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Abstract: Speckle-based imaging (SBI) is a multi-modal X-ray imaging technique that gives access

to absorption, phase-contrast, and dark-field signals from a single dataset. However, it is often

difficult to disentangle the different signals from a single measurement. Having complementary

data obtained by repeating the scan under slightly varied conditions (multiframe approach) can

significantly enhance the accuracy of signal extraction and, consequently, improve the overall quality

of the final reconstruction. In order to retrieve the different channels, SBI relies on a reference

pattern, generated by the addition of a wavefront marker in the beam (i.e., a sandpaper or gratings).

Here, we show how a continuous helical acquisition can extend the field of view (FOV) and speed

up the acquisition while maintaining a multiframe approach for the signal retrieval of a test object.
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1 Introduction

Fast multimodal X-ray imaging is valuable for expanding the capabilities of X-ray tomography

beyond attenuation-based imaging. By combining different imaging modalities, it allows to obtain a

more comprehensive view of internal structures, materials, and physical properties of objects. Several

multimodal X-ray imaging techniques have been developed over the past decades: analyzer-based

imaging (ABI) [1, 2], grating-based imaging (GBI) [3, 4], edge illumination (EI) [5], and more

recently, speckle-based imaging (SBI) [6–8]. These techniques have led to advancements in a wide

range of applications (i.e, materials science, optics characterisation, and biomedical imaging).

SBI is a multi-modal X-ray technique that gives access to attenuation, phase contrast, and

dark-field signals. Signal retrieval is based on the use of a reference pattern, generated by a wavefront

marker (e.g., sandpaper [9, 10] or 2D Talbot array illuminators [11–13]). Among others [14], Unified

Modulated Pattern Analysis (UMPA) [15, 16] is an algorithm capable of modelling local distortions

of the reference pattern, which occur when a sample is inserted in the beam. Although the method

allows signal retrieval from a single-shot acquisition, higher spatial resolution and better image

quality can be achieved by acquiring multiple sets of reference and sample images with relative

transverse locations of the sample or modulator [15].

UMPA can process datasets with two stepping modalities: diffuser stepping, and the more

recently added sample stepping modality. The latter allows extending the reconstructed field of view

(FOV) since it combines frames with different lateral sample positions. We here present “helical

stepping”, a new SBI acquisition scheme which uses helical tomography to generate multiframe

tomographic data compatible with UMPA. Helical stepping allows expanding the FOV while cutting

down on acquisition times.

– 1 –
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2 Materials and methods

2.1 Experimental setup

The measurements were performed at the synchrotron PETRA III in Hamburg (DESY) [17]. The

imaging beamline P05 uses X-rays from an undulator located d0 = 85 m from the microtomography

endstation. A double-crystal silicon monochromator delivered a highly monochromatic beam

(Δ𝐸/𝐸 ≈ 10−4) with an energy of 20 keV. A CMOSIS CMV 20000 camera from Karlsruhe

Institute of Technology (KIT) with a pixel size of 6.4 µm was used, connected to an optical

microscope with a 100 µm CdWO4 scintillator. Using 5× magnification, we obtained a useful area

of 2.50 mm × 6.55 mm (1951 × 5120 pixels), with an effective pixel size of 1.28 µm in the sample

plane. Spatial resolution was estimated from a slanted-edge MTF measurement, resulting in a value

of 2.14 µm (1.67 pixels). The setup’s main components are shown in figure 1(a). The only change to

the conventional setup was the addition of a modulator on piezoelectric translation stages.

We used 6 layers of 1000-grit silicon carbide sandpaper (mean particle size 5.8 µm) as a

wavefront marker for the near-field speckle tomography scans. The sandpaper was positioned

d1 = 115 mm upstream of the sample and the sample-detector distance was d2 = 175 mm. The main

experimental parameters are reported in table 1.

180° projection

0° projection

PMMA

PCTFE

PTFE

Nylon(6,6)

Toothpick

Pipette tip

PS microspheres
(300 nm)

d
0

d
1

d
2

(a) (b)

Figure 1. (a) Experimental setup. (b) Helical acquisition, the phantom was rotated by 10 full rotations to

obtain 20 overlapping frames of each tomographic angle with different vertical positions of the sample.

