




Abstract

General relativity (GR) is currently our best theory for gravitation. It has been confirmed
by experiments from solar system tests like planetary orbits, to the recent gravitational
wave detection and the imaging of the event horizon of M87∗ and SgrA∗ black holes.
In cosmology, GR is confirmed at very large scales by observational tests like strong
gravitational lensing or redshift-space distortions. The ΛCDM model (Λ to indicate a
cosmological constant in Einstein equations and CDM for Cold Dark Matter) is indeed
based on GR plus the cosmological principle and an early inflation to create primordial
perturbations.

However, GR is not able to explain the nature of two of the most prominent ingredients
of the cosmological model: Dark Matter (DM) and Dark Energy (DE). The first is respon-
sible for the formation of cosmological structures such as the DM halos that host galaxies,
while the second causes an accelerated expansion of the universe at the present age. Seek-
ing to find and explanation for DM and DE is what drives the research for alternatives
theories to GR. The next generation of large scale surveys, such as Euclid, Rubin-LSST,
SKAO, DESI, Roman and Spherex will provide more data about the properties of DM
and DE, that will hopefully help us constrain those theories.

Starting from a theoretical model, one common approach to produce predictions that
later can be compared to observations consists in running numerical simulations. How-
ever, simulations of the formation of cosmological large scale structure have historically
neglected the relativistic nature of the gravitational interaction, by fixing a homogeneous
Friedman-Lemaitre-Roberton-Walker (FLRW) space-time metric and letting matter par-
ticles interact through a Newtonian gravitational potential. This Newtonian approach
dismisses 5 out of 6 degrees of freedom of the relativistic gravitational field (these degrees
of freedom are the components of the space-time metric after a system of coordinates is
fixed), and thus some little signals may be washed out by the Newtonian approximation in
the first place, that would otherwise help draw a line between different theories of gravity.

Recent developments have brought forward general relativistic codes such as Gevo-
lution and GRAMSES, that do take into account the space-time metric components
as a dynamic field sourced by inhomogeneities in the energy-momentum tensor. With
these tools one can study relativistic effects from first principles that have no Newtonian
counterpart, such as the motion of relativistic species (e.g. relativistic neutrinos), weak
lensing and integrated Sachs-Wolf (ISW) effect, that paired with the data from a detailed
galaxy survey (like the upcoming Euclid mission) can help to test GR on cosmological
scales.

In this PhD thesis I present the implementation of a method to study the evolution
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of the large scale structure in a weak-field approximation of GR. Our starting point is
the assumption that we can reproduce the classical evolution of the universe with an
N -body code in which small scales—below 1 Mpc—interactions are particle-to-particle in
the Newtonian limit, while in the large scales these interaction are mediated through the
relativistic gravitational field in the weak-field approximation.

We have implemented this idea by first redesigning Gevolution code from a mono-
lithic application into a relativistic Particle-Mesh (PM) library LibGevolution. Then
we have modified Gadget-4, a Newtonian TreePM code, adding LibGevolution as
a plug-in replacement to its original Newtonian PM. This project goes by the name of
GrGadget.

The advantage of a combined Tree+PM approach with respect to a pure PM method
lies in the fact that we can simulate huge cubic boxes, with a length of the order of
the 2 Gpc/h, representing a portion of the visible universe and still be able to resolve
structures where dark matter halos hosting galaxies are formed on scales below 100 kpc/h
using reasonable computational resources. Furthermore one can scale the size of the box
without necessarily needing to increase the memory requirements or sacrificing the small
scale resolution. Running GrGadget we have also realized that failing to resolve the
non-linear structures, for example in the case of a pure PM code, would underestimate
the amplitude of the highest Fourier modes of the relativistic fields by more that a 30%
factor.

This thesis is organized in 6 chapters. Chapter 1 will present the state of the art
of modern cosmology, the main questions about the nature of dark energy and dark
matter, how different theories of gravity might provide the answers and the need for
cosmological simulations that take into account relativistic effects. Chapter 2 will give a
detailed review of the theory of perturbations in general relativity. Chapter 3 will describe
the numerical methods used in this thesis to simulate the evolution of the universe, the
concept behind N -body simulations, the Particle-Mesh and TreePM methods. Some
technical characteristics of Gevolution and Gadget-4 codes that are relevant for this
work will be addressed in this chapter as well. In chapter 4 there will be an exhaustive
documentation of GrGadget: its procedural and memory models, its advantages over
Gevolution and limitations. Chapter 5 will be dedicated to the validation of the code
through medium size runs, testing the properties of the matter distribution through the
two-point correlation function compared to the Newtonian Gadget-4 and Gevolution
simulations. Chapter 6 will be dedicated to the conclusions of the work.

Chapters 4 and 5 present the original work produced by the author, already published
in ArXiv (Quintana-Miranda, Monaco, and Tornatore 2023) and it is waiting for review
on the MNRAS journal.



Notation

The notation convention in this thesis is as follows:

• No natural units are adopted. The work in this thesis is highly technical in simulation
codes, and computer programs are better implemented to work on variables which
do not retain physical dimensions. However, whenever one must translate simulation
results into physical predictions units must be recovered and very often the constants
that are not visible when natural units are in place constitute the conversion factor
from code units.

• The metric signature is (−,+,+,+) as it is customary in cosmology.

• Einstein’s summation convention is used where repeated greek indexes indicate a
sum over the values 0, 1, 2 and 3, while repeated latin indexes indicate a sum over
the values 1, 2 and 3.

• An index after a comma indicate partial derivative, while an index after a semi-
colon indicate covariant derivative with respect to the affine connection (Γµαβ) of
the space-time metric (gµν) unless otherwise stated. Also a vertical bar | is used to
indicate covariant derivatives with respect to the affine connection (Γ(3)k

ij) related
from the spatial metric (γij).

• The Riemann tensor for a connection Γ is computed as:

Rµανβ = Γµαβ,ν − Γµαν,β + Γµλν Γλαβ − Γµλβ Γλαν . (1)

• The Ricci tensor is computed from the Riemann tensor as:

Rαβ = Rνανβ . (2)

• In our convention Einstein equations are written as:

Rµν −
R

2
gµν + Λ gµν = −8πG

c4
Tµν . (3)

• Our sign convention picks an extra ‘−’ sign in Einstein equations because we define
the sign of the Energy-Momentum tensor such that the component T 0

0 corresponds
to energy density and it is positive for an ordinary set of particles.

iii



Contents

Contents iv

1 Introduction 1
1.1 Cosmology as the ultimate test for GR . . . . . . . . . . . . . . . . . . . . . 1
1.2 GR in Cosmological Simulations . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory of Cosmological Perturbations 5
2.1 Cosmology in the homogeneous universe . . . . . . . . . . . . . . . . . . . . 5
2.2 Perturbation theory in differential geometry . . . . . . . . . . . . . . . . . . 10
2.3 Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Energy Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Numerical methods in cosmology 23
3.1 N -body cosmological simulations . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Particle-Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 TreePM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Gadget-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Gevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 GrGadget 41
4.1 LATfield2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Domain decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Concept and design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Classes and memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Boosting Gevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 GrGadget code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Code validation 53
5.1 Gevolution and Gadget-4 original codes . . . . . . . . . . . . . . . . . . 54
5.2 Newtonian forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Relativistic Cosmology with GrGadget. . . . . . . . . . . . . . . . . . . . 57
5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusions 71

iv



CONTENTS v

A Perturbations of the Ricci tensor 75

B Nyquist-Shannon Theorem 81

Bibliography 85





Chapter 1

Introduction

1.1 Cosmology as the ultimate test for GR

Einstein’s theory of General Relativity (GR) is said to be the most elegant theory in
physics. It changed our understanding of space-time from an invariant flat perspective
to a dynamic and mutable geometric entity that bends with the presence of matter and
energy. In GR, gravity is no longer a distant interaction force between massive objects,
but a manifestation of curvature in the geometry of space-time. Regardless of its beauty,
it is our best theory of gravity confirmed by experiments. GR has been successful in
predicting all kinds of phenomena like the precession of planetary orbits, the deflection of
light and gravitational redshift in solar system tests, weak and strong gravitational lensing,
and the more recent confirmations with the detection of gravitational waves (Abbott et
al. 2016) and the direct imaging of a black hole event horizon (Event Horizon Telescope
Collaboration et al. 2019).

Shortly after the discovery of GR, Friedmann and later Lemâıtre, Robertson and
Walker, derived a metric for spacetime that solves Einstein equations in the context of
an homogeneous and isotropic universe; the so called FLRW metric. Today the standard
model of cosmology, ΛCDM, uses that metric and it has been successful in predicting
and explaining a whole range of observations from the Hubble expansion, the Big Bang
Nucleosynthesis (BBN) to the Cosmic Microwave Background (CMB).

Observations of the redshift of type Ia supernovae combined with the measurements
of the Baryonic Acoustic Oscillations (BAO) by the Sloan Digital Sky Survey (SDSS) and
the temperature map of the CMB by the Planck satellite provide evidence of the geometric
flatness of the universe and its accelerated expansion (Riess et al. 1998; Perlmutter et al.
1999; Percival et al. 2010; Suzuki et al. 2012; Planck Collaboration et al. 2020). ΛCDM
model explains these observations establishing that: (i) only the 15% of the matter con-
tents of the universe is in the form of baryonic matter—i.e. ordinary matter composed
by protons, neutrons and electrons; that it is found in the form of gas, dust, stars and
planets—while the other 85% is in the form of some Dark Matter (DM) that does not
interact with photons and its presence can only be measured through its gravitational
effect, and (ii) there is some mysterious form of energy called Dark Energy (DE) that has
negative pressure and drives the accelerated expansion of the universe. Figure 1.1 shows
the cosmic triangle of evidence for the geometric structure and matter/energy contents
of the Universe. The most recent results from Planck’s satellite, have confirmed these
conclusions with higher confidence (Planck Collaboration et al. 2020) see table 1.1.

Even though there is compelling evidence for the existence of DM and DE, there are
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Fit on the (Ωm,ΩΛ) plane of the ΛCDM model from SNe Ia combined with
the constraints from BAO and CMB (Suzuki et al. 2012).

Parameter Value
Ωbh

2 0.0224± 0.0001
Ωch

2 0.1193± 0.0009
ΩΛ 0.688± 0.005
Ωm 0.311± 0.005

Table 1.1: Cosmological parameters extracted from Planck Collaboration et al. 2020.
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no answers about their physical nature within the standard model of particle physics and
GR itself unless we introduce the cosmological constant Λ into Einstein equations. The
need for explanations drives the research towards models of modified GR introducing
modifications to the action in the form a function of the Riemann scalar, f(R) theories,
or by proposing the existence of additional gravitational degrees of freedom (Clifton et al.
2012).

Any good candidate for a modified GR theory of gravity must produce the same
predictions of GR at many scales, like Solar system tests, but there are still regimes in
the large scales in which GR has not been tested with enough accuracy and that leaves
room for whole classes of alternatives (Alam et al. 2020).

Upcoming surveys will provide more data about the observed properties of DM and
DE by probing the large-scale distribution of galaxy clustering. The Dark Energy Survey
(DES1), for instance, is an optical and near infrared survey from the ground that will
measure the distribution of an estimated number of 300 million galaxies in the redshift
range 0.1 < z < 1 and from their angular power spectrum it will able to measure the DE
parameters in its equation of state (Krause et al. 2017). Euclid2 satellite, expected to be
launch in 2023, will measure the shape of over 109 galaxies to map the DM distribution in
the Universe through weak gravitational lensing effects, it will carry out a spectroscopic
redshift survey of ∼ 50× 106 galaxies over 75% of the lifetime of the Universe; with this
data the theory group aims to measure the equation of state of DE and the growth factor
as a function of redshift to constraint modified gravity models (Laureijs et al. 2011).

On the scales of the order of the Hubble radius relativistic effects start to become de-
tectable on the datasets coming from galaxy surveys. They include: gravitational redshift
(also known as Sachs-Wolfe and Integrated Sachs-Wolfe effects), Shapiro time delay and
weak gravitational lensing (Borzyszkowski, Bertacca, and Porciani 2017; Yoo, Fitzpatrick,
and Zaldarriaga 2009). These arise from the fact that we observe far away galaxies in our
past lightcone, and the photons than reach our telescope travel through space-time fol-
lowing geodesic paths that differ from straight lines because of the presence of matter,
energy or gravitational waves that change the shape of the space-time. If not taken into
account, these effects become the source of systematic errors in the estimated observables
and a missed opportunity to test GR on cosmological scales.

1.2 GR in Cosmological Simulations

Computer simulation are used to fill the gap between theory and observations. For the
very complex process of non-linear clustering of matter under gravitational interaction in
cosmology, there is no analytical description, and simulations are our only predictive tool.
From these simulations, one can obtain virtual realizations of galaxy catalogs that try to
resemble the observations in order to calibrate the data processing pipeline of the surveys,
obtain biases and covariance matrices of estimators, and they are used also as forecasting
tools to select observables that maximize the signal to noise ratio or the discriminative
power over a particular theory of interest.

Until recently, most simulations were using Newton’s law of gravitation. The effects
of GR can be added a posteriori using ray tracing techniques on the lightcone assuming
the light travels in straight lines with respect to the FLRW Universe; for example LIGER
method is based on this approach (Borzyszkowski, Bertacca, and Porciani 2017). In the
post-processing, gravity is represented by the Newtonian potential that satisfies Poisson

1www.darkenergysurvey.org
2sci.esa.int/web/euclid

www.darkenergysurvey.org
sci.esa.int/web/euclid


4 CHAPTER 1. INTRODUCTION

equation, and from the knowledge that there exists a map from the Newtonian simulation
to a GR state of the Universe in Poisson gauge (Chisari and Zaldarriaga 2011) one can
justify and obtain all kinds of purely GR effects that have no Newtonian explanation such
as redshift-space distortions and weak gravitational lensing.

However, it is desirable to be able to obtain those effects from first principles and self
consistent fully relativistic simulations. It wouldn’t be possible to study the evolution and
imprint of relativistic species, in the large scale structure by using Newtonian simulations
in a self consistent way. The non relativistic setups are also missing 5 out of 6 degrees
of freedom of the gravitational field that could produce high order corrections to the
observable quantities; these if not taken into account in future precision observations,
might become the source of systematic errors. Newtonian simulation also lack the power
to evaluate the effects of GR in the clustering of matter in the large scales, which is
relevant to test modified gravity theories that predict an enhancement of the clustering
with respect to GR.

The most recent efforts to study relativistic effects in N -body simulations have pro-
duced two codes called GRAMSES (Barrera-Hinojosa and Li 2020) and Gevolution
(Adamek et al. 2016).

GRAMSES uses the Arnowitt-Deser-Misner formalism of GR in a background inde-
pendent framework. The code uses Gauss-Seidel relaxation method to solve the partial
differential equations of the gravitational sector in an adaptive mesh, and it is parallelized
for Message Passing Interface (MPI) that allows it to run massive simulation sizes in su-
percomputers. GRAMSES has been used to study the weak lensing effects of the vector
gravitomagnetic field (frame dragging) (Barrera-Hinojosa, Li, and Cai 2022).

Gevolution is also parallelized with the MPI paradigm, but unlike GRAMSES, GR
is solved through space-time metric perturbations with respect to a FLRW background,
and Einstein equations are solved using Fourier methods on a fixed size mesh. In the few
years since its publication, Gevolution has been used to address all kind of problems
that are inherent to GR such as the effects of early radiation and massive neutrinos in
the clustering at large scales (Adamek et al. 2017; Adamek, Durrer, and Kunz 2017), the
generation of vorticity and its relation with the frame dragging potential (Jelic-Cizmek
et al. 2018), and the backreaction problem (Adamek et al. 2019).

The work described in this thesis seeks to extend Gevolution code capabilities be-
yond the limitations imposed by the static resolution of the mesh. We propose a TreePM
approach to numerical GR in cosmology using N -body simulations in which the dynamics
of the particles are driven by a relativistic mesh for the large scales and a Newtonian
treatment for short range interactions (Quintana-Miranda, Monaco, and Tornatore 2023).
This method is based on the assumption that in the context of cosmology, where mat-
ter is diluted in huges volumes of space and non-relativistic species are predominant, the
Newtonian limit approximation works very well for scales well below the Hubble horizon.
In our implementation we use Gadget-4 (Springel et al. 2021) code as the main driver
of the simulation and Gevolution code is modified to work as a Particle-Mesh library
substituting Gadget-4’s Newtonian mesh. This approach has the advantage of producing
accurate non-linear clustering, which is challenging for pure mesh codes.



Chapter 2

Theory of Cosmological Perturbations

In 1964 Arno Penzias and Robert Wilson discovered a radio signal whose origin could not
be attributed to anthropic activity or a galactic source. It was coming from all directions in
the sky. Later, detailed measurements by COBE satellite confirmed that this signal, now
named Cosmic Macrowave Background (CMB), has an almost perfect thermal black body
spectral distribution with a temperature of 2.7259 ± 0.0006K (Fixsen 2009), suggesting
that the CMB is remnant of the of past state of the universe when it was hotter and denser
than it is today. The tiny anisotropy of the CMB temperature T field, ∆T/T ≈ 10−5, is
one of the many observational confirmations that as seen from Earth the universe appears
to be isotropic.

