃗jΘÞPðΘÞ
PðD⃗Þ

; ð21Þ

where PðΘÞ are the priors on the parameters of our model,
described in Sec. IVA 4, and PðD⃗Þ is the evidence of data.
To estimate the constraints on the cosmological parame-

ters, we have to marginalize the posterior over all the rest of
the multidimensional parameter space. We quote the mean
and 1σ variance of the marginalized posteriors when quoting
the constraints. However, note that these marginalized
constraints can be biased if the posterior has significant
non-Gaussianities, particularly in the case of broad priors
assigned to poorly constrained parameters. The maximum
a posteriori (MAP) point is not affected by such “projection
effects”; therefore, we also show theMAP value in our plots.
However, we note that, in high-dimensional parameter space
with a nontrivial structure, it is difficult to converge on a
global maximum of the whole posterior (also see Joachimi
et al. [93] and citations therein).

A. Analysis choices

In this subsection, we detail the galaxy-bias models that
we use, describe the free parameters of our models, and
choose priors on those parameters.

1. PT models

In this analysis, we test two different galaxy-bias models.
(1) Linear bias model.—The simplest model to describe

the overdensity of galaxies, valid at large scales,
assumes it to be linearly biased with respect to the

darkmatter overdensity (seeSec. II A 1). In thismodel,
for each lens tomographic bin j, the average bias of
galaxies is given by a constant free parameter bj1.

(2) Nonlinear bias model.—To describe the clustering
of galaxies at smaller scales robustly, we also
implement a one-loop PT model. As described in
Sec. II A 1, in general, this model has five free bias
parameters for each lens tomographic bin. For each
tomographic bin j, we fix two of the nonlinear
parameters to their coevolution value given by bjs ¼
ð−4=7Þðbj1 − 1Þ and bj3nl ¼ bj1 − 1 [41,42], while we
set bjk ¼ 0 [43]. Therefore, in our implementation,
we have two free parameters for each tomographic
bin: linear bias bj1 and nonlinear bias b

j
2. This allows

us to probe smaller scales with minimal extra
degrees of freedom, obtaining tighter constraints
on the cosmological parameters while keeping the
biases due to projection effects, as described below,
in control.
As we describe below, in order to test the robust-

ness of our model, we analyze the bias in the
marginalized constraints on cosmological parame-
ters. However, given asymmetric non-Gaussian de-
generacies between the parameters of the model
(particularly between cosmological parameters and
poorly constrained nonlinear bias parameters bj2 and
intrinsic alignment parameters), the marginalized
constraints show projection effects. We find that
imposing priors on the nonlinear bias model param-
eters in combination with σ8, as bj1σ8 and bj2σ

2
8

remove much of the posterior projection effect. As
detailed later, these parameters are sampled with flat
priors. We emphasize that the flat priors imposed on
these nonlinear combinations of parameters are
noninformative, and our final constraints on bj1
and bj2 are significantly tighter than the projection
of priors on these parameters.

2. Cosmological models

We report the constraints on two choices of the cosmo-
logical model.
(1) Flat ΛCDM.—We free six cosmological parameters

the total matter density Ωm, the baryonic density Ωb,
the spectral index ns, the Hubble parameter h, the
amplitude of scalar perturbations As and Ωνh2

(where Ων is the massive neutrino density). We
assume a a flat cosmological model, and hence the
dark energy density ΩΛ is fixed to be ΩΛ ¼ 1 −Ωm.

(2) Flat wCDM.—In addition to the six parameters
listed above, we also free the dark energy equation
of state parameter w. Note that this parameter is
constant in time and w ¼ −1 corresponds to the
ΛCDM cosmological model.
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3. Scale cuts

The complex astrophysics of galaxy formation, evolu-
tion, and baryonic processes like feedback from active
galactic nuclei (AGN), supernova explosions, and cooling
make higher-order nonlinear contributions that we do not
include in our model. The contribution from these poorly
understood effects can exceed our statistical uncertainty on
the smallest scales; hence we apply scale cuts chosen so
that our PT models give unbiased cosmological constraints.
As mentioned earlier, marginalizing over a multidimen-

sional parameter space can lead to biased 2D parameter
constraints due to projection effects. To calibrate this effect
for each of our models, we first perform an analysis using a
baseline data vector constructed from the fiducial values of
that model. We then run our Markov chain Monte Carlo
(MCMC) chain on the contaminated data vector that
includes higher-order nonlinearities, and we measure the
bias between the peak of the marginalized baseline con-
tours and the peak of the marginalized contaminated
contours.
From a joint analysis of 3D galaxy-galaxy and galaxy-

matter correlation functions at fixed cosmology in simu-
lations [43], we find that the linear bias model is a good
description above 8 Mpc=h while the two-parameter
nonlinear bias model describes the correlations above
4 Mpc=h. We convert these physical comoving distances
to angular scale cuts for each tomographic bin and treat
them as starting guesses. Then for each model, we iterate
over scale cuts until we find the minimum scales at which
the bias between marginalized baseline and contaminated
contours is less than 0.3σ. For the ΛCDM model, we
impose this criterion on the Ωm − S8 projected plane, and
for the wCDM model, we impose this criterion on all three
2D plane combinations constructed out of Ωm, S8 and w.
Further validation of these cuts is performed using simu-
lations in Sec. IV C and DeRose et al. [79].

4. Priors and fiducial values

We use locally noninformative priors on the cosmological
parameters to ensure statistically independent constraints on
them. Although our constraints on cosmological parameters
like the Hubble constant h, spectral index ns and baryon
fractionΩb are modest compared to surveys like Planck, we
have verified that our choice of wide priors does not bias the
inference on our cosmological parameters of interest, Ωm
and S8.
When analyzing the linear bias model, we use a wide

uniform prior on these linear bias parameters, given by
0.5 < bj1 < 3. For the nonlinear bias model, as mentioned
above, we sample the parameters bj1σ8 and bj2σ

2
8. We use

uninformative uniform priors on these parameters for
each tomographic bin j given by 0.67 < bj1σ8 < 3.0 and
−4.2 < bj2σ

2
8 < 4.2. At each point in the parameter space,

we calculate σ8 and retrieve the bias parameters bj1 and bj2

from the sampled parameters to get the prediction from
the theory model. The fiducial values of the linear bias
parameters bj1 used in our simulated likelihood tests are
motivated by the recovered bias values in N-body simu-
lations and are summarized in Table I. For the nonlinear
bias parameters, the fiducial values of bj2 are obtained from
the interpolated b1 − b2 relation extracted from 3D tests in
MICE simulations (see Fig. 8 of Pandey et al. [43]) for the
fiducial bj1 for each tomographic bin.
For the intrinsic alignment parameters, we again choose

uniform and uninformative priors. As the IA parameters are
directly dependent on the source galaxy population, it is
challenging to motivate a reasonable choice of prior from
other studies. The fiducial values of these parameters
required for the simulated test are motivated by the Y1
analysis as detailed in Samuroff et al. [94].
We impose an informative prior for our measurement

systematics parameters, lens photo-z shift errors (Δzjg), lens
photo-z width errors (σzjg), source photo-z shift errors (Δzjs)
and shear calibration biases (mj) for various tomographic
bins i. The photo-z shift parameter changes the redshift
distributions for lenses (g) or sources (s) for any tomo-
graphic bin j, used in the theory predictions (see Sec. II) as
njg=sðzÞ → njg=sðz − Δzjg=sÞ, while the photo-z width results

in njgðzÞ → njgðσzjg½z − hzij� þ hzijÞ, where hzij is the mean
redshift of the tomographic bin j. Lastly, the shear
calibration uncertainty modifies the galaxy-galaxy lensing
signal prediction between lens bin i and source bin j
as γijt → ð1þmjÞγijt .
For the source photo-z, we refer the reader to Myles et al.

