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Abstract—The Bayesian estimation of GARCH-family models
has been typically addressed through Monte Carlo sampling.
Variational Inference is gaining popularity and attention as a
robust approach for Bayesian inference in complex machine
learning models; however, its adoption in econometrics and
finance is limited. This paper discusses the extent to which Vari-
ational Inference constitutes a reliable and feasible alternative
to Monte Carlo sampling for Bayesian inference in GARCH-
like models. Through a large-scale experiment involving the
constituents of the S&P 500 index, several Variational Inference
optimizers, a variety of volatility models, and a case study, we
show that Variational Inference is an attractive, remarkably well-
calibrated, and competitive method for Bayesian learning.

Index Terms—Variational inference, Volatility, GARCH, Bayes

I. INTRODUCTION

The classical estimation procedures for GARCH-family
modes are the frequentist maximum likelihood, quasi max-
imum likelihood, and the generalized method of moments
approaches [6]. Recently, there has been a growing interest
in using Bayesian estimation techniques, as they offer several
advantages over the traditional approaches [7]. For instance,
in the frequentist approach, models are compared with no
other means that their likelihood, whereas Bayes factors and
marginal likelihood allow comparisons of non-nested models.
Bayesian estimation provides reliable results in finite samples,
and, e.g., can uncover the full value-at-risk density. Maximum
likelihood estimators present some limitations when the errors
are heavy-tailed and may not be asymptotically Gaussian
[11], and positivity of the conditional variance and stationarity
requirements can lead to complex non-linear inequalities, mak-
ing constrained optimization cumbersome. For the Bayesian
estimation of GARCH-family models, Monte Carlo (MC)
sampling is the predominant approach [e.g., 11, 1, 28]. Indeed
the recursive nature of the conditional variance makes the joint
posterior of unknown parametric form, and the choice of the
sampling algorithm is crucial. The Griddy-Gibbs sampler has
extensively been used in this context [e.g., 5, 3], along with
importance sampling [e.g., 9, 13], and the Metropolis-Hastings
(MH) [18, 8]. Different extensions of the MH algorithm have
been proposed [e.g., 19], along with the use of alternative
methods [e.g., 2]. For a broader overview, see, e.g., the surveys
[7, 28], or the textbook [1].

The ability of Bayesian methods to address uncertainty
via posterior distribution gained much attention in Machine
Learning (ML). In the last decade, sophisticated Bayesian

methods have been advanced for training high-dimensional
ML models, and the theory of Bayesian neural networks has
been extensively developed [see, e.g., 15, for a review]. Under
the complexity of typical ML models, sampling methods
do not scale up in high dimensions and difficult to apply.
Variational Inference (VI) stands as a successful and feasible
alternative, widely exploited in ML applications [12, 25, 14].
VI reduces the typical Bayesian integration problem to a
simpler optimization problem aimed at finding the “best”
approximation of the true posterior distribution in the sense
described in Sec. II-B. Despite its consolidated use in ML, VI
has not received much attention in econometrics and finance
as a feasible Bayesian alternative to MC sampling.

In particular, the use of VI as a tool for the Bayesian
estimation of GARCH-family models remains unaddressed.
Though VI has been used in volatility forecasting with ML
models [22, 21], there have been few self-contained VI
applications concerning GARCH models [17, 16, 27]. This
paper fills the this gap and addresses the feasibility and
appropriateness of VI as an alternative to MC sampling
and maximum likelihood estimation by conducting extensive
experiments on the constituents of the S&P500 index. We
show how Gaussian VI can be implemented and applied
at a large scale as an unconstrained optimization problem
through appropriate parameter transforms. We validate the
results over several in-sample and out-of-sample performance
metrics. Along with a focused study on the Microsoft Inc.
stock data, with different optimization algorithms, we show
VI is an effective, robust, and competitive approach for the
Bayesian estimation of various GARCH-family models.

II. METHODS

A. GARCH models

A major task of financial econometrics is modeling volatility
in asset returns. Volatility is considered a measure of risk
for which investors demand a premium for investing in risky
assets. Empirical observations of financial returns reveal some
stylized facts. Whereas returns are nearly uncorrelated, they
contain higher-order dependences. The correlation of absolute
and squared returns is positive and persistent. Autocorrelated
daily volatility thus appears to be predictable, and Autoregres-
sive Conditional Heteroskedasticity (ARCH) models provide
the basis for the most popular parameterizations of this de-
pendence.
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Let εt be a random variable that has mean and variance
conditionally on the information set Ft−1 (σ-algebra generated
by εt−j , j ≥ 1). For the ARCH model, E(εt|Ft−1) = 0
and the conditional variance ht = E

(
ε2t |Ft

)
is a parametric

function on Ft−1 [26]. The sequence {εt} may be observed
or be an error innovation sequence of an econometric model:
εt = rt−µt(rt) with rt and observable random variable (e.g.,
a daily return) and µt(rt) the conditional expectation of rt
given Ft−1. The parametric form of the ARCH model reads:

rt = µ+ εt,

εt = h
1/2
t zt, zt ∼ iid N (0, 1),

ht = ω + α1ε
2
t−1,

with t = 1, . . . , T and, to ensure ht > 0 and identification,
ω > 0, 0 < α1 < 1. We shall assume µ ≡ 0. ht is the
conditional and time-dependent volatility of εt. The way εt
is defined guarantees white noise properties, since zt is a
sequence of iid variables. Normality is a typical assumption
for the iid sequence {zt}, but leptokurtic alternatives are also
used. The iid assumption guarantees the white noise property
of {εt}. In the ARCH equation defining the parametric form
for the conditional variance, the linear function of the squared
innovation at t − 1 can be generalized to a higher-order
ARCH(q):

ht = ω +

q∑
j=1

αjε
2
t−j ,

where ω > 0, αj ≥ 0, with at least an αj > 0. Note that the
volatility, the object of modeling, is not observed: using ε2t is
an immediate solution, but alternatives exist if, e.g., the data
is available at intraday frequencies.

For the ARCH family, the decay rate in the autocorrelation
of ε2t is too rapid compared to the observed time series:
the so-called Generalized ARCH (GARCH) is a predominant
alternative. In a GARCH(p, q) model, the conditional variance
is not only a function of the lagged innovations but also of its
lags:

ht = ω +

q∑
j=1

αjε
2
t−j +

p∑
j=1

βjht−j .

The overwhelming model has been the GARCH(1, 1). Suffi-
cient conditions for the positivity of conditional variances are
ω > 0, αj ≥ 0, j = 1, . . . , q and βj ≥ 0, j = 1, . . . , p.
Identifiability requires at least one βj > 0 and one αj > 0,
and for stationarity

∑
αj +

∑
βj < 1.