One might think that the Earth occupies a special position in the universe from which
it looks spherically symmetric. But since the time of Copernicus, we have learned that the
Sun and not Earth is in the center of the Solar system. The Solar system itself is located
in some ordinary average location in the Milky Way galaxy, and the Milky Way is just one
of the many neighboring spiral galaxies. There is no reason to believe that the isotropy
observed is due because the Milky Way occupies a special location in the universe. The
cosmological principle summarizes this Copernican assumption about the structure of the
universe:

Viewed on a sufficiently large scale, the properties of the Universe are the same
for all observers and in all directions.

Modern cosmology is built upon this assumption and this is enough to provide a fair
understanding of the universe at large and its history.

However, there are inhomogeneities in the universe, some regions are denser than
others, there are structures in the large scales that resemble 3 dimensional dense networks
and there are almost empty regions of space in between. To properly model the dynamics of
such complex universe and the propagation of light signals in it one must develop a general
relativistic mathematical description that goes beyond the homogeneity assumption. This
chapter is dedicated to explaining the fundamental concepts of the theory of perturbations
in cosmology and obtain the main equations that we will use in the rest of the thesis.

2.1 Cosmology in the homogeneous universe

Before we dive into the particular aspects of the perturbations themselves we need to prop-
erly define the background, that is the idealized description of the homogeneous universe
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6 CHAPTER 2. THEORY OF COSMOLOGICAL PERTURBATIONS

on large scales. The general relativistic description of the background begins by writing an
ansatz for a Lorentzian metric for space-time in some coordinate system. Equation (2.1)
gives the line element of the so called Friedman-Lemâıtre-Robertson-Walker metric, that
is without lossing generality, the metric that describes in general relativity a spherically
symmetric and translational invariant space-time—following the recipe of the cosmological
principle.

ds2 = a2(τ)(−c2dτ2 + γijdx
idxj) . (2.1)

We use the Einstein summation convention where repeated indexes denote summation and
latin indexes i, j take the values 1, 2, 3; greek indexes take the values 0, 1, 2, 3. We use c to
denote the speed of light in the vacuum. Here τ (also denoted x0 in covariant expressions)
is the coordinate that represents time and it is conventionally called conformal time. While
(x1, x2, x3) are the spatial coordinates which we haven’t specified because our formulation
does not require it, in fact they can be either cartesian coordinates or spherical, and the
spatial metric γij (which is only dependent on the spatial coordinates xi) could represent a
flat or a curved space, but it must be translational and rotational invariant. The variable
a(τ), called scale factor, is a function of τ alone.

This line element corresponds to class of coordinate systems in which time and space
are separated—there are no mixed terms dτdxi in the metric—which is convenient for sim-
plicity and it allows to introduce the concept of comoving coordinates (x1, x2, x3) and co-
moving observers (those observers at rest with respect to these coordinates). In the FLRW
universe, space-time can be understood as a time-ordered sequence of three-dimensional
spatial slices. Comoving observers worldlines help physically define the meaning of those
space slices, because all comoving observers see the same universe that evolves in time.
They can synchronize their clocks at a certain stage of the universe, for example when
the temperature T of the universe had a certain value T0. Then space slices can be time
ordered by the commoving observers clocks and identified as the hypersurfaces of constant
time (Wald 1984).

Comoving observers move in the FLRW space-time with constant spatial coordinates,
that means their 4-velocity is of the form uµ = ( dτdto , 0, 0, 0), where to is the proper time of
the observer. Using eq. (2.1) we can deduce that for comoving observers there is a direct
relation between τ and their clock to:

dto =
1

c

√
−ds2 = adτ , (2.2)

their 4-velocity take the form

uµ = (a−1, 0, 0, 0) . (2.3)

Using the expression of the metric (2.1) we can compute the affine connection of g
with components:

Γ0
00 = H

Γi00 = 0

Γ0
0i = Γ0

i0 = 0

Γi0j = Γij0 = δijH
Γ0

ij = Hγij
c2

Γkij = Γ(3)k
ij

(2.4)
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where Γ(3) is the affine connection of the 3-dimensional metric γ

Γ(3)k
ij =

γkl

2
(−γij,l + γil,j + γjl,i) , (2.5)

γij denotes the inverse of γij and H = ȧ
a is the conformal Hubble parameter.

Using (2.4) we can verify that the comoving observers are freefalling, i.e. their 4-
velocity satisfy the geodesic equation:

uµ;νu
ν = 0 . (2.6)

We use the notation convention in which commas represent partial derivatives, e.g. T,µ ≡
∂T
∂xµ , semicolons represent covariant derivatives, e.g. V µ;ν ≡ V µ,ν +ΓµσνV

σ and a vertical

bar represent covariant derivatives in the spatial hypersurface, e.g. vi|j ≡ vi,j + Γ(3)i
kjv

k.

Light propagation

Light propagation of individual photons in general relativity can be described their wave-
vector k, that we define as:

k ≡ dα , (2.7)

which is a 1-form that encodes the wave propagation in space-time. Here α is the angular
phase function of the wave. The individual components of k depend on the choice of the
coordinates xµ:

kµ =
∂α

∂xµ
. (2.8)

One can imagine the 2D hypersurfaces of constant α as the wave front, for example in the
case of an isotropic source in flat space those surface would be concentric spheres. The
4-momentum carried by photons P is proportional to k

Pµ = ~kµ . (2.9)

The 4-velocity is proportional to the momentum, hence we must have

kµ =
dxµ

dλ
, (2.10)

for some affine parameter λ. Being massless particles, photons’ wave vector must satisfy
the null measure condition

kµkµ = 0 . (2.11)

The angular frequency of a signal is an observable. An observer moving in spacetime
with a clock to will measure it as:

ωo =
dα

dto
=

∂α

∂xµ
dxµ

dto
= kµu

µ , (2.12)

where uµ = dxµ

dto
is the 4-velocity of the observer, not necessarily a comoving observer.

Since kµ plays the role of light’s 4-velocity it follows that kµ is parallely transported
along the photon’s null geodesic:

kµ;νk
ν = 0 . (2.13)

We can write an ansatz for the components of kµ:

k0 = ν

ki =
ν

c
ei

(2.14)
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The null condition (2.11) is satisfied as long as γije
iej = 1, i.e. the vector ei ≡ γijej

is unitary in the 3-dimensional space hypersurface metric. Furthermore, the geodesic
equation (2.13), using the affine connection of the background (2.4), implies that ν is a
constant of motion:

d

dλ
ν = k0,µk

µ = Γν0µkνk
µ = 0 . (2.15)

Using the fact that k0 = ν remains constant along the photon’s geodesic, we find a
relation for the redshift of a signal emitted (s for source) and received (o for observation)
by comoving observers:

1 + z =
ωs
ωo

=
(kµu

µ)|s
(kνuν)|o

=
a(τo)

a(τs)
. (2.16)

which is a noteworthy feature of the FLRW space-time which does not depend on the
choice of coordinates but on its topological structure.

Distance

At any time τ , one can measure the length of paths and distances in space hypersurface
as a(τ)∆χ where χ is a variable that denotes comoving distance, i.e. dχ2 = γijdx

idxj .
Photons can again be used to measure distances, because the null condition on their 4-
velocity (the constancy of the speed of light) implies that dτ = dχ. Therefore we can
obtain a relation between the distance to the source of a signal and its redshift:

d|os = a(τo)

∫ o

s

dχ = a(τo)

∫ z

0

dz′

H(z′)(1 + z′)
. (2.17)

Since the absolute value of scale factor itself is not measurable, but its relative value, it
is costumary to set a(τo) = 1 at the present time. Hubble’s law follows from (2.17) when
z � 1.

d ≈ z

H0
. (2.18)

The age of the source can be computed in a similar fashion using the comoving observer
proper time dt = adτ :

t =

∫
dt =

∫ z

0

dz′

H(z′)(1 + z′)2
. (2.19)

Friedmann equations

The set of Einstein field equations can be written down for FLRW metric, and they
provide constraints on the time evolution of the scale factor and its relation with the
matter contents of the universe.

We would first need to compute the expressions for the Riemann and Ricci tensors com-
puted from the affine connection (2.4). We use the following convention for the Riemann
tensor:

Rµανβ = Γµαβ,ν − Γµαν,β + Γµλν Γλαβ − Γµλβ Γλαν , (2.20)

and then the Ricci tensor is computed as:

Rαβ = Rνανβ = Γναβ,ν − Γναν,β + Γνλν Γλαβ − Γνλβ Γλαν . (2.21)
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and it takes the following form after substitution of the connection components (2.4):

R00 = −3H,0
R0i = Ri0 = 0

Rij = R(3)
ij +

γij
c2
(
H,0 + 2H2

)
,

(2.22)

where R(3)
ij corresponds to the Ricci tensor of the spatial hypersurface connection:

R(3)
ij = Γ(3)l

ij,l − Γ(3)l
il,j + Γ(3)l

kl Γ
(3)k

ij − Γ(3)l
kj Γ(3)k

il . (2.23)

After raising the first index we get the following expression for the Ricci tensor components:

R0
0 =

3

a2 c2
H,0

R0
i = Ri0 = 0

Rij =
R(3)i

j

a2
+

δij
a2 c2

(
H,0 + 2H2

)
.

(2.24)

The Ricci scalar is then computed as:

R = Rνν =
R(3)

a2
+

6

a2 c2
(
H,0 +H2

)
. (2.25)

Next, in order to write Einstein’s equations we need to propose a functional expression
for the energy momentum tensor in the coordinate system we have chosen. Considering an
isotropic and translational invariant universe we can write the energy momentum tensor
of a perfect fluid as:

T 0
0 = ρ c2

T i0 = T 0
i = 0

T ij = −p δij
(2.26)

where ρ is the mass density and p the pressure, and they only depend on time.
By substituting the expression we have found for the Ricci and Energy-Momentum

tensors eqs. (2.24) and (2.26) into Einstein’s equations:

Rµν −
R

2
gµν + Λ gµν = −8πG

c4
Tµν , (2.27)

we obtain as a first result that:

R(3)i
j =

K

3
δij , (2.28)

where K = R(3) is a constant and by definition it represents the curvature of space. Also
from the (0, 0) component of (2.27) we obtain the so called first Friedmann equation:

1

a2
H2 +

K c2

6a2
=

Λ c2

3
+

8πG

3
ρ , (2.29)

while for the (i, j) components we find:

− 1

a2
H2 − 2

a2
H,0 −

K c2

6a2
+ Λ c2 − 8πG

c2
p = 0 .

Combining with (2.29) and (2.1) we obtain the second Friedmann equation:

1

a2
H,0 −

Λ c2

3
+ 4πG(ρ/3 + p/c2) = 0 . (2.30)
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2.2 Perturbation theory in differential geometry

Having presented the main characteristics of the background for the ideal FLRW universe,
we can present very briefly the passive approach to relativistic perturbation theory. The
goal of this mathematical formulation is to be able to solve Einstein equations to obtain
the metric g of space-time in the presence of an inhomogeneous universe.

Our presentation of the perturbation theory starts with the assumption that in some
coordinate system the components of the metric g of the space-time manifold M is ap-
proximately equal to some fixed function ḡµν in R4; this function is called the background
metric. We will then try to deduce a set of equations to estimate the real metric compo-
nents gµν in a Taylor expansion of the the differences ∆gµν = gµν − ḡµν . As a general
convention, the bar on top of geometric symbols will denote background quantities, the
∆ in front will represent the perturbation and δ will be reserved for the infinitesimal
variations under coordinate transformations.

In this context, it is important to remark that the symbol ḡµν representing the com-
ponents of the background metric is not a geometric object (Mukhanov, Feldman, and
Brandenberger 1992), meaning it doesn’t change under coordinate transformations. For
that reason it might happen that the physical metric equals the background on some
coordinate system and by changing coordinates their difference becomes non-zero. The
perturbation ∆gµν is then a function of the coordinate system and the position.

Example 1. Let ḡµν = diag(−1, 1, 1, 1) and gµν = diag(−1, 1, 1, 1) in the coordinates
x = (t, x, y, z). By changing coordinates to x′ = (t, r, θ, z) such that

x = r cos θ;

y = r sin θ;

we obtain gµν = diag(−1, 1, r2, 1), which differs from ḡµν , even though the metric g itself
didn’t change. In the first case the perturbation of the metric is zero and in the second
case it is not:

∆g(p, x) = diag(0, 0, 0, 0),

∆g(p, x′) = diag(0, 0, r2 − 1, 0),

here p ∈M represents an event (a point in space-time) while x and x′ denote two choices
for coordinate systems.

In order to understand the differential structure of the perturbations we must inves-
tigate the effects of infinitesimal changes of coordinates on those perturbations. To this
aim consider a vector field ξ, that induces a change of coordinates from chart1 (U, x) to
(U ′, x′) via the diffeomorphism φt : M →M where

d

dt
f(φt(p)) = ξp(f); (2.31)

for any p ∈ M and f : M → R smooth function. φt(p), for a fixed p, is a curve with
parameter p and tangent vector ξ. On the other hand, φt is a one-parameter family of

1A chart (U, x) is rigurous way of defining coordinates on the manifold, U ⊂ M is some open set on
the manifold M and x : M → R4 is a map from M into real numbers.
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U
U ′

R4

p′p

x′x

φt

Figure 2.1: Graphical representation of the induced chart (U ′, x′) from the one-parameter
diffeomorphism φt and the original chart (U, x).

diffeomorphisms. Starting from a chart (U, x) it is natural to define another chart (U ′, x′)
such that

U ′ = preimgφt U,

x′ = x ◦ φt.
(2.32)

Figure 2.1 shows a graphical representation of the change of coordinates induced by φt.
Notice that if p = φt(p

′) it follows x′(p′) = x(φt(p
′)) = x(p). According to (2.31) we have

an infinitesimal law of coordinate transformation:

d

dt
xµ(φt(p)) = ξp(x

µ) = ξµp , (2.33)

thus
xµ(φt(p))− xµ(p) ≈ tξµp , (2.34)

and it follows that
x′
µ
(p) ≈ xµ(p) + tξµp . (2.35)

The infinitesimal variation of the perturbation of tensors is proportional to the Lie deriva-
tive with respect to ξ of the same quantity in the background (Weinberg 2008). Without
giving a general proof, we will show how this is true for some types of fields.

Scalar perturbations

Let us recall the definition of the Lie derivative2 for a tensor T with respect to the vector
field ξ:

(LξT )p = lim
t→0

1

t
(T − φt∗T )φt(p). (2.36)

Consider the scalar field Q : M → R and a background Q : R4 → R. The respective
perturbations of Q at the position-coordinate pairs (p, x) and (p′, x′) are respectively:

∆Q(p, x) = Q(p)−Q(x(p)),

∆Q(p′, x′) = Q(p′)−Q(x′(p′)).
(2.37)

2The theory of differential geometry can be found in Hawking and Ellis 1973.
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By choosing p = φt(p
′) and x′ = x ◦ φt we get the variation of the perturbation induced

by the vector field ξ:

δ∆Q(p, x) = ∆Q(p′, x′)−∆Q(p, x) = Q(p′)−Q(φt(p
′)), (2.38)

which is, according to eq. (2.36) proportional to the Lie derivative of Q with respect to
ξ. To show this consider that

(φt∗Q)φt(p) = (Q ◦ φ−1
t )φt(p) = Q(p), (2.39)

and

(LξQ)p = lim
t→0

1

t
(Q(φt(p))−Q(p)) ≈ 1

t
(Q(φt(p

′))−Q(p′)). (2.40)

Hence from (2.38) we find that

δ∆Q(p, x) = Q(p′)−Q(φt(p
′)) ≈ −t(LξQ)p. (2.41)

Notice that the Lie derivative is computed on geometric objects, in this case Q. It would
have little sense to talk about the Lie derivative of Q. It is interesting to notice that
δ∆Q(p, x) is independent of the background and the coordinate system.

One-form perturbations

Similarly, for the perturbations of the 1-form ω given the background ω we have

∆ωµ(p, x) = ωµ(p)− ωµ(x(p)),

∆ωµ(p′, x′) = ω′µ(p′)− ωµ(x′(p′)) ,
(2.42)

and the variation of the perturbation becomes

δ∆ωµ(p, x) = ω′µ(p′)− ωµ(p) = ωp′

(
∂

∂x′µ

)
− ωp

(
∂

∂xµ

)
= (ωp′ − (φ∗tω)p′)

(
∂

∂x′µ

)
≈ −t(Lξω)p

(
∂

∂xµ

)
.

(2.43)

To derive (2.43) we have used the fact that3:

∂

∂xµ
= φt∗

∂

∂x′µ
. (2.44)

Vector perturbations

Similarly, for the perturbations of the vector field V given the background V we have:

∆V µ(p, x) = V µ(p)− V µ(x(p)),

∆V µ(p′, x′) = V ′
µ
(p′)− V µ(x′(p′)) ,

(2.45)

and the variation of the perturbation becomes:

δ∆V µ(p, x) = V ′
µ
(p′)− V µ(p) = Vp′(x

′µ)− Vp(xµ) = Vp′(x
µ ◦ φt)− Vp(xµ)

= (φt∗V )p(x
µ)− Vp(xµ) ≈ −t(LξV )p(x

µ).
(2.46)

3This can be shown by choosing any smooth function f and observing that ∂
∂xµ

f = ∂µ(f ◦ x−1) =

∂µ(f ◦ φt ◦ x′−1) = ∂
∂x′µ (f ◦ φt) =

(
φt∗

∂
∂x′µ

)
f.