[82] for the characterization of source redshift distribution,
Gatti et al. [83] for reducing the uncertainty in these
redshift distribution using cross-correlations with spectro-
scopic galaxies and Cordero et al. [95] for a validation of
the shift parametrization using a more complete method
based on sampling the discrete distribution realizations.
For the shear calibration biases, we refer the reader to
MacCrann et al. [74] which tests the shape measurement
pipeline and determine the shear calibration uncertainty
while accounting for effects like blending using state-of-art
image simulation suite. For the priors on the lens photo-z
shift and lens photo-z width errors, we refer the reader to
Cawthon et al. [80], which cross-correlated the DES lens
samples with spectroscopic galaxy samples from Sloan
Digital Sky Survey to calibrate the photometric redshifts of
lenses (also see Porredon et al. [18] and Giannini et al. [81]
for further details on MagLim redshift calibration).
In this paper we fix the magnification coefficients to

the best-fit values described in Elvin-Poole et al. [19] and
Krause et al. [39], but we refer the reader to Elvin-Poole
et al. [19] for details on the impact of varying the
magnification coefficients on the cosmological constraints.
Note that in our tests to obtain scale cuts for cosmological
analysis using simulated data vectors (described below),
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we remain conservative and fix the shear systematics to
their fiducial parameter values and analyze the data vectors
at the mean source redshift distribution nsðzÞ, as shown in
Fig. 2. This procedure, after fixing the systematic param-
eters, results in tighter constraints and ensures that the
impact of baryons and nonlinear bias on the cosmological
inference is overestimated. Therefore, we expect our
recovered scale cuts to be conservative.

B. Simulated likelihood tests

We perform simulated likelihood tests to validate our
choices of scale cuts, galaxy-bias model and the cosmo-
logical model (including priors and external datasets when
relevant). In this analysis we focus on determining and
validating the scale cuts using redMaGiC lens galaxy
sample and we refer the reader to Porredon et al. [18]
for validation using the MagLim lens galaxy sample. We
require that the choices adopted return unbiased cosmo-
logical parameters. This first step based on the tests on
noiseless data vectors in the validation is followed by tests
on cosmological simulations.

1. Scale cuts for the linear bias model

Our baseline case assumes linear galaxy bias and no
baryonic impact on the matter-matter power spectrum. We
use the linear bias values for the five lens bins (in order of
increasing redshift) b1 ¼ 1.7, 1.7, 1.7, 2.0, and 2.0. We
compare the cosmology constraints from the baseline data
vector with a simulated data vector contaminated with
contributions from nonlinear bias and baryonic physics. For
baryons, the nonlinear matter power spectra (Pcont

mm ) used in

generating the contaminated data vector is estimated using
the following prescription:

Pcont
mm ¼

�
Phydro−sim
mm

PDM−only
mm

�
PHalofit
mm ; ð22Þ

where Phydro−sim
mm and PDM−only

mm are the matter power spectra
measured from a full hydrodynamical simulation and dark
matter only simulation, respectively. We use the measure-
ments from the OWLS-AGN simulations, which is based
on hydrodynamical simulations that include the effects of
supernovae and AGN feedback, metal-dependent radiative
cooling, stellar evolution, and kinematic stellar feedback
[96]. To capture the effect of nonlinear bias, we use the
fiducial bj2 values as described in the previous section and
fix the bias parameters bjs and bj3nl to their coevolution
values.
Figure 3 shows the 0.3σ contours when implementing

the angular cuts corresponding to ð8; 6Þ Mpc=h for wðθÞ
and γt. The left panel is for ΛCDM, and the right panel for
wCDM (only the w −Ωm plane is shown, but we also
verified that the criterion is satisfied in the Ωm − S8 and
S8 − w planes). The figure shows the peaks of marginalized
contaminated and baseline posteriors in 2D planes with
blue and red markers, respectively. We find that a 0.24σ
marginalized contaminated contour intersects the peak of
baseline marginalized posterior in ΛCDMmodel, while the
same is true for a 0.05σ contour in wCDM model. We find
that, for the linear bias model, ð8; 6Þ Mpc=h scale cuts pass
the above-mentioned criteria that the distance between the
peaks of baseline and contaminated contours is less than

FIG. 3. Simulated data vector parameter constraints from a data vector contaminated with nonlinear biasþ baryons but analyzed with
a linear biasþ Halofit model. Dashed gray lines mark the truth values for the simulated data vector. The left panel shows contours for
ΛCDM, and the right panel shows wCDM. The scale cuts are ð8; 6Þ Mpc=h for wðθÞ and γt, respectively. In both panels, we compare the
peak of the marginalized constraints in the 2D parameter plane for the contaminated data vector (blue circle) and the baseline data vector
(red square). The peaks of the marginalized baseline contours are within 0.3σ of the peaks of the marginalized contaminated contours,
which is our criterion for acceptable scale cuts. We also show the corresponding maximum posterior value obtained for all the contours
(with a star symbol), obtained using the methodology described in the main text.
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0.3σ. In Fig. 3, we also show the MAP parameter values for
each run using a star symbol. In order to obtain the MAP
value, we use the Nelder-Mead algorithm [97] to minimize
the posterior value after starting the optimization from the
highest posterior point of the converged parameter infer-
ence chain. We find that the MAP point also lies within
0.3σ of the true cosmology, further validating the inferred
scale cuts (although note the caveats about MAPmentioned
in Sec. IV). We note that we analyze smaller scales of γt
compared to wðθÞ statistic because it is a less significant
measurement and, hence, can tolerate greater modeling
uncertainty. Moreover, we use the point-mass marginali-
zation scheme (see Sec. II B 3 and Appendix A) that
effectively makes γt a local statistic (cf. [15]).

C. Buzzard simulation tests

Finally, we validate our model with mock catalogs from
cosmological simulations for analysis choice combinations
that pass the simulated likelihood tests. These tests, and
tests of cosmic shear and 3 × 2-point analyses, are pre-
sented in full in DeRose et al. [79], and we summarize the
details relevant for 2 × 2-point analyses here. We use the
suite of Y3 Buzzard simulations described above. We again
require that our analysis choices return unbiased cosmo-
logical parameters. In order to reduce the sample variance,
we analyze the mean data vector constructed from 18
Buzzard realizations.

1. Validation of linear bias model

We have run simulated 2 × 2-point analyses on the mean
of the measurements from all 18 Buzzard simulations. We
compare our model for wðθÞ and γtðθÞ to our measurements
at the true Buzzard cosmology, leaving only linear bias and
lens magnification coefficients free. In this case, we have

ten free parameters in total, and we find a chi-squared value
of 13.6 for 285 data points using our fiducial scale cuts and
assuming the covariance of a single simulation, as appro-
priate for application to the data. Note that the data vector is
mean of multiple realization, so we expect a low chi-
squared value for the best-fit curve and a principled
accounting of error is presented in DeRose et al. [79].
This analysis assumes true source redshift distributions,
and we fix the source redshift uncertainties to zero as a
conservative choice. This results in cosmological con-
straints where the mean two-dimensional parameter biases
are 0.23σ in the S8 −Ωm plane and 0.18σ in the w −Ωm
plane. These biases are consistent with noise, as they have
an approximately 1=

ffiffiffiffiffi
18

p
σ error associated with them

(assuming 1σ error from a single realization). We perform
a similar analysis using calibrated photometric redshift
distributions where we use redMaGiC lens redshift dis-
tributions and use the SOMPZ redshift distribution esti-
mates of source galaxies. These are weighted by the
likelihood of those samples given the cross-correlation
of our source galaxies with redMaGiC and spectroscopic
galaxies (we refer the reader to Appendix F of DeRose et al.
[79] for detailed procedure). This procedure results in the
mean two-dimensional parameter biases of 0.07σ in the
S8 − Ωm plane and 0.05σ in the w −Ωm plane.
The left panels of Figs. 4 and 5 show the 0.3σ constraints

obtained from analyzing linear galaxy-bias models in
ΛCDM and wCDM cosmologies on the Buzzard data
vector in blue colored contours. Since we expect the
marginalized posteriors to be affected by the projection
effects, we compare these contours to a simulated noiseless
baseline data vector obtained at the input cosmology of
Buzzard (denoted by gray dashed lines in Figs. 4 and 5;
also see [27]). We find that, similar to results obtained
with simulated data vectors in the previous section, our

FIG. 4. The blue contours show constraints from Buzzard simulations (blue contours) compared with Buzzard-like theory data vector
(red contours) in the ΛCDM cosmological model. The left (right) panel shows the constraints for linear (nonlinear) bias models with the
scale cuts given in the legend. The linear and nonlinear bias values are extracted from fits to the 3D correlation functions (ξgg and ξgm).
We see that both the scale-cut choices satisfy our validation criterion.