GARCH models have been extended and generalized in
many different directions. Among these, the empirical ev-
idence of asymmetry in volatility clustering motivates the
GJR-GARCH [10] model, which assumes the response of the
variance to a shock not to be independent of its sign:

ht = ω +

q∑
j=1

αj +

o∑
j=1

γjI(εt−j > 0)ε2t−j +

p∑
j=1

βjht−j ,

with I(·) an indicator function, defines the GJR-
GARCH(p, o, q) (with o = 0 we simply write GJR-
GARCH(p, q)). It must hold ω > 0, αj ≥ 0, βj ≥ 0, γj ≥ 0,∑
αj + γj ≥ 0, and

∑
αj + 1/2

∑
γj +

∑
βj < 1.

The Exponential GARCH (EGARCH) model is another
popular extension. The family of EGARCH(p, q) models can
be defined with

log ht = ω +

q∑
j=1

gj(zt−j) +

p∑
j=1

βj log ht−j .

In our analyses we adopt the version of [20] where gj(zt−j) =
αjzt−j +ψj(|zt−j | − E(|zt−j |)). The model does not impose
any restriction on the parameters because, since the equation is
on log variance instead of variance itself, the positivity of the
variance is automatically satisfied. This is a big advantage in
model estimation. For a concise presentation of the advantages
and limitations of the EGARCH model, refer, e.g., to [26].
By including γjI(εt−j > 0)ε2t−j , j = 1, . . . , o terms in the
above conditional variance equation, one defines the GJR-
EGARCH(p, o, q).

In our analyses, we furthermore adopt the Fractionally
Integrated GARCH (FIGARCH). The FIGARCH model [4]
conveniently explains the slow decay in autocorrelation func-
tions of squared observations of typical daily return series.
With the FIGARCH, the effect of the lagged ε2t on ht
decays hyperbolically as a function of the lag length. The
FIGHARCH(p, d,m) process is defined as:

(1− L)
d
ϕ(L)ε2t = ω̄ + (1− β(L))vt,

where L is the lag operator, ϕ(L) =
∑m−1

j=1 ϕjL
j , β(L) =∑p

j=1 βjL
j , vt = ε2t − h2t , and d is the order of fractional

differencing that guides the long-memory properties of the
process [26]. Of relevance for estimation is its equivalent
ARCH(∞) representation of the model:

ht = ω +

∞∑
j=1

λkε
2
t−k, (1)

where ω > 0, and λk ≥ 0 are recursively defined. For the
FIGARCH (1, d, 1), δ1 = d, λ1 = ϕ − β + d, δk = (k −
1− d)/kδk−1, λk = βλk−1 + δk −ϕδk−1, with the constrains
ω > 0, 0 ≤ d ≤ 1, 0 ≤ ϕ ≤ (1 − d)/2, 0 ≤ β ≤ d + ϕ,
sufficient to ensure the positivity of the conditional variance
[4].

1) Estimation: With a possibly misspecified but convenient
standard likelihood function and the assumption that the
dynamic of the volatility process is correctly specified, the
models described earlier are generally estimated via Quasi
Maximum Likelihood (QML). Under a Gaussian likelihood,
the QML objective generally reads:

ℓ(ν) =

T∑
t=1

(
log ht(ν) +

ε2t
ht(ν)

)
, (2)

where ν collects all the relevant parameters, e.g., for the
GARCH(1,1), ν = (ω, α1, β1), and the dependence of the



conditional variance on it, is made explicit. Constrained gra-
dient descent procedures are effective for minimizing (2).
Sec. II-C discusses using parameter transforms to perform
unconstrained optimization. Eq. (2) implies a recursive relation
whose implementation is expensive. For initialization, it is
common to back-cast max{p, o, q} values with the average
value of {r2t }.

B. Variational Inference

1) General principle: Let y denote the data and p(y|θ)
the likelihood of the data based on a postulated model with
θ ∈ Θ a d-dimensional vector of model parameters. Let p(θ)
be the prior distribution on θ. The goal of Bayesian inference
is the posterior distribution p(θ|y) = p(y,θ)/p(y), where
p(y) =

∫
Θ
p(y|θ)p(θ)dθ. Bayesian inference is generally

difficult since the marginal likelihood p(y) is often intractable
and of unknown form, and Variational Inference (VI) is an
attractive alternative.

VI consists of an approximate method approximating the
posterior distribution by a probability density q(θ) (called
variational distribution) belonging to some tractable class of
distributions Q. VI thus turns the Bayesian inference problem
into that of finding the best approximation q⋆(θ) ∈ Q to
p(θ|y) by minimizing the Kullback-Leibler (KL) divergence
from q(θ) to p(θ|y):

q⋆ = argmin
q∈Q

KL(q||p(θ|y)) = argmin
q∈Q

∫
q(θ) log

q(θ)

p(θ|y)
dθ.

It can be shown the KL minimization is equivalent to the
maximization of the so-called Lower Bound (LB) on log p(y),
[e.g. 27]:

L(q) :=
∫
q(θ) log

p(y|θ)p(θ)
q(θ)

dθ = Eq[h(θ)], (3)

with hζ(θ) = log p(y|θ)+ log p(θ)− log qζ(θ). In fixed-form
VI, the parametric form of the variational posterior is set.
Typically, the target is a Gaussian distribution of mean µ and
covariance Σ, and qζ in the set Q of Gaussian distributions,
with ζ = {µ, vec(Σ)} a vector of parameters. VI seeks the
parameter ζ⋆ optimizing (3).

The standard approach for maximizing the LB is based on
a stochastic gradient descent update, whose basic form is

ζt+1 = ζt + δ
[
I−1
ζ ∇̂ζL(qζ)

]∣∣∣
ζ=ζt

, (4)

where t denotes the iteration, δ a the step size, and ∇̂ζL(qζ)
a stochastic estimate of the Euclidean gradient. In place
of Euclidean gradients, the recent literature adopts natural
gradients leading to improved step directions by accounting
for the information geometry of the variational distribution
[see, e.g., 15]. With natural gradients, I−1

ζ is the corresponding
Fisher Information Matrix, otherwise is the identity matrix I ,
of size equal to the number of trainable parameters d.

2) Algorithms: A major aspect of implementing (4) is the
gradient computation. Methods requiring the actual computa-
tion of the gradients of the loss, such as the reparametrization
trick [12], are expensive to implement at a large scale within
the recurrent form of the likelihood (2). Furthermore, the
use of automatic differentiation is not a widespread practice
in econometrics and finance, largely adopting numerical dif-
ferentiation. The approaches discussed here rely on the use
of the log-derivative trick for evaluating the gradient of the
expectation Eqζ [hζ(θ)] as an expectation of a gradient:

∇̃ζL(qζ) = I−1
ζ Eqζ [∇ζ [log qζ(θ)]hζ(θ)]. (5)

Algorithm 1 sketches the gradient-free optimization approach.
Note that at each iteration, the expectation in (5) is approxi-
mated with S samples from the posterior qζt

. Different opti-
mization algorithms differ in how ζ is defined (e.g., it updating
a natural parameter), in how natural-gradient computations are
performed, and in the adoption of alternatives forms for (4)
(e.g., using a retraction in manifold optimization). ML research
widely adopts a Gaussian prior of zero mean and covariance
matrix τI , with τ > 0.