2.2. PERTURBATION THEORY IN DIFFERENTIAL GEOMETRY 13

(0, 2)-tensor perturbations

For the perturbations of the (0, 2)-tensor field T given the background T we have:

∆Tµν(p, x) = Tµν(p)− Tµν(x(p)),

∆Tµν(p′, x′) = T ′µν(p′)− Tµν(x′(p′)) ,
(2.47)

and the variation of the perturbation becomes:

δ∆Tµν(p, x) = T ′µν(p′)− Tµν(p) = Tp′

(
∂

∂x′µ
,
∂

∂x′ν

)
− Tp

(
∂

∂xµ
,
∂

∂xν

)
≈ −t(LξT )p

(
∂

∂xµ
,
∂

∂xν

)
.

(2.48)

Perturbation of the metric

Metrics are symmetric (0, 2)-tensors, hence equation (2.48) is valid for the perturbations
of g. In particular if we denote ḡµν the background metric we can write:

δ∆gµν(p, x) = g′µν(p′)− gµν(p) ≈ −t(Lξg)p

(
∂

∂xµ
,
∂

∂xν

)
= −t(ξσ gµν,σ + ξσ,µ gσν + ξσ,ν gµσ)

≈ −t(ξσ ḡµν,σ + ξσ,µ ḡσν + ξσ,ν ḡµσ).

(2.49)

The background, not being a geometric object, cannot be Lie-derived and hence there
is no such thing as the Lie derivative of the background metric. Equation (2.49) is just
a numeric result valid only for the coordinates in which the individual components of g
become very close to ḡµν .

The Lie derivative of the metric can be written in terms of the covariant derivatives
of the field ξ as4:

(Lξg)µν = ξν ;µ + ξµ;ν = ξσ,µ gσν + ξσ,ν gµσ + ξα gµν,α , (2.50)

and the variation of the perturbation (2.49) then becomes:

δ∆gµν(p, x) ≈ −t(ξµ;ν + ξν;µ). (2.51)

In our notation an index after a comma represents a partial derivative while an index after
a semi-colon represent a covariant derivative.

We can use the affine connection components of the background (2.4) to compute the
variation of the metric perturbations (2.51):

−δ∆g00

a2 t
= −2c2(ξ0

,0 +H ξ0)

−δ∆g0i

a2 t
= −c2ξ0

,i + ξi,0

−δ∆gij
a2 t

= 2H ξ0 γij + ξi|j + ξj|i ,

(2.52)

where ξi = γij ξ
j and ξi|j represents the covariant derivative using the affine connection of

the spatial metric γ, i.e. ξi|j = ξi,j− Γ̄(3)k
ij ξk. The three degrees of freedom of the spatial

4This is a well know identity which can be found in textbooks like Hawking and Ellis 1973.
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field dof
Ψ 1
Φ 1
A 1
C 1
Bi 2
Di 2
hi 2

Table 2.1: Perturbation fields and their number of degrees of freedom.

part of the field ξ carry two components, one divergenless three-field ξ⊥ (with ξ⊥i|i = 0)
and the other is the divergence of a scalar ξ‖:

ξi = ξ⊥i + ξ‖,i . (2.53)

Then the perturbations of the metric can be written as:

−δ∆g00

a2 t
= −2c2(ξ0

,0 +H ξ0)

−δ∆g0i

a2 t
= (−c2ξ0 + ξ‖,0),i + ξ⊥i,0

−δ∆gij
a2 t

= 2H ξ0 γij + 2ξ‖|ij + ξ⊥i|j + ξ⊥j|i .

(2.54)

Equations (2.54) suggest that the physical metric projected in the coordinate system
(τ, x1, x2, x3) has components such that the line element takes the form:

ds2 = a2
(
−c2 dτ2(1+2Ψ)−2c dτdxi(Bi+A,i)+dx

idxj
(
γij(1−2Φ)+C|ij+Di|j+Dj|i+hij

))
,

(2.55)
such that

Bi|i = 0

Di
|i = 0

hii = hij|i = 0

hij = hji .

(2.56)

The fields Ψ,Φ, A,C,Bi, Di, hij don’t have to be necessarily small, they just represent the
difference between the physical metric and the background, in a few words they are the
perturbations of the metric. Notice that once we consider the constraints (2.56) we obtain
that each one of the perturbations carry a certain amount of degrees of freedom that add
up to 10, which is the total functional degrees of freedom of the metric, due to the its
symmetric contraint (see table 2.1).

From the line element (2.55) we can write explicitly the perturbations of the metric in
terms of those fields:

∆g00 = −2c2 a2 Ψ

∆g0i = −c a2(Bi +A,i)

∆gij = a2
(
− 2Φ γij + C|ij +Di|j +Dj|i + hij

)
.

(2.57)
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The variation of the perturbations (2.54) applied to the newly defined fields (2.57), taking
into account their constraints, produces the following variations of the perturbations under
an infinitesimal coordinate transformation induced by ξ (making the parameter t = 1):

δΨ = −ξ0
,0 −H ξ0 ,

δBi =
ξ⊥i,0
c

,

δA =
ξ‖,0 − c2 ξ0

c
,

δΦ = H ξ0 ,

δC = −2ξ‖ ,

δDi = −ξ⊥i ,
δhij = 0 .

(2.58)

2.3 Gauges

In the context of the perturbations of the metric, choosing a gauge means to exploit the 4
degrees of freedom of ξ to establish 4 more constraints of the perturbations fields, usually
performed to achieve a simplified version of the equations of motion. Fixing the gauge is
equivalent to a choice of a particular coordinate system induced by ξ as it was explained
in section 2.2. The set of transformations (2.58) are hence called gauge transformations.
By cleverly combining the perturbation fields, we are able to find other fields which are
invariant under such transformations. For example:

δ
(
Bi +Di,0/c

)
= 0 ,

δ
(

Φ +
1

2c2
H(2cA+ C,0)

)
= 0 ,

δ
(

Ψ− 1

2c2 a
(2a cA+ aC,0),0

)
= 0 .

(2.59)

The last two fields are called Bardeen potentials (Bardeen 1980; Mukhanov, Feldman, and
Brandenberger 1992).

Gauges can be fixed by putting constraints on the perturbation fields. For example,
consider the synchronous gauge, defined by fixing the conditions:

• Ψ = 0, which fixes ξ0,

• Bi = 0, which fixes ξ⊥i,

• A = 0, which fixes ξ‖.

In the synchronous gauge the line element simplifies to:

ds2 = a2
(
− c2 dτ2 + dxidxj

(
γij(1− 2Φ) + C|ij +Di|j +Dj|i + hij

))
. (2.60)

Another well known gauge is the conformal Newtonian or conformal Poisson gauge.
Defined by fixing the conditions:

• C = 0, which fixes ξ‖,

• A = 0, which fixes ξ0,
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• Di = 0, which fixes ξ⊥i.

In the conformal Poisson gauge the line element becomes:

ds2 = a2
(
− c2 dτ2(1 + 2Ψ)− 2c dτdxiBi + dxidxj

(
γij(1− 2Φ) + hij

))
. (2.61)

In this gauge, the fields Ψ and Φ become numerically equal to the Bardeen potentials,
that can then be found solving a Poisson equation. Also Bi is numerically equal to the
gauge invariant field Bi + Di,0/c. From this point on we will be always working in the
conformal Poisson gauge.

2.4 Field Equations

The field equations can be found by either writing the Einstein-Hilbert action and then
find the variational extremum solution with respect to the field variables—in the case of
the perturbations the variational approach would demand the functional derivatives of
the lagrangian density with respect to Ψ,Φ, Bi, hij from eq. (2.61)—or we could write
directly Einstein’s equations (2.27) and substitute the metric as the background plus the
perturbation discarding high-order terms of the perturbations. We will follow the latter
approach.

Physical metric

As it was mentioned before, we will be working in the Poisson gauge (2.61) hence the
metric components can be written as:

g00 = −c2 a2(1 + 2Ψ) ,

g0i = −c a2Bi ,

gij = a2
(
γij(1− 2Φ) + hij

)
.

(2.62)

The corresponding perturbations are:

∆g00 = −2c2 a2Ψ ,

∆g0i = −c a2Bi ,

∆gij = a2
(
− 2Φ γij + hij

)
.

(2.63)

It would be cumbersome to compute an exact expression for the inverse of the metric
from (2.62). However, we can find g−1 up to first order in the perturbations using the
fact that:

1 = g g−1 = (ḡ + ∆g)(ḡ−1 + ∆g−1) = 1 + ḡ∆g−1 + ∆g ḡ−1 +O(ε2) . (2.64)

Here ε > 0 has the same order of magnitude as Ψ, Φ, Bi or hij . Therefore

∆g−1 = −ḡ−1 ∆g ḡ−1 +O(ε2) , (2.65)

and we can compute each component as:

∆g00 =
2

c2 a2
Ψ +O(ε2) ,

∆g0i = − 1

c a2
Bi +O(ε2) ,

∆gij =
1

a2

(
2Φ γij − hij

)
+O(ε2) .

(2.66)
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where Bi = γilBl and hij = γilhlsγ
sj .

Next we compute the components of the affine connection of the physical metric. We
will do so up to the first order in the perturbation fields plus quadratic terms that contain
spatial derivatives of Φ and Ψ. These last terms are considered because they produce
in the Einstein equations some quadratic terms of the form ΦΦ|ij , ΨΨ|ij , ΦΨ|ij , ΨΦ|ij ,
Φ|iΨ|j that according to Adamek et al. 2016, have the same amplitude as the linear terms
Ψ, Φ, Bi and hij . As a general rule spatial derivatives on Ψ and Φ reduce the order of
the perturbation by ε1/2. Notice that following this rule we could in principle have second
order terms in the Einstein equations of the form BiΨ|nm, BiΦ|nm, hijΦ|nm and hijΨ|nm
which are not shown in Adamek et al. 2016. Also quadratic terms containing χ ≡ Φ−Ψ are
neglected in Adamek et al. 2016, This is because, as we will see latter, the field equations
for Bi, hij and χ indicate that they are sourced by perturbations in the energy-momentum
tensor which are sums of either linear or quadratic velocity terms v/c of massive particles,
and in a matter dominated universe these are usually non-relativistic; this means that v/c
terms and consequently the Bi potential, responsible for frame dragging or gravitomagnetic
effects, as well as hij , the gravitational waves tensor, and χ are much smaller than the
scalars Φ and Ψ.

Einstein equations

We proceed to find the equations of motion of the perturbations starting from Einstein’s
equations. Following to the assumption that the perturbations of the metric are small,
we neglect terms with order higher than ε in the expansion of the Ricci tensor and scalar.
The computations are lenghty and not shown here, some intermediate results are shown
in Appendix A.

From Einstein’s field equations (2.27) one can substract the background equations:

R̄µν −
R̄

2
gµν + Λ gµν = −8πG

c4
T̄µν , (2.67)

and we obtain the Einstein equations for the perturbations:

∆Rµν −
∆R

2
gµν = −8πG

c4
∆Tµν . (2.68)

The time-time component of eq. (2.68) produces:

Φ|n
n(1 + 4Φ)− 3

H
c2

Φ,0 − 3
H2

c2
Ψ +

3

2
Φ|nΦ|

n +
Φ

2
K =

4πGa2

c4
∆T 0

0 . (2.69)

If the spatial curvature is set to zero (for a flat universe) and we define χ = Φ − Ψ we
obtain equation (2.9) shown in Gevolution’s paper (Adamek et al. 2016):

Φ|n
n(1 + 4Φ)− 3

H
c2

Φ,0 + 3
H2

c2
(χ− Φ) +

3

2
Φ|nΦ|

n =
4πGa2

c4
∆T 0

0 . (2.70)

The time-space component of eq. (2.68) produces:

− Bi|nn

4c
− Φ,i0

c2
− H
c2

Ψ,i −
Bi
6c
K = −4πGa2

c4
∆T 0

i . (2.71)

Again, by setting the spatial curvature to zero we obtain equation (2.11) of Adamek et al.
2016:

− Bi|nn

4c
− Φ,i0

c2
− H
c2

(Φ,i − χ,i) = −4πGa2

c4
∆T 0

i , (2.72)
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that can be simplified to:

− Bi|nn

4c
= −4πGa2

c4
P⊥∆T 0

i , (2.73)

taking advantage of the gauge condition Bn|n = 0, where P⊥ is a linear operator that
selects from a vector field its divergenceless component.

The trace of the spatial section of eq. (2.68) leads to:

−χ|nn + 9
H
c2

Φ,0 + 3
1

c2
Φ,00 + 6

H,0
c2

Φ + 3
H2

c2
Φ = −4πGa2

c4
∆Tnn . (2.74)

that determines χ. Since the source of χ is the perturbation of the trace of the energy-
momentum tensor ∆Tnn, its amplitude in a matter dominated universe is suppresed by
a factor (v/c)2. That is equivalent to say: since dark matter is non-relativistic χ must be
very small with respect to Φ or even Bi. Hence quadratic terms involving χ are neglected.

On the other hand, the tracelss components of eq. (2.68) yields an set of equations for
hij :

hij,00

2c2
− hij|nn

2
+
H
c2
hij,0 = −8πGa2

c4
P⊥

(
∆T ij −

δij
3

∆Tnn

)
, (2.75)

which can be recognized as a wave equation since hij carries the gravitational waves.

2.5 Geodesics

To study the motion of free-falling particles in the presence of perturbations we can start
by writing the physical action associated to their motion, which is proportional to the
integral of the particle’s proper time along it’s trajectory.

S = −mc2
∫
dto = −mc

∫
dτ

√
−gµν

dxµ

dτ

dxν

dτ
(2.76)

The Lagrangian of this action can be approximated by expanding it in powers of the
perturbations up to the linear order

L = −mc
√
−gµν

dxµ

dτ

dxν

dτ

= −mac2
√(

1− |v|
2

c2

)
+ 2Ψ + 2Φ

|v|2
c2

+ 2
vi

c
Bi −

vivj

c2
hij

= −mac2
(√

1− (|v|/c)2 +
Ψ + Φ |v|

2

c2 + vi

c Bi − vivj

2c2 hij√
1− (|v|/c)2

)
+O(ε2)

(2.77)

We have defined vi = dxi

dτ , vi = γijv
j and |v|2 = γijv

ivj .
The canonical momentum is

pi =
∂L
∂vi

=
mavi√

1− |v|2/c2
− mac√

1− |v|2/c2
Bi +

ma√
1− |v|2/c2

vnhni

− mavi√
1− |v|2/c2

(
2Φ +

Ψ + Φ|v|2/c2 +Bnv
n/c− 1

2hnmv
nvm/c2

1− |v|2/c2
)

+O(ε2)

(2.78)
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Similar to vi, we can define pi = γijpj .
The Euler-Lagrange equations of the motion of the particles is a second-order equation

in time. It is more convenient to have first-order coupled differential equations. Hence we
start building the Hamiltonian of the particle. We first need to write vi as a function of
pi. To make equations simpler to write we define the dimentionless quantities ui = vi/c
and qi = pi/(mca). The equation of the canonical momentum (2.78) becomes:

qi =
ui√

1− |u|2
− Bi√

1− |u|2
+

unhni√
1− |u|2

− ui√
1− |u|2

(
2Φ +

Ψ + Φ|u|2 +Bnu
n − 1

2hnmu
num

1− |u|2
)

+O(ε2) .

(2.79)

Eq. (2.79) can be inverted to obtain an expression for ui as a function of qi:

ui =
qi√

1 + |q|2
+Bi −

qjhij√
1 + |q|2

+
qi√

1 + |q|2

(
Φ

2 + |q|2
1 + |q|2 + Ψ +

hjkq
jqk

2(1 + |q|2)

)
+O(ε2) ,

(2.80)

where |q|2 = γijq
iqj . Then we can use (2.80) and (2.77) to build the Hamiltonian for the

motion of the particle:

H =vipi − L

=c

(√
(mca)2 + p2 + Ψ

√
(mca)2 + p2 + pnB

n +
Φp2√

(mca)2 + p2
− hijpipj

2
√

(mca)2 + p2

)
.

(2.81)

The Hamilton equations, for the case γij = δij , that is in flat space using cartesian
coordinates, result:

dxi

dτ
=
∂H

∂pi

=
cpi√

(mca)2 + p2
+ cBi − chnipn√

(mca)2 + p2

+
cpi√

(mca)2 + p2

(
Ψ + Φ

2(mac)2 + p2

(mac)2 + p2
+

hnmp
npm

2((mac)2 + p2)

)
,

(2.82)

dpi
dτ

= − ∂H
∂xi

= −c
(
pnBn,i + Ψ,i

√
(mca)2 + p2 +

p2Φ,i√
(mca)2 + p2

− pnpmhnm,i

2
√

(mca)2 + p2

)
.

