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Introduction:: Many studies have attempted to determine whether Alzheimer's disease (AD) in-
vivo biomarkers can predict neuropsychological performance since pathophysiological changes
precede cognitive changes by several years. Nonetheless, neuropsychological measures can also
detect cognitive deterioration in cognitively normal individuals with AD-positive biomarkers.
Recent studies have investigated whether cognitive measures can be used as a proxy for biomar-
kers. This is a crucial issue since biomarker analysis is expensive, invasive, and not yet widespread in
clinical practice. However, these studies have so far considered only one or two classes of AD
biomarkers. Here, we aim at preliminarily evaluating whether and which neuropsychological
measures can discriminate individuals that have been classified according to the full scheme of
biomarkers known as ATN system. This scheme groups biomarkers as a function of the three
main AD-related pathologic processes they measure (i.e., B-amyloidosis, tauopathy, and neurode-
generation) to provide an unbiased and descriptive definition of the Alzheimer’s continuum.
Method:: Biomarkers and neuropsychological data from 78 patients (70.01 = 9.15 years; 38
females) with suspected cognitive decline were extracted from a medical database. Participants’
biomarker profiles were classified into the following ATN categories: normal AD biomarkers;
Alzheimer's continuum; non-AD pathologic change. Data were analyzed using a Bayesian
approach, to guarantee reliable result interpretation of data stemming from small samples.
Results:: The discrimination ability of each neuropsychological measure varied depending on the
pairs of ATN categories compared. The best-discriminating predictor in the Alzheimer’s continuum
vs. normal biomarkers comparison was the figure naming ability. In contrast, in the Alzheimer's
continuum vs. non-AD pathologic change comparison the best predictor was the wordlist forget-
ting rate.

Conclusions:: Although the study was exploratory in nature, the proposed methodological
approach may have the potential to identify the best neuropsychological measures for
estimating AD neuropathological changes, leading to a more biologically informed use of neu-
ropsychological assessment.
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Over recent years, most of the studies on associations
between biomarkers for Alzheimer’s disease (AD) and
its cognitive manifestations have typically considered
biomarkers as predictors and performance on neurop-
sychological measures as outcomes (Altomare et al.,
2019; Bilgel et al., 2018; Soldan et al., 2016). The under-
lying rationale was that AD pathophysiological
changes - now detectable in vivo through biomarkers -
underlie cognitive changes and can precede them by
several vyears. Nonetheless, neuropsychological

assessment is still fundamental, firstly because neurop-
sychological changes can be found also when indivi-
duals with biomarkers positive for AD are still
cognitively normal (that is, when they do not meet
criteria for MCI or dementia; Altomare et al., 2019;
Baker et al., 2017; Bilgel et al., 2018; Mortamais et al.,
2017; Soldan et al.,, 2016), and secondly because biomar-
ker examinations are currently expensive, invasive, and
not always readily available in routine clinical practice.
For instance, a survey reported that, in Ttaly, only 12% of
the neurological centers use cerebrospinal fluid (CSF)



biomarkers for the diagnosis of AD (Sancesario et al.,
2017). This is even more surprising if one considers that
the Italian healthcare system is ranked among the best in
the world (GBD 2016 Healthcare Access and Quality
Collaborators, Fulman et al., 2018). Therefore, it is cru-
cial to determine the extent to which a low-cost, non-
invasive, and widely available tool such as
neuropsychological assessment can be used to indicate
the likely presence of pathophysiological processes
underlying AD for early diagnosis and treatment.

In order to create a common language for
Alzheimer’s research focused on relations and interac-
tions among pathophysiologic processes - as revealed
by biomarkers - and clinical manifestations, Jack et al.
(2016) proposed the amyloid/tau/neurodegeneration -
ATN- system to classify biomarkers and to define the
entire continuum of AD in an unbiased, descriptive
way. In 2018, the system was incorporated in the new
research framework by the National Institute on Aging-
Alzheimer’s Association (NIA-AA; Jack et al.,, 2018).
This resulted in a radical change since this framework
no longer conceives AD as a syndromic construct
defined by its clinical consequences - signs and symp-
toms - but as a biological construct defined by its under-
lying pathologic processes documented through in vivo
biomarker analyses. The ATN scheme classifies the
main AD biomarkers into three groups: “A,” measuring
brain p-amyloidosis (CSF p-amyloid42 — Ap42 - levels
or amyloid-PET); “T,” measuring brain tauopathy (CSF
phosphorylated-tau - p-tau - levels or tau-PET); “N,”
measuring neurodegeneration or brain injury (CSF
total-tau - t-tau - levels, 18 F-fluorodeoxyglucose-
PET, or MRI). In the 2018 NIA-AA-research frame-
work, N is bracketed because the biomarkers belonging
to this group are not specific for AD. The use of positive/
negative cut-points in each group of biomarkers allows
for the identification of eight profiles, based on whether
(“47) or not (“-") the pathological cut-point is reached
for each biomarker. Therefore, these profiles can be
grouped into three categories: negative (i.e.,
normal) AD biomarkers (A-T-N-); Alzheimer’s conti-
nuum, including all profiles with positive A-biomarkers
(A+T-N-;A+T-N+;A+T+N-; A+ T+ N+); non-AD
pathologic change, including all profiles with negative
A-biomarkers but positive T- and/or positive
N-biomarkers (A-T-N+; A-T + N-; A-T + N+).

Although several studies have already explored the
2018 NIA-AA-research framework, only a few of them
have considered the role that neuropsychological assess-
ment could play in its context. Moscoso et al. (2019)
found that episodic memory assessment can provide
complementary information to the ATN biomarkers
on AD by predicting its clinical and pathological

progression, although they only assessed this cognitive
function on a selected sample of amyloid-positive parti-
cipants with mild cognitive impairment (MCI).
Altomare et al. (2019) studied a sample of memory
clinic patients and found that, compared to normal
biomarker profiles, some Alzheimer’s continuum pro-
files showed worse global cognition, memory, and
visuospatial abilities at baseline and faster global cogni-
tive decline over time, whereas some non-AD patholo-
gic change profiles exhibited worse language
performance. Although the neuropsychological assess-
ment was well designed in the study, the final descrip-
tion of ATN profiles consisted of composite measures,
which may be less than ideal for a fine-grained cognitive
characterization of the patients. Using individual (rather
than composite) neuropsychological measures could
indeed be more effective in discriminating cognitive
profiles belonging to the Alzheimer’s continuum from
conditions other than AD (e.g., an identical composite
score in the linguistic domain may result from semantic
as well as executive deficits).

Only a few studies have recently attempted to reverse
the main trend in the investigations of AD biomarkers
and cognitive manifestations by exploring whether neu-
ropsychological measures can be usefully employed for
predicting the status of AD biomarkers.

Mueller et al. (2020) found that an innovative mem-
ory measure, the delayed recall of proper names from
a short story, significantly predicted B-amyloid status (A
1) in a sample of cognitively unimpaired adults.
However, they considered only measures from short
story recall as predictor variables and did not consider
the “T” and “N” biomarker classes. Alves et al. (2021)
found that delayed free recall of a short story was the
only neuropsychological measure able to predict the
amyloid status (A+) among those tested. Yet, they also
investigated neuropsychological associations with only
one biomarker class from the ATN system and in a large
sample that however, included only patients with
amnestic MCI. Interestingly, Stricker et al. (2020)
found that the performance on a single wordlist delayed
recall test was able to differentiate A + T+ and A + T-
from A-T- participants. However, the authors categor-
ized participants according to their amyloid and tau
(AT) status, instead of using the full ATN classification
scheme.