2.2 Sample

We scanned a simple test object built from known materials. It contained rods of the following

materials (diameters in brackets): polymethylmethacrylate (PMMA, 1 mm), polytetrafluorethylene

(PTFE, 1 mm), polychlorotrifluoroethylene (PCTFE, 1.6 mm), and polyamide nylon-(6,6) (1.6 mm).

It also included a toothpick and a pipette tip containing polystyrene microspheres (300 nm).

– 2 –
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Table 1. Experimental parameters for the standard SBI acquisition and the continuous helical acquisitions.

Diffuser-stepping scan Helical-stepping scan

Diffuser steps 20 1

Angles 3001 48000

Exposure time per frame [ms] 100 60

Total scan time [min] 120 50

2.3 UMPA acquisition schemes

As reported in [16], it is possible to model reference pattern distortions induced by the sample for

each pixel r = (𝑥, 𝑦) to obtain different signals. The model accounts for absorption, small-angle

scattering and refraction of the incident X-rays. It is defined as

𝐼model(r) = 𝑇 (r) · {⟨𝐼0(r − u)⟩ + 𝐷 (r) · [𝐼0(r − u) − ⟨𝐼0(r − u)⟩]} , (2.1)

where 𝑇 (r), 𝐷 (r) and u(r) = (𝑢𝑥 (r), 𝑢𝑦 (r)) correspond to the transmittance, dark-field, horizontal

and vertical differential-phase signals. 𝐼0(r) is the reference image and ⟨𝐼0(r)⟩ is the local mean of

𝐼0 in the vicinity of r. The method’s performance relies on reference pattern quality and the pattern’s

sampling over the object features. Hence, by acquiring multiple sample-reference image sets {𝐼𝑚},

{𝐼0,𝑚} (1 ≤ 𝑚 ≤ 𝑀) with different lateral translations between the sample and modulator, we can

obtain more accurate reconstructions and improve image quality [9, 14]. UMPA fits the model to the

sample images by minimizing the sum of squared differences in a window Γ(w):

𝐿 (r) =

𝑀
∑︁

𝑚=1

𝑁
∑︁

𝑤𝑥=−𝑁

𝑁
∑︁

𝑤𝑦=−𝑁

Γ(w) ·
[

𝐼model
𝑚 (r + w − s𝑚) − 𝐼𝑚(r + w − s𝑚)

]2
, (2.2)

where 𝑀 pairs of images contribute to the final cost function 𝐿 (r). If the sample is moved instead of

the diffuser, the difference in sample position s𝑚 between the different steps has to be considered, so

that identical portions of the sample add to the local minimization and signal retrieval in UMPA.

The set of sample and reference frames in this study were processed using UMPA with a

3 × 3 analysis window after drift correction for each tomography angle. We obtained volumetric

reconstructions using conventional filtered back-projection tomography with ASTRA-toolbox [18, 19].

Differential-phase signals were integrated [20] for each projection before tomographic reconstruction.

UMPA can process datasets with two stepping modalities described in the following sections.

Diffuser stepping. Diffuser stepping consists in moving the diffuser transversely to the beam

between tomographic scans, while keeping the sample fixed. In practical terms, this means setting

s𝑚 = 0 in eq. (2.2). A way to combine this with tomographic acquisition, in a stable setup, is to

acquire a whole tomographic dataset at a fixed diffuser position, move the diffuser, perform the next

scan, and so on.

For the diffuser-stepping acquisition, we collected 3001 angular views of the phantom in a

continuous 180◦ tomographic scan for each of 20 diffuser positions. 20 dark images and 70 reference

images were taken before and after each scan. The raw images were dark current and beam profile

corrected. Bad pixel outliers were replaced by the median of their closest neighbors, and the beam

profile was estimated from low-pass filtered (50 × 50 px kernel size) reference images.

– 3 –
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Sample stepping. In sample stepping, the modulator remains fixed while the sample is moved.