(2.83)

The right-hand side in the last equation is the generalized force acting on the particles.
The term proportional to Ψ,i becomes the Newtonian force in the limit of small velocities,
pnBn|i represent the corrections due to frame dragging, the third term in parenthesis is a
further relativistic correction and the last term represents the interaction of the particle
with the gravitational waves.
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Newtonian limit

The Newtonian limit is recovered when we consider Fourier modes larger than H/c and
we further neglect Bi and consider Φ� 1; then equation (2.70) becomes

c2

a2
∇2Φ = 4πG∆ρ , (2.84)

where ∆ρ = ∆T 0
0/c

2. Here c2Φ plays the role of the Newtonian gravitational potential.
Also, if physical coordinates ~r = a~x are used instead of comoving coordinates, the operator
1
a2∇2 needs to be replaced by ∇2

r.
Similarly, in the small velocity limit, i.e. q = p/(mca) � 1, we can neglect second-

order terms of any combination of q, Φ, Ψ, Bi and hnm. Then the hamiltonian equations
(2.82) and (2.83) become

dxi

dτ
= c

pi

mac
+ cBi , (2.85)

dpi
dτ

= −c (pnBn,i + Ψ,imac , ) (2.86)

and by combining these two equations we obtain

d2xi

dτ2
= −Hdx

i

dτ
+HcBi − c2Φ,i + cBi,0 + c

(dxn
dτ

Bi,n −
dxn

dτ
Bn,i

)
. (2.87)

If we differentiate with respect to the physical proper time of the comoving observers
instead of the conformal time dt = adτ we obtain

d2xi

dt2
= −2H

dxi

dt
+
c

a

(
H + ∂t

)
Bi −

c2

a2
Φ,i +

c

a

(dxn
dt

Bi,n −
dxn

dt
Bn,i

)
, (2.88)

where H = a−1 da
dt . In (2.88) we can interpret the role of c2Φ/a2 as the Newtonian

Gravitational potential, while Bi is some kind of vector potential similar to the vector
potential of the electrodynamics that generates the magnetic force field. In cartesian
vector notation, eq. (2.88) results:

d2~x

dt2
= −2H

d~x

dt
+
c

a

(
H + ∂t

)
~B − c2

a2
~∇Φ− c

a

d~x

dt
× (~∇× ~B) , (2.89)

that makes the presence of a term similar to the Lorentz force, due to the gravitomagnetic
effect of the Bi potential, more evident. It is also worth noticing that the presence of the
Hubble flow term −2H d~x

dt acts as a viscous force progressively slowing down the relative
motion of free falling particles with respect to the comoving coordinates.

2.6 Energy Momentum Tensor

The energy-momentum tensor is an additive tensor, that means that it is computed as
the sum of the individual energy-momentum tensors for each particle species, radiation or
any other source of energy and momentum.

For an ensemble of massive particles the energy-momentum tensor can be constructed
from the knowledge of positions and momenta, but it also depends on the perturbed metric
components. The general equation for the energy-momentum tensor is (Weinberg 1972):

Tµν =
c√−g
∑
i

vµPνδ
(3)(x− xi(τ)), (2.90)
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where Pµ is the four-momentum of particle i.
The 4-momentum of a particle is computed in our perturbed metric as

P0 = H = mc2a
√

1 + q2

(
1 + Ψ + Φ

q2

1 + q2
+Bn

qn√
1 + q2

− hij
qiqj

2(1 + q2)

)
, (2.91)

for the time component, while the spatial components are computed as

Pi = −pi = −mcaqi. (2.92)

Taking equations (2.91) and (2.92) into (2.90) and converting the velocity to momen-
tum using (2.80) we obtain the following expressions for the components of the Energy-
Momentum Tensor

T 0
0 =

∑
k

δ(3)(x− xk(t))
mc2

a3|γ|1/2
√

1 + q2

(
1 + 3Φ + Φ

q2

1 + q2
+

qnB
n√

1 + q2
− hijq

iqj

2(1 + q2)

)
,

(2.93)

T 0
i =

∑
k

δ(3)(x− xk(t))
−mcqi
a3|γ|1/2 (1−Ψ + 3Φ) , (2.94)

T i0 =
∑
k

δ(3)(x− xk(t))
mc2

a3|γ|1/2 c
(
qi(1 + Ψ + 5Φ +

qnB
n√

1 + q2
) +

√
1 + q2Bi − qnhni

)
,

(2.95)

T ij =
∑
k

δ(3)(x− xk(t))
−mcqj
a3|γ|1/2 c

(
qi√

1 + q2

(
1 + 4Φ +

Φ

1 + q2
+
hnmq

nqm

2(1 + q2)

)
+Bi − qnh

ni√
1 + q2

)
.

(2.96)

These particular set of expressions to compute the components of the energy-momentum
tensor from the state of an ensemble of particles become useful for the kind of computer
simulation codes described in this thesis. On the left hand side of equations (2.93), (2.94),
(2.95) and (2.96) we have an average operation acting on the microscopic state of the
system represented by discrete particle elements and on the right hand side we have
an effective field quantity that represents a macroscopic property of the matter field.
This basically constitutes the connection between a Lagrangian description of the matter
contents of the universe (this concept will be clarified in the next chapter) and the source
terms for an Eulerian representation that will be used to track the GR equations of motion
on large scales.

In this chapter we have explored the a perturbative weak field limit approach to general
relativity in the context of cosmology. This is the theoretical framework implemented in
Gevolution code and used throughout the development of GrGadget.





Chapter 3

Numerical methods in cosmology

Computer simulations of structure formation play an important role in cosmology, because
only by direct numerical computation one can produce accurate predictions of the non-
linear regime arising with the gravitational collapse of matter at the late times of the
evolution of the universe. Analytic methods are restricted to highly symmetric idealized
systems or to approximate treatments of inherently non-linear ones.

Through simulations we can establish relationships between the simple high redshift
primordial Universe and the complex structures we observe today. They also allow us to
study in detail the the formation of clusters of galaxies, the interactions between isolated
galaxies and the evolution of the intergalactic gas.

3.1 N -body cosmological simulations

Dark matter and baryonic gas can be modeled as self-gravitating fluids. Therefore, in
theory, their can be described by the Boltzmann equation in comoving coordinates and
with proper pressure and force terms to account for the expanding universe and the
gravitational interaction. In practice, current cosmological codes employ two different
hydrodynamical method categories to solve the state evolution of the matter fluid:

• Eulerian, which are methods based on the discretization of space as a mesh and
representing macroscopic effective fluid properties on the mesh;

• and Lagrangian methods, in which the fluid is discretized as a set of mass elements
(particles), so that macroscopic effective properties are obtained by averaging over
these particles.

Lagrangian methods are intrinsically adaptive, because, by definition, high density regions
are those in which there is also a high concentration of tracer particles, hence there is an
automatic increase in the resolution and allocation of computational resources towards
those regions. Coincidentally, these are of primary interest to cosmology, because it is
there where, depending on the scale, the formation of large scale structures or galaxies or
star formation happens.

This thesis will concentrate uniquely on Lagrangian methods.
In computational cosmology, N -body simulations refer to a class of computer modeling

of an idealized dynamical system composed of many point-like particles. These can be
used to study the complex motion of a few gravitationally interacting objects, like the

23
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planets and the Sun in the Solar System or galaxies within a cluster. For example Peebles
1970 performed an N -body simulation of the Coma Cluster, in which simulation particles
are used to represent galaxies or proto-galaxies. But N -body simulations are also used to
study the time evolution of fluids, in particular the hydrodynamical representation of the
Universe, using the Lagrangian approximation. In this case the results obtained from the
simulations should not depend on the number Np of fluid elements (or particles) as they
grow very large, i.e. the observables must converge in the limit of Np →∞.

Time integration

In a cosmological N -body simulation, the particle system evolves according to the me-
chanical and thermodynamical laws that we attribute to the physical model we want to
represent. In a dark matter only representation of the universe, for example, particles
would interact among each other according to the gravitational interaction and their mo-
tion will be affected by the expansion of the universe. A more realistic representation
of the universe, needed to explain the formation of galaxies, would require to take into
account the presence of baryons and radiation, and in such simulation one could have dif-
ferent classes of particles to represent those entities and their interactions will be gravity
plus effective forces that take into account their thermodynamical state (Springel 2005).
However, this thesis focus on the mechanical state and evolution of particles in N -body
systems, therefore from our stand point all particles are effectively non-collisional dark
matter particles.

The most common time evolution approach in numerical N -body consists in integrating
the Hamiltonian equations of motion of the mechanical state of the system, which in this
case is defined by the 6Np-tuple z = (x,p) of coordinates and momenta of Np particles.
Symplectic integrators are specific to these systems. At each time step they are constructed
as a combination of canonical transformations, hence preserving the symplectic two-form
of the system (Saha and Tremaine 1992).

Symplectic integrators assume that the Hamiltonian H of the system is of the form

H = HA + HB , (3.1)

where HA and HB , considered separately, are both integrable exactly. Hamilton’s equa-
tions of motion can then be written as

d

dτ
z = {z,HA + HB}, (3.2)

where { , } are Poisson brackets. By defining the operators

A ≡ { ,HA} and B ≡ { ,HB}, (3.3)

the formal solution to (3.2) becomes

z(τ) = exp(τ(A+B))z(0). (3.4)

Since we have assumed that HA and HB are integrable, we should have the knowledge of
an exact expression for exp(τA) and exp(τB).

Example 2. Consider the time evolution of a system of dark matter particles evolving in a
perturbed FLRW spacetime. In section 2.5 it was found an expression for the Hamiltonian
(2.81) of an individual particle that follows a geodesic trajectory in a perturbed FLRW
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universe. In the limit of small velocities and neglecting all perturbations except Φ, equation
(2.81) becomes

Hi =
p2
i

2mia
+mic

2aΦ(xi), (3.5)

the index i denotes the i-th particle and the field equation for Φ (2.84) combined with the
expression for the (0, 0)-component of the energy-momentum tensor (2.93) becomes

∇2Φ(x) =
4πG

ac2

∑
k

δ(3)(x− xk)mk , (3.6)

which can be solved as

Φ(x) = − G

ac2

∑
k

mk

|x− xk|
. (3.7)

Then the Hamiltonian of the entire system, written as a sum of the Hamiltonian of the
individual particles is

H =
∑
i

p2
i

2mia
− 1

2

∑
i 6=j

Gmkmi

|xi − xk|
, (3.8)

which can be split into H = HA + HB with

HA =
∑
i

p2
i

2mia
, (3.9)

and

HB = −1

2

∑
i 6=j

Gmkmi

|xi − xk|
. (3.10)

Following from the fact that HA has no dependence on the particles’ positions, ∂HA
∂xi

= 0,
it follows that

exp(∆τA)z =

{
xi 7→ xi + pi

mi

∫ τ+∆τ

τ
dτ ′

a

pi 7→ pi
(3.11)

This evolution operator is commonly known as drift, because it changes particles’ positions
while leaving their momenta constant.

Since HB does not depend on the particles’ momenta, ∂HB
∂pi

= 0, it follows that

exp(∆τB)z =

{
xi 7→ xi

pi 7→ pi −∆τ
∑
j Gmimj

(xi−xj)
|xi−xj |3

(3.12)

This evolution operator is commonly known as kick, because it changes particles’ momenta
while leaving their position constant.

A simple symplectic time evolution operator can be built as follows

U1(τ) ≡ exp(τA) exp(τB), (3.13)

which is approximately exp(τ(A + B)). The approximation error can be assessed using
Baker-Campbell-Haussdorff (BCH) formula

exp(τA) exp(τB) = exp

(
τ(A+B) +

τ2

2
[A,B] +

t3

12
[A−B, [A,B]] + . . .

)
. (3.14)
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The error comes from the highest order term after the τ(A+B) operator. In this case the

next to leading order is the term τ2

2 [A,B]. Therefore U1(τ) is an order O(τ) integrator.
Another symplectic time evolution operator, called leap-frog is defined as

U2(τ) ≡ exp(
τ

2
A) exp(τB) exp(

τ

2
A), (3.15)

The approximation error can be assessed using BCH formula

exp(
τ

2
A) exp(τB) exp(

τ

2
A) = exp

(
τ(A+B) +

τ3

12

[
[A,B],

A

2
+B

]
. . .

)
. (3.16)

In this case the next to leading order is the term τ3

12

[
[A,B], A2 +B

]
. Therefore, leap-frog

is an order O(τ2) integrator. From the symmetry of expression (3.15) it follows that
leap-frog is a time reversible operator.

Depending on whether HA is the kinetic energy term in the Hamiltonian while HB is
the potential (or vice versa) the expression (3.15) represents a Drift-Kick-Drift (DKD) or
a Kick-Drift-Kick (KDK) operator.

The mainstream cosmological simulation code Gadget-2 (Springel 2005) has brought
leap-frog integrators to the spotlight as a tool for N -body simulations, for their simplicity
and accuracy.

Gravity solvers

Gravity is the predominant force driving the motion of ordinary matter and the only
interaction in the case of dark matter which constitutes around the 80% of the matter
contents of the universe (Planck Collaboration et al. 2020). In a cosmological simulation
getting an accurate and efficient implementation of gravity is particularly challenging due
to its long-range nature and the high dynamic range of the information produced by the
formation of structures. Whenever we want to apply a kick operator to the state of the
N -body system one must compute for each particle the force acting on it, which in the
case of a Newtonian approximation (like in the Example 2) is expressed as a sum of
terms arising from the interaction of the particle with the rest of the system (3.12). One
näıve approach would be to perform this summation directly in the computer but that
means that for every time step one must perform O(N2

p ) computational operations, for
Np particles. This algorithm does not scale well with the number of particles; still this
direct summation or Particle-Particle (PP) method, as it is often called, it is used as a
benchmark to test other more efficient but complex methods. Also for values of Np up
to 105 is still feasible to use PP to resolve particle interactions. For example, in White
1976 N = 700 particles were used to simulate the formation of galaxy clusters and with
Np = 500 particles White 1978 has performed simulations of galaxy merging, using PP
method in both papers.

Yet it desirable to be able scale the number of particles in simulations to increase
the mass resolution. This need has driven the research for more computationally efficient
methods and as a result we can count today with a class of methods called Particle-Mesh
(PM) in which the interaction potentials, for example the Newtonian potential Φ in Eq.
(3.7) in a gravitationally interacting N -body problem, is computed on discrete points of
space and then used to compute the forces acting on each particle. A popular PM method
uses the Discrete Fourier representation of the potentials to solve their field equations in
Fourier space (Hockney and Eastwood 1988). This reduces the complexity of the Kick
to O(Np + N logN), where N is the mesh size, now bounded by the cost of performing
Fourier transforms. In the next section we will discuss in details this PM method.
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Figure 3.1: Schematic illustration of the BH-Tree in two dimensions. The particles are
first enclosed in a square root node. This square is then iteratively subdivided in four
squares of half the size, until exactly one particle is left in each final square (leaves of the
tree). Image reproduced from Springel, Yoshida, and White 2001.

When we use a PM, we sacrifice a very fine grained spatial resolution N -body for a
better time-to-solution, because the spatial resolution of the PM is constrained by the
amount of memory required to store the mesh and this limitation is very often evident in
the practice. There is a combined PM and PP method to overcome this limitation and try
to obtain the best of both worlds. It is called P3M (Hockney and Eastwood 1988) and it
supplements the force computation on scales below the mesh size with a direct summation
in highly clustered regions.

Tree

Another technique to reduce computational complexity of the force computation is the
BH-Tree, described in Barnes and Hut 1986, in which forces are computed with the help
of a tree data structure that divides space into cubic cells in a hierarchical fashion. Each
node in the BH-Tree is associated to a cubic region of space, and it can have up to
8 children nodes obtained by dividing the current cube into 8 identical non-overlapping
smaller cubes of half the side length. The root node encompasses the entire simulation
box. Each node stores the information about the particles inside its cube and no nodes
are allowed to contain zero particles. Figure 3.1 illustrates the concept of the BH-Tree
in two dimensions; each node represents a square region of space that can be split into 4
children squares with half the side length.

To compute forces using the BH-Tree one considers that the multipole expansion of
the 1/r potential from a compact mass distribution inside a box of size l, centered at ~s,
computed at a certain location ~x can be approximated as

φ(x) ≡ −
∑
i

mi

|~x− ~xi|
≈ −M

r
, (3.17)

where M =
∑
imi and ~r = ~x− ~xc, when l� d. A tolerance to trigger the approximation

is fixed with the parameter θc called critical opening angle, and the approximation (3.17)
will be used if and only if

l

r
< θc. (3.18)
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Figure 3.2: The combined gravitational force exherted by the particles contained in a node
can be approximated to the monopole as long as the distance of the test particle to the
center of the node’s box r is small compared to the box size l (Springel et al. 2021).

The force derived from (3.17) is computed as

~f(x) ≈ −M
r3
~r , (3.19)

Keeping these aspects in mind, the BH-Tree has to be traversed starting from the root
and at every node one checks if the opening condition (3.18) is met. If the answer is yes,
then one uses the multipole approximation (3.19) and the tree traversal is pruned at that
node. Otherwise, the node is opened, i.e. the traversal continues recursively on the children
of the current node. If the current node has no children then we use direct summation
of forces for all the particles contained in that node. Figure 3.2 depicts graphically the
quantities involved in the opening condition for nodes.

The smaller the value of the critical opening angle the more accurate are the forces,
but also more expensive to compute because the opening condition will be harder to meet
and it will lead to less search pruning and more nodes will be visited. Barnes and Hut
1986 estimates that the cost of computing all the forces acting on all the particles is
accomplished with the tree in O(Np logNp) time.

The volume of the nodes is reduced exponentially with the depth of the BH-Tree
therefore this data structure naturally cover a high dynamic range of sizes of structures in
the simulation. Also in terms of efficiency, BH-Tree adapts to the clustering of particles
without significant losses in the runtime.