In light of the picture described above, our study had
two main purposes. Qur first goal was to characterize in
greater detail the cognitive profile of individuals classi-
fied into ATN categories by considering a wide range of
neuropsychological measures. Qur second goal was to
explore whether and which neuropsychological mea-
sures would allow clinicians to discriminate individuals



that have been classified according to ATN categories.
Specifically, we aimed at evaluating whether the neu-
ropsychological tests used were able to distinguish
patients with Alzheimer’s continuum profiles from
those with normal biomarker profiles (i.e., profiles nega-
tive for all the ATN biomarker groups) and those with
non-AD pathologic change profiles. Additionally,
although different biological and syndromic conditions
may fall within the non-AD pathologic change category,
we also explored whether and which neuropsychological
measures could discriminate individuals with these
ATN profiles from those with normal biomarker
profiles.

We analyzed data included in a medical database of
patients who had undergone neuropsychological assess-
ment and CSF analysis for suspected cognitive decline.
Neuropsychological assessment takes into consideration
a wide range of neuropsychological measures largely
used in clinical practice. This is important since the
literature has produced rich data in the AD field only
for some measures (e.g., verbal episodic memory mea-
sures from wordlist presentations). We then used an
analysis method that is innovative in neuropsychologi-
cal research - a Bayesian approach - to preliminarily
evaluate whether and which neuropsychological mea-
sures could discriminate between ATN categories. We
adopted the Bayesian approach because it is particularly
suitable to robustly manage and interpret data from
small samples (Van de Schoot & Miocevi¢, 2020)

It is important to note that in the wider investigation
on the relationships between biological and neuropsy-
chological measures in AD, the ultimate goal of our
archival study was to describe a methodological
approach potentially able to lead to a more biologically
informed use of neuropsychological assessment, rather
than testing formal hypotheses. However, drawing from
studies that have used AD biomarkers as predictors of
neuropsychological performance (e.g., Baker et al., 2017;
Mortamais et al., 2017), we expect to find at least some
memory (both episodic and semantic) and language
measures to satisfactorily discriminate between normal
and Alzheimer’s continuum biomarker profiles. On the
contrary, we did not make specific assumptions about
the specific neuropsychological measures, which could
adequately discriminate between Alzheimer’s conti-
nuum and non-AD pathologic change profiles, and
between these latter and normal profiles, given the
very limited evidence found in the literature on these
comparisons.

We believe that investigating which cognitive mea-
sures can be useful in predicting underlying pathophy-
siological processes is crucial not only for syndromic
diagnosis, prognosis, patient monitoring, and

management, but also for clinical trial enrollment and
treatment selection, especially when neuroimaging or
CSF biomarker profiling is not an available option.

Materials and Methods
Participants

The data analyzed in the study were extracted from an
archival record of older adults admitted for outpatient
treatment at the Neurologic Clinic of the “Azienda
Sanitaria Universitaria Integrata di Trieste,” Italy,
between June 2016 and July 2019 for suspected cognitive
decline. Only patients with available CSF and neurop-
sychological assessment data were extracted from the
archive (n = 121). Patients with documented diagnoses
of psychiatric syndromes, presence of more than one
neuropathology (e.g., Parkinson’s disease and CSF bio-
markers positive for AD), and less than 5 years of formal
education were excluded. The final sample included 78
people (F = 38, M = 40). Basic demographic character-
istics for each ATN group and for the entire sample are
reported in Table 1.

This study was approved by the local health ethics
committee and was performed according to the
Declaration of Helsinki. All participants released their
informed consent.

Consistent with the 2018 NIA-AA research frame-
work (Jack et al., 2018), we used CSF biomarkers to
classify subjects into three binary categories: A+, T+,
and N+. For each category, a given CSF biomarker
value was considered pathologic (+) according to the
following cut-points: Ap42 < 550 pg/mL; p-tau > 52 pg/
mL; t-tau > 375 pg/mL (Duits et al., 2014; Mulder et al.,
2010). The resulting participants’ biomarker profiles
were classified into three groups: normal AD biomar-
kers (A-T-N-); Alzheimer’s continuum profiles
(A +T-N-; A+T+ N-; A+ T + N+); non-AD
pathologic change profiles (A-T + N-; A-T-N+;
A-T + N+). The normal biomarker group included 20
participants (age: M = 63.70, SD = 10.99; 10 F); the
Alzheimer’s continuum group included 37 participants

Table 1. Basic demographic characteristics for each ATN group
and for the entire sample.

N NAD AD Total
N 20 21 37 78
Sex (% F) 50.00% 47.62% 54.05% 51.28%
Age (y) 63.70 (10.99) 69.52 (9.68) 73.70 (5.19)  70.01 (9.15)
Education (y)  11.75 (4.36) 12.48(3.72) 10.89 (4.04) 11.55 (4.05)

N = normal biomarkers; NAD = non-Alzheimer's disease pathologic
change; AD = Alzheimer’s continuum.
For Age and Education, mean (standard deviation) values are reported.



(age: M = 73.70, SD = 5.19; 17 F); the non-AD patho-
logic change group included 21 participants (age:
M = 69.52, SD = 9.68; 11 F).

By using current clinical criteria (Aarsland et al,,
2007; Emre et al., 2007; G. M. McKhann et al., 2011;
McKeith et al,, 2017; T O’Brien et al., 2003;
Rascovsky et al,, 2011), a diagnostic team of expert
neurologists, neuroradiologists, and one neuropsy-
chologist identified different diagnostic entities in
each group based on neuroimaging, CSF, and neu-
ropsychological examinations. For cognitive staging,
we used a syndromal categorical scheme defined as
applicable to the entire population by the 2018 NIA-
AA research framework (Jack et al.,, 2018). This
scheme classifies the cognitive continuum into three
well-known categories: cognitive unimpairment, mild
cognitive impairment (MCI), and dementia. Table 2
shows diagnostic entities and cognitive staging for
each biomarker group. Among participants with clin-
ical and instrumental evidence of frontotemporal
dementia included in the non-AD pathologic change
group, six had the behavioral variant, and two had
the linguistic variant, whereas in the Alzheimer’s
continuum group, 32 participants had the amnestic
variant and five had the non-amnestic variant (three
language wvariants; two visuospatial variants;
G. M. McKhann et al,, 2011) of the disease.

CSF biochemical analysis

CSF AP42, t-tau, and p-tau were analyzed as ATN
biomarkers. The CSF analysis procedure followed the
Alzheimer’s Association Flow Chart for CSF biomar-
kers (Blennow et al, 2010). Collection, centrifuga-
tion, and storage of CSF samples were performed
following a standardized protocol and using polypro-
pylene tubes. The analysis of CSF samples was per-
formed in the same laboratory. CSF AP42, t-tau, and
p-tau were analyzed with INNOTEST® B-AMYLOID
(1-42), INNOTEST® hTAU Ag, and INNOTEST®
PHOSPHOTAU(181P), respectively  (Fujirebio
Europe, Ghent, Belgium).

Neuropsychological assessment

According to the consensus document of the Joint
Program for Neurodegenerative Diseases Working
Group (Costa et al., 2017), neuropsychological tests
designed to assess cognitive domains that are critical
for detecting changes related to neurodegenerative
dementias were used to evaluate the participants’ cog-
nitive profile. Table 3 shows the selected tests and, for
each of them, the cognitive functions primarily involved

Table 2. Diagnostic entities and cognitive staging for each ATN
group.