Algorithm 1 General form of a gradient-free VI opti-
mizer

Set hyperparameters (here β, S, τ ), t = 0
Set initial values ζ0
repeat

Simulate θs ∼ qζt , for s = 1, . . . , S
hζt

(θ) = log p(θ) + log p(y|θ)− log qζt
(θ)

∇̂ζt
L = 1

S

∑S
s=1 ∇ζ log qζ(θs)|ζ=ζt

× hζt(θs)

ζt+1 = ζt + β∇̂ζt
L

t = t+ 1
until stopping criterion is met

We briefly introduce the three state-of-the-art optimizers
adopted in the empirical analysis. The gradient in (5) is
often called a black-box gradient. Despite the terminology,
the black-box approach has not to be intended as an opaque
mechanism, but as a transparent and accessible solution for
computing lower bound’s derivatives without explicitly re-
quiring model’s derivatives. The expectation in (5), as of
Algorithm 1, is computed as an average of products between
the easy-to-derive gradients of the variational loglikelihood
∇ζ log qζ(θs) computed in ζ = ζt and the h-function hζt

(θs),
so that the computation of ∇̂ζt

L involves only h-function’s
queries, and not its gradients w.r.t. ζ.

Black-box VI (BBVI), [25] uses the rule (4) applied to Eu-
clidean black-box gradients, computed as in (5). Quasi-Black
box VI (QBVI) [17] extends BBVI using natural gradients.
QBVI relies on a natural-parameter parametrization of the
variational posterior enabling natural gradient updates without
requiring the explicit computation and inversion of the Fisher
matrix. This is a relevant computational advantage. BBVI and
QBVI are broadly applied under a diagonal covariance ma-
trix specification and a log-variance parametrization, as they
cannot guarantee the positive definiteness of the variational
covariance matrix. Conversely, the two are of low complexity



as matrix operations (especially inversion) are straightforward.
Manifold Gaussian Variational Bayes (MGVB) is a black-box
approach, boosted by natural gradients, relying on manifold
optimization to grant the positive definiteness of the full
covariance matrix [27]. MGVB solves the positive definiteness
issue while allowing for additional modeling flexibility pro-
vided by its full covariance specification. Certain theoretical
issues and some approximations that MGVB relies upon are
resolved by the Exact Manifold Gaussian Variational Bayes
(EMGVB) approach, that further improves the computation of
the natural gradients [16].
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Fig. 1. Lower bound optimization (left) and posterior distribution of for the
γ parameter (right). GJR-GARCH(1,1), Microsoft Inc. data.

C. Transformations

It is clear that the application of Gaussian VI is problematic
for the heavily constrained volatility models of Sec. II-A.
For instance, a Gaussian posterior is incompatible with the
ω > 0 or the 0 < d < 1 requirements and plausibly with a
Gaussian covariance structure (Gaussian copula). Moreover,
the adoption of Gaussian priors is also inadequate. These
issues can be fixed with appropriate parameter transforms.

In Algorithm 1, two steps are critical: (i) sampling from the
Gaussian variational posterior and (ii) evaluating the model
log-likelihood. By adopting the VI Gaussian framework, the
unconstrained components of a sample θ from qζ={µ,vec(Σ)}
need to be appropriately transformed into the valid constrained
space for evaluating the log-likelihood. This is done, e.g., in
[27] for the GARCH(1,1), and aligned with the well-adopted
rationale for VI in medium-scale ML models of [14].

Let ν denote a d-dimensional parameter parametrizing a
GARCH-family model m, and Cm the constrained parameter
space where ν lives. Be ψm : Cm 7→ Rd a transform that maps
ν ∈ Cm to θ ∈ Rd. Let ψ−1

m denote the corresponding inverse
transform, i.e., ν = ψ−1

m (θ). This is the relevant transform in
VI; we will show that such ψ−1

m exists and is of simple form
for the models in Sec. II-A. Through ψ−1

m we can apply the
update (4), map posterior samples θ ∼ qζ into Cm as ψ−1

m (θ),
evaluate the likelihood, and approximate the expectation in
(5). Similarly, we can, e.g., compare the QML estimates with
the mean of transformed posterior samples, interpretable as
approximations of the transformed posterior living in Cm:

Eqζ⋆

[
ψ−1
m (θ⋆)

]
≈ 1

S

S∑
s=1

ψ−1
m (θ⋆

s), θ
⋆
s ∼ qζ⋆ . (6)

In principle, QML could optimize ℓ(ψ−1
m (θ)), yet the use

of constrained optimization is preponderant (e.g., in Python’s
arch and R’s rugarch packages), so that parameter trans-
forms are not relevant for standard QML estimation. Indeed,
we are unaware of any work presenting such transformations.
As fundamental for applying VI, and for future reference, we
summarize them in the following propositions. For an element
θλ of the vector θ representing a certain parameter λ of the
model m, be θλ its corresponding element in θ. Let f denote
the logistic function.

Proposition 1 (Inverse transforms for the FIGARCH): The
FIGARCH constraints ω > 0, 0 ≤ d ≤ 1, 0 ≤ ϕ ≤ (1 −
d)/2, 0 ≤ β ≤ d + ϕ, are satisfied by the following inverse
transforms:

ω = exp(θω), d = f(θd),

ϕ = f(θϕ)(1− d)/2, β = f(ωβ)(ϕ+ d).

Proof. The result follows immediately from [4, footnote 19].
Proposition 2 (Inverse transforms for the GJR-GARCH):

The GJR-GARCH(p,o,q) constraints ω > 0, αi ≥ 0,
∑
γk +∑

αi ≥ 0, βj ≥ 0,
∑

(αi+1/2γk+βj) < 1, for j = 1, . . . , p,
k = 1, . . . , o, i = 1, . . . , q, for the GJR-GARCH(1,1) model
are satisfied by the following inverse transforms:

ω = exp(θω), α = f(θα),

γ = f(θγ)(2(1− α) + α)− α, β = f(θβ)(1− α− 1/2γ).

For the general GJR-GARCH(p, o, q) case, inverse transforms
can be computed as for Algorithm 2.
Proof. The transform for θω is obvious. As γ and β are
still to be determined, the constraints imply that α can
lay anywhere in [0, 1], so α = f(ωα). It is required that
γ+α > 0, and α+ β+1/2γ < 1. Yet β is to be determined,
so 1/2γ < 1 − α. The two give −α < γ < 2(1 − α): we
first map γ to [2(1 − α) + α] and then shift the interval
by −α. I.e., γ = f(ωγ)[2(1 − α) + α] − α. Now map θβ
in 1 − α − 1/2γ, that is β = f(ωβ)(1 − α − 1/2γ). With
p ≥ 0, o ≥ 0, q ≥ 0, the same interval-partitioning reasoning
is sequentially repeated.