3.2 Particle-Mesh

The term Particle-Mesh (PM) refers to a class of methods to compute interaction between
particles using the potential fields simulated with a discretization of space as intermediary
agents. The most simple PM method consist in establishing a cartesian regular mesh that
covers the finite simulation box, and there one can use the discrete Fourier transform of
the field quantities to solve the partial differential equations that define the value of the
interaction potentials. This section is dedicated to the exploration of this type of PM,
and throughout the thesis we will not deal with other PM types.

In practice, PM methods perform orders of magnitude faster than the BH-Tree. The
tradeoff to take into account is that a PM with a fixed size lacks the ability to zoom-in
details in higher dense regions, in exchange for a robust representation of fields in space
and faster execution times.
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Force solver

The core of a PM code is constituted by the routines that compute the forces acting on the
particles once their positions are introduced as input. The Mesh is a 3-dimensional grid
of length N , that is used to represent the continuous field; that in the case of a Newtonian
gravity simulation they will be: the density ρ, potential φ and force ~F fields. The steps
for computation can be summarized as follows (Hockney and Eastwood 1988):

1. assign the masses to the mesh, i.e. compute ρ from the knowledge of {~xi}i=1...Np

and {mi}i=1...Np ,

2. solve the Poisson equation to compute φ from ρ,

3. compute the force field ~F from the potential φ,

4. interpolate ~F from the mesh to the particles’ positions.

The step in which φ is computed through the knowledge of ρ relies on Fourier methods.
Let’s for simplicity study the method in one dimension. The grid then helps to represent
fields in the cubic box [0, L], and we will assume they are two times differentiable and
square integrable. Those fields form a Hilbert space called Sobolev, here we will denote
that space as H2([0, L]), with inner product 〈, 〉 such that:

〈A,B〉 =
1

L

∫ L

0

dxA†(x)B(x). (3.20)

Then according to Fourier’s theorem the set {un}n∈Z, where un(x) = exp(i 2π
L xn), is an

orthonormal basis of H2([0, L]). That is, for any f ∈ H2([0, L]) we can write:

f(x) =

∞∑
k=−∞

〈uk, f〉uk(x). (3.21)

Notice that f is a real-valued function if and only if 〈uk, f〉∗ = 〈u−k, f〉.
Let us emphasize that the numbers 〈uk, f〉 are, by definition, computed as integrals in

real space

〈uk, f〉 ≡
1

L

∫ L

0

dxu†k(x)f(x), (3.22)

and we will refer them as the Fourier coefficients or the coefficients of the Fourier Trans-
form (FT). Another set of numbers f̃k can be defined as

f̃k ≡
1

N

N−1∑
n=0

ω−knN f(nL/N), (3.23)

where ωN = exp(i 2π
N ), and they are called discrete Fourier coefficients or the coefficients

of the Discrete Fourier Transform (DFT).
In Fourier space the differential equations of the field take a simpler form, because the

differential operator are replaced with multiplications of the mode number k. However
we need to take into account that our computer simulation does not count with infinite
resources to model neither continuous space nor infinite Fourier modes. Our discretized
space representation of fields and their relation with the Fourier transform is understood
through Nyquist-Shannon theorem1.

1In the Appendix B we present a proof of Nyquist-Shannon theorem as presented here (Theorem 1)



30 CHAPTER 3. NUMERICAL METHODS IN COSMOLOGY

Theorem 1 (Nyquist-Shannon). For any function f ∈ H2([0, L]) and for a given N , if
there are no modes above kN = bN−1

2 c, i.e. 〈uk, f〉 = 0 for every |k| > kN , then the FT

coefficients 〈uk, f〉 become equal to the DFT coefficients f̃k.

∀|k| ≤ kN : 〈uk, f〉 = f̃k (3.24)

The number kN is called Nyquist mode.

Nyquist-Shannon theorem assures us that as long as the fields do not have modes above
kN , we can compute Fourier transforms, not using an integral in [0, L] but using the DFT
(3.23). An inmediate corollary is that we can move from the real space representation
{f(xn)}n=0,...N−1 to the Fourier space representation {f̃k}|k|≤kN using (3.24) and back to
real space using the inverse discrete Fourier transformation

f(xn) =
∑
|k|≤kN

f̃k ω
kn
N . (3.25)

without losing information. Another corollary is that f is completely determined by the
value it takes at the points {xn}n∈[0,N).

If the mass density ρ field had no modes greater than kN for a fixed grid size N , then
we would have an exact representation of ρ once we sample it at the points of the grid
{xi}i∈[0,N), according to the Theorem 1. Then the Poisson equation for the Newtonian
gravitational potential field

∇2φ = 4πGρ, (3.26)

can be expressed in Fourier space, generalizing to 3-dimensions, as(
i
2π

L
|~k|
)2

φ̃k = 4πGρ̃k. (3.27)

Sampling filters

In general, the density field will not satisfy the condition necessary for Theorem 1 to hold,
that’s because ideal density ρo is defined for point particles as

ρo(~x) =
∑
i

mi δ
(3)(~x− ~xi), (3.28)

which does have modes above kN because of the Dirac delta functions. For that reason
we cannot have an exact representation of the ideal density ρo on the mesh. We can try
instead to approximate ρo to some field ρ that doesn’t have modes above kN , so that
we can store it in the mesh without losing information and be able to use Theorem 1 to
obtain the field’s Fourier modes. The passage from ρo to ρ is called sampling.

One possible solution to this sampling problem would be to apply a low-pass filter to
ρo thus discarding all modes above kN :

ρ(x) =

∫
dx′W (low)

N (x− x′)ρo(x′). (3.29)

The low-pass filter can actually be computed analytically and its convolution with Dirac

deltas would be again itself. Considering the Fourier series for W
(low)
N we get

〈uk, ρ〉 =

∫
dx′
∑
k′

〈uk′ ,W (low)
N 〉δkk′u†k′(x′)ρo(x′)

= L〈uk,W (low)
N 〉〈uk, ρo〉,

(3.30)
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Figure 3.3: The low-pass filter W
(low)
N for N = 64 and L = 1.

therefore

〈uk,W (low)
N 〉 =

{
0, |k| > kN

1/L, |k| ≤ kN
(3.31)

and W
(low)
N can be reconstructed analytically from its Fourier expansion:

W
(low)
N (x) =

1

L

kN∑
k=−kN

uk(x) =
1

L

sin( πLx(2kN + 1))

sin( πLx)
. (3.32)

From equation (3.32) we see that W
(low)
N is a distribution which wiggles and decays

slowly as we go further from the origin, see figure 3.3, having as consequence that in order
to sample the density field ρo we would need to add the contribution of every particle at
every grid point, leading to an algorithmic complexity, for a 1-dimesional grid, ofO(Np·N),
which is not efficient in practice.

In order to lower the complexity to O(Np) one needs to approximate the density field
produced by a point particle to a distribution with a compact support such as: nearest-
grid-point (NGP), cloud-in-cell (CIC), triangular-shaped-cloud (TSC) or a piecewise-
cubic-spline (PCS) (Sefusatti et al. 2016; Hockney and Eastwood 1988).

WNGP(sL/N) =
N

L
×
{

1, |s| < 1/2

0, otherwise
(3.33)

WCIC(sL/N) =
N

L
×
{

1− |s|, |s| < 1

0, otherwise
(3.34)

WTSC(sL/N) =
N

L
×


3/4− s2, |s| < 1/2
1
2 (3/2− |s|)2, 1/2 ≤ |s| < 3/2

0, otherwise

(3.35)
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Figure 3.4: Different sampling kernels at N = 64, with a boxsize L = 1. We plot the

shape of the filters and the result of its convolution with W
(low)
N .

WPCS(sL/N) =
N

L
×


1
6 (4− 6s2 + 3|s|3), |s| < 1
1
6 (2− |s|)3, 1 ≤ |s| < 2

0, otherwise

(3.36)

The prefactor ensures the normalization of the filters, i.e.
∫ L/2
−L/2 dxW (x) = 1.

Those filters have, however, non-negligible modes higher than kN . We can check this
either by computing their Fourier coefficients or checking if they remain invariant under

convolution with W
(low)
N . See for instance in the Fig. 3.4 we show the result of applying

W
(low)
N to NGP, CIC, TSC and PCS filters. The resulting shape is different from the

original. Also the power spectrum of all proposed filters in Fig. 3.5 show that even
though the amplitude of the Fourier coefficients decreases after kN , they do not reduce
instantaneously to zero. This means that the filters NGP, CIC, TSC and PCS though
they might be good to reduce the non-locality of a density function for every particle, they
will introduce aliasing effects when used for sampling because they present non-negligible
mode amplitudes for |k| > kN ,

Interpolation

Fields encoded on the mesh can be evaluated at any point inside the simulation box. This
procedure is called interpolation, and it is useful in order to recover information from the
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Figure 3.5: Power spectrum of different sampling kernels at N = 64.

mesh into the position of the particles; e.g. evaluation of the potentials or density at the
position of the particle, or to compute the PM forces acting on a particle.

According to Theorem 1 the knowledge of φ̃ is sufficient to recover φ(x) exactly at
every point 0 ≤ x < L using the Fourier expansion:

φ(x) =

kN∑
k=−kN

φ̃k uk(x). (3.37)

However, the direct evalution of that equation would imply a computational cost of O(N),
which is too expensive for an N -body simulation.

To reduce that computational cost we can alternatively try to construct φ(x) from the
knowledge of the field evaluated at the mesh points around x. That would be effectively
a convolution operation with some interpolation filter W . Using Fourier Theorem one
obtains that

(φ ∗W ) (x) =

∫
dx′ φ(x− x′)W (x′)

=

∞∑
k=−∞

〈uk, φ〉uk(x)L〈uk,W 〉.
(3.38)

Since φ satisfies the necessary conditions for Nyquist-Shannon Theorem, then we can write
〈uk, φ〉 as a sum over the sampled values at grid points

(φ ∗W ) (x) =
1

N

N−1∑
n=0

∞∑
k=−∞

φn ω
−kn uk(x)L〈uk,W 〉

=
L

N

N−1∑
n=0

φnW
(
x− n

N
L
)
,

(3.39)
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where φn ≡ φ(nL/N) for n = 1, . . . , N − 1 are the real space values of φ encoded in the
mesh points.

In deducing Eq. (3.39) we have assumed that φ satisfies the necessary condition for

the Nyquist-Shannon theorem, that is φ = φ ∗W (low)
N , therefore one obtains that

φ(x) =
L

N

N−1∑
n=0

φnW
(low)
N

(
x− n

N
L
)
, (3.40)

which goes by the name of Whittaker-Shannon interpolation formula (WS). This formula
provides another exact interpolation algorithm for the PM. But just like Eq. (3.37), it
cannot be used in practice for interpolation.

If we use another filter instead of W
(low)
N in Eq. (3.39), one with compact support, for

example NGP, CIC, TSC and PCS; we will reduce the computational cost of interpolation
to O(1), but we would be interpolating the values of (φ∗W )(x) instead of the actual φ(x).
That is in essence how interpolation is performed in the implementation of a PM and the
tradeoffs of accuracy for performance at the core of the method.

Filter corrections

We have discussed the fact that the W
(low)
N filter is exact for sampling, but it is computa-

tionally expensive to apply. Hence we use other filters with a compact support to reduce
the computational complexity of sampling to O(1). Since these alternative filters W have
non uniform modes below kN their convolution with ρo does not preserve 〈uk, ρo〉. Yet,
we can estimate 〈uk, ρo〉 from ρ̃k.

Let’s start by writing the definition of ρ̃k as the DFT of {ρn}n=1,...,N−1

ρ̃k =
1

N

N−1∑
n=0

ω−knN ρ(xn) =
∑
z∈Z
〈uk+z N , ρ〉, (3.41)

where we have used the Fourier expansion of ρ(xn). Eq. (3.41) shows the distinction
between DFT and FT coefficients. The presence of modes of ρ above kN lead to the effect
of aliasing ; i.e. the fact that ρ̃k 6= 〈uk, ρ〉. Then, by writing ρ as a convolution W ∗ ρo

ρ̃k =
∑
z∈Z

L〈uk+z N ,W 〉〈uk+z N , ρo〉. (3.42)

If 〈uk,W 〉 is assumed to be leading in order with respect to all the rest of the aliases
k + z,N , then we can approximate the previous equation and we obtain

〈uk, ρo〉 ≈
ρ̃k

L 〈uk,W 〉
, (3.43)

which should be a better estimator for 〈uk, ρo〉 than ρ̃k alone. Equation (3.43) is what
we call the sampling filter correction. To apply the filter corrections we need to know
the FT coefficients of the sampling filter. From Sefusatti et al. 2016 we learn that the
four interpolating filters NGP, CIC, TSC and PCS have FT coefficients according to the
formula

L〈uk,W p〉 =

(
sin(πk/N)

(πk/N)

)p
, (3.44)

where p is either 1, 2,3 or 4 for NGP, CIC, TSC or PCS respectively.
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3.3 TreePM

The PM and BH-Tree algorithms can be combined to create a hybrid TreePM method,
first described by Xu 1995. In the TreePM method the BH-Tree is applied to compute
the short-range forces—similar to the role of particle-particle direct summation in P3M
codes—while the PM covers the long-range gravitational interaction. The advantage of
the combined method over the pure BH-Tree algorithm is that fields quantities are better
represented by a PM structure, this is particularly useful when fields not carried by the
particles are needed from the simulations (e.g. the gravitational potential to produce
weak lensing); in addition, there is a decrease in overall runtime because the PM tends
in practice to be faster than the BH-Tree. Moreover, the TreePM method achieves a
high-dynamic range of spatial resolution, allowing us to resolve the matter clustering on
small scales even in large simulation volumes—high resolution with a pure PM is achieved
by increasing the number of mesh points N per dimension, but the computational and
memory cost becomes quickly unfeasible because of its O(N3) scaling dependence.

Both forces, PM and BH-Tree, can be coherently combined with the appropriate
numerical algorithm. To that end the gravitational potential can be split into the sum of
two fields:

φ = φ(L) + φ(S), (3.45)

where φ(L) is the solution to the Poisson equation for long modes and φ(S) corresponds
to the solution for short modes. Written in Fourier space (tilde on top of symbols denote
the Fourier transform), the Newtonian gravity Poisson equation reads

φ̃k = −4πG

k2
ρ̃k (3.46)

where ρ denotes the mass density. Then we define a quantity ra called smoothing scale
and the source term in Eq. (3.46) can be split as the sum of two terms

φ̃k = −4πG

k2
ρ̃k
(
1− exp(−k2r2

a)
)
− 4πG

k2
ρ̃k exp(−k2r2

a). (3.47)

This means that we can obtain φ(S) by solving the modified Poisson equation for short
modes

φ̃
(S)
k = −4πG

k2
ρ̃k
(
1− exp(−k2r2

a)
)
, (3.48)

and φ(L) by solving the modified Poisson equation for long modes

φ̃
(L)
k = −4πG

k2
ρ̃k exp(−k2r2

a). (3.49)

The factor ra has units of distance and indicates the scale at which we split long and short
range modes.

The long-mode Poisson equation (3.49) can be solved by the PM, since at its core,
this data structure uses Fourier methods and hence that equation is written as it is in
the code as a multiplication in Fourier space. The force tree on the other hand works
exclusively in real space hence, equation (3.48) has to be written in real space before one
can implement it in the BH-Tree. Fortunately, the Green function to that modified
Poisson equation has an analytic form in terms of the error function erfc. So that for a
point-like distribution of particles one obtains

φ(S)(~x) = −G
∑
i

mi

|~x− ~ri|
erfc

( |~x− ~ri|
2r2
a

)
. (3.50)
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3.4 Gadget-4

Gadget-4 is the latest relase of a hydrodynamical cosmological simulation N -body code
written in C++ (Springel et al. 2021). The name stands for Galaxies with Dark Matter and
Gas Interact. The code is optimized to run on massively parallel hardware and it is capable
of following a collisionless fluid with the N -body method, and an ideal gas by means of
smoothed particle hydrodynamics (SPH). From its first version (Springel, Yoshida, and
White 2001) to the latest one, the development of Gadget has been hand in hand with
the proposal and improvement of the numerical methods for N -body simulations (such
like BH-Tree, PM and TreePM), some of which have been presented by the authors of
the code themselves.

Gravity in Gadget is Newtonian added on top of an expanding universe. This ap-
proach is consistent with General Relativity in the Poisson Gauge if we remain in the
leading order weak field limit by neglecting the metric degrees of freedom Bi, χ and hij ,
and when the modes of the gravitational field are larger than H/c; i.e. wavelengths much
smaller than the Hubble radius. In our notation, this means that geodesic equations (2.82)
and (2.83) become

dxi

dτ
=

pi

ma
, (3.51)

and
dpi
dτ

= −mφ,i . (3.52)

The field equation for the Newtonian potential φ = ac2Φ is

∇2φ(x) = 4πG
∑
k

δ(3)(x− xk)mk . (3.53)

In Gadget, gravitational forces are computed with a TreePM algorithm, described in
section 3.3. Time integration is based on a quasi-symplectic KDK (see section 3.1) scheme
where long-range and short-range forces can be integrated with different time-steps. The
PM in Gadget takes into account the sampling and interpolation losses of power at short
wavelengths, by convolving the gravitational potential with a CIC correction.