Biomarker groups

NAD AD
N group  group group
(h=20) (n=21) (n=37)
Diagnostic entities AD - - 37
Cl-uncertain etiology 4 9 -
FTD 1 8 -
LBD 1 - -
PDD 1 1 -
scl 10 - -
val 3 3 -
Cognitive staging  Cognitive 50.00% - -
(%) unimpairment
Mcl 40.00% 52.38% 51.35%
Dementia 10.00%  47.62%  48.65%

Biomarker groups: N = Normal AD biomarker group; NAD = non-AD patholo-
gic change group; AD = Alzheimer’s continuum group. Diagnostic
entities: AD = Alzheimer’s disease; Cl-uncertain etiology = Cognitive impair-
ment with uncertain etiology; FTD = Frontotemporal dementia; LBD =
Lewy's body dementia; PDD = Parkinson’s disease dementia; SCl =
Subjective cognitive impairment; VCI = Vascular cognitive impairment.
Cognitive staging: MCI = Mild cognitive impairment.

in its execution and the related measures. Test admin-
istrations followed the standard procedure for each of
them, and the related measures were adjusted for age,
education, and gender, according to the relevant Italian
normative data (see, Table 3). Episodic memory tests
based on wordlists usually assess learning by aggregat-
ing the scores of several learning trials into a single score
(e.g., Mauri et al., 1997). In order to investigate in more
detail the encoding process, we consider two additional
scores, i.e., the percentage of words retrieved in the first
and fifth learning trials.

The number of participants varied across the test
measures (see, Table 4, Table 5, N column) as data
were extracted from a database created for clinical
purposes. However, a series of chi-squared tests (a
chi-squared test for each of the cognitive measure
computed) supported homogeneous severity levels of
syndromal-staging (i.e., cognitive unimpairment,
MCI, dementia) in the compositions of abnormal
biomarkers groups (i.e., Alzheimer’s continuum
group, non-AD pathologic change group) for each
test measure (all n.s.).

Statistical analyses

Data were analyzed using a fully Bayesian approach
and interpreted descriptively, rather than inferen-
tially, given the exploratory intent of the study
(Amrhein et al., 2019). This approach can provide
important insights about the neuropsychological
measures that are most capable of predicting
patients’ ATN biomarker categories. All analyses



Table 3. Tests used for neuropsychological assessment and their related cognitive functions and measures.

Cognitive Tests Cognitive Functions

Measures

® |ong-term verbal episo- ®
dic memory

Semantically unrelated wordlist (Mauri
et al., 1997)

Short story (Spinnler & Tognoni, 1987) ® |ong-term verbal episo- ®

dic memory
Rey Complex Figure Test (Caffarra et al, ~ ® Visuospatial and visuo- ®
2002) constructive abilities L]

® |ong-term non-verbal
episodic memory
® Attention and executive

functions
Oral confrontation naming task (from ® Visual perception, ®
CAGI battery; Catricala et al., 2013) detection, and
recognition
® [anguage
® Semantic memory
Semantic fluency task - animal (Costa ® |anguage .
et al., 2014) ® Attention and executive
functions
Phonemic fluency task — FAS (Costa etal., ® Language L
2014) ® Attention and executive
functions
Digit Span Forward test (Monaco etal, ~ ® Short-term verbal ®
2015) memory
Digit Span Backward test (Monaco et al, ® Attention and executive ®
2015) functions
Forward Corsi span test (Monaco et al., ® Short-term non-verbal ®
2015) memory
Modified Card Sorting Test (Caffarra et al., ® Attention and executive ®
2004) functions L]
Cognitive Estimation Task-part ® Attention and executive ®
B (Scarpina et al., 2015) functions

® Semantic memory
Stroop test-color word item task ® Attention and executive ®

(Brugnolo et al., 2016) functions
Trail Making Test-part B (Giovagnoli et al, ® Attention and executive ®
1996) functions

Number of words correctly retrieved across the five leaming trials (global
immediate recall) [wordlist IR]

Percentage of words retrieved in the first learning trial [wordlist IR trial1]
Percentage of words retrieved in the fifth learning trial [wordlist IR trial5]
Number of words produced but not included in the list across the five learning
trials (intrusions in immediate recall) [wordlist IR intrusions]

Number of words correctly retrieved 15 minutes after the fifth learning trial
(delayed recall) [wordlist DR]

Number of words produced but not included in the list during the delayed
recall trial (intrusions in delayed recall) [wordlist DR intrusions]

Percentage of word retrieved in the fifth learning trial but not in the delayed
trial (forgetting) [wordlist forgetting]

Number of words correctly identified as included or not included in the studied
list (recognition) [wordlist recognition]

Sum of the two hierarchical scores obtained on the subtasks of immediate and
delayed recall[short story]

Number of figure elements correctly copied [CRFT-copy]

Number of figure elements correctly reproduced in the delayed reproduction
trial [CRFT-DR]

Number of figures correctly named [naming]

Total number of words produced with a category-cue in one 60s trial [verbal
fluency-semantic]

Total number of words produced with an initial letter-cue in three 60s trials
[verbal fluency-phonemic]

Length of the longest digit list correctly recalled in the order presented
[forward digit span]

Length of the longest digit list correctly recalled in reverse order [backward
digit span]

Length of the longest block-tapping sequence correctly reproduced [Corsi]

Number of categories achieved [MCST-category]

Number of perseverations [MCST-perseverations]

Scores assigned as a function of the distance between the subject’s estimations
and the range of the normative estimations [CET]

Number of color-words whose ink was correctly named in 30s, i.e., Stroop
interference trial (Stroop-Color Word Items) [Stroop-CWI]
Time in seconds to complete the task [TMT-B]

The first column shows the tests administered and — in brackets — the Italian normative studies used in their administration and scoring. The second column
shows the cognitive functions mainly involved in the execution of each test. The third column shows the measures derived from the tests and, in square
brackets, the verbal labels used to name them in the following tables and figures.

were performed with R software (R Core Team,
2019), with the following packages: readxl
(Wickham & Bryan, 2019), ggplot2 (Wickham,
2016), psych (Revelle, 2019), GGally (Schloerke
et al, 2020), dataExplorer (Cui, 2020), brms
(Biirkner, 2017).

Data analyses consisted of two main steps: (1)
univariate and bivariate descriptive statistics, and
(2) a set of categorical logit models to evaluate the
relationship between each of our predictors (i.e.,
neuropsychological measures) and the outcome (i.e.,
ATN groups). For parameter estimations, the Stan
statistical platform was used (Biirkner, 2017;

Carpenter et al., 2017; Stan Development Team,
2018). Default priors from the brms package, which
are Student’s t for regression coeflicients and residual
variances (the latter truncated to zero), and LK] for
correlations (Lewandowski et al., 2009) were used.
The estimates of each model were based on four
Monte Carlo Markov Chains, with 4000 replications
(2000 warm-up iterations discarded) each; therefore,
the posterior distributions of the parameters had
8000 actual samples each. Since a clinical database
was used, the sample size available for each predictor
varied from 39 to 76. For this reason, a strategy to
maximize the information using all available data for



Table 4. Univariate descriptive statistics of measures considered for each neuropsychological test.