The last proposition applies to the ARCH (o = p = 0)
and GARCH models (o = 0) as a special case. Similarly, one
can transform the possibly constrained trainable parameters of
any postulated distribution for the iid {zi} innovations. For
example, for a GED(λ) distribution λ = 2 + θ2λ + ϵ, where
ϵ > 0 is a pedestal to grant λ > 2 holds strictly.

Algorithm 2 Inverse transformation for the GJR(p, o, q)

ω = exp(θω)
s = 1− ε
for i = 1, . . . , p do

αi = f(θαi)s
s = 1− s

end for
for i = 1, . . . , o do

γi = f(θγi)
if p ≥ i then

γi = (2s+ αi)γi −

αi

else
γi = 2sγi

end if
s = 1− 0.5s

end for
for i = 1, . . . , q do

βi = f(θβi)
s = 1− s

end for



III. EXPERIMENTS

A. Data

For our empirical analyses, we use daily close-to-close log
returns for the constituents of the S&P500 index. Our data
covers 1383 trading days, from 1 January 2018 to 30 June
2023, divided into train and test sets with a 75%-25% split
following chronological order. We use 488 stocks, since some
constituents changed and their time series are incomplete.

B. Models, and optimization

To assess how satisfactory VI is in volatility modeling,
we adopt the following volatility models: ARCH(1),
GARCH(1,1), GJR-GARCH(1,1), EGARCH(0,1),
EGARCH(1,1), GJR-EGARCH(1,1), FIGARCH(1,d,1). The
case study on the Microsoft Corp. data additionally includes
the GARCH(2,1), EGARCH(2,1), and the FIGARCH(0,d,1).
The analyses adopt the BBVI, QBVI, MGVB, and EMGVB
optimizers for VI (the first two under a diagonal variational
covariance matrix). For the FIGARCH models, we implement
(1) by the method of [23]. As a baseline for comparison,
we adopt QML estimates and a Monte Carlo Markov Chain
Sampler (MC). An MC reference for VI is advisable as it
provides a benchmark for highlighting biases and assessing
the quality of the Gaussian variational approximation.

For consistency, in VI, we adopt the same set of hyperpa-
rameters for all the experiments and optimizers. In particular,
we use a learning rate of 0.005, 50 MC draws for approx-
imating the expectation (5), a diagonal normal prior of unit
variance and initial values µ0 = 0, Σ0 = 0.1I . To increase
the stability of the learning process, we update the gradients
with a momentum factor of 0.4. Both MC and VI algorithms
are run for a longer-than-required number of iterations. This
avoids tuning the parameter on a case-by-case basis (which is
unfeasible with hundreds of stocks) and provides reasonable
guarantees that the algorithms converged. For VI, we observe
that typically 1500 iterations are sufficient for the LB to
reach a plateau (Fig. 1), yet we terminate the training after
2500 iterations. Opposed to ML, in statistics overfitting is
a major concern in model selection. For example, in max-
imum likelihood estimation, the dynamic of the likelihood
on a (usually nonexistent) test set is ignored. Early-stopping
criteria for MC/VI based on the test loss would lead to non-
comparability with the fully-in-sample-optimized maximum
likelihood estimates. The relevant data and codes for the
experiments are available at github.com/mmagris/GARCHVI.

C. Results

1) General results: To assess the effectiveness of VI as a
Bayesian procedure, we adopt four performance metrics on
the training and test sets. For VI, performances are computed
as averages of 7, 000 inversely-transformed samples from
the estimated variational posterior qζ⋆(θ). For MC, the last
7, 000 samples of the Markov chain. The metrics are the
Negative Log-Likelihood (NLL), the Root Mean Squared Error
(RMSE), the Mean Absolute Deviation (MAD), and the Qlik
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Fig. 2. Distribution of the train (top left) and test (top right) NNL, and
confidence bounds for the conditional volatility (bottom). GJR-GARCH(1,1),
Microsoft Inc. data.

loss [24]. For the last three, as proxies for the observed
conditional variances, we adopt squared returns [24].

Table I presents the overall estimation results for the 488
stocks. For a performance metric Mx

E computed on a data
subsample x as a result of an estimation procedure E, the
entries in the Table correspond to mean performance devi-
ations from the QML benchmark expressed as percentages,
i.e., 100(Mx

E/M
x
QML − 1), and their standard deviations for

the S&P 500 stocks. We comment on the predominance of
positive signs indicating that QML is, overall, the preferred
estimation approach from a merely quantitative perspective.
However, VI methods can sometimes outperform QML in
certain model/loss combinations. Clearly, test NLL values are
always positive, confirming that QML estimates are optimal
in this sense. At a general level, the typical magnitude of the
ratios is in the sub-1% order, indicating that MC/VI estimation
procedures are indeed effective w.r.t. QML and each other.
Among the VI optimizers, we do not observe patterns indicat-
ing the dominance of one optimizer over another, implying
they all determine a comparable variational approximation
and, thus, performance. At the same time, the homogeneity in
the results indicates that VI is robust with respect to the choice
of the optimizer; all the optimizers appear adequate for the
problems analyzed. By applying Chebyshev’s inequality with,
e.g., a margin of 3 standard deviations, the differences are
broadly insignificant, indicating that the Gaussian variational
approximation for the unconstrained parameters is plausible,
at least for capturing the first two moments of the margins.

Regardless of the VI optimizer and volatility model, these
results show that VI firmly stands as a valid estimation alter-
native to MC sampling. The in-sample and out-of-sample loss
in performance w.r.t. QML is negligible, while the Bayesian
framework enables several advantages, as for Sec. I.

2) Case study: We provide further analyses for Microsoft
Corp. data. Table II summarizes the results regarding the
training processes and the parameters’ estimates.

The takeaway, justified blow, is that differences in per-
formance metrics are broadly negligible, and the differences
in the estimated parameters are minor. The impact of the

github.com/mmagris/GARCHVI


TABLE I
MAIN ESTIMATION RESULTS. AVERAGES AND RESPECTIVE STANDARD DEVIATIONS ACROSS THE S&P 500 STOCKS, OF THE DIFFERENCES BETWEEN THE
INDIVIDUAL ESTIMATORS’ PERFORMANCE WITH RESPECT TO THE QML PERFORMANCE, EXPRESSED AS A PERCENTAGE OF THE QML PERFORMANCE.

PERFORMANCES ARE EVALUATED IN THE TRANSFORMED POSTERIOR MEAN (6).