Gadget is parallelized with the Message Passing Interface (MPI) paradigm, in which
the copy of the same code is executed in multiple processes that could be running dis-
tributed in the same or even different physical machines. Each process has ownership of
his own memory space, this is why this approach is called distributed memory parallelism.
This feature allows to scale the memory and computational resources available to the ap-
plication. The coordination between processes is obtained with a standard programming
interface defined in the MPI standard2, which allows the code to be compiled for different
machine architectures. MPI libraries take care of optimizing the inter-processes commu-
nication so that processes running on the same machine will send and receive messages
through shared memory, while processes running on different machines will communi-
cate through TCP/IP; the programmer does not need to write any logic to make those
optimization decision.

The code paralellization is a technological necessity for cosmological simulations. Like
in other branches of computational physics there is an ever increasing demand for realistic
realizations that often drives the computational requirements towards memory allocation.
For example, in order to simulate the photometric catalog of the Euclid mission reaching

2The latest version of the MPI standard is version 4, see Message Passing Interface Forum 2021.
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up to redshift 2 (Amendola et al. 2018), one would need a box of at least3 L = 3 Gpc/h
and Npart = 2 × 1011 particles to achieve a mass resolution4 of m1 = 1010M�/h; then if
one considers that for each particle at least 48 bytes of memory are needed (8 bytes for
each spatial coordinate and velocity component) then at least Npart×48bytes ≈ 10 Tbytes
are required for hosting such simulation. Even though this estimation is very conservative,
it is clear that cosmological simulations are memory-bound and cannot be run on single
machine architectures. Instead the simulation data must be distributed among physical
computers by a software layer that is able to decompose it into several parts, called
domains that are assigned to individual MPI tasks.

To perform the domain decomposition the code uses a Peano-Hilbert space-filling
curve5 that maps a discrete representation of the simulation volume into a one-dimensional
parameter index preserving locality; i.e. two neighboring PH indexes correspond to neigh-
bor regions of 3D space. The range of values of the PH index can be divided into pieces
and they will correspond to 3D domains of the simulation box. PH curves at any order n
divide the 3D box into 23n small and identical cubes (see Fig. 3.6). Therefore there is a
correspondence between the domains defined by the PH curve and the BH-Tree. That is,
every domain can be expresses as the union of non-overlapping tree nodes. This property
allows the code to perform a parallel distribution of the BH-Tree. While abstractly the
combined memory of the processors contain the entire BH-Tree, individual processes
only store in their local memory the top nodes of the tree and full expansion in depth
until the leaves of those nodes that lie within the local spatial domain; see Fig. 3.7.

Because of the PH curve properties, the domain regions have small surface to volume
ratios which is an optimality condition for running time, because the higher the boundary
surface between the domains, the higher the size of the communication packets they
need to exchange to synchronize. Processors are very powerfull these days, usually the
bottleneck of this kind of simulations is the communication instead of actual computation
in the CPU, this is the reason why much of the design effort is aimed at reducing the
inter-process communication.

Compared to previous version of Gadget, the latest Gadget-4 offers a Fast Multipole
Method (FMM) as an alternative to a plain BH-Tree. It also provides an improved
domain decomposition logic for better distribution of memory and computation work
among processes. Other features of the new code include: the support for built-in merger
trees, the construction of lightcone outputs, the identification of halos directly on the
lightcone, the measurement of power spectrum during runtime, and the support for HDF5
output.

The PM domain decomposition has also been improved, from the traditional slab
decomposition to column based, and the corresponding parallel FFT algorithm has been
adapted to this new decomposition. See Fig. 3.8 for a graphical representation of the
column-based domain decomposition. This change in the domain decomposition of the
PM solves the scalability problem of the parallel PM and FFT. In the section about
LATfield2 library we will explore in more detail the nature of this scalability problem
and how it is solved in LATfield2 with a more robust method using a 2-dimensional

3With a simulation box of length L = 3 Gpc/h one can extract a deep field lightcone up to z = 2 that
covers a 3% fraction of the sky.

4The total matter mass in the simulation is obtained from the critical density at the present time
multiplied by the fraction of matter mass and the box volume M = ρcΩmL3. The value m1 = 1010M�/h
is a typical choice of mass resolution for cosmological simulations in order to reproduce the formation of
the dark matter haloes that host galaxies.

5For details about Peano-Hilbert curves are defined and constructed see Haverkort 2011.
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Figure 3.6: Space-filling Peano-Hilbert curve in two (bottom) and three (top) dimensions
(Springel 2005).

Figure 3.7: Relation between the Barnes-Hut tree and a domain decomposition based on
a Peano-Hilbert curve. For clarity, the sketch is drawn in two dimensions (Springel 2005).
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Figure 3.8: Domain decomposition schemes for the PM data. Slab-based to the left and
column based to the right (Springel et al. 2021).

domain decomposition of the mesh. At a lower level, Gadget-4 still uses FFTW3 library6

to perform 1-dimensional FFTs on the fastest running index of the PM memory array.

The algorithms produced to improve the computational performance and scalability
of Gadget have allowed to increase the size of N -body simulations from N ∼ 1000 using
PP up to N ∼ 1012 (Pakmor et al. 2022) with the latest version Gadget-4 running on a
state of the art high performant machine.

3.5 Gevolution

Gevolution is another N -body cosmological simulation code also written in C++ and
parallelized according the MPI paradigm (Adamek et al. 2016).

Numerically, this code works as a pure PM to resolve the dynamics of the particles. The
mesh in Gevolution, a cartesian grid, has a fixed resolution throughout the simulation.
This equal spacing of grid points per dimension is a natural choice for the discretization
of the cubic volume that represents the simulation space, that allows the use of Fourier
methods to solve field equations. However, it has the drawback that if one wishes to
increase the resolution of the simulation, one must do so for the entire volume hence with
a cost in memory of O(N3), where N is the number of grid points per dimension.

Gevolution, can run in either Newton or General Relativity modes. When running
the General Relativity mode, it solves Einstein equations in the weak field limit, using a
combination of the field equations derived in Section 2.4, Eqs. (2.70), (2.73), (2.74), and
(2.75) that suits the best for the numerical stability of the code. All the field quantities,
metric perturbations and components of the energy-momentum tensor are represented
on the mesh. The hamiltonian forces and velocities to which particles are subjected are
computed from the gravitational potentials arising from the perturbative treatment of
gravity in a FLRW background in the Poisson gauge as described in Chapter 2.

Gevolution code relies on Fourier methods to compute the perturbation potentials
from Einstein equations. That numerical approach is facilitated with the use of a C++
library called LATfield2, that defines classes and methods to represent classical fields in
distributed memory applications. LATfield2 exposes a programming interface to per-
form operations on the fields, either in their real and Fourier space representations. This
library implements Fast Fourier Transforms (FFT) of 3-dimensional fields whose memory

6http://fftw.org/

http://fftw.org/
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is distributed among parallel processes following a 2-dimensional uniform decomposition
of space, in which each process owns in memory a portion of the grid with a rod shape
(Daverio, Hindmarsh, and Bevis 2015). In this way LATfield2 overcomes the scaling
limitations of a more simpler 1-dimensional domain decomposition (or slabs) provided
by the mainstream FFTW3 Fast Fourier Transform library. We will come back to this
argument in more detail in the next chapter.

Gevolution has been used to study the effects of early radiation and massive neu-
trinos in the clustering at large scales and the halo mass function (Adamek et al. 2017;
Adamek, Durrer, and Kunz 2017), investigate the generation of vorticity and its relation
with the frame dragging potential (Jelic-Cizmek et al. 2018), to obtain the halo counts
and its angular power spectrum with relativistic effects and its cross-correlation with weak
gravitational lensing convergence (Lepori et al. 2022), to study k-essence model of cluster-
ing dark energy (Hassani et al. 2019) and to quantify the systematic error from mapping
Newtonian simulations to light-cone observables (Adamek and Fidler 2019).



Chapter 4

GrGadget

Given the fact that General Relativity has been so far proven to be the correct theory to
explain gravitational phenomena, we support the idea that cosmological N -body simula-
tions should be based on GR from first principles. The complexity of the implementation
of a code like that is clearly greater and more time consuming, but we obtain the following
benefits:

• There is a direct interpretation of quantities expressed in computer code from quan-
tities in the theory, e.g. field values, coordinates and momentum of particles, that
are gauge dependent, and we can correctly appreciate how their relationship with
observables quantities is.

• Simulations produce more realistic outcomes.

• It should be easier to introduce modifications to GR, either by adding extra degrees
of freedom and/or changing the field and geodesic equations.

Given the fact that GR is a field theory, a discretization of space is needed to represent
the state of the fields. The most viable technique to represent a field theory like GR in
a simulation is through a mesh, and since we will pay close attention to phenomena that
arise from the non-ideal fluid dynamics of the matter content of the universe, a Lagrangian
representation of matter aided by a relativistic PM to solve interactions seems the most
reasonable choice. On the other hand we have discusses in Chapter 3 the limitations of
PM codes to reproduce high dynamic clustering as it occurs naturally in matter evolution
and how TreePM strategy has been developed to overcome these limitations and improve
the parallel scalability of N -body codes. Therefore, we propose to study relativistic effects
in N -body simulations with the use of a TreePM method.

Our approach is such that matter and energy is transported by particles elements and
the state of the gravitational field is encoded in a regular grid discretization of space. A PM
structure and methods are needed to perform the time evolution of the gravitational fields
due to the changing underlying matter distribution through Einstein equations. The PM
is also needed to compute the geodesic trajectory of particles from the knowledge of the
space-time metric. Short range gravitational interactions between particles are resolved
in the Newtonian limit, specially in very dense but small regions of space—the size of the
grid resolution and below—and computed with a BH-Tree.

We have used the TreePM code Gadget-4 and added to it a relativistic PM to
substitute the Newtonian PM. Instead of writing this PM from scratch, we have taken

41
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the already existing open source code of Gevolution and we have built from it a C++
library named LibGevolution that exposes its resources and methods to perform general
relativistic computations in the mesh. We are exploiting the similarities in both Gevo-
lution and Gadget-4 designs: firstly, both codes are written in C++ so programming
interfaces are portable between them; secondly, in both cases the PM is a Fourier uniform
mesh; and thirdly, the equations of motion for particles in Gevolution converge to the
Newtonian equations in the non-relativistic limit and small scales. The code described in
this thesis is publicly available at https://github.com/GrGadget.

4.1 LATfield2

Before we make an in-depth exploration of the technical details of LibGevolution it is
necessary to dedicate some attention to a library called LATfield2 (Daverio, Hindmarsh,
and Bevis 2015), which is a building block of Gevolution code. As a matter of fact all
the programming technicalities of the PM are provided by LATfield2, while the imple-
mentation of the physics—Einstein field equations, geodesic motion, etc.—are written in
the second layer of Gevolution. The design choices made by LATfield2 developers
have a footprint in the workflow of operations in Gevolution and they shape as well the
syntax of LibGevolution to a great extent.

LATfield2 is C++ library with the purpose of providing a programming framework
for classical field theories. The library is restricted to applications running on parallel
processes using the MPI model. LATfield2 provides to the user 5 different classes:
Parallel, Lattice, Site, Field and PlanFFT. I will briefly explain their purpose and
the interrelation between them.

First of all there is Parallel, which instantiated only once as a global variable. This
class serves two purposes: it represents the global state of the library and it predefines a
topology of participating MPI processes into a cartesian two-dimensional array. Parallel
owns an MPI communicator of all the application processes. The organization of all
processes into a two-dimensional grid is performed upon initialization and it is used as
a template for the domain decomposition. In LibGevolution we have modified this
behavior, so that Parallel can be initialized with a user provided communicator. From
a code design philosophy perspective, the new version of Parallel is only managing the
MPI communicator of the PM as an abstract resource and not grabbing that resource
from the user. This allows, for example, LATfield2 to run on a subset of all application
processes. This is essential to port LibGevolution into Gadget-4, because the previous
version of LATfield2 would run only for an specific number of MPI processes that
depended on the number of mesh points per dimension, while Gadget-4 does not impose
any bound in this respect.

The Lattice class describes a discretization of three-dimensional space into a regular
grid—in the context of this thesis lattice, grid and mesh are synonymous. A Lattice

can be instantiated by specifying the number of points for each one of the three spatial
dimensions, the internal book-keeping routines will take care of defining how the mesh
will be divided into domains assigned to the MPI processes according to their location in
the process grid within Parallel. Lattice also contains information about the extension
of ghost cells—also called halo in LATfield2’s own terminology. In distributed memory
parallelism the ghost cells relative to an MPI process are those regions of space right
outside the boundary of the domain belonging to that process and their information is
cached in memory to prevent wasteful intraprocess communication. In LibGevolution
the extent of the ghost cells is determined by the order of the interpolation and sampling

https://github.com/GrGadget
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parallel

site

lattice

P0 P1

P2 P3

Field < Real >Φ Field < Complex > Φ̃

PlanFFT

FFT FORWARD

FFT BACKWARD

Figure 4.1: Illustration of LATfield2 classes to represent classical fields on a discrete
mesh, and MPI parallelism. Parallel handles the MPI processes coordination and do-
main decomposition, Lattice regards the discretization of space and manages ghost cells
along domain boundaries, Field allocates the memory for complex or real classical fields
embedded in the geometry defined by the Lattice, Site acts like a pointer to specific
locations on the mesh and PlanFFT is used to move from the real to the complex Fourier
space and viceversa using FFTs.

kernels, as well as the order of the finite differences for derivatives. As we will describe
later, LibGevolution uses a CIC (see section 3.2) interpolation/sampling kernel which
requires only one ghost cell, and finite differences are computed at 4th order and required
up to 2 ghost cells.

A Field implements the concept of a classical field represented on discrete points of
space with the help of a Lattice. The field could be a scalar, vector or tensor, and it
can take either real or complex values. Each field can be imagined as a three-dimensional
matrix which is split along the x and y axis into rod pieces, following the Parallel process
grid template, so that each MPI process stores in memory only a portion of that matrix.
Figure 4.1 illustrates the role of LATfield2 classes put together to represent fields in
space and across MPI processes.

The class Site has close ties with Lattice and Field, conceptually it constitutes the
iterator or the indexing of lattice points. It can be used to access the individual elements
of the Field.

Finally, the class PlanFFT links together a real and a complex field and implements the
concept of the DFT (Discrete Fourier Transformation) applied to Field. Under the hood,
this class performs a series of one-dimensional FFT transformations along the z-axis using
FFTW3 library1 (Frigo and Johnson 2005), that combined with matrix transpositions
involving all MPI processes results in the three-dimensional DFT of the Field.

4.2 Domain decomposition

The spatial resolution of the fields represented in LATfield2 depends on how many
grid points N there are per space dimension. One can inmediately see that the mem-

1FFTW3 official website is http://fftw.org.

http://fftw.org
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Figure 4.2: Block, pencil, and slab domain decomposition of a cubic region region of space
(from left to right). FFTW3 natively supports FFT for slab domains in its API (right),
while LATfield2 is based on pencil domains (center).

ory requirements grow as O(N3), which corresponds to the size of the three-dimensional
field data matrix, and the computational complexity of performing Fourier transforms is
O(N3 logN). When the memory and computation is evenly distributed accross P MPI
processes, the memory per process becomes O(N3/P ) and the computational complexity
reduced toO((N3/P ) logN). If the lattice domain was decomposed along one dimension—
this goes by the name of slab domain decomposition—P would be limited to have a value
at most equal to N , and by increasing P we can get at most that a memory requirement
of O(N2) and O(N2 logN) execution time; this is quite inneficient and we cannot increase
P beyond N to overcome that burden on the computational resources. FFTW3 library
follows this one-dimensional domain decomposition scheme. This problem and possible
solutions are documented by Pippig 2013.

LATfield2 overcomes this scaling limitation by producing a two-dimensional domain
decomposition—namely a pencil domain decomposition—so that theoretically the number
of MPI processes can be increased up to the number of lattice points in the xy plane, which
for cubic grid becomes N2. See Fig. 4.2 for an illustration of how different mesh domain
decompositions are performed. For example LATfield2 has been tested with lattices of
40963 grid points distributed over 32×103 MPI processes (Daverio, Hindmarsh, and Bevis
2015), this amounts to roughly 2 × 106 grid points stored on each process; In this case
a slab domain decomposition would be limited to 4096 MPI processes and 16× 106 grid
points per process which carries 8 times higher work and memory loads for the CPUs. If
N was multiplied by 2, a pencil domain decomposition could still accomodate the problem
in a machine 4 times bigger and the burden per process is at most doubled, while a slab-
based code can only increase by 2 the size of the machine and as a result the memory and
computation per process will be 4 times higher.

4.3 Concept and design rules

The rationale of LibGevolution is that the encapsulation of Gevolution’s resources
and methods into C++ classes will result in the following benefits: first, maintenance is
eased with the logical modularization of the code; second, we are able to port Gevolution
methods to other applications, such as GrGadget in the present thesis.

Conceptually, LibGevolution provides a high level interface that implements a rel-
ativistic PM, which is able to perform the following tasks: take as an input the state of
all the simulation particles, compute the gravitational fields (perturbations of the metric
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{m,~x}i=1,...,N

compute ρ

FFT ρ̃

compute φ̃

FFT φ

finite differences φ,i
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(a) Newtonian PM

{m,~x, ~p}i=1,...,N

compute T ij

FFT T̃ ij
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{~F ,~v}i=1,...,N

(b) Relativistic PM

Figure 4.3: General concept of a PM and its workflow for the case of a Newtonian PM
(to the left) and a relativistic PM (to the right).

or relativistic potentials) and compute the kick and drift operators for time evolution of
the particles’ state; see figure 4.3.