N mean sd median trimmed mad min max range skew kurtosis se
Wordlist
IR 63 312 10.24 29.60 30.56 9.01 13.50 55.30 41.80 0.60 -0.50 1.29
IR trial1 (%) 55 23.07 13.22 25.00 22.50 9.27 0.00 68.75 68.75 0.65 1.29 1.78
IR trial5 (%) 56 43,53 20.84 40.62 43.08 18.53 0.00 87.50 87.58 0.20 -0.41 2.78
IR-intrusions 63 2.03 2.89 1.00 141 1.48 0.00 12.00 12.00 1.97 3.64 0.36
DR 63 4.49 3.82 4.00 417 5.19 0.00 13.30 13.30 0.49 -0.82 0.48
DR- intrusions 63 0.52 0.88 0.00 0.35 0.00 0.00 3.00 3.00 1.48 1.01 0.1
Forgetting (%) 63 51.40 33.78 48.40 51.26 44.48 0.00 100.00 100.00 0.19 -1.35 4.26
recognition 60 25.71 4,03 26.10 25.97 4.89 15.90 32,00 16.10 -0.50 -0.69 0.52
Short story 51 6.23 511 6.10 6.03 8.01 0.00 16.00 16.00 0.09 -1.42 0.72
RCFT
copy 69 27.23 6.70 29.00 27.82 5.56 9.50 36.00 26.50 -0.87 -0.32 0.81
DR 65 8.64 6.82 8.50 8.10 6.30 0.00 23.25 23.25 0.47 —0.65 0.85
Naming 66 4211 5.15 43.54 42,68 413 25.27 48.00 22.73 -1.12 0.92 0.63
Verbal fluency
semantic 60 12.30 71.26 10.21 11.58 6.24 1.00 32.90 31.90 0.82 0.06 0.94
phonemic 72 26,72 12.26 28.11 26.87 11.25 0.00 60.88 60.88 —-0.06 -0.21 1.44
Digit span
forward 76 5.48 1.06 5.32 5.44 1.19 2.99 8.74 5.75 0.41 0.36 0.12
backward 76 4,01 1.24 4,19 415 1.07 0.00 6.08 6.08 -1.30 225 0.14
Corsi span 76 4,75 1.28 4,50 4,77 1.26 1.00 8.15 7.15 -0.16 0.35 0.15
MCST
category 39 3.64 1.83 3.00 3.67 2.97 1.00 6.00 5.00 0.04 1.54 0.29
perseverations 39 5.57 4.49 4.50 521 4,08 0.00 17.50 17.50 0,72 —0.25 0.72
CET 69 10.09 5.30 9.74 9.92 5.93 0.00 20.34 2034 0.25 -0.87 0.64
Stroop - CWI 52 17.25 8.88 17.34 17.34 835 0.00 35.65 35.65 -0.01 —0.51 1.23
TMT - B (sec) 43 131.51 97.45 103.00 119.37 7413 6.00 404.00 398.00 1.04 0.23 14.86

For each neuropsychological measure, the following statistics are reported: number of participants (N), mean, standard deviation (sd), 10% trimmed mean
(trimmed), median absolute deviation (mad), minimum (min), and maximum (max) cbserved values, range of values (range), skewness (skew) and kurtosis
indexes for score distribution, and mean standard error (se). Reported values refer to raw scores adjusted for age, education, and gender, according to Italian
normative data. Wordlist IR = immediate recall; Wordlist IR trial1 = percentage of words retrieved in the first learning trial; Wordlist IR trial5 = percentage of
words retrieved in the fifth learning trial; Wordlist IR intrusions: intrusions in immediate recall; Wordlist DR = delayed recall; Wordlist DR intrusions =
intrusions in delayed recall; RCFT = Rey complex figure test; RCFT-DR = Rey complex figure test-delayed reproduction; MCST = modified card sorting test;
CET = cognitive estimation task; CWI = color word items; TMT-B = trial making test-part B.

each predictor was adopted for categorical models,
with comparisons being based on the indexes out-
lined below. Categorical models give for each parti-
cipant the probability to be classified into one of the
three ATN categories depending on the value of the
predictor taken into consideration. For any 7 subject,
the probability distribution is Prob (R/= k), with
R7 = expected category according to the model for
the 7 subject, and k = [Alzheimer’s continuum, non-
AD pathologic change, normal]. Starting from those
probabilities, we used three indexes. The first,
Cramer’s V (Cramer, 1946), compares the observed
category with the most likely category expected by
the model according to a 3 x 3 contingency table.
The higher the value of Cramer’s V within the 0-1
range, the better the quality of model classification
(Cramer’s V is one when all expected categories
match the observed ones).

The second index, the mean expected probability
of correct classification (referred to with #P), was
computed by considering each participant’s probabil-
ity predicted for the observed category and by aver-
aging probabilities. The higher the 4P value, the
more the model tends to classify participants consis-
tently with observed categories.

These two indexes are useful to evaluate the good-
ness-of-fit of the models but do not provide infor-
mation on the predictor's ability to discriminate
between pairs of categories, which is the main goal
of our study. Therefore, a third index was computed
to quantify the discrimination ability of predictors.
This index (referred to as n) quantifies the overlap
degree between 90% credibility intervals around the
estimated probabilities (Kruschke & Liddell, 2018).
To make the interpretation easier, n also varies
within the 0-1 range, where zero indicates the max-
imum and one the minimum discrimination capa-
city. This index can be used to discriminate between
pairs of categories (i.e., Alzheimer’s continuum vs.
non-AD pathologic change: nAD_NAD; Alzheimer’s
continuum vs. normal biomarkers: nAD_N; non-AD
pathologic change vs. normal biomarkers: nNAD_N),
and a global average (1) index can also be computed.

Data availability

The data that support the findings of this study are
available on request from the corresponding author.
The data are not publicly available due to privacy and
ethical restrictions.



Table 5. Indexes to quantify the ability of each neuropsychological measure to discriminate between pairs of ATN categories and

goodness-of-fit.

N Nao Nnap N nAD_N nAD_NAD nNAD_N n v WP
Wordlist
IR 63 29 15 19 0.09 037 0.20 0.22 0.48 0.45
IR triall 54 27 12 15 0.06 0.20 0.16 0.14 0.44 0.55
IR trials 55 27 12 16 0.13 033 0.23 0.23 0.31 0.48
IR intrusions 63 29 15 19 0.5 0.42 0.47 047 0.22 0.37
DR 63 29 15 19 0.15 0.37 0.25 0.26 0.41 0.42
DR intrusions 63 29 15 19 0.5 0.21 0.43 0.38 0.26 0.4
forgetting 63 29 15 19 0.23 0.15 0.40 0.26 0.25 0.39
recognition 60 28 15 17 0.1 0.19 0.12 0.14 0.35 0.42
Short story 51 24 14 13 0.29 0.4 0.54 0.41 0.26 0.39
RCFT
copy 69 31 19 19 0.17 0.28 0.50 0.31 NA 0.36
DR 65 29 18 18 0.13 0.45 0.19 0.26 0.38 0.42
Naming 66 3 17 18 0.04 0.16 0.05 0.08 0.49 0.49
Verbal fluency
semantic 60 29 15 16 0.1 037 0.15 0.21 0,44 0.44
phonemic 72 35 18 19 0.31 0.17 0.49 0.32 0.12 0.37
Digit span
forward 76 37 19 20 0.28 0.33 0.75 0.45 0.20 0.38
backward 76 37 19 20 0.15 0.23 0.46 0.28 NA 0.37
Corsi 76 37 20 19 0.09 0.28 0.21 0.19 0.36 0.42
MCST
category 39 13 8 18 0.19 0.29 0.12 0.20 0.40 0.44
perseverations 39 13 8 18 0.36 0.31 0.27 0.31 0.02 0.39
CET 69 33 18 18 0.2 0.16 0.3 0.22 0.14 0.39
Stroop - CWI 52 19 14 19 0.15 0.48 0.35 0.33 0.42 0.38
TMT - B 43 17 1 15 0.27 0.52 0.2 0.33 0.31 0.39
Null 78 37 21 20 NA NA NA NA NA 0.36