S. PANDEY et al. PHYS. REV. D 106, 043520 (2022)

043520-16



parameter biases are less than the threshold of 0.3σ for the
fiducial scale cuts. For a more detailed discussion how
these shift compare with probability to exceed (PTE) values
of exceeding a 0.3σ bias, see Sec. V of DeRose et al. [79].
Also note that, as changing the input truth values of

the parameters impacts the shape of the multidimensional
posterior, we find that the effective magnitude and direction
of the projection effects of the baseline contours (comparison
of red contours in Fig. 3 with Figs. 4 and 5) are different.

2. Scale cuts for nonlinear bias model

Likewise, we have run simulated 2 × 2-point analyses
including our nonlinear bias model on the mean of the
measurements from all 18 simulations. Similar to the
procedure used to determine the linear bias scale cuts in
Sec. IV B 1, we iterate over scale cuts for each tomographic
bin defined from varying physical scale cuts.
We compare our model for wðθÞ and γtðθÞ to our

measurements at the true Buzzard cosmology, leaving our
bias model parameters and magnification coefficients free,
which adds 15 free parameters.We find a χ2 value of 15.6 for
340 data points using our nonlinear bias scale cuts and
assuming the covariance of a single simulation. Simulated
analyses using true redshift distributions result in cosmo-
logical constraints where the associated mean two-
dimensional parameter biases for these analyses are 0.04σ
in the S8 −Ωm plane and 0.11σ in the w −Ωm plane. This is
again consistent with noise due to a finite number of
realizations.
In the right panel of Fig. 4 we show the constraints on

Ωm and S8 from the mean Buzzard 2 × 2pt measurements
for ΛCDM cosmological model. The results for nonlinear
bias models are shown, where we find the criterion for
unbiased cosmology is satisfied for the choice of scale cuts
of ð4; 4Þ Mpc=h for ðwðθÞ; γtðθÞÞ, respectively. Again for a
more detailed discussion how these shift compare with PTE
values of exceeding a 0.3σ bias, see DeRose et al. [79].
Figure 5 shows the same analysis for wCDM cosmological

model in theΩm and w plane, where we find similar results.
We therefore use ð4; 4Þ Mpc=h as our validated scale cuts
when analyzing data with the nonlinear bias model.

V. RESULTS

In this section we present the 2 × 2pt cosmology results
using the DES Y3 redMaGiC lens galaxy sample and study
the implications of our constraints on galaxy bias.

A. redMaGiC cosmology constraints

In Fig. 6, we compare the constraints on the cosmologi-
cal parameters obtained from jointly analyzing wðθÞ and

FIG. 5. The same as Fig. 4 but for wCDM cosmology.

FIG. 6. Comparison of the 2 × 2pt ΛCDM constraints, using
redMaGiC lens galaxy sample, for both linear bias and nonlinear
bias models at their respectively defined scale cuts given in the
legend. We find a preference for a low value of S8, compared to
DES Y1 2 × 2pt public result [15] and Planck 2018 public result
[98], with both models of galaxy bias which we investigate in
Sec. V C. We also show that analyzing smaller scales using the
nonlinear galaxy-bias model leads to 17% better constraints in the
Ωm − S8 plane.
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γtðθÞ with both linear and nonlinear bias models. We find
Ωm ¼ 0.325þ0.033

−0.034 from the linear bias model (a 10%
constraint) at the fiducial scale cuts of ð8; 6Þ Mpc=h [for
ðwðθÞ; γtðθÞÞ, respectively], while using the nonlinear bias
model at same scale cuts gives completely consistent
constraints. We also show the results for the scale cuts
of ð4; 4Þ Mpc=h using the nonlinear bias model where we
find Ωm ¼ 0.323þ0.034

−0.035 . These marginalized constraints
on Ωm are completely consistent with the public DES
Y1 2 × 2pt results [15] and Planck results (including all
three correlations between temperature and E-mode polari-
zation; see Aghanim et al. [98] for details).
With the analysis of the linear bias model with

ð8; 6Þ Mpc=h scale cuts (referred to as fiducial model in
the following text), we find S8 ¼ 0.668þ0.026

−0.033 . As is evident
from the contour plot in Fig. 6, our constraints prefer lower
S8 compared to previous analyses. We use the Monte Carlo
parameter difference distribution methodology (as detailed
in Lemos et al. [99]) to assess the tension between our
fiducial constraints and Planck results. Using this criterion,
we find a tension of 4.1σ, largely driven by the differences
in the S8 parameter. We find similar constraints on S8 from
the nonlinear bias as well for both the scale cuts. We
investigate the cause of this low S8 value in the following
subsections. We note that the shift to slightly lowerΩm with
the nonlinear bias model compared to the linear bias model
at ð8; 6Þ Mpc=h scale cuts can arise in a noisy data vector.
This is in contrast to the analysis done in Sec. IV with
noiseless data vectors to validate the scale cuts.
Note that the nonlinear bias model at ð4; 4Þ Mpc=h scale

cuts results in tighter constraints in the Ωm − S8 plane. We
estimate the total constraining power in this Ωm − S8 plane
by estimating the 2D figure of merit (FOM), which is
defined as FOMp1;p2

¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½det Covðp1; p2Þ�

p
, for any two

parameters p1 and p2 [100,101]. This statistic here is
proportional to the inverse of the confidence region area in
the 2D parameter plane of Ωm − S8. We find that the
nonlinear bias model at ð4; 4Þ Mpc=h results in a 17%
increase in constraining power compared to the linear bias
model at ð8; 6Þ Mpc=h.

B. Comparison with MagLim results

In Fig. 7, we show the comparison of the cosmology
constraints obtained from 2 × 2pt analysis using the
MagLim sample (see Porredon et al. [18]) with the results
obtained here with the redMaGiC lens galaxy sample. The
top panel compares theΩm − S8 contours assumingΛCDM
cosmology while the bottom panel compares the Ωm − w
contours assuming wCDM cosmology. We compare both
the linear bias and the nonlinear bias model at the (8, 6) and
ð4; 4Þ Mpc=h scale cuts, respectively. We again find that
the S8 constraints obtained with the redMaGiC sample are
low compared to the MagLim sample for both linear and
nonlinear bias models. As the source galaxy sample, the

measurement pipeline and the modeling methodology used
are the same for the two 2 × 2pt analysis, this suggests that
the preference for low S8 in our fiducial results is driven by
the Y3 redMaGiC lens galaxy sample, which we inves-
tigate in the following subsections.
We also show the MAP estimate in the Ωm − S8 and the

Ωm − w planes, in order to estimate the projection effects
arising from marginalizing over the large multidimensional
space to these two-dimensional contours (see Figs. 3 and 5).
We find that the nonlinear bias model suffers from mild

FIG. 7. Comparing the constraints from 2 × 2pt between the
redMaGiC and MagLim samples. The black dot and blue star
denote the MAP point estimate for redMaGiC linear and non-
linear bias model, respectively, while the gray triangle and red
square show the same for the MagLim sample.
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projection effects within the wCDM model (although note
the caveats about the MAP estimator mentioned in Sec. IV).
We also emphasize that using the nonlinear galaxy-bias
model with smaller scale cuts gives similar improvement in
the figure ofmerit of the cosmology contours shown inFig. 7,
using both redMaGiC and MagLim lens galaxy samples.

C. Internal consistency of the redMaGiC results

To investigate the low S8 constraints in the fiducial
analysis of the redMaGiC galaxy sample, we first check
various aspects of the modeling pipeline. In Fig. 8, we show
the constraints on Ωm, S8 and galaxy bias for the third
tomographic bin b3, for various robustness tests. We choose
to show the third tomographic bin for the galaxy-bias
constraints as this bin has the highest signal-to-noise ratio.