A Newtonian PM considers the masses and position of the particles as input to compute
the density field ρ by sampling the Dirac delta mass distribution of each particle into the
mesh. Then in Fourier space it solves Newtonian gravity Poisson equation to find the
Newtonian potential φ. Using finite differences and an interpolation kernel, the first
partial derivatives of φ can be computed at the position of each particle and thus the
gravitational force is obtained.

A relativistic PM, on the other hand (see Fig. 4.3), considers an extended state of
the particles comprising mass, position and momenta, to compute all the components
of the energy-momentum tensor. Then in Fourier space it solves Einstein equations to
find the components of the metric Φ, χ and Bi. Then, similarly to the Newtonian case,
finite differences and an interpolation kernel are used to compute the derivatives of those
potentials at the position of each particle and using equations (2.82) and (2.83) the force
and velocity are obtained. It should be noted that in the aforementioned equations we
write hij which we do not treat in GrGadget at the moment, also they are written in
terms of Φ, Ψ instead of χ ≡ Φ − Ψ but internally, GrGadget as well as Gevolution
work in terms of the scalars (Φ, χ) and not (Φ,Ψ).

The design of LibGevolution is based on 4 rules or guarantees we want to maintain:

1. Simplicity and backwards compatibility: we hide implementation details from the
user, the classes represent concepts (like particles, fields and grids) and their methods
are coherent with the concept they represent and do not reflect the underlying
algorithms. In the future we might, for example, change the way finite differences
are computed or subsitute FFT-based solutions to Einstein equations but the user
interface should not be affected for backwards compatibility.



46 CHAPTER 4. GRGADGET

2. Generality: use C++ templates as much as possible, make the code portable to other
applications. For example, particle data could be specified by the user according to
his needs.

3. No resource grabbing: Gevolution and LATfield2 make intensive use of standard
IO, memory allocation and MPI communicators. Those resources should be handled
through the user interface and released when not needed; in this we follow the RAII
principle (resource acquisition is initialization) strongly suggested by Stroustrup
2013. For example, messages coming from LibGevolution should be passed to the
user through a logging mechanism instead of printing to standard output/error. The
user should have control over the memory allocation performed by LibGevolution,
for example, by passing a custom allocator like the one used by Gadget-4. The
MPI space of LibGevolution should also be decided by the user, one should be
able to choose how many processes are allocated to run the PM if one has in mind
an heterogeneous parallel execution of code.

4. Error handling with C++ exceptions: exceptions constitute the native error handling
mechanism in C++ (Stroustrup 2013), we started working on integrating that kind
of logic into LibGevolution which has a further complex structure due to MPI
parallelization. In general, error events can be caused by either unexpected user in-
put, failure of acquisition of a resource (memory allocation, opening a file, etc.) or a
bug that breaks the correct execution of the program; in any case LibGevolution
should not cause the simulation to crash without letting the main application per-
form book-keeping measures, like saving data of the current state of the particles,
logs of what event may have triggered the error, and properly release any locked
resource.

Not all of these guarantees are fully implemented at the moment, but we are heading into
that direction.

4.4 Classes and memory model

LibGevolution is a PM-library whose cornerstone consists of three main components:
a particle container implemented through the class Particles_gevolution, a PM data
structure named particle_mesh that can be used either as a relativistic_pm or a
newtonian_pm and an executable application that uses the previous components to pro-
duce N -body simulations as the original Gevolution code does.

The particle_mesh has to be understood as a container that is aware of the MPI
parallelization and distributed memory, that holds the state of the gravitational field (the
metric perturbation components in the case of relativistic PM or the single gravitational
potential in the case of Newtonian gravity) and allows the user to compute the forces
acting on the simulation particles. The relevant user interface declared in particle_mesh

consists of the following functions

• sample(...), that builds the sources (desity field or energy momentum tensor) by
projecting particles into the mesh.

• compute potential(...), that solve Poisson equations to compute the potential
fields.

• compute forces(...), that computes the forces acting on the simulation particles.
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particle mesh

relativistic pmnewtonian pm

Figure 4.4: PM class hierarchy in LibGevolution. particle mesh is a virtual
super-class containing propotypes and common methods. The newtonian pm and
relativistic pm classes inherit from particle mesh and correspond to a Newtonian
and GR specialization respectively.

The particle_mesh is specialized to solve a Newtonian problem or a General Rel-
ativistic problem through class inheritance. Figure 4.4 ilustrates the class hierarchy of
LibGevolution’s particle_mesh.

The newtonian_pm is the specialization of particle_mesh that contains a single scalar
field represented as a real LATfield2::Field, the Newtonian gravitational potential
ΦNewton, plus a complex LATField2::Field, the Fourier transform of the latter Φ̃Newton,
and a LATField2::PlanFFT that connects ΦNewton with Φ̃Newton through discrete Fourier
transformation.

The relativistic_pm is the specialization of particle_mesh that contains all degrees
of freedom of the perturbed FLRW metric. That is, Φ, Bi and χ as fields are represented
as real LATfield2::Field variables with a complex LATField2::Field counterpart and a
respective LATField2::PlanFFT for each one that connects them through discrete Fourier
transformation.

4.5 Boosting Gevolution

Part of the development of LibGevolution has been dedicated to the improvement of
the numerical methods. This action included the upgrade the computation of spatial
derivatives from the first order finite differences (FD), where derivatives are obtained by
computing the difference between the current and the next mesh point:

∂Φi
∂x

=
Φi+1 − Φi

h
+O(h), (4.1)

to the fourth-order approach, in which up to 2 mesh points in each direction are considered

∂Φi
∂x

= 8
Φi+1 − Φi−1

12h
− Φi+2 − Φi−2

12h
+O(h4), (4.2)

where h = L/N is the size of the mesh cells. These equations can be obtained by Taylor
expansion. The fourth order FD equation is used in Gadget-4, thus we have decided to
implement it as well into LibGevolution to reduce the numerical discrepancies between
both codes as much as possible.

Another numerical tuning was the application of correcting filters in Fourier space to
compensate for the loss of power of the fields due to the sampling of particle density by
means of the cloud-in-cell (CIC) kernel and the interpolation of force fields, again with
CIC, at the particle’s positions. Thus, for the corrected mass density ρ′ in a 1-dimentional
mesh, it’s Fourier modes will be estimated starting from the density value obtained by
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particle sampling ρ according to

ρ̃
′

k = ρ̃k

(
πk/N

sin(πk/N)

)4

. (4.3)

This follows from eqs. (3.43) and (3.44), for CIC the power of the correction is p = 2, but
since we apply the correction twice (one for sampling and one for interpolation effects) we
get in total a power 4. The equation generalizes to 3 dimensions by multiplying for more(

πk/N
sin(πk/N)

)4

factors for each dimension.

To make the Newtonian PM scheme equivalent to that of Gadget-4 we changed the
form of the discrete Laplacian operator in the Poisson equation solver from its original
form

∇2 → −4N2

L2

(
sin2 πkx

N
+ sin2 πky

N
+ sin2 πkz

N

)
, (4.4)

described in Adamek et al. 2016, equation (C.5), to the form used in Gadget-4:

∇2 → −4π2

L2

(
k2
x + k2

y + k2
z

)
. (4.5)

This effort was aimed at improving the precision of the numerical methods in LibGevo-
lution as well as to make them compatible with Gadget-4’s own recipes so that we
could have a stable baseline simulation to check against.

From the code infrastructure point of view, some of the features we wanted to make
available in LibGevolution so that it could be integrated naturally into higher level
appplications, required some flexibility at the level of LATfield2. We cared to introduce
that flexibility by using available infrastruture libraries on the market. The collection of
Boost libraries2 contains all the ingredients we needed to accomplish our purposes.

Boost is an open-source collaboration that created and mantains a set of C++ libraries
to complement the lack of features of the Standard Library. The code in Boost is peer re-
viewed by noteworthy contributors and users alike, some of which are part of the standard
comitee of C++. As a result, Boost libraries are considered one of the best examples of
implementation best practices and reliable libraries for C++. Very often Boost libraries
and concepts are evaluated by the rigurous C++ standard comitee and accepted as part
of the standard library, for example filesystem library, Polymorphic memory resources,
smart pointers, chronos date and time library and string view class, to mention a few
(Josuttis 2012; Josuttis 2017).

We Boosted our implementation of LibGevolution and customized fork of LAT-
field2 with the aid of Boost.MPI and Boost.Serialization libraries. Boost.MPI, which is
a C++ wrapper for MPI C-API, supports modern C++ development styles, including
support for user-defined data types, Standard Library types and general function objects
for collective algorithms. While Boost.Serialization, a library for the reversible decon-
struction of an arbitrary C++ data structure into bytes, was used to write particle data
into disk for testing and debugging, and to use the collective communication functions of
Boost.MPI for our custom particle data.

With the help of these tools we were able to implement an initialization mechanism
for LATfield2 with a user provided MPI communicator. This is a pattern of resource
sharing based on rules and it is encouraged by the MPI standard best practices. In
particular this will allow us to use LibGevolution in applications in which some MPI

2http://boost.org

http://boost.org
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processes are selected to perform LibGevolution tasks while others are in charge of other
tasks; for an heterogeneous task distribution pattern. Without this feature we wouldn’t
be able to use LibGevolution into GrGadget.

We have also introduced a generic for each function into LibGevolution particle
containers that allow us to perform any operation looping over the simulation particles.
This function is a template so it is declared as

template<typename Functor>
void f o r e a c h ( Functor updateF ) ;

and it takes a function as its only argument. The syntax for the most common use case
would involve calling it passing a lambda function

p a r t c o n t a i n e r . f o r e a c h (
[& ] ( p a r t i c l e& part , const S i t e& xpart )
{

// do whatever with part at xpart
}

) ;

This is a pattern of functional and generic programming, inspired by the std::for each

function of the Standard Library. With this function we reduce redundant code and
complicated function signatures; e.g. before this feature, there was a function updateVel,
updatePos, with a long list of pointer inputs that tried to generalize the user case for
performing operations of particle position and velocity updates—drifts and kicks basically.
With our improvement we provide a more general and flexible interface and we gain
performance because the compiler is able to inline at compile time the lambda function
inside the for each loop. This would not be the case for functions passed by pointers.

4.6 GrGadget code

We have used the code Gadget-4 from the public domain to construct a modified version
that uses LibGevolution as its PM solver so that we can, at least at the fixed resolu-
tion of the mesh, obtain relativistic effects on top of the realistic and highly non-linear
simulation that the TreePM method of Gadget-4 is able to deliver. Our new code was
named GrGadget.

The implementation of LibGevolution in Gadget-4 was performed as follows. We
created a new PM class with a similar interface as the original one in Gadget-4, so that
it is initialized and executed with the same functions as Gadget-4, i.e. init periodic()

and pmforce periodic(). A new class relativistic pm was implemented within an
gadget::gevolution api namespace, avoiding to use the wider gadget namespace to
make a clear distinction of purpose between the original Gadget-4 code and our addi-
tional features. This relativistic pm class acts like a mediator taking information in
and out of gadget simulation particles, processing the correct units conversion and calling
the methods on gevolution namespace. Figure 4.5 shows a diagram that summarizes
the contents of this PM class, its relation with Gadget-4’s resources and the entry points
for gevolution’s api.

Inside of GrGadget, the relativistic pm consists of:

• A variable of type simparticle_handler that acts as a wrapper for providing parti-
cle information from GrGadget’s simparticles global variable into a Particles

gevolution data structure that integrates natively with LibGevolution’s methods



50 CHAPTER 4. GRGADGET

gadget::

simparticles

LATfield2::

parallel

particle_handlerread/write

latfield_handlerread/write

sim::begrun1()

sim::gravity_long_range_force()

init_periodic()

pmforce_periodic()

execute

execute

gevolution::cosmology

gevolution::Particles_gevolution

gevolution::relativistic_pm

gevolution::newtonian_pm

gadget::gevolution_api::relativistic_pm::

Figure 4.5: Diagram of resource ownership and relations for LibGevolution in-
tegrated into Gadget-4’s workflow. Each solid box represents a memory re-
source (an instantiation of a variable type) while the dashed boxes indicate own-
ership. The newly developed code, represented in the right part of the diagram
denoted with the namespace gadget::gevolution api, consists in a class named
relativistic pm that owns a particle handler object that reads and writes di-
rectly into gadget::simparticles, a latfield handler that takes care of set-
ting up and inspect the state of LATfield2::parallel, and some types defined
in LibGevolution, that are defined in gevolution namespace, like cosmology,
Particles gevolution and relativistic pm. The methods sim::begrun1() and
sim::gravity long range force() in gadget interact with the relativistic pm

through its interface init periodic() and pmforce periodic().

to construct the energy-momentum tensor on the mesh. simparticle_handler is
also used to write back the data produced by LibGevolution’s PM into GrGad-
get particles. These procedures take into account the fact that the domain decom-
position of the parallel BH-Tree and PM follow different patterns (Peano-Hilbert
partition of space in the case of the tree and two-dimensional pencil decomposition
of the mesh) with the result that each particle could belong to the local domain
of one process’ tree and at the same time its position in space lies inside the mesh
domain of another process. This problem is solved in a very robust but inefficient
way: particles are copied into buffer memory and sent from their BH-Tree domains
into their corresponding PM domains everytime the PM is called.

• A variable of type latfield_handler that takes care of correctly initializing LAT-
field2 global state. Indeed, while GrGadget can run with any number of MPI
processes, LATfield2 imposes limitations that depend on the number of grid points
in the PM; such that the number of MPI process must be a composite number
P = PxPy, where Px and Py are the sizes of the process grid in the x and y spa-
tial directions, furthermore, Px and Py must divide the number of grid points per
dimension N . In GrGadget we avoid these constraints by automatically selecting
a subset from the global MPI communicator; the maximum number of processes
that satisfy LATfield2 conditions and initialize Parallel state with that sub-
communicator.
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• A variable of type gevolution::cosmology that contains the parameters for the
background evolution.

• A container of type gevolution::Particles gevolution that holds particle infor-
mation, stored according to their location on the PM grid. This container integrates
natively with LibGevolution methods that contruct the energy-momentum tensor
by sampling particle’s dynamical state and the interpolation of field quantities into
particles positions.

• Variables of type gevolution::relativistic pm and gevolution::newtonian pm

that perform the actual PM computations, i.e. construct the sources, either den-
sity or the components of the energy-momentum tensor, compute the gravitational
potential or the metric perturbation fields and the forces that act upon the particles.

• The methods pm_init_periodic and pmforce_periodic, for initialization and ex-
ecution of the PM, respectively.

In order to keep the Hamiltonian character of the equations of motion in GrGadget,
we have to describe the state of each particle through its position and momentum, not
velocity. Following a leap-frog scheme, the momentum should be updated with a kick
operation using the full relativistic Eqs. (2.82) and (2.83). However, velocities in GrGad-
get are to be interpreted as momenta (per unit mass) of non-relativistic particles in the
Newtonian limit. Then we redefine Gadget-4’s kick and drift operators assuming non-
relativistic matter, p � mca, and further neglecting the very small contribution coming
from χ:

dxi

dτ
=
pi

ma
(1 + 3Φ) + cBi , (4.6)

dpi
dτ

=− cpnBn|i − Φ,imc
2a . (4.7)

The right hand side of (4.7) is what we call force.
To combine the forces computed with the relativistic PM and Gadget’s Newtonian

Tree we have extended the idea of the TreePM coupling. From equation (3.45) one
obtains that the force acting on a particle in a TreePM scheme consists of two terms:

~F = Lra [~FPM
Newton] + Sra [~FTree

Newton]. (4.8)

The first term is the force computed using the PM on which an exponential cut-off filter
Lra is applied, that removes short-wavelength and leaves long-wavelength modes; the
L stands for long. The second term corresponds to the BH-Tree force on which the
complementary filter Sra is applied to leave short-wavelength modes and remove the long-
modes; the S stands for short. The symbols Sa and La formally denote the operators:

Lra [f ](~r) =
1

N

∑
~k

f̃~k exp(−k2ra
2) exp(i~k · ~r) , (4.9)

and

Sra [f ](~r) =
1

N

∑
~k

f̃~k(1− exp(−k2ra
2)) exp(i~k · ~r) . (4.10)

The grid smoothing scale ra is a simulation parameter expressed in units of the PM mesh
size L/N , its value is optimized in Gadget-4 to minimize the impact of the two different
treatments of the gravitational force.
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In order to account for the relativistic dynamics while preserving the match between
tree and PM contributions that is valid in the Newtonian case, we choose the following
strategy: GrGadget calls both newtonian pm and relativistic pm from LibGevo-
lution, the Newtonian value of the force is added to the Tree force as in a standard
Newtonian simulation, while the difference between the Newtonian and the relativistic
forces is added on top as a correction, but filtered on a different scale rb, that we call
gr-smoothing scale. Eq. (4.8) then becomes:

~F = Sra [~FTree
Newton] + Lra [~FPM

Newton] + Lrb [
~FPM

GR − ~FPM
Newton] . (4.11)

The case ra = rb would correspond to simply adding the relativistic force to the Tree:

~F = Sra [~FTree
Newton] + Lrb [

~FPM
GR ] . (4.12)

However, while the size of ra, that regulates the match between Newtonian Tree and PM
forces, is very well tested within Gadget-4, the optimal value of rb is to be found; we
will show in the next Chapter that using rb larger than ra allows us to achieve percent
accuracy at small scales.