For each neuropsychological measure, the following values have been reported: total number of participants (N), number of participants for the Alzheimer's
continuum group (NAD), number of participants for the non-Alzheimer’s pathologic change group (NNAD), number of participants for the normal biomarker
group (NN); discriminative indexes between pairs of ATN categories: Alzheimer's continuum vs. normal biomarkers (nAD_N); Alzheimer’'s continuum vs. non-
Alzheimer’s disease pathologic change (nAD_NAD); nen-Alzheimer’s disease pathologic change vs. normal biomarkers (\NAD_N); global discriminative index
(n); Cramer’s V index (CV); mean expected probability of correct classification (#P). Null refers to the null model, i.e., the model without predictors. To note, the
smaller the values of discriminative indexes, the higher the ability to discriminate between AT(N) categories; the higher the CV value, the higher the matching
between expected and observed categories; the higher the 4P value, the better the ability to predict the AT(N) category to which participants actually belong.
All the values of the above indexes fall within the 0-1 range. Wordlist IR = immediate recall; Wordlist IR trial1 = percentage of words retrieved in the first
learning trial; Wordlist IR trial5 = percentage of words retrieved in the fifth learning trial; Wordlist IR intrusions: intrusions in immediate recall; Wordlist DR =
delayed recall; Wordlist DR intrusions = intrusions in delayed recall; RCFT = Rey complex figure test; RCFT-DR = Rey complex figure test-delayed reproduction;
MCST = modified card sorting test; CET = cognitive estimation task; CWI = color word items; TMT-B = trial making test-part B.

nAD_N, nAD_NAD, and nNAD_N values are in bold for the (first three) most discriminative measures between pairs of ATN categories; CV and 4P values are in

bold for the (first three) best-fit models.

Results
Descriptive statistics

reports the univariate descriptive statistics of
the 22 neuropsychological measures from the 13
tasks taken into consideration. Raw scores were
adjusted according to the respective Italian norma-
tive data for all measures with only two exceptions,
i.e., the percentage of words retrieved in the first and
fifth learning trials (wordlist RI triall and trial5), for
which there is no available data in the Italian popu-
lation. Therefore, the computation of categorical
models based on these two measures was adjusted
for age and education of participants by directly
controlling their impact in the analyses. Figure 1
shows the value distributions for the 22 quantitative
variables depending on ATN categories.

Correlation analyses between indexes

Pearson’s correlation analyses between indexes of all the
neuropsychological measures taken into consideration
(Supplementary Fig. S1) provided evidence for
a consistent ranking of models. Correlations indicate
a substantial consistency of computed indexes, except
for the discrimination index for the Alzheimer’s conti-
nuum vs. non-AD pathologic change comparison
(nNAD_NAD), which weakly correlates with Cramer’s
V index (r = .04) and with the other two discrimination
indexes (r = .18 for nAD_NAD-nAD_N; r = .07 for
NAD_NAD-nNAD_N). As suggested in the following
sections, these low correlations are likely due to the fact
that a neuropsychological measure that is good at dis-
criminating between two ATN categories (e.g.,
Alzheimer’s continuum vs. non-AD pathologic change
comparison) was not necessarily equally good at
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Figure 1. Score distributions on neuropsychological measures considered as a function of the three ATN categories. Scores were
adjusted for age, education, and gender, according to Italian normative data. AD = Alzheimer’s continuum; NAD = non-Alzheimer's

disease pathologic change; N = normal biomarkers; Wordlist IR =

immediate recall; Wordlist IR trial1 = percentage of words retrieved

in the first learning trial; Wordlist IR trial5 = percentage of words retrieved in the fifth learning trial; Wordlist IR intrusions: intrusions in
immediate recall; Wordlist DR = delayed recall; Wordlist DR intrusions = intrusions in delayed recall; RCFT = Rey complex figure test;
RCFT-DR = Rey complex figure test-delayed reproduction; MCST = modified card sorting test; CET = cognitive estimation task;

CWI = color word items; TMT-B = trial making test-part B.

discriminating between the other two pairs of categories
(e.g., Alzheimer’s continuum vs. normal biomarkers,
and/or normal biomarkers vs. non-AD pathologic
change). This may also explain why the indexes used to
evaluate the goodness-of-fit of the models (i.e., Cramer’s
V and 4P) showed quite modest values.

Categorical models

Table 5 reports findings on the indexes computed (see
Statistical Analysis section) for all categorical models
(one for each neuropsychological measure considered).
Because the main goal of our study was to test the ability
of neuropsychological measures to discriminate
between ATN categories and the number of analyzed
measures was rather broad, the presentation and discus-
sion of results will be focused on the categorical models
with the highest ability to discriminate between pairs of
categories, i.e., with lower overlap degree between 90%
credibility intervals around estimated probability distri-
butions of categories in pairs. By examining our findings
on categorical models (that is, on neuropsychological

measures), we found that the 90% credibility intervals
around the estimated probability distributions of groups
were clearly differentiable for n-values < .20, whereas
they overlapped progressively more for n-values > .20.
This means that the predicted probability of belonging
to a certain ATN group is similar to the predicted
probability of belonging to the compared ATN group.
For these reasons, a value < .20 for fAD_NAD, nAD_N,
and nNAD_N was assumed as an appropriate criterion
for selecting neuropsychological measures with the
highest ability to discriminate between pairs of
categories

Best neuropsychological measures in discriminating
between Alzheimer’s continuum group and normal
biomarker group

The predictor with the highest discrimination ability
between Alzheimer’s continuum and normal biomar-
ker groups was the oral confrontation naming task.
The value of .04 on nAD_N (see, Table 3) indicates
that the overlap degree between 90% credibility
intervals around the estimated probability
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Figure 2. Ability to discriminate between biomarker groups shown by the naming task measure (number of figures correctly named).
Panel A: Graphical representation of overlap degrees between 90% credibility interval around estimated probability distributions on
the percentage of words retrieved in the first wordlist learning trial (wordlist IR trial1) for groups by pairs: Alzheimer’s continuum -
non-Alzheimer’s disease pathologic change (green line); Alzheimer's continuum - normal biomarker (purple line); non-Alzheimer’s
disease pathologic change - normal biomarker (orange line). Scores on Wordlist IR trial1 are shown on the X-axis, whereas the overlap
degree — expressed as a proportion — between 90% credibility interval around estimated probability distributions for AT(N) groups by
pairs is shown on the Y-axis. Panel B: Graphical representation of 90% credibility intervals (colored bands) around estimated
probability distributions (colored lines) on wordlist IR trial1 for the Alzheimer’s continuum (red), non-Alzheimer’s disease pathologic
change (blue), and normal biomarker (gray) groups. Scores on measure are shown on the X-axis, whereas the probability of belonging
to each of the three ATN groups is shown on the Y-axis. Wordlist IR trial1 = percentage of words retrieved in the first wordlist learning
trial; AD = Alzheimer's continuum group; NAD = non-Alzheimer’s disease pathologic change group; N = normal biomarker group.
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Figure 3. Ability to discriminate between biomarker groups shown by the words retrieved in the first wordlist learning trial measure
(percentage). Panel A: Graphical representation of overlap degrees between 90% credibility interval around estimated probability
distributions on the percentage of words retrieved in the first wordlist learning trial (wordlist IR trial1) for groups by pairs: Alzheimer’s
continuum — non-Alzheimer’s disease pathologic change (green line); Alzheimer's continuum - normal biomarker (purple line); non-
Alzheimer’s disease pathologic change — normal biomarker (orange line). Scores on Wordlist IR trial1 are shown on the X-axis, whereas
the overlap degree — expressed as a proportion — between 90% credibility interval around estimated probability distributions for AT(N)
groups by pairs is shown on the Y-axis. Panel B: Graphical representation of 90% credibility intervals (colored bands) around estimated
probability distributions (colored lines) on wordlist IR trial1 for the Alzheimer’s continuum (red), non-Alzheimer’s disease pathologic
change (blue), and normal biomarker (gray) groups. Scores on measure are shown on the X-axis, whereas the probability of belonging
to each of the three ATN groups is shown on the Y-axis. Wordlist IR trial1 = percentage of words retrieved in the first wordlist learning
trial; AD = Alzheimer's continuum group; NAD = non-Alzheimer’s disease pathologic change group; N = normal biomarker group.



distributions of the two groups was only 4% on this
task. In particular, Figure 2 shows that 90% credibil-
ity intervals around estimated probability distribu-
tions did not overlap for scores £ 43 and = 46
(Panel A) and that the estimated probability of
belonging to the Alzheimer’s continuum group was
extremely high for lower scores and gradually
decreased for higher scores, whereas the opposite
was true for the normal biomarker group (Panel B).