Train Test

RMSE MAD QLIK NLL RMSE MAD QLIK NLL

ARCH(1)
MCMC +0.257±35.820 +0.488±42.559 +0.105±1.306 +0.045±0.750 +0.422±40.208 +0.562±51.238 +0.128±18.353 +0.048±6.264
MGVB +0.308±39.794 +0.555±41.888 +0.113±1.476 +0.048±0.745 +0.525±41.932 +0.663±52.409 +0.175±20.910 +0.066±7.305
EMGVB +0.313±39.756 +0.562±41.596 +0.113±1.474 +0.048±0.745 +0.532±41.673 +0.670±52.077 +0.176±20.927 +0.066±7.304
BBVI +0.313±39.755 +0.562±41.594 +0.113±1.474 +0.048±0.745 +0.532±41.671 +0.670±52.075 +0.176±20.927 +0.066±7.304
QBVI +0.277±37.496 +0.532±40.190 +0.116±1.464 +0.049±0.744 +0.502±37.718 +0.639±50.450 +0.181±19.112 +0.067±7.027

GARCH(1,1)
MCMC +0.008±57.547 +0.033±126.751 +0.279±8.379 +0.111±3.371 +0.378±45.971 +0.320±117.589 +0.218±77.296 +0.080±30.211
MGVB -0.019±56.563 +0.118±122.241 +0.265±7.860 +0.106±3.149 +0.394±44.033 +0.431±112.530 +0.221±73.356 +0.081±28.555
EMGVB -0.016±56.838 +0.129±123.087 +0.268±7.888 +0.107±3.170 +0.399±44.328 +0.441±113.424 +0.223±73.864 +0.082±28.690
BBVI -0.016±56.843 +0.129±123.097 +0.268±7.889 +0.107±3.171 +0.399±44.333 +0.441±113.433 +0.223±73.869 +0.082±28.692
QBVI -0.098±40.651 +0.048±107.369 +0.225±5.025 +0.090±1.882 +0.270±32.590 +0.355±97.150 +0.244±47.097 +0.091±18.423

GJR-GARCH(1,1)
MCMC +0.216±136.296 +1.076±188.896 +0.498±19.800 +0.198±8.189 +1.023±110.649 +1.350±206.975 +0.207±155.432 +0.079±60.732
MGVB +0.191±131.465 +0.889±186.580 +0.509±19.616 +0.202±8.006 +0.959±105.886 +1.140±204.363 +0.226±154.253 +0.084±59.804
EMGVB +0.173±119.290 +0.903±189.253 +0.513±20.138 +0.204±8.280 +0.972±109.063 +1.151±207.438 +0.235±156.458 +0.088±60.738
BBVI +0.173±119.297 +0.903±189.261 +0.513±20.140 +0.204±8.281 +0.972±109.076 +1.151±207.446 +0.235±156.471 +0.088±60.744
QBVI -0.041±83.022 +0.727±154.161 +0.408±12.397 +0.162±4.942 +0.580±66.795 +0.998±163.206 +0.169±103.345 +0.066±40.164

EGARCH(0,1)
MCMC +0.591±100.969 +0.447±47.094 +0.099±0.889 +0.043±0.509 +0.277±35.295 +0.278±26.375 +0.079±4.951 +0.029±1.776
MGVB +0.704±119.838 +0.418±49.920 +0.111±0.935 +0.048±0.540 +0.335±49.310 +0.234±31.721 +0.111±9.794 +0.041±3.327
EMGVB +0.667±113.577 +0.400±50.086 +0.107±0.870 +0.046±0.524 +0.320±47.369 +0.216±30.581 +0.108±9.811 +0.040±3.336
BBVI +0.667±113.588 +0.400±50.089 +0.107±0.870 +0.046±0.524 +0.320±47.373 +0.216±30.584 +0.108±9.811 +0.040±3.336
QBVI +0.591±99.846 +0.338±46.964 +0.106±0.864 +0.046±0.518 +0.258±38.595 +0.163±29.894 +0.104±10.196 +0.039±3.497

EGARCH(1,1)
MCMC +0.174±28.495 +0.450±33.825 +0.199±1.921 +0.080±1.076 +0.244±28.261 +0.501±57.923 +0.216±33.674 +0.079±12.473
MGVB +0.131±30.125 +0.533±31.338 +0.198±3.107 +0.079±1.237 +0.276±31.356 +0.609±54.202 +0.237±33.555 +0.085±12.823
EMGVB +0.455±68.170 +0.708±83.257 +0.622±40.371 +0.240±13.503 +0.571±63.156 +0.809±169.018 +0.625±97.310 +0.224±35.607
BBVI +0.456±68.614 +0.724±83.494 +0.623±40.489 +0.241±13.556 +0.577±63.868 +0.807±164.302 +0.626±97.604 +0.225±35.741
QBVI +0.397±76.614 +0.998±99.027 +0.748±49.880 +0.288±16.616 +0.745±84.246 +1.375±178.473 +0.749±115.469 +0.261±39.564

GJR-EGARCH(1,1)
MCMC +0.165±38.646 +0.785±44.847 +0.259±2.923 +0.103±1.644 +0.406±47.171 +0.849±83.595 +0.259±41.236 +0.094±14.483
MGVB +0.202±56.358 +0.819±54.540 +0.310±9.159 +0.127±4.050 +0.465±53.650 +0.929±112.795 +0.310±60.818 +0.114±21.561
EMGVB +0.846±107.619 +1.214±120.063 +1.026±71.257 +0.394±24.872 +1.043±146.509 +1.124±272.713 +0.781±161.688 +0.276±55.370
BBVI +0.847±108.432 +1.235±120.755 +1.028±71.166 +0.394±24.853 +1.047±146.676 +1.150±273.753 +0.783±162.340 +0.277±55.636
QBVI +0.828±139.379 +1.831±153.957 +1.170±79.713 +0.449±27.667 +1.412±187.324 +2.177±324.510 +0.897±175.608 +0.326±64.718

FIGARCH(1,d,1)
MCMC +0.090±54.384 +0.845±136.805 +0.258±15.436 +0.103±6.538 +0.204±48.465 +1.007±205.486 -0.028±64.930 -0.018±25.460
MGVB +0.146±59.358 +2.381±217.490 +0.149±21.112 +0.061±8.566 +0.475±67.696 +2.620±277.691 -0.587±101.008 -0.213±36.897
EMGVB +0.172±68.563 +2.477±240.598 +0.153±21.398 +0.063±8.714 +0.514±76.643 +2.762±307.879 -0.569±105.048 -0.206±38.216
BBVI +0.172±68.730 +2.478±240.930 +0.153±21.404 +0.063±8.717 +0.514±76.825 +2.764±308.238 -0.569±105.073 -0.206±38.222
QBVI +0.145±58.516 +2.427±217.864 +0.168±20.448 +0.069±8.299 +0.493±67.799 +2.716±301.438 -0.577±99.190 -0.209±36.377

chosen estimation method is secondary, promoting VI as
a solid alternative to MC and QML. Performance metrics
are broadly overlapping, and differences are not statistically
different except for the train NLL, consistently minimized by
QML.

It is instructive to look at the performance metrics achieved
by the different optimizers. For all the models, the MSFT
findings align with the percentage reported in Table I. On both
the training and test sets, the values of the performance metrics
are remarkably aligned between QML and the Bayesian esti-
mators, also for the additional models. Switching to a Bayesian
framework does not harm with respect to QML performance
on both sets. The estimated variance indicates broad non-
significance in the difference across the Bayesian estimates,
if not for NLLtrain. We do not include the additional table
with all the cross-testing results but rather visually discuss
this case in Figure 2. The top-right panel of Figure 2 shows
that the hypothesis NLLtrain

QML = NLLtrain
V I cannot be rejected.