Thus, different parts of the sample are superimposed with the same reference pattern. If the sample

positions s𝑚 (in pixels) are known, it is possible to process the dataset in a way analogous to diffuser

stepping. The minimization of 𝐿 (r) in eq. (2.2) requires the analysis window to move so that

the correct portion of the sample is accounted for in each 𝐼𝑚. This modality allows to extend the

reconstructed FOV by intrinsically stitching the displaced sample images during the signal extraction

process. However, in the final reconstruction, some pixels receive contributions by less than 𝑀

frames, and thus have different noise levels. This can be visualized with a frame coverage map [see

figure 2(c)].

(a) (b)

detector 

field of view

(c)

Figure 2. Relative diffuser and sample movements for one projection. (a) Diffuser positions for the

diffuser-stepping scan. Refined positions indicate displacement after alignment corrections. (b) Sample

positions in helical acquisition. We expected net vertical movement, but estimated positions indicate a small

drift. (c) Frame coverage map for the helical acquisition. The FOV is extended (axes in pixels), but the number

of contributing images to the signal retrieval is not constant across the FOV. More frames are used in the

central region (up to 20 images). The black dots mark the movement trajectory of the sample during the scan.

Helical stepping. Helical stepping is a method to reorder and transform data from a single helical

tomography scan into a multi-frame sample-stepping dataset compatible with UMPA. This can

accelerate the acquisition, but requires determining the exact sample position for each projection.

In the helical-stepping acquisition, the sample was rotated while continuously moving the

tomographic stage at a constant speed in the vertical direction by 200 µm per turn. In total, 48000

projections were acquired for 10 full turns of the sample. When considering the subset of projections

with an interval of 180◦ between them (flipping every other frame horizontally to reverse the effect

of the half-rotation), the change between frames is a net vertical movement of the sample without

rotation, see figure 1(b). We thus obtained, for each of 2400 different tomographic angles, 20 frames

differing only in the vertical location of the sample.

2.4 Drift corrections

Motor accuracy and repeatability, along with instabilities in the experimental setup, can introduce

vibrations that significantly impact image quality in high-resolution speckle-based scans. Since

SBI relies on matching speckle patterns with and without the sample [see figure 3(c) and (d)], it is

essential that the pattern remains stable over time in both images to ensure accurate reconstructions.

– 4 –
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Sample motion might occur due to setup stability issues. Usually, multiple reference images

would be acquired between every tomographic acquisition (i.e., every diffuser position). The

reference pattern can change if the source properties change, since speckles form from free-space

propagation interference effects of the sandpaper grains. By using reference images taken closest in

time to the actual sample image, we attempt to compensate for any beam instability or temporal

variations. However, this requires moving the sample out of the beam after every tomographic

acquisition, potentially leading to increased positioning inaccuracies. We here present a method to

correct random fluctuations of both diffuser and sample position between individual frames.

We begin with the correction of sample position fluctuations. Eq. (2.3) gives an overview of the

procedure. Here, {•𝑚} signifies the set of all values with subscripts 𝑚 = 1, . . . , 𝑀, and {•𝑚,𝑚′}

represents the set of all values with subscripts (𝑚, 𝑚′) as defined in eq. (2.4).

{𝐼𝑚},
{𝐼0,𝑚}

UMPA
single-frame → {𝑇𝑚}

cross-corr.
in overlap area → {𝛿s𝑚,𝑚′}

calc.
global pos. → {ŝ𝑚}

subpx. shift {𝐼𝑚},
{𝐼0,𝑚} by {ŝ𝑚} →

{𝐼 ′𝑚},
{𝐼 ′

0,𝑚
} (2.3)

We assume a complete set of sample images {𝐼𝑚} and reference images {𝐼0,𝑚}, where either

the position of the diffuser (diffuser stepping) or the sample (sample stepping) varies. Note that,

in sample stepping, 𝐼0,1 = 𝐼0,2 = . . . = 𝐼0,𝑀 . UMPA allows multimodal signal retrieval from a

single-shot acquisition. This means that only one pair of images is needed, one with the sandpaper in

the beam 𝐼0,𝑚 and another with the sandpaper and the sample in the beam 𝐼𝑚. The first step is to apply