The second-best predictor was the percentage of
words retrieved in the first learning trial, where the
overlap degree between 90% credibility intervals
around the estimated probability distributions was
6%. Figure 3 shows that scores S 24% were asso-
ciated with a high probability of belonging to the
Alzheimer’s continuum group; conversely, the better
the performance (scores 2 32%), the higher the
probability of belonging to the normal biomarker
group.

Similar patterns were also found for other mem-
ory measures, i.e., global immediate recall, percen-
tage of words retrieved in the fifth learning trial,
delayed recall and wordlist recognition, and Rey
complex figure-delayed reproduction. For all of
these measures, 90% credibility intervals around the
estimated probability distributions did not overlap
for low and high score bands, respectively. Thus,
the lower the performance, the higher the probability
of being in the Alzheimer’s continuum group,
whereas the better the performance, the higher the
probability of belonging to the normal biomarker
group (see Supplementary Fig. S2, which shows dia-
grams of the predictions for all the measures con-
sidered, except for those reported in the main text).

The other predictors with an nAD_N low enough to
satisfy our criterion (i.e., < .20) were Rey complex fig-
ure-copy, Corsi span and backward digit span, semantic
fluency, and number of categories achieved on MCST
(MAD_N = .17, nAD.N = .09, nAD_N = .15,
nAD_N = .11, nAD_N = .19, respectively; see, Table 5;
for diagrams, see Supplementary Fig. S2).

Oral naming and Corsi tasks, along with the
percentage of words retrieved in the first learning
trial and wordlist recognition satisfied the < .20
criterion also when considering n, as global average
(n,= .08, n = .19, n = .14 and n = .14, respectively),
meaning that these measures were good discrimina-
tors in all between-category comparisons.
Conversely, for all the other above-mentioned mea-
sures, the global average (n) increased, meaning that
their discrimination ability was weaker in the other
two between-category comparisons.
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Best neuropsychological measures in discriminating
between Alzheimer’s continuum group and non-AD
pathologic change group

The predictor with the highest discrimination ability
between Alzheimer’s continuum and non-AD patholo-
gic change groups was the wordlist forgetting rate,
where the overlap degree between 90% credibility inter-
vals around the estimated probability distributions of
the two groups was 15% (i.e., nAD_NAD = .15; see,
Table 5). Figure 4 shows that intervals around estimated
probability distributions did not overlap for forgetting
rates 2 50%, for which participants were more likely to
have an Alzheimer’s continuum rather than a non-
Alzheimer’s pathologic change profile. For low forget-
ting rates, it was instead more difficult to discriminate
between the two groups; however, they both had a low
probability to be found in this score range.

Cognitive Estimation Test (CET) also ranked among
the best-discriminating predictors for the Alzheimer’s
continuum vs. non-AD pathologic change comparison
(NAD_NAD = .16; see, Table 5). In particular, the range
of pathological performance (i.e., scores between ~9 and
~15) was associated with increased likelihood of belong-
ing to the Alzheimer’s continuum group as opposed to
the non-AD pathologic change group, and intervals
around estimated probability distributions did not over-
lap in this range (see Supplementary Fig. S2).

The naming task showed a good discrimination abil-
ity also for this comparison (NAD_NAD = .16; see,
Table 5). Notably, 90% credibility intervals around the
estimated probability distributions did not overlap for
scores < 42, where the probability of belonging to the
Alzheimer’s continuum group was higher than that of
belonging to the non-AD pathologic change group (see,
Figure 2).

The nAD_N < .20 criterion was also met by its
performance on wordlist recognition and phonemic
fluency tasks. Supplementary Fig. S2 shows that the
score intervals have the highest discrimination ability
for these predictors.

Best neuropsychological measures in discriminating
between non-AD pathologic change group and
normal biomarker group

The naming task was also the best-discriminating pre-
dictor for normal biomarkers vs. non-AD pathologic
change comparison, with overlap degree between 90%
credibility intervals around estimated probability distri-
butions of 6%. Figure 2 shows that the two groups were
differentiable, especially for high scores (2 46), where
participants were much more likely to have normal bio-
markers rather than non-AD pathologic change profiles.
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Figure 4. Ability to discriminate between biomarker groups shown by the wordlist forgetting measure (percentage). Panel A:
Graphical representation of overlap degrees between 90% credibility interval around estimated probability distributions on the
wordlist forgetting rate (wordlist forgetting) for groups by pairs: Alzheimer's continuum - non-Alzheimer’s disease pathologic change
(green line); Alzheimer's continuum — normal biomarker (purple line); non-Alzheimer's disease pathologic change — normal biomarker
(orange line). Scores on wordlist forgetting — adjusted for age, education, and gender, according to Italian normative data — are shown
on the X-axis, whereas the overlap degree - expressed as a proportion — between 90% credibility interval around estimated
probability distributions for ATN groups by pairs is shown on the Y-axis. Panel B: Graphical representation of 90% credibility intervals
(colored bands) around estimated probability distributions (colored lines) on wordlist forgetting for the Alzheimer’s continuum (red),
non-Alzheimer's disease pathologic change (blue), and normal biomarker (gray) groups. Scores on measure — adjusted for age,
education, and gender, according to Italian normative data — are shown on the X-axis, whereas the probability of belonging to each of
the three ATN groups is shown on the Y-axis.AD = Alzheimer’s continuum group; NAD = non-Alzheimer's disease pathologic change
group; N = normal biomarker group.

Wordlist recognition was also a good predictor in  biomarkers as predictor variables of performance on
this comparison, where the non-AD pathologic  neuropsychological measures (Altomare et al., 2019;
change group performed worse than the normal bio-  Bilgel et al., 2018; Soldan et al., 2016). This approach is
marker group. Again, it was especially true for high  justified by the fact that anomalies on AD biomarkers
scores (2 28) that the two categories were differenti-  can be identified when individuals are still cognitively
able, with higher probability of belonging to the nor-  normal (Villemagne et al., 2013). Nonetheless, meta-
mal biomarker group for higher wordlist recognition  analyses and reviews show that neuropsychological
performance (see Supplementary Fig. S2). A similar  assessment can also detect cognitive deterioration in
pattern was found for another wordlist measure, i.e.,,  cognitively normal individuals positive for AD biomar-
the percentage of words retrieved in the first learning  kers (Baker et al., 2017; Mortamais et al., 2017).
trial: the higher the score, the higher the probability of =~ Furthermore, it is crucial for health policy to consider
belonging to the normal biomarker group and the  that biomarker analyses are currently expensive, inva-
lower that of belonging to the non-AD pathologic  sive, and not yet widespread in routine clinical practice,

change group (see, Figure 3). unlike neuropsychological assessment. Only a few stu-

The other predictors with a nNAD_N low enough to  dies have recently started to investigate whether the
satisty our criterion were the performance on Rey com-  above rationale can be reversed to improve neuropsy-
plex figure-delayed reproduction and semantic fluency  chological assessment, namely, to explore whether cog-
tasks, and the number of categories achieved on MCST.  nitive measures can also be usefully employed to
Supplementary Fig. S2 shows in detail the predictions  predict AD biomarker status. However, they have so
for these measures. far taken into account only one (Alves et al,, 2021;