Conversely, its rejection on the training set validates the above.

Extending the analysis to the value of the optimized LB,
we observe that all the VI optimizers are rather equivalent for
Bayesian inference, targeting a similar optimum. Clearly, the

diagonal BBVI and QBVI ones do not reach the same LB
optimum that MGVB and EMGVB do (see. e.g., the GJR-
GARCH(1,1) case in Table II and Figure 1), yet the differences
are well within 1%, both on the training and test sets. The
differences in the LB correspond to differences in the posterior
estimates, explaining differences in the estimates posterior
means of Table II. Yet, performance metrics are practically
analogous; all the reported estimates can be considered equally
effective, especially for out-of-sample forecasting.

In this regard, we observe a remarkable alignment be-
tween the MC and MGVB/EMGVB estimates and the stan-
dard deviations, suggesting that the full-covariance Gaussian
specification appears feasible, at least for capturing the first
two moments of the marginal distribution of the true poste-
rior (approximated by the MC sampler). Figure 1 includes
the posterior means for the GJR-GARCH(1,1) model in the
constrained parameter space. The plot highlights the impor-
tance of allowing for a full-covariance specification, and the
MGVB/EMGVB overlap to the MC density supports the Gaus-
sian variational framework. Observing the QML estimates
within the region of high density further validates the overall
VI calibration with respect to QML.



TABLE II
ESTIMATION RESULTS FOR THE MICROSOFT INC. DATA FOR THE GJR-GARCH(1,1). DIFFERENCES WITH RESPECT TO THE QML ESTIMATES AND

STANDARD DEVIATIONS. PARAMETER ESTIMATES REFER TO TRANSFORMED POSTERIOR MEANS (6), WHILE PERFORMANCES’ MEANS AND STANDARD
DEVIATIONS ARE COMPUTED FROM TRANSFORMED POSTERIOR SAMPLES.

Parameters Train Test Train Test

ω α L(θ⋆) p(y|θ⋆) L(θ⋆) p(y|θ⋆) RMSE QLIK NLL RMSE QLIK NLL

ARCH(1)
ML 1.92 0.43 -1966.75 -770.55 10.04 1.67 1966.75 8.49 1.58 770.55
MCMC 1.905±0.117 0.446±0.066 -1966.77 -770.64 10.040±0.131 1.670±0.002 1967.688±0.914 8.548±0.193 1.579±0.024 770.981±4.151
MGVB 1.904±0.121 0.446±0.066 -1971.19 -1966.77 -774.44 -770.68 10.040±0.137 1.670±0.002 1967.726±0.930 8.549±0.191 1.579±0.025 771.049±4.281
EMGVB 1.904±0.122 0.446±0.066 -1971.19 -1966.77 -774.44 -770.69 10.041±0.138 1.670±0.002 1967.731±0.972 8.547±0.190 1.579±0.025 771.043±4.307
BBVI 1.907±0.108 0.445±0.057 -1971.32 -1966.77 -774.53 -770.60 10.036±0.120 1.670±0.002 1967.749±1.097 8.541±0.161 1.579±0.027 771.028±4.582
QBVI 1.905±0.108 0.446±0.057 -1971.32 -1966.77 -774.55 -770.63 10.034±0.120 1.670±0.002 1967.741±1.100 8.545±0.162 1.579±0.027 771.062±4.557

GARCH(1,1) β
ML 0.15 0.19 0.77 -1890.44 -761.47 10.51 1.52 1890.44 8.09 1.52 761.42
MCMC 0.200±0.046 0.203±0.031 0.737±0.036 -1890.98 -762.31 10.446±0.072 1.523±0.003 1892.321±1.502 8.117±0.067 1.532±0.015 762.932±2.539
MGVB 0.205±0.047 0.201±0.030 0.736±0.035 -1901.36 -1891.06 -771.91 -762.49 10.444±0.071 1.523±0.003 1892.456±1.715 8.111±0.061 1.532±0.017 762.999±2.912
EMGVB 0.205±0.047 0.201±0.029 0.736±0.035 -1901.36 -1891.06 -771.90 -762.51 10.444±0.071 1.523±0.003 1892.446±1.698 8.111±0.061 1.532±0.017 763.017±2.910
BBVI 0.196±0.021 0.199±0.023 0.740±0.023 -1902.27 -1890.89 -772.87 -762.55 10.449±0.048 1.523±0.003 1892.334±1.740 8.106±0.049 1.532±0.022 762.995±3.708
QBVI 0.197±0.020 0.199±0.023 0.740±0.023 -1902.27 -1890.92 -772.88 -762.60 10.449±0.048 1.523±0.003 1892.387±1.783 8.105±0.049 1.532±0.022 762.939±3.769

GARCH(2,1) β1 β2

ML 0.17 0.21 0.62 0.13 -1890.26 -761.03 10.43 1.52 1890.26 8.09 1.52 760.99
MCMC 0.209±0.052 0.231±0.038 0.545±0.117 0.160±0.092 -1890.65 -762.61 10.372±0.086 1.522±0.003 1892.089±1.381 8.140±0.077 1.527±0.015 762.110±2.589
MGVB 0.212±0.051 0.229±0.035 0.543±0.100 0.164±0.080 -1898.50 -1890.59 -768.27 -762.10 10.372±0.084 1.522±0.003 1892.104±1.566 8.134±0.071 1.526±0.018 761.916±3.031
EMGVB 0.211±0.053 0.230±0.035 0.543±0.103 0.164±0.083 -1898.49 -1890.59 -768.27 -762.12 10.371±0.085 1.522±0.003 1892.127±1.581 8.135±0.071 1.526±0.018 761.918±3.010
BBVI 0.204±0.022 0.229±0.025 0.555±0.047 0.159±0.034 -1900.28 -1890.50 -769.82 -761.34 10.372±0.056 1.523±0.005 1892.379±2.315 8.134±0.055 1.526±0.026 761.997±4.391
QBVI 0.205±0.022 0.230±0.024 0.552±0.047 0.161±0.034 -1900.27 -1890.50 -769.85 -761.33 10.370±0.056 1.523±0.005 1892.384±2.329 8.134±0.053 1.526±0.026 762.071±4.394