UMPA to all pairs (𝐼𝑚, 𝐼0,𝑚) of single frames, yielding a series of transmission images {𝑇𝑚}, which

should not contain any visible speckles. Differences between the 𝑇𝑚 should therefore only be due to

variations in sample position, and differ only in a translation of the image content. We can determine

these translation vectors {𝛿s𝑚,𝑚′} between any two (𝑇𝑚, 𝑇𝑚′), e.g., by identifying the peak of the

cross-correlation of the two. For diffuser stepping, the resulting translation vector is entirely due to

positioning errors. In a sample-stepping dataset however, the sample is intentionally stepped by large

distances (see s𝑚 in eq. (2.2)), which means that only part of the sample data is shared between any

pair of frames. To account for this, we identify the overlap area for every (𝑇𝑚, 𝑇𝑚′) image pair based

on the known {s𝑚}, and use only this area for the calculation of the translation vector. Furthermore,

we only calculate the translation vector for the image pairs whose overlap is sufficiently large (here

we require at least 50% of the full FOV). This defines a subset 𝑃 of frame pairs:

𝑃 =

{

(𝑚, 𝑚′)

�

�

�

�

1 ≤ 𝑚 < 𝑚′ ≤ 𝑀, and

𝐼𝑚 and 𝐼𝑚′ have more than 50% overlap

}

(2.4)

Next, we retrieve an absolute sample position ŝ𝑚 for every frame 𝑚 from the relative translation

vectors {𝛿s𝑚,𝑚′}. To do so, we define a cost function and minimize:

𝐿sam(s1, . . . , s𝑀 ) =
∑︁

(𝑚,𝑚′ ) ∈𝑃

∥s𝑚′ − s𝑚 − 𝛿s𝑚,𝑚′ ∥2, ŝ1, . . . , ŝ𝑀 = argmin
s1,...,s𝑀

𝐿sam. (2.5)

The final step consists in shifting both 𝐼𝑚 and 𝐼0,𝑚 by ŝ𝑚 via sub-pixel interpolation, yielding

the images 𝐼 ′𝑚 and 𝐼 ′
0,𝑚

(for all 𝑚). Since the impact of sample drifts has been eliminated from

these images, they can be used as input for the diffuser drift correction. This procedure is shown

schematically in eq. (2.6).

{𝐼 ′𝑚},
{𝐼 ′

0,𝑚
}

UMPA
single-frame → {u𝑚}

offset est.
in overlap area → {𝛿u𝑚,𝑚′}

calc.
global pos. → {û𝑚}

subpx. shift
{𝐼 ′

0,𝑚
} by {û𝑚} → {𝐼 ′′

0,𝑚
} (2.6)

– 5 –
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Similarly to the sample drift correction, we apply UMPA to pairs of single frames (𝐼 ′𝑚, 𝐼
′
0,𝑚

),

but we now focus on the retrieved differential-phase channels u𝑚 = (𝑢𝑥,𝑚, 𝑢𝑦,𝑚). Any drift of

the diffuser between 𝐼 ′𝑚 and 𝐼 ′
0,𝑚

should result in a uniform offset of u𝑚 across the entire image.

Consider any pair of frames (𝑚, 𝑚′) from 𝑃. The image content of u𝑚 and u𝑚′ in the overlap

area should be identical, except for an offset. We thus define 𝛿u𝑚,𝑚′ as the mean of u𝑚 − u𝑚′

across the overlap area. It is equal to the difference in sample-to-reference diffuser drifts between

𝑚 and 𝑚′.

Using an approach equivalent to eq. (2.5), we can then calculate the absolute (per-frame) diffuser

drifts {û𝑚} from the relative drifts {𝛿u𝑚,𝑚′}. For the minimization, we use a starting estimate

û0,𝑚, which we derive via a cross-correlation-based estimate of shift between 𝐼0,𝑚 and 𝐼0,0 [see

expected positions in figure 2(a)]. Finally, we apply the diffuser drift correction by translating the

reference frames {𝐼 ′
0,𝑚

} by {û𝑚} via sub-pixel interpolation, yielding the frames {𝐼 ′′
0,𝑚

}. A fully

corrected dataset, ready to be processed with UMPA, thus consists of the sample-reference sets

{𝐼 ′𝑚}, {𝐼
′′
0,𝑚

}.