Mueller et al.,, 2020) or, at most, two (Stricker et al.,
2020) classes of AD biomarkers.
Discussion For these reasons, in the present study, we aimed to
use neuropsychological measures as predictors of the
three ATN categories of biomarker profiles, namely
Alzheimer’s continuum, non-AD pathologic change,

Over the past few years, several studies have examined
the relationship between pathophysiological processes
underlying AD and its cognitive features by using AD
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and normal biomarkers - which are biological diagnoses
based on the full ATN biomarker scheme - in order to
understand whether and which neuropsychological
measures could discriminate between them. To the
best of our knowledge, our study represents the first
attempt in this direction. Our ultimate goal is to pro-
mote a more biologically informed use of neuropsycho-
logical assessment, which is especially useful when
biomarker analysis is not readily available. We adopt
a Bayesian statistical approach to identify the most
informative scores for each neuropsychological measure
in terms of differential diagnosis (i.e., scores implying
a higher probability of belonging to a given ATN cate-
gory), and therefore to obtain useful information to
guide the selection of assessment measures and their
interpretation in clinical practice. This statistical
approach has proven to produce more robust estima-
tions than maximum likelihood methods also in small
samples (Van de Schoot & Miocevié, 2020), thus
increasing the reliability of the resulting interpretation.

Overall, our results indicate that the discrimination
ability of each neuropsychological measure varied
depending on the pairs of ATN categories compared.

With regard to the Alzheimer’s continuum vs. nor-
mal biomarkers comparison, we found that the mea-
sures with the highest discrimination ability were those
obtained from the naming task, wordlist memory task
(global immediate recall, percentages of words retrieved
in the first and fifth learning trials, delayed recall, and
recognition), and Rey complex figure task (copy and
delayed reproduction), with Alzheimer’s continuum
profiled patients scoring worse than normal biomarkers
profiled participants in all of them. Although our “con-
trol” group consisted of individuals with normal ATN
biomarkers but not always cognitively unimpaired (see,
Table 2), these findings are consistent with previous
studies showing that performance on measures similar
to those we detected as more distinctive are impaired
also when AD is conventionally conceived as
a syndromal construct and participants that meet con-
ventional criteria are compared with healthy controls
(e.g., Costa et al., 2017). The convergence of these
results suggests that these kinds of neuropsychological
measures could be useful to detect Alzheimer’s conti-
nuum also when the diagnosis is more biologically
driven.

Although impairments in episodic memory have his-
torically played a pivotal role in defining AD (Albert
et al., 2011; Dubois et al., 2007; G. M. McKhann et al.,
2011; G. McKhann et al., 1984) and, consistently, in our
study various measures related to episodic memory
achieved a good discrimination ability, the best-
discriminating predictor in the Alzheimer’s continuum
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vs. normal biomarkers comparison was the oral naming
task. Interestingly, Bilgel et al. (2018) found that cogni-
tively normal individuals positive for amyloidosis and
neurodegeneration (A + N+) - and, hence, in the
Alzheimer’s continuum - showed a steeper decline
over a three-year period not only in episodic memory
measures similar to a subset of those we detected (i.e.,
wordlist immediate recall and delayed reproduction of
figures), but also in naming performance when com-
pared to cognitively normal individuals without bio-
marker anomalies (A-N-). Overall, these findings
suggest that naming assessment, along with wordlists
and reproduction of figure measures, may also be useful
in distinguishing Alzheimer’s continuum from normal
biomarker profiles in early clinical stages of the disease.

The naming task was also among the best-
discriminating predictors in the Alzheimer’s continuum
vs. non-AD pathologic change comparison, along with
wordlist forgetting rate and recognition, phonemic flu-
ency, and cognitive estimations. Our non-AD patholo-
gic change group included patients with different types
of neurodegenerative diseases (see, Table 2). Several
studies have shown that patients with clinical AD exhi-
bit greater impairment in naming tasks also when com-
pared to patients with other types of dementia. For
example, Brambati et al. (2006) found poorer naming
performance in AD patients when compared to both
normal controls and patients with other neurodegen-
erative dementias. The authors also found a significant
correlation between naming accuracy and gray matter
volumes of areas early affected by AD. Although
patients with AD are known to show early semantic
deficits in addition to amnestic impairments, caution
in the interpretation of this finding should be recom-
mended. Indeed, our Alzheimer’s continuum group also
included patients with non-amnestic variants (see
Participants section) because of the biomarker-based —
rather than clinical-based - categorization. This might
have slightly increased the naming task ability to dis-
criminate our Alzheimer’s continuum group from the
other two groups, on the one hand and diminished the
potential discrimination ability of episodic memory
measures on the other hand. Nonetheless, it is worth
remarking that an episodic memory measure, i.e., word-
list forgetting rate, show the highest discrimination abil-
ity when considering the Alzheimer’s continuum vs.
non-AD pathologic change comparison. This finding
is consistent with evidence that patients with
clinical AD exhibit higher forgetting rates when com-
pared to patients with different forms of dementia but
comparable levels of cognitive impairment, especially
for items in the very last serial position of a wordlist
(i.e., recency forgetting rate; Bruno et al, 2019;



Turchetta et al., 2018). Recency forgetting rate was also
found to be strongly correlated with CSE AP42 (i.e., the
main biomarker to identify Alzheimer’s continuum pro-
files in our study) while being uncorrelated with other
CSF biomarkers (i.e., CSF p-tau and t-tau, the main
biomarkers to identify also non-AD pathologic change
profiles in our study; Bruno et al.,, 2019). Although
further studies are needed to confirm the discrimination
ability of forgetting rate, one possibility is that its assess-
ment with measures similar to or even more specific
than the one used here (i.e., recency forgetting rate)
might be an effective neuropsychological marker for
discerning Alzheimer’s continuum profiles from those
with different anomalies in ATN biomarkers.
Cognitive Estimation Test (CET) also ranked among
the best measures for discriminating between the two
groups of anomalies in ATN biomarkers. We found that
partially or fully pathological performance in this task
was associated with increased likelihood of having
Alzheimer’s continuum profiles rather than non-AD
pathologic change profiles. CET was originally devel-
oped to reveal estimation ability problems in patients
with frontal lobe dysfunctions (Shallice & Evans, 1978).
Given that a substantial number of patients in our non-
AD pathologic change group suffer from conditions
typically associated with damage to the frontal lobes
and/or their connections (see, Table 2), this finding
seems counterintuitive. However, Mendez et al. (1998)
found that patients with clinical AD produced signifi-
cantly more extreme estimates than patients with fron-
totemporal dementia. Moreover, several studies have
failed to provide evidence that CET is specific to frontal
lobe dysfunctions (Margraf et al., 2009; Spencer &
Johnson-Greene, 2009; Taylor & O’Carroll, 1995). This
is due to the fact that the CET requires not only the
recruitment of “frontal” functions such as planning,
abstract reasoning, and working memory, but also the
retrieval of knowledge from semantic memory to be
successfully performed (Wagner et al, 2011).
Accordingly, Della Sala et al. (2004) found that perfor-
mance on CET was correlated with semantic knowledge
in both patients with clinical AD and healthy adults, and
Brand et al. (2003) reported that Alzheimer’s patients
were impaired on both general knowledge and estima-
tion abilities also when compared to patients with
Korsakoff’s syndrome. In summary, several studies sug-
gest that semantic knowledge is the best predictor of
CET performance. Therefore, our findings might be
consistent with evidence that deficits in semantic abil-
ities are an early and major cognitive feature in AD
(Daum et al., 1996; Giffard et al., 2002) even during
preclinical stages when identified by biomarkers
(Baker et al., 2017; Mortamais et al., 2017; Mueller
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et al., 2020). This interpretation, although in need of
further investigations, is also supported by our findings
on the naming task.