GJR-GARCH(1,1) γ β
ML 0.17 0.09 0.17 0.77 -1882.96 -758.24 10.59 1.50 1882.96 8.02 1.50 758.18
MCMC 0.218±0.046 0.111±0.031 0.182±0.056 0.731±0.034 -1883.76 -759.25 10.560±0.071 1.510±0.004 1885.662±1.819 8.089±0.075 1.517±0.017 760.414±2.902
MGVB 0.218±0.045 0.111±0.031 0.182±0.050 0.731±0.035 -1897.75 -1883.77 -772.49 -759.43 10.556±0.060 1.509±0.004 1885.575±1.906 8.088±0.070 1.516±0.018 760.344±3.151
EMGVB 0.218±0.047 0.111±0.030 0.182±0.051 0.730±0.035 -1897.74 -1883.77 -772.48 -759.42 10.557±0.061 1.510±0.004 1885.590±1.889 8.088±0.070 1.516±0.018 760.350±3.081
BBVI 0.212±0.021 0.112±0.028 0.178±0.048 0.733±0.022 -1898.68 -1883.65 -773.50 -759.57 10.550±0.051 1.509±0.004 1885.548±1.997 8.080±0.052 1.516±0.024 760.368±4.023
QBVI 0.209±0.020 0.111±0.029 0.177±0.049 0.735±0.022 -1898.69 -1883.60 -773.42 -759.44 10.551±0.052 1.509±0.004 1885.490±1.985 8.078±0.051 1.516±0.024 760.263±4.038

EGARCH(0,1)
ML 1.12 0.50 -1999.77 -758.82 11.68 1.73 1999.77 8.07 1.51 758.82
MCMC 1.121±0.052 0.502±0.050 -1999.77 -758.86 11.694±0.025 1.735±0.002 2000.717±0.916 8.091±0.081 1.510±0.020 759.203±3.378
MGVB 1.121±0.053 0.501±0.050 -2006.49 -1999.77 -764.15 -758.85 11.695±0.027 1.735±0.002 2000.757±0.972 8.091±0.081 1.510±0.021 759.222±3.511
EMGVB 1.121±0.053 0.501±0.050 -2006.49 -1999.77 -764.23 -758.85 11.694±0.027 1.735±0.002 2000.745±0.996 8.090±0.080 1.510±0.020 759.194±3.493
BBVI 1.120±0.051 0.500±0.048 -2006.52 -1999.77 -764.31 -758.87 11.694±0.024 1.735±0.002 2000.761±1.039 8.088±0.080 1.510±0.022 759.202±3.780
QBVI 1.120±0.051 0.500±0.048 -2006.52 -1999.77 -764.51 -758.87 11.694±0.024 1.735±0.002 2000.765±1.050 8.087±0.080 1.510±0.023 759.209±3.837

EGARCH(1,1) β
ML 0.07 0.35 0.94 -1893.86 -754.74 10.49 1.53 1893.86 7.97 1.48 754.74
MCMC 0.076±0.018 0.371±0.044 0.933±0.016 -1893.95 -755.12 10.480±0.105 1.529±0.002 1895.328±1.243 8.001±0.060 1.487±0.012 755.318±2.055
MGVB 0.076±0.017 0.368±0.044 0.933±0.016 -1906.51 -1893.94 -766.16 -755.04 10.488±0.110 1.529±0.003 1895.409±1.287 7.997±0.057 1.487±0.012 755.263±2.128
EMGVB 0.082±0.021 0.382±0.047 0.927±0.019 -1906.63 -1894.18 -766.23 -755.34 10.478±0.122 1.530±0.003 1895.999±1.689 8.012±0.065 1.489±0.014 755.647±2.423
BBVI 0.093±0.011 0.399±0.039 0.917±0.010 -1907.75 -1894.75 -767.06 -755.52 10.461±0.115 1.531±0.003 1896.368±1.762 8.024±0.061 1.490±0.018 755.929±3.039
QBVI 0.096±0.011 0.403±0.039 0.915±0.011 -1907.92 -1894.94 -767.06 -755.55 10.457±0.117 1.531±0.004 1896.681±1.945 8.029±0.063 1.490±0.019 755.898±3.170

EGARCH(2,1) β1 β2

ML 0.07 0.38 0.85 0.09 -1893.73 -754.23 10.47 1.53 1893.73 7.97 1.48 754.23
MCMC 0.079±0.020 0.395±0.058 0.813±0.152 0.117±0.147 -1893.81 -754.54 10.483±0.115 1.529±0.003 1895.766±1.553 8.008±0.077 1.486±0.014 755.107±2.330
MGVB 0.079±0.018 0.392±0.053 0.813±0.141 0.118±0.138 -1908.04 -1893.80 -767.03 -754.29 10.485±0.115 1.529±0.003 1895.665±1.459 8.002±0.063 1.484±0.013 754.826±2.281
EMGVB 0.093±0.025 0.419±0.055 0.799±0.103 0.118±0.099 -1908.55 -1894.32 -767.41 -755.00 10.466±0.136 1.531±0.004 1896.708±2.066 8.029±0.077 1.488±0.016 755.544±2.774
BBVI 0.111±0.013 0.443±0.043 0.829±0.013 0.074±0.012 -1912.81 -1895.66 -770.53 -755.37 10.431±0.138 1.534±0.006 1898.215±3.089 8.063±0.083 1.491±0.023 756.064±3.852
QBVI 0.111±0.013 0.447±0.043 0.817±0.014 0.085±0.013 -1912.87 -1895.68 -770.48 -755.45 10.433±0.140 1.535±0.007 1898.410±3.372 8.065±0.081 1.493±0.024 756.304±4.079

GJR-EGARCH(1,1) γ β
ML 0.07 0.30 -0.10 0.94 -1885.35 -749.47 10.52 1.51 1885.35 7.91 1.45 749.47
MCMC 0.073±0.016 0.319±0.047 -0.105±0.025 0.931±0.015 -1885.47 -750.24 10.526±0.105 1.513±0.003 1887.398±1.465 7.945±0.072 1.460±0.014 750.668±2.437
MGVB 0.074±0.016 0.320±0.045 -0.106±0.026 0.930±0.015 -1901.83 -1885.47 -764.69 -750.01 10.521±0.102 1.513±0.003 1887.407±1.454 7.944±0.061 1.458±0.014 750.435±2.368
EMGVB 0.084±0.021 0.342±0.049 -0.108±0.031 0.921±0.019 -1902.11 -1885.95 -764.90 -750.65 10.514±0.112 1.515±0.004 1888.489±1.990 7.977±0.079 1.463±0.016 751.266±2.764
BBVI 0.095±0.010 0.357±0.039 -0.113±0.028 0.911±0.010 -1903.33 -1886.69 -766.01 -750.98 10.511±0.109 1.516±0.004 1888.890±2.033 7.998±0.081 1.465±0.019 751.582±3.324
QBVI 0.098±0.011 0.363±0.039 -0.114±0.028 0.908±0.011 -1903.58 -1886.97 -765.99 -751.10 10.511±0.111 1.517±0.004 1889.281±2.176 8.009±0.087 1.466±0.021 751.790±3.531