We divide the figure into three parts, separated by hori-
zontal black lines. The bottom panel shows the margin-
alized constraints from the results described in the previous
subsection (see Fig. 6). As mentioned previously, we obtain
completely consistent constraints from both linear and
nonlinear bias models. To check the robustness and keep
the interpretation simple, we use the linear bias model using
the scale cuts of ð8; 6Þ Mpc=h in the following variations.
In the next part of the figure, moving upward from the

bottom, we test the robustness of the model. In particular,
we check the robustness of the fiducial intrinsic align-
ment model by using the NLA model. We also run the
analysis by fixing the neutrino masses to Ωνh2 ¼ 0.00083.
This choice of Ωνh2 parameter corresponds to the sum of
neutrino masses,

P
mν ¼ 0.06 eV at the fiducial cosmol-

ogy described in Table I (which is the baseline value used in

FIG. 8. The consistency of the redMaGiC 2 × 2pt cosmology and galaxy-bias constraints when changing the analysis choices (see
Sec. V C for details). We also compare our constraints to the DES Y1 public 2 × 2pt results as well as its reanalysis with the current
analysis pipeline (we fix the point-mass parameters when reanalyzing the DES Y1 data due to the large degeneracy between point-mass
parameters and cosmology at the scale cuts described and validated in Abbott et al. [15]).
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the Planck 2018 cosmology results as well [98]). Lastly, we
test the impact of varying the dark energy parameter using
the wCDM model. We find entirely consistent constraints
for all of the above variations.
In the next part of the figure, we test the internal

consistency of the data vector. Firstly we remove the
contribution of shear-ratio information to the total likelihood,
resulting in entirely consistent constraints. Also, note that the
size of constraints on the cosmological parameters does not
change in this case compared to the fiducial results. This
demonstrates that the majority of constraints on the cosmo-
logical and bias parameters are obtained from the wðθÞ and
γtðθÞ themselves. We also test the impact of removing one
tomographic bin at a time from the data vector. We find
consistent constraints in all five cases. Lastly,we also split the
data vector into large and small scales. The small-scale run
uses the data vector between angular scales corresponding to
(8, 6) and ð30; 30Þ Mpc=h. The large-scale run uses the
data vector between angular scales corresponding to
ð30; 30Þ Mpc=h and 250 arcmin. When analyzing the large
scales, we fix the point-mass parameters to their fiducial
values (see Table I) because of the large degradation of
constraining power at these larger-scale cuts due to the
degeneracy between point-mass parameters, galaxy bias and
cosmological parameter σ8 (see Appendix A and MacCrann
et al. [62]). In both of these cases, we find similar constraints
on all parameters, demonstrating that the low S8 does not
originate from either large or small scales.
As an additional test of the robustness of the modeling

pipeline, we analyze the wðθÞ and γtðθÞ measurements as
measured fromDESY1 data [15]. Note that, in this analysis,
we keep the same scale cuts as described and validated in
Abbott et al. [15], which are 8 Mpc=h for wðθÞ and
12 Mpc=h for γtðθÞ. To analyze this data vector, while we
use the model described in this paper, we fix the point-mass
parameters again to zero due to similar reasons as described
above in the analysis of large scales. The constraints we
obtain are consistent with the public results described in
Abbott et al. [15]. We attribute an approximately 1σ shift
in the marginalized Ωm posterior to the improvements made
in the current model, compared to the model used for the
public Y1 results [55]. In particular, we use the full non-
Limber calculation, including the effects of redshift-space
distortions, for galaxy clustering (also see Fang et al. [50]).
Lastly, to assess the impact of projection effects on the S8

parameter, we compare the profile posterior to the margin-
alized posterior. The profile posterior in Fig. 9 is obtained by
dividing the samples into 20 bins ofS8 values and calculating
the maximum posterior value for each bin. Therefore, unlike
the marginalized posterior, the profile posterior does not
involve the projection of a high-dimensional posterior to a
single S8 parameter. Hence the histogram of the profile
posterior is not impacted by projection effects. We compare
the marginalized posterior and profile posterior in Fig. 9,
showing that projection effects have a subdominant impact
on the marginalized S8 constraints. This demonstrates that

projection effects do not explain the preference for low S8
with the redMaGiC sample.
In summary, the results presented in this subsection

demonstrate that our modeling methodology is entirely
robust, and hence we believe our data are driving the low S8
constraints with the redMaGiC sample. Moreover, as
described above, no individual part of the data drives a
low value of S8; therefore, we perform global checks of the
data vector in the following subsections.

D. Galaxy bias from individual probes

In this subsection,we test the compatibility of thewðθÞ and
γtðθÞ parts of the data vector. As we will lose the power of
complementarity when analyzing them individually, we fix
the cosmological parameters to the maximum posterior
obtained from the DES Y1 3 × 2pt analysis [15]. We find
that the best-fit bias values from the wðθÞ part of the data
vector are systematically higher than γtðθÞ for each tomo-
graphic bin. We parametrize this difference in bias values
with a phenomenological parameter X for each tomographic
bin i as

Xi
lens ¼ biγtðθÞ=b

i
wðθÞ: ð23Þ

We refer to X as a “decorrelation parameter” because its
effect on thedata is very similar to assuming that themass and
galaxy density functions have less than 100% correlation. A
value of X ¼ 1 is expected from local biasing models. The
constraints on the parameter Xi

lens are shown in Fig. 10.
We also compare the constraints of these Xi

lens parameters
obtained from Y1 redMaGiC 2 × 2pt (see Abbott et al. [15]
and Prat et al. [102] for details) and the 2 × 2pt data vector
usingY3MagLim lens galaxy sample. For theY1 redMaGiC
data vector, we fix the scale cuts and priors on the calibration
of photometric redshifts of lens and source galaxies as
described in Abbott et al. [15] and for analysis of Y3

FIG. 9. Comparison of the profile posterior and marginalized
posterior on the S8 parameter from the 2 × 2pt redMaGiC
ΛCDM chain.
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MagLim data vector we follow the analysis choices detailed
in Porredon et al. [18]. In this analysis of all the data vectors,
we use the linear bias galaxy-bias model while keeping the
rest of the model the same as described in Sec. II B. We find
that theY1 redMaGiC aswell as Y3MagLim 2 × 2pt data are
consistent with Xi

lens ¼ 1 for all the tomographic bins, while
redMaGiC Y3 2 × 2pt data have a persistent preference for
Xi
lens < 1 for all the tomographic bins.
Noticeably, we find that for the DES Y1 best-fit

cosmological parameters, the Y3 redMaGiC data vector
prefers a value of Xi

lens ∼ 0.9 for each tomographic bin.
Therefore, in order to keep the interpretation simple, we use
a single parameter Xlens to describe the ratio of galaxy bias
biγtðθÞ=b

i
wðθÞ for all tomographic bins i ∈ ½1; 5�. We constrain

this single redshift-independent parameter to be Xlens ¼
0.9þ0.03

−0.03 for Y3 redMaGiC, a 3.5σ deviation from Xlens ¼ 1.
Within general relativity, even when including the impact
of nonlinear astrophysics, we do not expect a decorrelation
between galaxy clustering and galaxy-galaxy lensing to be
present at more than a few percent level [103]. We comment
on the impact of this decorrelation on the redMaGiC
cosmology constraints in Sec. V F.
Note that the inferred value of Xlens depends on the

cosmological parameters, because the large-scale ampli-
tudes of galaxy clustering and galaxy-galaxy lensing
involve different combinations of galaxy bias, σ8 and
Ωm. Therefore, a self-consistent inference of Xlens requires
the full 3 × 2pt data vector and is presented in DES
Collaboration [20]. However, the DES Y1 3 × 2pt best-
fit cosmological parameters are fairly close to the DES Y3
3 × 2pt best-fit parameters; therefore, we expect the results
presented here to be good approximations to those obtained
with the Y3 3 × 2pt data vector.