Unlike the Alzheimer’s continuum category, the
non-AD pathologic change category is aimed at clus-
tering profiles with anomalies unrelated to the
Alzheimer’s spectrum on ATN biomarkers rather
than biomarker profiles sharing the same etiopathoge-
netic processes. Although various conditions may fall
under this category, some of the administered mea-
sures (i.e., naming, semantic fluency, wordlist recogni-
tion, and percentage of words retrieved in the first
learning trial, delayed reproduction of Rey complex
figure, and number of categories achieved in the
Modified Card Sorting Test) nevertheless showed
a good performance in discriminating this category
from the normal biomarker category. Again, the best
predictor in this comparison was the naming task.
Altomare et al. (2019) also found that patients in the
non-AD pathologic change category (A-T-N+ and
A-T + N+) performed lower on language when com-
pared to individuals with normal biomarkers.
However, the aforementioned patients also showed
poor language performance when compared to
A + T-N- profiles (i.e., when compared to profiles
within the Alzheimer’s continuum), thus suggesting
that neurodegeneration alone may lead to language
decline. This seems to be partially in line with our
findings that non-AD pathologic change profiles were
differentiable from normal biomarker profiles on
naming and semantic fluency tasks because of their
poorer performance. On the other hand, this result is
also partially in contrast with our findings that
Alzheimer’s continuum profiles (always presenting
with amyloidosis but not necessarily with neurodegen-
eration) were differentiable from profiles of the other
two ATN categories on naming tasks because of their
worse performance. Although both studies point to
some language impairments in non-AD patients,
their findings are not strictly comparable. Indeed,
Altomare et al. (2019) computed a single composite
measure for language, by combining scores on pho-
nemic fluency, semantic fluency, and naming tasks,
whereas in the present study, we considered these
measures separately. We use this approach because it
is controversial whether verbal fluency tasks are to be
regarded preferably as language or executive function
measures (e.g., Aita et al, 2019; Whiteside et al,,
2016). Furthermore, Altomare et al. (2019) categorized
participants into eight ATN biomarker profiles,
whereas in the present study we categorized them
into three higher-level ATN categories. Further
research is therefore needed to determine whether



and which measures can reliably discriminate between
non-AD profiles and both normal biomarker and
Alzheimer’s continuum profiles.

From a clinical perspective, the present study is based
on a heterogeneous sample of patients with suspected
cognitive decline, rather than patients meeting more
specific criteria, and, since this mirrors more closely
what happens in real clinical practice, a good ecological
validity is guaranteed. However, because our research
has an exploratory intent, our preliminary findings
should be considered taking some limitations into
account.

Our data were first taken from a medical archive
originally designed for clinical, rather than research,
purposes. As a consequence, the sample size varied
across neuropsychological measures because not all
tests were performed by all participants. However,
we did our best to minimize the impact of this limita-
tion by computing one prediction model for each
neuropsychological measure taken into consideration
(to maximize the use of all available data), and by
controlling that each prediction model was homoge-
neous for abnormal biomarker groups’ cognitive-
staging. The availability of larger samples of indivi-
duals fully assessed with a comprehensive neuropsy-
chological battery, in the near future will allow us to
establish whether a set of measures exists that, collec-
tively, achieves a discrimination ability between ATN
categories higher than that achieved by each single
measure.

Secondly, patients with diagnosed psychiatric disor-
ders were excluded from the study. However, given the
archival nature of our dataset, we did not have data on
specific standardized psychiatric measures for the entire
sample. For psychiatric symptoms to be controlled more
strictly, future studies should include their formal
assessment, especially since some psychiatric syndromes
such as anxiety and depression are more common in AD
than in the general population of older adults also in
early stages.

Third, as our sample was relatively modest in size, we
considered the three higher-level ATN categories rather
than the eight ATN biomarker profiles. Although it has
been argued that the ATN profiles included in the three
larger ATN categories tend to overlap for clinical fea-
tures (Altomare et al., 2019), we cannot rule out the
possibility that results could be partially different if
participants were classified into more fine-grained
groups. For example, some data suggest that profiles
with tauopathy in isolation do not seem to differ in
baseline and longitudinal cognitive performance from
normal profiles (Altomare et al., 2019; Pascoal et al,
2017).
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Another potential limitation of our study is that
patients with non-amnestic variants in our Alzheimer’s
continuum group may have decreased the discrimina-
tion ability of wordlist measures and/or increased that
of naming performance, as previous studies have
reported impairments or steeper cognitive decline
more frequently in the former than in the latter for
individuals with amyloidosis (i.e., with Alzheimer’s con-
tinuum profiles; Baker et al, 2017; Mortamais et al,,
2017). Again, our non-AD pathologic change group
included a substantial number of patients with fronto-
temporal dementia (eight out of 21) compared to the
normal biomarker category (one out of 20). Previous
studies have reported different proportions (Carandini
et al,, 2019; Cousins et al., 2020), and it is not yet clear
whether individuals with frontotemporal dementia are
more likely to show normal or non-AD pathologic
change profiles. However, these limitations are some-
what inherent in the ATN classification system, which
does not always match more clinically driven categor-
izations. Further research should clarify how frequently
clinically relevant conditions fall within each of the two
non-Alzheimer’s continuum ATN categories.

Unlike previous studies employing neuropsychologi-
cal measures aimed to predict categorizations based on
biomarker status, we explored a heterogeneous sample
of patients with suspected cognitive decline who are
presented for diagnostic examination rather than
a selected sample of cognitively unimpaired (Mueller
et al. 2020; Stricker et al., 2020) or aMCI individuals
(Alves et al., 2021). As a consequence, our findings may
not be extended to selectively impaired or unimpaired
people. On the other hand, we look at this heterogeneity
more as a strength than as a limitation, since our sample
reflects more closely the actual circumstances of clinical
practice and, consequently, our findings may be more
salient to clinicians.

Finally, because the study is based on archival data
from a relatively small sample, it does not provide
neuropsychological cutoff values that can be applied in
clinical practice. Nonetheless, the study's general aim
was to provide initial indications of the neuropsycholo-
gical measures that should be administered to increase
the likelihood of a biological diagnosis of AD.

Conclusion

Within the context of neuropsychological research, we
proposed a novel methodological approach potentially
able to lead to a more biologically informed use of
neuropsychological —assessment. We employed
a Bayesian approach to explore whether performance
on neuropsychological measures can be successfully



used to predict categorization of individuals into the
three ATN categories (i.e., their biological diagnoses),
and some investigated measures seem to be promising.
On the one hand, our findings are relatively consistent
with previous studies that examined cognitive features
of individuals with clinical (or mixed) rather than bio-
logical diagnosis of AD. Indeed, we identified similar
cognitive impairments on comparable neuropsycholo-
gical measures also in patients with Alzheimer’s conti-
nuum profiles. On the other side, given that the
discrimination ability of each neuropsychological mea-
sure varied depending on the biological diagnosis being
compared, our results also confirm once again the
importance of considering multiple measures to better
detail and characterize individuals’ cognitive profile
(Lezak, 1995), rather than relying on composite scores
(which often provide an oversimplified picture of the
status of specific components and processes within
a single cognitive domain).

The proposed methodological approach has the
potential to identify neuropsychological measures that
individually or collectively, can reliably estimate the
presence of specific types of neuropathological abnorm-
alities in larger samples as documented in vivo by bio-
markers, and ultimately to provide crucial diagnostic
information even when data on biomarkers are lacking.
This could increase the diagnostic accuracy of AD, espe-
cially when biomarker analyses are not available in
routine clinical practice, thus facilitating wider access
to more targeted treatments,
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