FIGARCH(0,d,1) d β
ML 0.28 0.47 0.25 -1891.66 -759.11 10.40 1.52 1891.66 8.15 1.51 759.11
MCMC 0.303±0.086 0.511±0.115 0.275±0.133 -1891.64 -759.08 10.447±0.190 1.524±0.002 1892.831±1.070 8.180±0.080 1.511±0.010 759.519±1.718
MGVB 0.340±0.083 0.523±0.094 0.290±0.109 -1895.55 -1891.54 -761.56 -758.34 10.454±0.174 1.524±0.002 1892.737±1.164 8.193±0.081 1.507±0.010 758.735±1.628
EMGVB 0.340±0.081 0.523±0.094 0.291±0.110 -1895.55 -1891.54 -761.57 -758.34 10.454±0.176 1.523±0.002 1892.735±1.149 8.193±0.081 1.507±0.010 758.727±1.622
BBVI 0.333±0.072 0.493±0.058 0.266±0.054 -1896.15 -1891.54 -761.65 -758.10 10.421±0.136 1.524±0.003 1892.916±1.548 8.182±0.093 1.505±0.011 758.442±1.921
QBVI 0.330±0.072 0.490±0.057 0.262±0.053 -1896.15 -1891.54 -761.66 -758.15 10.419±0.135 1.524±0.003 1892.944±1.550 8.179±0.093 1.505±0.011 758.444±1.952

FIGARCH(1,d,1) ϕ d β
ML 0.30 0.15 0.58 0.50 -1890.83 -758.83 10.41 1.52 1890.83 8.17 1.51 758.83
MCMC 0.307±0.091 0.112±0.055 0.549±0.124 0.412±0.122 -1891.06 -758.97 10.395±0.173 1.523±0.002 1892.431±1.245 8.191±0.083 1.511±0.010 759.438±1.723
MGVB 0.343±0.082 0.108±0.048 0.573±0.106 0.438±0.104 -1895.36 -1890.93 -761.87 -758.37 10.427±0.158 1.522±0.002 1892.201±1.209 8.197±0.083 1.507±0.010 758.759±1.657
EMGVB 0.343±0.083 0.107±0.049 0.573±0.108 0.437±0.105 -1895.35 -1890.93 -761.85 -758.37 10.426±0.159 1.523±0.002 1892.232±1.211 8.198±0.082 1.507±0.010 758.763±1.645
BBVI 0.341±0.070 0.112±0.047 0.567±0.075 0.444±0.061 -1895.88 -1890.89 -761.95 -758.14 10.435±0.122 1.523±0.003 1892.388±1.651 8.190±0.092 1.505±0.012 758.449±2.056
QBVI 0.341±0.071 0.113±0.048 0.560±0.073 0.437±0.060 -1895.89 -1890.91 -761.92 -758.09 10.426±0.123 1.523±0.003 1892.368±1.561 8.188±0.090 1.505±0.012 758.401±2.016

As an example of how VI could provide additional insights
with respect to the standard frequentist approach, the bottom
panel of Figure 2 shows confidence bounds for the predicted
conditional variance for 2023. Enabling a probabilistic dimen-
sion for the conditional variance can certainly benefit financial
practitioners [1, Ch. 6]). For instance, by enabling statistical
testing (e.g., for tomorrow’s variance being significantly higher
than today’s), or improving value-at-risk density evaluations,
as for Sec. I. Our results indicate that VI can serve this scope
well.

D. Robustness checks

Tables III and IV further validate our study by addressing
the effect different distributions for the iid innovations {zt}
and prior variances have on the estimates. The reported results
involve the MGVB optimizer, the GJR-GARCH(1,1) model,
and at the estimated parameter only. In Table III, we consider
four distributions and include the corresponding parameters as
trainable parameters. The results across the sections of Table
III are consistent and robust. The remarkably small ratios in
Table I are perhaps not related to the choice of the innovations’



distribution but rather to the robustness of the VI setup in this
setting.

Small prior variance does affect the posterior estimation
by keeping the posterior mean rather away from the QML
estimates (see Table IV). This is certainly positive if one has
motivated prior beliefs on the parameter in the unconstrained
space (though unlikely). On the other hand, prior variances
greater than one already deliver similar estimates (further
aligned with QML). Encoding prior lack of knowledge appears
to be relatively smooth; a prior variance τI with τ > 1 is
effective in this regard.

TABLE III
ESTIMATION RESULTS UNDER DIFFERENT PARAMETRIC FORMS OF THE IID

INNOVATIONS. MICROSOFT INC. DATA, GJR-GARCH(1,1).

Error Optimizer ω α γ β ν λ

Normal
ML 0.169 0.089 0.169 0.772
MCMC 0.218 0.111 0.182 0.731
EMGVB 0.218 0.111 0.182 0.730

Student-t
ML 0.148 0.067 0.203 0.788 6.991
MCMC 0.236 0.106 0.226 0.720 6.417
EMGVB 0.233 0.106 0.225 0.721 6.394

GED
ML 0.155 0.076 0.185 0.783 1.408
MCMC 0.221 0.109 0.198 0.724 1.462
EMGVB 0.223 0.109 0.199 0.723 1.458

Skew-t
ML 0.151 0.061 0.205 0.790 7.402 -0.130
MCMC 0.230 0.102 0.227 0.725 6.521 -0.120
EMGVB 0.229 0.099 0.225 0.727 6.632 -0.124

TABLE IV
EFFECT OF DIFFERENT PRIOR VARIANCES. MICROSOFT INC. DATA,

GJR-GARCH(1,1).

τ Optimizer ω α γ β

0.01
MCMC 1.033 0.477 0.242 0.210
EMGVB 1.034 0.475 0.244 0.210

0.1
MCMC 0.646 0.286 0.207 0.440
EMGVB 0.650 0.285 0.212 0.439

1
MCMC 0.218 0.111 0.182 0.731
EMGVB 0.218 0.111 0.182 0.730

5
MCMC 0.168 0.092 0.176 0.773
EMGVB 0.173 0.092 0.176 0.769

10
MCMC 0.164 0.091 0.176 0.776
EMGVB 0.166 0.089 0.175 0.775

20
MCMC 0.160 0.092 0.174 0.780
EMGVB 0.163 0.088 0.175 0.778

ML 0.169 0.089 0.169 0.772

IV. CONCLUSION

This paper documents the validity of Variational Inference
(VI) as a tool for the Bayesian estimation for common
volatility models of the GARCH family. We show that within
a Gaussian variational framework, VI gradient-free black-
box methods are robust and aligned with both the estimates
obtained via Monte Carlo sampling and traditional Quasi
Maximum Likelihood (QML). In this setting, we show how
to adopt parameter transforms to enable VI principles and
provide valuable insights on VI by the use of extensive
performance statistics calculated from the individual time
series of the S&P500 constituents. Along with a case study and
different robustness analyses, we conclude that VI stands as
a reliable, adequate, and suitable alternative to MC sampling
and QML. The differences in training and test performance

metrics with respect to QML and MCMC are typically within
the order of 1%. Despite our evidence on the validity of
Gaussian variational margins, future research may investigate
the appropriateness of the Gaussian copula and the use of
alternative dependence structures. More in general, the VI
framework could be applied to other domains, such as, e.g.,
stochastic volatility models or derivative pricing. We hope that
our results will promote the deployment of VI in econometric
and financial applications, encouraging the use of further
toolsets and results from the Machine Learning research.
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