E. Area split of the decorrelation parameter

In order to further study the properties of this decorrelation
parameter Xlens, we estimate it independently in ten approx-
imately equal area patches of the DES Y3 footprint. We
measure the data vectors, wðθÞ and γtðθÞ in each of these ten
patches, using the samemethodologypresented inSec. III C 4.
In order to obtain the covariance for each patch, we rescale
the fiducial covariance (see Sec. III D) of the full footprint
to the area of each patch. We then estimate Xlens from each
patch while keeping all the other analysis choices the same.
In Fig. 11 we show the DES footprint split into ten

regions. In this figure, each region is colored in proportion
to the mean value of the Xlens parameter we obtain using
redMaGiC as the lens galaxy sample. We run a similar
analysis when using MagLim as the lens sample.
In Fig. 12 we show a scatter plot between the value of

Xlens recovered from each of ten regions using redMaGiC
and MagLim as lens samples. We find a tight correlation
between the value of Xlens from the two lens samples, as
would be expected if they share noise from sample variance
and fluctuations in the source galaxy population. Note that
the scatter in the inferred Xlens for both the MagLim and
the redMaGiC samples corresponding to each sky patch
(red points) around themean of full sample (the blue point) is
consistent with the expectation. This shows that, compared
with MagLim, the redMaGiC lens sample has a preference
for Xlens < 1 in the whole DES footprint. This correlation
and area independence of the ratio XRedmagic=XMaglim is
remarkable and suggests that the potential systematic in
the redMaGiC sample has a more global origin.

FIG. 10. Constraints on the phenomenological decorrelation
parameter, Xlens, for each tomographic bin obtained from 2 × 2pt
analysis using Y1 redMaGiC, Y3 fiducial redMaGiC sample, Y3
broad-χ2 redMaGiC sample (see Sec. V G) and Y3 MagLim as
the lens galaxies (the cosmological parameters are fixed to the
DES Y1 best-fit values [15]).

FIG. 11. The DES footprint is split into ten regions. The color
of each area corresponds to the mean value of the constraints
on Xlens from that particular area, inferred at fixed DES Y1
cosmology and using the redMaGiC lens sample. This plot shows
that no special region in the sky (for example, near the galactic
plane) drives the preference for low Xlens. While a variation over
the sky in the inferred Xlens is expected from analyzing only the
2 × 2pt data due to the variations in the photometric redshift
distribution of source galaxies, we find that the preferred mean
value of Xlens from the redMaGiC sample is significantly lower
than the expected value of 1 (see Fig. 12).
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F. Impact of decorrelation on 2 × 2pt cosmology

To summarize, assuming a standard cosmological model,
we have identified that the galaxy-clustering and galaxy-
galaxy lensing signal measured using the Y3 redMaGiC lens
galaxy sample are incompatible with each other (at the set
of cosmological parameters preferred by previous studies).
We have further identified that this incompatibility is well
captured by a redshift-, scale- and area-independent phe-
nomenological parameter Xlens. Using Y3 redMaGiC lens
sample, we detect Xlens ∼ 0.9, at the 3.5σ confidence level
away from the expected value of Xlens ¼ 1. This 2 × 2pt
analysis is done when the cosmological parameters are fixed
to their DES Y1 best-fit values; a self-consistent Xlens
inference analysis with free cosmological parameters
requires the full 3 × 2pt data vector. This is presented in
DES Collaboration [20], where the inferred constraints on
this decorrelation parameter are Xlens ¼ 0.87þ0.02

−0.02 .
In Fig. 13, we fix Xlens ¼ 0.87 in our model and rerun the

Y3 redMaGiC 2 × 2pt analysis. We find, as expected, that
this has a significant impact on the marginalized S8 values
and results in the marginalized constraints S8 ¼ 0.76þ0.034

−0.037 ,

completely consistent with 2 × 2pt Y1 redMaGiC public
results as well as Y3 MagLim results. Also note that the
marginalized constraints on Ωm for Xlens ¼ 0.87 model
are Ωm ¼ 0.331þ0.037

−0.037 , which remains consistent with the
fiducial result.

G. Broad-χ 2 redMaGiC sample

In order to further investigate the source of the decorre-
lation, we modify the χ2RM threshold for a galaxy to be
classified as a redMaGiC galaxy when fitting to the
redMaGiC template using the procedure as described in
Rozo et al. [23]. As described in Sec. III A 1, the fiducial
redMaGiC catalog is generated by implementing the χ2RM
threshold of 3. This low-χ2RM threshold only selects the
galaxies that closely match the template. In case there are
any residual variations in the redMaGiC catalog number
densities caused byvariations in the colors that are not already
corrected using the fiducialweighting scheme (as described in
Rodríguez-Monroy et al. [21]), it would contribute a spurious
galaxy clustering signal. This would contribute toward
Xlens < 1, as we found above. In order to test this hypothesis,
we increase the threshold criteria andgenerate another catalog
with χ2RM ¼ 8 and denote this new sample as the “broad-χ2”
sample.
We show the result for Xi

lens for all five tomographic bins
in Fig. 10. We find that with the broad-χ2 sample Xi

lens is
consistent with 1 for the first four tomographic bins, while
we still find that for the fifth tomographic bin, X5

lens < 1,
this bin has low constraining power. We also show the
inferred Xlens from ten independent regions over the DES
footprint in Fig. 11. We find that, with the new sample, the
scatter in the inferred Xlens is consistent with the expected
value of 1. Moreover, as shown with a red symbol in

FIG. 12. Each error bar corresponds to the 68% credible
interval constraints on Xlens from one of the ten regions (see
Fig. 11), using either the redMaGiC sample or the MagLim lens
galaxy sample. The blue error bar corresponds to the constraints
on Xlens from the entire Y3 area using the MagLim sample and
the fiducial redMaGiC sample, whereas the red error bar uses the
broad-χ2 galaxy sample (see Sec. V G). We find a tight corre-
lation between XRedmagic and XMaglim, due to common sources of
statistical noise (e.g., photometric redshifts of the source gal-
axies). For example, if the photometric redshift distribution of the
source galaxies fluctuates from the imposed prior for each patch
in a different direction, it would shift the inferred Xlens similarly
for each lens sample. We find that, while the inferred Xlens from
ten regions using the MagLim and the broad-χ2 redMaGiC
sample fluctuates around its mean value that is close to 1, the
inference from the fiducial redMaGiC sample fluctuates around a
mean value that is significantly lower than 1. This figure shows
that the fiducial redMaGiC sample prefers Xlens to be lower than
1, independent of the sky area.

FIG. 13. Comparison of the constraints from 2 × 2pt analysis
when using the mean value of Xlens parameter for redMaGiC lens
sample analysis, as estimated and described in DES Collabora-
tion [20]. We find a shift in S8 parameter compared to our fiducial
results in Sec. VA, but Ωm constraints are fully consistent.
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Fig. 11, we find the redshift- and area-independent Xlens to
be entirely consistent with 1 using the broad-χ2 sample.
This validates our hypothesis and points toward an uncor-
rected systematic that might be related to a color-dependent
photometric issue in the DES data. Since the shear catalog,
as well as the MagLim galaxy catalog, do not select
galaxies based on a red-galaxy template, we do not expect
this systematic to have an effect on those catalogs.
In Appendix C, we further describe details of this new

sample and compare it with our fiducial redMaGiC sample.
With this new sample, we use conservative analysis choices
and implement the following approximations.

(i) We downsample the broad-χ2 catalog to roughly
match the number densities of the fiducial redMaGiC
sample. This ensures that the validations of analysis
choices performed for the redMaGiC sample, includ-
ing the covariance, scale cuts, and methodology,
remain true for the broad-χ2 sample as well.

(ii) We use a two-parameter model (shift and stretch
parametrization) to account for the uncertainty in the
lens redshift distribution for each tomographic bin
[80]. We implement this model to reduce the impact
of the outliers in the assigned galaxy redshifts for
this new sample. The Gaussian priors on the shift
and stretch parameters are tabulated in Table II.

We show the cosmological constraints from the broad-χ2

sample in Fig. 14 and find that they are consistent with the
results from MagLim sample in both ΛCDM and wCDM
cosmological models. Using the ΛCDM model, we con-
strain Ωm ¼ 0.363þ0.0375

−0.0388 and S8 ¼ 0.73þ0.035
−0.029 , and using

the wCDM model, we constrain w ¼ −0.821þ0.1908
−0.4341 .

We note that this analysis is showing the constraints on
the cosmological parameters under the approximation that
we neglect the contribution to the LSS covariance system-
atic term. We use the ISD method to get the weights for this
sample. Moreover, we assume that the same scale cuts work
with this sample as we obtained for the fiducial redMaGiC

sample. Lastly, we have used the same value of lens
magnification as for the fiducial redMaGiC sample. We
do not expect these choices to have any major effects on the
cosmological constraints described above. However, we
leave a detailed study optimizing the χ2RM value, validating
the analysis choices, and obtaining final constraints with
redMaGiC sample to DES Collaboration [104].