3 Results and discussion

Reconstructed projections from the diffuser-stepping and helical-stepping datasets are shown in

figure 3(a) and (b), highlighting the larger FOV in the latter. Figure 3(e)-(l) show the effect of

various corrections on the transmission and differential-phase signals. Figure 3(g) and (h) show

improvements due to sample drift correction (drifts of ≈ 18.5 px) compared to figure 3(e) and (f)

(no correction). The toothpick exhibits sharper and better delimited features. Figure 3(j) shows

additional improvements due to diffuser drift correction. Moreover, figure 3(l) shows that the

standard deviation further decreases in an empty region after UMPA bias correction [16].

Tomograms for both stepping approaches are shown in figure 4. It is important to mention that,

between each of the reconstructed 2400 projections over 180◦ in the helical-stepping dataset, there

is an offset in height since the first sample position moves vertically as the sample rotates. This

offset has to be estimated via cross-correlation and the projections have to be shifted accordingly

before tomographic reconstruction in order to yield well-aligned sinograms. Artifacts arising from

propagation fringes at material interfaces are evident in all the volumes. The UMPA model accounts

only for the first derivative of the phase, thus, second-order phase effects such as fringes are not taken

into account by the reconstruction and end up mainly in the attenuation and dark-field tomograms.

To mitigate these artifacts, the sample could have been positioned closer to the detector, which would

however have reduced phase sensitivity.

Figure 4(b) and (e) show similar 𝛿 histogram distributions, demonstrating that both approaches

yield comparable information. Beam profile and scintillator imperfection corrections are more

effective in a sample-stepping acquisition. This is because a consistent portion of the detector’s FOV

moves during the multi-frame reconstruction process, allowing to average out such issues. This

approach also helps in reducing ring artifacts [compare figure 4(a) and (d)]. Such imperfections, if

not corrected, are usually misinterpreted in the model and manifest predominantly in the dark-field

signal, as illustrated in figure 4(c), which shows more artifacts compared to figure 4(f). This explains

the wider histogram and a noisier reconstructions in figure 4(a) and (c) with respect to (d) and (f),

even though the exposure time and coverage map favor the diffuser-stepping scan.

– 6 –
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(a)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

std
0.55

std
0.53

std
0.52

std
0.41

(b)

detector 
field of view

Diffuser-stepping

Helical-stepping

Figure 3. Projection reconstruction and drift corrections with UMPA. Transmission signal from a

diffuser-stepping (a) and helical-stepping (b) scan. (c), (d) Speckle pattern with and without sample.

(e), (f) Reconstruction without corrections. (g), (h) Sample drift corrected. (i), (j) Sample and diffuser drift

corrected. (k), (l) Sample drift, diffuser drift, and bias corrected. “std” = standard deviation in yellow ROI.

4 Conclusion

In order to develop speckle-based tomography into a routine imaging technique, high acquisition

speeds are required. Furthermore, short acquisition times allow capturing dynamic processes

in real-time. A continuous helical scan approach is a straightforward choice for extending the

detector FOV while also maintaining short acquisition times [21]. Spiral computed tomography is a

routine procedure in hospitals, where time is crucial [22]. However, conventional CT only provides

attenuation information with a spatial resolution around 1 mm. Higher-resolution scans are more

susceptible to instabilities, and have a smaller FOV because of limitations in beam or detector size.

Here we show that high-resolution, multimodal tomography with an extended FOV is possible

but challenging. A similar measurement has previously been performed at a lab-based GBI setup

with lower spatial resolution (100 µm) [23]. In our case, the reconstruction requires an elaborate

analysis of big datasets (> 10 million pixels per frame), making it computationally demanding.

Moreover, at high resolution, beam instabilities and/or vibrations can greatly influence the quality

of the results. Recent methods make use of deep learning algorithms to improve image quality of

smaller datasets from fast scans [24]. This could be considered for improving speed and image

– 7 –
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Figure 4. Diffuser-stepping and helical-stepping tomograms of all the modalities: attenuation (a),(d),

phase-contrast (b),(e) and dark-field (c),(f).

quality in the future. By using UMPA with the proposed drift correction method, we show that a

continuous acquisition scheme can already cut acquisition time in half, while maintaining image

quality comparable to a standard SBI scan.
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