H. redMaGiC host-halo mass inference

In the halo model framework (see Cooray and Sheth [105]
for a review), the value of the linear bias of a tracer of dark
matter can be related to the host-halo mass of that tracer. The
standard HOD approach parametrizes the distribution of
galaxies inside halos, and hence the observed number density
as well as the large-scale bias values of any galaxy sample
can be expressed in terms of its HOD parameters [106–108].
The sameHODparameters can also be used to infer themean

FIG. 14. Constraints on the cosmological parameters using the
linear bias model with the broad-χ2 redMaGiC sample. The top
figure corresponds to the ΛCDM cosmological model and the
bottom figure corresponds to the wCDM cosmological model.
We also compare the constraints from the fiducial redMaGiC and
the fiducial MagLim lens galaxy samples.

TABLE II. The lens photo-z shift and stretch parameters varied
in the analysis using the broad-χ2 sample and their prior range
used (G½μ; σ�≡ Gaussian prior with mean μ and standard
deviation σ).

Parameter Prior

Δz1g G½0.0088; 0.0029�
σz1g G½1.015; 0.035�
Δz2g G½−0.0033; 0.0022�
σz2g G½0.991; 0.028�
Δz3g G½0.0076; 0.0029�
σz3g G½1.096; 0.029�
Δz4g G½0.0015; 0.0042�
σz4g G½1.104; 0.045�
Δz5g G½−0.0058; 0.0061�
σz5g G½1.193; 0.056�
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host-halo mass of the galaxy sample. We use the constraints
on linear galaxy-bias parameters and the comoving number
density to infer the mean host-halo mass of the broad-χ2

redMaGiC galaxy sample by marginalizing over HOD
parameters.
Thedetails of the halomodel frameworkusedhere aregiven

in Appendix D. Note that we have neglected the effects of
assembly bias and the correlation between number density and
bias constraints in this analysis.With these caveats in mind, in
Fig. 15we showapproximately25%constraints onmeanhost-
halo mass of broad-χ2 redMaGiC galaxies and the constraints
for different tomographic bins show its evolutionwith redshift.
This redshift evolution trend is broadly consistent with the
pseudoevolution of halo masses due to changing background
reference density with redshift (see [109] for more details).
Thereforewe find that the broad-χ2 redMaGiC sample lives in
halos of mass of approximately 1.6 × 1013 M⊙=h, which
remains broadly constant with redshift.
We also bracket the uncertainty in the host-halo masses of

the fiducial redMaGiC sample with a gray band in Fig. 15.
In order to estimate the band, we use the linear bias con-
straints from the 2 × 2pt analysis with fiducial redMaGiC
sample, after fixing Xlens ¼ 0.87. This decorrelation param-
eter results in wðθÞ and γt preferring different linear bias
parameters, related by bi½wðθÞ�=bi½γtðθÞ� ¼ Xlens ¼ 0.87,
for all tomographic bins i. Therefore, we infer the host-halo
masses using both linear bias parameter values. The band is
estimated by using the lower limit of masses inferred by
bi½γtðθÞ� andupper limit ofmasses inferredbybi½wðθÞ� for all

tomographic bins i. We find that the broad-χ2 sample has a
slight preference for lower halo masses, but it is consistent
with constraints for the fiducial sample.
We find that our results are also broadly consistentwith the

analysis of [110], which used the redMaGiC galaxies of DES
science-verification dataset and estimated the mean halo
masses by studying galaxy-galaxy lensing signal in a broad
range of scales (including high signal-to-noise small scales
that we remove here) using HODmodel.3We also find broad
agreement with a similar study presented in Zacharegkas
et al. [111], analyzing DES Y3 using the galaxy-galaxy
lensing data estimated from the fiducial redMaGiC sample
and on a wide range of scales with an improved halo model.

VI. CONCLUSIONS

This paper has presented the cosmological analysis of
the 2 × 2pt data vector of the DES year-3 dataset using
redMaGiC lens sample. We refer the reader to Porredon
et al. [18] for similar results using MagLim lens sample and
Elvin-Poole et al. [19] for details on the impact of lens
magnification on the 2 × 2pt data vector. The 2 × 2pt data
vector comprises the two-point correlations of galaxy
clustering and galaxy lensing using five redshift bins for
the lens galaxies and four bins for source galaxies. It
provides independent constraints on two primary param-
eters of interest, the mass density Ωm and amplitude of
fluctuations S8. As shown in Fig. 1, these constraints are
complementary to those from cosmic shear. The combina-
tion of 2 × 2pt with cosmic shear is thus better able to
constrain Ωm and S8 as well as the dark energy equation of
state parameter w. Perhaps more importantly, this provides
a robustness check on the results from either approach.
The estimation and marginalization of galaxy-bias para-

meters is one of the central tasks in extracting cosmology
from the 2 × 2pt data vector. We have developed and
validated the methodology for this based on perturbation
theory.Weuse a five-parameter descriptionof galaxybias per
redshift bin, with three of the parameters fixed based on
theoretical considerations. We validated these choices using
mock catalogs built onN-body simulations as detailed in our
earlier study [43] and Sec. IV C. We carry out two analyses:
the first using linear bias with more conservative scale cuts
and the second using the full PT bias model going down to
smaller scales. Other elements of our model include intrinsic
alignments, magnification and “point-massmarginalization”
(see Sec. II B). Thevalidation of the analysis choice and scale
cuts with simulated data vectors (both idealized and from
mock catalogs) are presented in Sec. IVA.

FIG. 15. This figure shows the inferred constraints on mean
host-halo masses of redMaGiC galaxies for five tomographic
bins. We use the HOD framework to make this inference as
detailed in Appendix D and use the linear bias constraints
obtained using the broad-χ2 redMaGiC sample. We infer the
mean host-halo masses from the linear bias constraints for all five
tomographic bins. We compare our results to Clampitt et al. [110]
and Zacharegkas et al. [111] and also show the expected
pseudoevolution of a halo having Mhalo ¼ 1.6 × 1013 M⊙=h
at z ¼ 0.

3Note that we use M200c as our halo mass definition, which
denotes the total mass within a sphere enclosing a mean density
which is 200 times the critical density of the Universe. Clampitt
et al. [110] work with M200m as their mass definition, denoting
the total mass within a sphere enclosing a mean density which is
200 times the mean density of the Universe; therefore, we convert
their constraints to M200c in the above figure.
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Our cosmological results are presented in Figs. 6–8,which
show preference for a low value of S8 parameter when
compared with previous results. We refer the reader to DES
Collaboration [20], where, after unblinding the cosmological
parameter constraints, we find similar inconsistency in the S8
parameter constraints between Y3 2 × 2pt redMaGiC analy-
sis and Y3 cosmic-shear analysis, as well as a high χ2 using
the ΛCDM model. As detailed in DES Collaboration [20],
we discovered that the reason for the high χ2 of the 3 × 2pt
analysiswith the fiducialmodelwas due to inconsistencies in
the galaxy-galaxy lensing and galaxy clustering signals. The
source of this inconsistency is still undetermined; however,
we found that a single parameter Xlens, representing the ratio
of the bias inferred from wðθÞ and γt, substantially improves
the goodness of fit. This ratio is cosmology dependent and
can only be inferred consistently (along with the other model
parameters) when using the full 3 × 2pt analysis, presented
in DES Collaboration [20].
This ratio is expected to be unity in the absence of galaxy

stochasticity, an effect that is expected to be only at the
percent level on scales above ∼10 Mpc [103]. Several
previous analyses with similar datasets have also found this
ratio to be consistent with unity [3,7,102]. However, we
detect a value of Xlens ¼ 0.87, below 1 at the 5σ level. This
purely phenomenological model assumes no scale or red-
shift dependence, and we found consistent values of Xlens
when fitting to different scales (see Fig. 8) and when fitting
separate values for each lens redshift bin (see Fig. 10).
Considering the constraints from the cosmic-shear mea-
surements, no known cosmological effect can produce such
a large and coherent deviation in clustering and galaxy
lensing. We therefore pursued possible systematic errors
that could lead to this unusual result. Note that this kind of
behavior can arise with potential systematics, for example
unaccounted-for impact of photometric uncertainty or
background subtraction for large or faint objects on the
galaxy selection. This can introduce extra fluctuation of the
number density of the lens galaxies across the footprint
which will not be captured by the set of survey property
maps used in the LSS weights estimation pipeline.
Figure 13 shows the 2 × 2pt redMaGiC cosmology

constraints after fixing Xlens ¼ 0.87, the best-fit value from
DES Collaboration [20]. There is a significant shift in S8,
while Ωm remains stable. Interestingly the resulting con-
tours are fully consistent with the Y1 analysis as well as the
2 × 2pt analysis using the MagLim lens galaxy sample
[18]. We track down the source of this decorrelation to an
aggressive threshold on the colors of galaxies to match the
red-galaxy template. We find that using a sample with a
relaxed threshold, which we call the broad-χ2 sample,
results in cosmological constraints that are consistent with
the expectations from MagLim sample. This points toward
the existence of a potential color-dependent systematic
in the galaxy catalog, and we leave a detailed exploration
and mitigation of this systematic to a future study [104].
We note that, although recent analyses using BOSS

galaxies have found similar inconsistencies in the galaxy

clustering and galaxy-galaxy lensing using Planck-preferred
cosmological parameters (see [112,113] and references
therein); there are some important differences. In this analysis
as well as in DES Collaboration [20], unlike in Leauthaud
et al. [112], we do not use any small-scale information for
galaxy clustering and galaxy-galaxy lensing measurements.
Therefore, we are significantly less prone to the impacts of
poorly understood small-scale nonlinear physics, like baryon
feedback andgalaxy assemblybiases [114–116].Moreover, in
DES Collaboration [20], by leveraging all three two-point
functions used in 3 × 2pt, the analysis of the consistency
between galaxy lensing and galaxy clustering can be carried
out while freeing the relevant cosmological parameters. The
analysis in this paper fixes the cosmological parameters close
to the best-fit cosmology fromDESCollaboration [20]; hence,
our results are a good approximation to the analysis using the
full 3 × 2pt data vector. Similarly, a few recent studies jointly
analyzinggalaxy clustering autocorrelations andgalaxy-CMB
lensing cross-correlations have also reported preference for
lower galaxy-bias value for the cross-correlation compared to
the autocorrelations [117,118]. However, similar to the above
analysis with BOSS galaxies, these studies also fix their
cosmological parameters to the best-fit cosmology from
Planck results [98], which is different from this study (see
[119] for related discussion).
To access the information in the measurements on smaller

scales, we use higher-order perturbation theory. We use a
hybrid one-loop perturbation theory model for galaxy bias,
capturing the nonlinear contributions to the overdensity field
till third order.We have tested and validated our model using
three-dimensional correlation functions from DES mock
catalogs in Pandey et al. [43] as well as with projected
statistics in DeRose et al. [79]; in this study, we validate the
biasmodel withmocks for the 2 × 2pt redMaGiC data vector
at scales above 4 Mpc=h. This validation presented here,
along with results in Pandey et al. [43], are then also directly
used to validate the nonlinear bias model for MagLim data
vector.We apply it to the data and find that the nonlinear bias
model results in a gain in constraining power of approx-
imately 17% in the Ωm − S8 parameter plane.
A different approach, the halo occupation distribution in

the halo model, enables a connection between the masses of
halos in which galaxies live and their large-scale bias. We
use our constraints on linear bias parameters (along with
the galaxy number density) and estimate the host-halo
masses of redMaGiC galaxies. We marginalize over the
halo occupation distribution parameters and obtain 25%
constraints on the mean mass of host halos. We show these
constraints, including its evolution with redshift in Fig. 15,
finding a halo mass of approximately 1.5 × 1013 M⊙=h and
its evolution with redshift consistent with the expected
pseudoevolution due to changing background density.
The 2 × 2pt combination of probes plays a crucial role in

extracting the most cosmological information from LSS
surveys, especially in constraining the matter content of
the Universe (Ωm) and the dark energy equation of state (w).
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In this analysis we measure the combination of galaxy
clustering and galaxy-galaxy lensing at approximately
200σ; this significance is expected to dramatically increase
with imminent large-scale surveys like the Euclid Space
Telescope, the Dark Energy Spectroscopic Instrument, the
Nancy G. Roman Space Telescope, and the Vera C. Rubin
Observatory Legacy Survey of Space and Time. In order to
optimally analyze these high-precision measurements, espe-
cially at nonlinear small scales, we need better models and
ensure their proper validation before applying them to
measurements. We have shown that the hybrid perturbation
theory galaxy-bias model can be validated with simulations
to sufficient accuracy for the present analysis. By relaxing the
priors on all five parameters (per redshift bin), the model’s
accuracy can be improved though the increase in model
complexity poses other challenges in parameter estimation.
Finally, and perhaps most importantly, we have highlighted
how understanding potential sources of systematic uncer-
tainty is of paramount importance for extracting unbiased
cosmological information in this era of precision cosmology.
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APPENDIX A: POINT-MASS
MARGINALIZATION

The point-mass parameter (B) can also be expressed as
residual mass bias B ¼ δM=π, where δM is approximately
related to the difference between the model and true
estimate of halo mass below the scales of our model
validity (rmin). More accurately, δMhalo can be expressed
in terms of galaxy-matter correlation as

δM ¼
Z

rmin

0

drpð2πrpÞ
Z

∞

−∞
dΠΔξgm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ Π2

q
; z
�
;

ðA1Þ
where Δξgm ¼ ξtruegm − ξmodel

gm .
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In Fig. 16 we compare the constraining power of 2 × 2pt
and 3 × 2pt simulated analysis at our fiducial scale cuts for
different point-mass parameter settings. We generate a
noiseless theory baseline data vector using the linear bias
model and the fiducial parameter values given in Table I. In
the blue and red filled contours, instead of analytically
marginalizing over the point-mass parameters, we explic-
itly sample them when analyzing 2 × 2pt and 3 × 2pt data
vectors, respectively. To test the impact of point-mass
marginalization on the constraining power, we also show
the constraints obtained after fixing the PM parameters to
their fiducial value of zero using unfilled contours. The
black and green unfilled contours show the constraints
using 2 × 2pt and 3 × 2pt data vectors, respectively. We see
that, although point-mass marginalization has a significant
impact on the constraining power of the 2 × 2pt analysis, it
has a small impact on the 3 × 2pt analysis. The main reason
is that, due to extra constraints from cosmic shear, we break
the degeneracy between PM parameters and cosmological
parameters, and hence uncertainty in PM parameters does
not dilute our cosmology constraints.
As PM marginalization degrades the constraining power

of 2 × 2pt significantly, it might be desirable to implement
an informative prior on the PM parameters. However,
motivating an astrophysical prior on the PM parameters
is not possible for our scale cuts as the majority of residual
mass constraints are contributed from the two-halo regime,
as shown in Fig. 17. For simplicity, we assume all our
galaxies occupy the center of 2.5 × 1013 M⊙=hmass halos.
The input “truth” curve in black solid line uses ξgm that is
generated using the Navarro-Frenk-White profile [134] in

the one-halo regime (r < 0.5 Mpc=h) and one-loop PT in
the two-halo regime (r > 0.5 Mpc=h). Given this input
halo mass, the halo model framework predicts the effective
large-scale linear bias value [105]. The dashed blue curve is
generated using a linear bias model, using a linear bias
value that is 1σ lower from this predicted value. Here σ is
the uncertainty obtained from 2 × 2pt marginalized con-
straints on the galaxy bias for first tomographic bin. The
area between the two curves below some scale is equal to
total δM as calculated using Eq. (A1).
We show the contribution to δM separately for the one-

halo region (below the red dashed line) and two-halo
regimes [up to the scales of 6 Mpc=h, which are our scale
cuts for γtðθÞ]. We find that the two-halo regime contributes
significantly more than the one-halo region and the result-
ing δM value is significantly more than the input halo mass
of 2.5 × 1013 M⊙=h. An informative prior would amount
to understanding the galaxy-matter correlation and its
dependence on cosmology and galaxy-bias model from
all scales below our scale cuts. Therefore we choose an
uninformative wide prior on the point-mass parameters.
The baseline model parametrization assumes the point-

mass parameter to be constant within each tomographic
bin. We test this assumption implicitly in the suite of
Buzzard simulations. The data vector measured in N-body
Buzzard simulation will capture the effects of evolving
point-mass parameters due to the evolution of the galaxy-
matter correlation within a lens tomographic bin. As we
have validated that our scale cuts pass our threshold criteria
of bias in cosmological parameters being less than 0.3σ, we
can conclude that the effect of point-mass parameter
evolution is small. Here we also test this effect explicitly
by generating a simulated galaxy matter correlation func-
tion using the halo model. We assume a constant HOD of

FIG. 16. Effect of point-mass marginalization on the con-
straining power of 2 × 2pt and 3 × 2pt. We see that the con-
straining power of 2 × 2pt degrades significantly with point-mass
marginalization, while for 3 × 2pt the change is minimal.
Including the shear-shear correlation breaks the degeneracy
between point mass (we show PM for third bin, Mhalo½3�) and
S8, leading to smaller sensitivity of cosmology constraints on
point-mass constraints.

FIG. 17. We show the contribution to the residual mass shown
in Eq. (A1) from different radial regimes. We find a significant
contribution from the two-halo regime and therefore we cannot
motivate an astrophysical informative prior on the PM param-
eters, without putting an informative prior on cosmology as well.
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the redMaGiC galaxies but include the evolution of halo
mass function and halo bias to predict the evolution of the
galaxy-matter correlation function. The contribution to the
PM parameter due to this evolution in each tomographic
bin is given by Eq. (A1). In Fig. 18, we show this
contribution to each redshift bin by the black solid line.
We compare this bias with the expected level of uncertainty
in the PM parameters by plotting the marginalized con-
straints on these parameters as shown in Fig. 16 for 2 × 2pt
analyses. We see that the uncertainty in PM parameters is
significantly greater than the expected bias.

APPENDIX B: DATA VECTOR RESIDUALS

We show the comparison between our measurements and
best-fit theory data vector in Fig. 19. We show the residuals
between data and best-fit theory model from both the

FIG. 18. We show the effect of the evolution of galaxy matter
correlation functions on the PM parameters for each tomographic
bin in the black line. The red error bars show the expected error
bars on PM parameters for 2 × 2pt as shown in Fig. 16. The blue
error bars are the constraints from 3 × 2pt.

FIG. 19. The measurements of wðθÞ and γtðθÞ with redMaGiC sample are shown with black dots. We show the best fit using the
fiducial linear bias model in blue and model with Xlens ¼ 0.87 in orange.
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fiducial model as well as with Xlens ¼ 0.87 model. Using
the fiducial linear bias model scale cuts of ð8; 6Þ Mpc=h
(that leaves 302 data points in total), we find a minimum χ2

of 347.2 and 351.1 for the fiducial model and Xlens ¼ 0.87
model, respectively.

APPENDIX C: BROAD-χ 2 SAMPLE

As detailed in the main text, we generate a new galaxy
sample by relaxing the selection criteria and selecting
galaxies with goodness of fit χ2RM ¼ 8 to the redMaGiC
template. This new sample is constructed to reduce the
sensitivity of any color-dependent photometric issue that
might be present in the fiducial redMaGiC sample and
causing Xlens < 1. After analyzing the 2 × 2pt data vector,
we do find that this sample prefers Xlens ¼ 1 and results in
S8 consistent with the MagLim galaxy sample.

FIG. 20. We compare the redshift distribution of the fiducial
redMaGiC sample with the broad-χ2 redMaGiC sample.

FIG. 21. The measurements of wðθÞ and γtðθÞ with the broad-χ2 redMaGiC sample are shown with black dots. We show the best-fit
model in black.
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In Fig. 20, we show the comparison of the lens number
densities for the five tomographic bins. We perform the
calibration of these redshift distributions using cross-
correlations with BOSS and eBOSS data using the same
methods described in Cawthon et al. [80]. The lens photo-z
priors that we use are shown in Table II. After down-
sampling the full catalog by a factor of 2, the number
densities (in the units of arcmin−2) for this sample are
hngi ¼ 0.027, 0.04, 0.07, 0.03, 0.03 for the five tomo-
graphic bins. We generate a non-Gaussian covariance
corresponding to these number densities. To mitigate the
bias caused by wrong parameter values input to theory
covariance calculations, we recalculate the covariance
matrix using the best-fit parameters of an initial 2 × 2pt
analysis and show the cosmological constraints corre-
sponding to this new covariance.
Using the best-fit parameter values obtained with the

linear bias model, we show the residuals in Fig. 21. We find
a best-fit χ2 of 353 for 302 data points, and both the wðθÞ
and γt measurements are fit well with a linear bias, ΛCDM

model. In Fig. 22 we show the parameters constraints and
compare them to the ones obtained with the fiducial
redMaGiC sample.

APPENDIX D: HALO MASS INFERENCE

In this section we detail the methodology to infer the host-
halo mass of our redMaGiC lens galaxy sample from the
constraints on galaxy-bias parameters and number density.
We use the halomodel framework tomake this prediction and
parametrize the number of galaxies in a halo of mass M in
tomographic bin j as Nj

gðMÞ ¼ Nj
cenðMÞ þ Nj

satðMÞ, where
Nj

cen is the number of central galaxies andN
j
sat is the number

of satellite galaxies.We parametrize these two components as

Nj
cen ¼ fjcen

2

�
1þ erf

�
logM − ðlogMminÞj

ðσlogMÞj
��

; ðD1Þ

Nj
sat¼

1

2

�
1þerf

�
logM−ðlogMminÞj

ðσlogMÞj
��

×

�
Mh

Mj
1

�
αj

: ðD2Þ

FIG. 22. Comparison of parameter constraints using fiducial and broad-χ2 redMaGiC for all the parameters sampled in the analysis
without a tight Gaussian prior. We also show the derived parameters σ8 and S8.
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Here we have five free parameters, fjcen, ðlogMminÞj,
ðσlogMÞj, Mj

1 and αj, that we marginalize over. We can
predict the comoving number density (n̄ðzÞj) and galaxy bias
for a given tomographic bin j, bj1, from galaxy HOD as
follows:

n̄jðzÞ ¼
Z

∞

0

dM
dn
dM

Nj
gðMÞ;

bj1 ¼
Z

dz
njgðzÞ
n̄jðzÞ

Z
∞

0

dM
dn
dM

Nj
gðMÞbhalo1 ðM; zÞ: ðD3Þ

We use the Tinker et al. [135] halo mass function (dn=dM)
and the Tinker et al. [136] relation for linear halo bias
[bhalo1 ðM; zÞ].
Therefore, Eqs. (D3) allow us to predict the number

density and galaxy-bias values. We then sample
these HOD parameters to fit the data vector D⃗H ¼
njðz1Þ…n̄jðznÞ; bj1; bj2� of length d, where n̄jðz1Þ…n̄jðznÞ
are the n ¼ d − 2 observed comoving number density
of redMaGiC galaxies as shown in middle panel of

Fig. 23 and bj1 and bj2 are the marginalized mean bias
values obtained at our fiducial scale cut. For a given set of
HOD parameters (ΘH), the theoretical prediction is given
by T H and we write our log-likelihood as

lnLðD⃗HjΘÞ ¼ −
1

2
½ðD⃗H − T⃗ HðΘHÞÞCH

−1

× ðD⃗H − T⃗ HðΘHÞÞT − lnðjCHjÞ�: ðD4Þ

In order to account for variation of HOD within a tomo-
graphic bin that contributes to the variation on n̄jðzÞ within
each tomographic bin as seen in Fig. 23, we implement an
analytical marginalization scheme. We change the covari-
ance of our data vector CH as

CH → CH þ αcID; ðD5Þ

where ID is a diagonal matrix of dimension d × d whose
diagonal elements equal to 1 from index 1 to d − 1 and
equal to 0 otherwise. We sample over the parameter αc,
treating it as a free parameter.
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