Chapter 5

Code validation

In Chapter 4 we have discussed some changes we have introduced in the back-end of
LibGevolution’s numerical algorithms that we consider as improvements with respect
to the original Gevolution code for our purposes. The choice for a specific back-end in
scientific computing is generally justified if it favours one desired feature over another. For
example we may be more interested in obtaining a faster code at the expenses of accuracy,
or maybe the typical problem we are dealing with maybe better solved with a code that
does not perform well in other domains. While designing LibGevolution we had in mind
its incorporation in Gadget-4, hence we had chosen a back-end that could reproduce with
accuracy the results that we could obtain with Gadget-4’s original PM. The main reason
for this choice is to be able to have a common baseline in Newtonian simulations either by
running Gadget-4 original code or by running GrGadget in Newtonian mode. In this
chapter we will present some tests we have perfomed to justify and validate the changes
in LibGevolution’s back-end.

The test were based on running the different codes on a few realizations of initial
conditions, listed in table 5.1. These were generated with Gadget-4’s ngenic code at z =
19, starting from a linear power spectrum generated with CAMB1 and with cosmological
parameters consistent with Planck 2018 result (Planck Collaboration et al. 2020): Ωbh

2 =
0.0223, Ωch

2 = 0.120, H0 = 67.3 km s−1 Mpc−1, As = 2.097 × 10−9 and ns = 0.965. All
simulations are dark matter only.

Simulations were performed with the HOTCAT system of INAF with IntelR© XeonR©

Gold 5118 CPU @2.30 GHz processors with 12 cores each and 128GB of RAM, every
compute node on this machine has 4 sockets for a total of 48 cores and 512GB of RAM
per node (Taffoni et al. 2020; Bertocco et al. 2020).

1https://camb.info/

name Np (particles) N (PM grid points) L (box size)
N64 643 64 1 Gpc/h
N256 2563 256 1 Gpc/h

high res 5123 512 500 Mpc/h

Table 5.1: Cosmological simulation configurations used to validate GrGadget.
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5.1 Gevolution and Gadget-4 original codes

Gevolution computes Newtonian forces that are at some extent different from those
obtained with Gadget-4’s PM—in Chapter 4 we have listed the main differences in the
numerical methods used by the PM routines in these two N -body codes. These differences
can be noticed by running dark matter only simulations with both codes starting from the
same initial conditions and printing out the 3-dimensional PM forces acting on individual
particles.

Figure 5.1, for example shows the dispersion of the force terms with respect to the
theoretical real force in a Newtonian simulation. This was obtained by running a simula-
tion with a small number of particles, corresponding to the configuration N64 (see table
5.1). At later times, z = 8 and z = 0, we have taken snapshots of the gravitational
forces that the particles experience and we have compared those to the result of direct
summation PP. We have classified those particles into bins according to the value of the
force obtained with PP. The curves represent, for each bin, the mean difference of a single
component of the real force, calculated by direct summation and the estimated force from
a PM or TreePM method. The shaded regions indicate one standard deviation. Forces
are given in Gadget-4’s default units, which are actually accelerations, force per unit of
mass, equivalent to 10H0km/s = h km2s−2kpc−1. The green line represents the pure PM
method using the original Gevolution code, the red line was obtained from pure PM
using Gadget-4’s original code and for completeness we also show a black line obtained
with the TreePM method of Gadget-4. The new PM implementation in LibGevo-
lution produces the same results that we have obtained with Gadget-4’s original PM.

Out of those plots we can deduce that the TreePM method produces far less dispersion
and bias when estimating forces, see for instance in figure 5.1 at z = 8: the error is
approximately equal to 0.1h km2s−2kpc−1 while for z = 0 it is barely visible. We also
notice that at z = 0 there is a trend of the PM method to underestimate the Newtonian
force as its value increases. Higher magnitudes of the forces are obtained either with
higher mass desities or closer distances, by failing to resolve interaction at scales smaller
than the grid resolution the PM is sistematically underestimating the gravitational forces.
Another interesting feature out of this test is the presence of an S shape in Gevolution’s
PM force dispersion much more visible at z = 8, which is mostly due to the first-order
interpolation used to find the gradient of the potential.

In Fig. 5.2 we show the matter power spectra2 obtained from a set of larger simulations
with the configuration N256—see table 5.1. The red solid line shows the result obtained
with the original Gadget-4 code with its TreePM method, while the red dotted line
shows the results obtained by switching off the Tree so that the forces are computed
using the PM alone. The green lines show results obtained with the latest version of
Gevolution that implements higher order schemes for finite differences; the dotted line
gives results obtained with GRADIENT ORDER=1 and is identical to the result obtained
with V1.2 of Gevolution, the green solid line uses GRADIENT ORDER=2, that corresponds
to a second-order scheme. These power spectra show that the matter distribution in
Gevolution using first-order gradients loses power in what seems to be a uniform trend
for large-scale modes. This is a behaviour that is not inherent to the PM nature of
the code, since that type of numerical approximation should predict very well the linear
evolution at large scales; indeed, the higher-order scheme recovers power on large scales

2All particle power spectra were computed using PowerI4 code presented in Sefusatti et al. 2016.
Unless otherwise state, all power spectra are computed up to the Nyquist frequency of the PM.
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Figure 5.1: Difference of gravity force with respect to the true PP value, binned according
to the true force, for N64 initial conditions. The top and bottom panels correspond to
snapshots at z = 8 and z = 0 respectively. The lines represent the mean value of the force
difference in the bins and the shaded regions indicate its standard deviation. The forces
are measured in units of h km2s−2kpc−1.
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Figure 5.2: Matter power spectrum of N256 cosmological simulations. The lower panel
shows residuals with respect to Gadget-4’s original code (in red), used as baseline. The
black line shows the linear power spectrum obtained with CAMB. Red lines show results
obtained with Gadget, with the Tree part on (solid line) or switched off (dotted line).
Green lines show results obtained with Gevolution in Newtonian configuration, with
finite differences at first order (dotted line) or second order (solid line).

to sub-percent accuracy. Conversely, Gadget-4’s PM and TreePM agree very well at
wavenumbers below k ∼ 0.1 Mpc−1h.

The higher-order differentiation worsens the loss of power of Gevolution for high
values of k, that is not present in Gadget-4. This can be explained as a consequence of
the particle-to-mesh sampling and mesh-to-particle interpolation described in section 3.2.
Gadget-4’s PM corrects for these effects, resulting in a power spectrum that degrades
only at very high values of k as we approach the Nyquist frequency, while producing a
∼ 2% overcorrection at k ∼ 0.4 Mpch.

5.2 Newtonian forces

We have tested our implementation of the GrGadget code by running a standard test
in Gadget-4: we create an N -body configuration in which there is a single massive
particle in the entire simulation box, while other massless test particles are placed at
different distances from the first. In this setting the exact value of the force on each
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particle is known, hence one can compare the numerical results coming from the TreePM
algorithm to the analytical solution. This test explores the precision of the two methods
for computing forces at long and short distances and the way they are combined at the
intermediate scales.

The results are shown in figure 5.3, where each dot represents a test particle. The
x-axis gives the distance to the massive particle that sources the gravitational field, in
units of the PM resolution (L/N), while the y-axis gives the corresponding absolute value
of the relative difference of the true and estimated forces acting on the test particle. The
red and blue lines correspond to the mean value of force residuals, for particles binned
into distance bins; the red line denotes the statistics obtained from a simulation using
Gadget-4’s original TreePM implementation and the blue line was produced using
GrGadget, in this case with the Newtonian gravity engine. This figure shows that the
accuracy with which the TreePM code reproduces the gravitational force is at worst at
percent level on scales of a few mesh cells, corresponding to the scale where the PM and
Tree contributions are matched, and gets very accurate in the limits where either the Tree
(small scales) or the PM (large scales) dominates. These numbers are consistent with the
TreePM accuracy reported in Gadget-4’s paper (Springel et al. 2021). Gadget-4’s
and GrGadget’s Newtonian PMs show basically the same accuracy, even though their
PM implementations are different. However both codes use the same set of numerical
recipes to perform PM operations.

In Fig. 5.4 we show the matter power spectra of a set of N256 simulations (see table
5.1). In this case we are comparing the matter clustering of GrGadget, in blue (with
Newtonian forces for testing purposes), against Gadget-4, in red. In agreement with
the previous test of force differences, we find that both codes produce the same matter
power spectrum up to floating point errors. This is verified both in the case of simulations
computing forces using a pure PM and in the case of TreePM.

5.3 Relativistic Cosmology with GrGadget.

We present here results obtained by running GrGadget with relativistic pm, com-
paring them with the corresponding relativistic version of Gevolution. We expect that
the power spectrum of the matter density displays some relativistic features at the large
scales due to terms preceded by H in the field equation (2.70), while at small scales the
results should be compatible with Gadget-4’s Newtonian simulations. However, the mat-
ter power spectrum shown here is not an observable quantity, so this comparison is just
meant to give a first validation of the results.

Figure 5.5 shows the matter power spectra for a series of N256 simulations (see ta-
ble 5.1). In this case Gevolution and GrGadget are run in GR mode. The parameter
that regulates the scale of the relativistic correction (Eq. 4.11) is set to rb = 6L/N ≈
23 Mpc/h, i.e. the relativistic corrections of the PM method are smoothed at a dis-
tances below 6 grid cells. The plot shows that relativistic PM-only simulations, GrGad-
get (blue dotted line) and Gevolution (green lines) are compatible in the large scales
(k < 0.03 Mpc−1h) up to a small percent-level difference that it is likely caused by the use
of different gradient approximation order. The plot also confirms that our combination
of Tree and PM forces in the relativistic weak field limit with GrGadget (blue solid
line) reproduces the Newtonian non-linear features to sub-percent level at small scales,
that is for k > 0.1 Mpc−1h; here Gadget-4 (red solid line) is again our reference for the
non-linear clustering.

Designed for the use of Fourier methods from the start, LibGevolution provides an
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Figure 5.3: Forces due to a point source: the points are test particles located at different
distances (in units of the mesh resolution L/N) from the source and the lines represent the
RMS of the difference between real and TreePM forces in different distance bins. The
red line corresponds to Gadget-4 original TreePM while the blue line was obtained
with GrGadget in Newtonian mode. As for the the grid smoothing scale, the default
value was used: ra = 1.25L/N . For this test we have used N = 256 and L = 1 Gpc/h.

interface for the computation of the power spectrum of the fields defined within. Thus we
can also extract and analyse the power spectra of the individual components of the metric
perturbations from the relativistic simulations. Figures 5.6 and 5.7 show the power spectra
of the relativistic potentials, Φ, Bi and χ, for a high resolution configuration high res

(see table 5.1). These plots show a comparison of PM (blue lines) and TreePM (red
lines) simulations. The power spectrum of the gravitational potentials converge for both
methods in the large scales. However, below 1 Mpc/h the PM-only simulation loses power
with respect to the TreePM, the differences can reach up to 40% as we approach the
Nyquist frequency. This pattern is equally found for the scalar fields Φ and χ, as well as
for the individual components of Bi.

The bottom plot in Fig. 5.6 helps to understand the reason behind this result. Gen-
erally speaking, energy density, momentum density and their respective density currents
(the components of the Energy-Momentum tensor) are sources of the metric perturba-
tions. Even though those quantities, as fields, are found at discrete positions of space
defined by the mesh, their values are computed by sampling the energy and momentum
carried by the particle distribution, which contain information on the clustering due to
the short range interactions (through the Tree) that goes well below the mesh resolution
L/N . Therefore, TreePM simulations, having power on scales well smaller than the PM
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Figure 5.4: Matter power spectrum of four simulations starting from the same initial
conditions high res: blue lines give results for Gadget-4 original code, red lines give
results for GrGadget. In both cases dotted lines refer to runs with PM-only, solid lines
refer to runs with full TreePM.

resolution, give a better representation of the source of metric perturbation, and thus
allow to recover power at the highest frequency modes right below Nyquist. Fig. 5.6 to
the bottom highlights the particular case of T 0

0 (the matter density) as a source for Φ;
by comparing T 0

0 with k2Φ, we are verifying the Poisson equation k2Φ̃ ≈ T̃ 0
0 that is valid

for wavelengths below the Hubble horizon. This confirms that the presence of small-scale
clustering in the particle distribution propagates to the gravitational fields up to the max-
imum resolution that the PM allows. The same thing is visible in the vector modes Bi
and in χ (Figure 5.7), where we also notice a small, few-percent mismatch on large scales
on these fields that are known to give sub-percent effects on observables, so this difference,
that is likely due to some degree of mode coupling, is non considered as a problem.

In figure 5.8 we show how the matter power spectrum obtained using GrGadget is
affected by the choice of the gr-smoothing scale parameter rb. We have used an N256

box configuration to perform this test. For the values tried rb = 1.5, 3, 6 in units of
L/N ≈ 4 Mpc/h, we find that the large scales correlations do not depend on the value of
the parameter. The structures at scales below the PM resolution are resolved by the Tree
algorithm, hence for k > kNyquist there is a convergence of all simulations to a common non-
linear power spectrum tail. It is in the medium to small scales kNyquist > k > 0.2 Mpc−1h
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Figure 5.5: Matter power spectrum of simulations run with Gadget-4, Gevolution and
GrGadget (in relativistic mode) with the N256 configuration. The upper panel shows
the absolute value and the lower panel the relative difference with respect to Gadget-
4’s TreePM. The black line gives the linear matter power spectrum; red and blue lines
give Gadget-4 and GrGadget results, with fullt TreePM forces (solid lines) or with
the Tree switched off (dotted lines). Green lines give Gevolution results, dotted line
referring to first-order finite differences (GRADIENT ORDER=1) and solid line referring to
second-order calculation (GRADIENT ORDER=2).

that we notice differences in the power spectrum above the ∼ 1% (dashed grey line).
For small values of rb (∼ 1.5L/N), we obtain discrepancies in the power spectrum at
k ∼ 0.5 Mpc−1h that can be as large as 5% and indicate the limitations of our force
summation scheme, Eq. (4.11). A value of rb = 3L/N or possibly higher is needed to
obtain a good compatibility of GrGadget and Gadget-4 for all modes greater than
0.1 Mpc−1h, where relativistic features in the matter clustering is negligible.

The last test we present here regards the convergence of the numerical results for
increasing resolution. Figure 5.9 shows the matter power spectrum obtained from running
Gadget-4’s TreePM (red lines), GrGadget with PM-only (blue dotted lines) and
GrGadget with TreePM (blue continuous line). These various code configurations
were run with different combinations of the number of grid points per dimension N = 256,
N = 512 and box length L = 250, 500, 1000, 2000 Mpc/h; the number of particles was
set Np = N3. In all cases we have set the PM smoothing scale to ra = 1.5L/N and the
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Figure 5.6: In the upper plot: power spectrum of the metric perturbation Φ in a high res

simulation obtained with GrGadget. In the bottom plot: power spectrum of k2Φ and
T 0

0. For modes well below the Hubble horizon and small perturbations it should be
verified that k2Φ̃ ≈ T̃ 0

0.



62 CHAPTER 5. CODE VALIDATION

10 2 10 1 100

10 29

10 27

10 25

10 23

10 21

10 19

P k

B0 TreePM
B0 PM

10 2 10 1 100

k/(h Mpc 1)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(P
k

P r
ef

)/P
re

f

10 39

10 37

10 35

10 33

10 31

10 29

10 27

P k

 TreePM
 PM

10 2 10 1 100

k/(h Mpc 1)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(P
k

P r
ef

)/P
re

f

Figure 5.7: In the upper plot: power spectrum of the metric perturbation Bi in a high res

simulation obtained with GrGadget, for one component. In the bottom plot: power
spectrum of χ.
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Figure 5.8: Power spectrum of matter density for Gadget-4 and GrGadget, on a N256

configuration. The upper panel shows the absolute value and the lower panel the rela-
tive difference with respect to Gadget-4’s TreePM. Different shades of blue indicate
different values of the gr-smoothing scale parameter rb = 1.5, 3, 6 in units of L/N . The
PM smoothing scale is fixed to ra = 1.5L/N . The power spectra in this plot are com-
puted beyond the Nyquist frequency to show the convergence of the matter distribution
correlations for distances below the grid resolution, the Tree regime.

gr-smoothing scale to rb = 3L/N . It can be observed with the finest resolution, in the
top plots, that there is a matching between General Relativity and Newtonian dynamics
in the small scales. Then as the mesh size becomes coarser, in the middle plots, some
discrepancies in the power spectrum start to appear which become more evident for even
coarser meshes, in the bottom plots.

We argue that this mismatch is not caused by rb = 3L/N moving towards larger
scales as L/N increases, forcing the Newtonian limit on the motion equations (2.82) and
(2.83) at scales where the Hubble horizon cannot be neglected. Because we saw already in
Fig. 5.8 that the contrary effect occurs; i.e. the match between Newtonian simulation and
the Relativistic one becomes better in the small scale regime when rb is increased—at least
up to the values that we tested that did not exceed 23 Mpc/h. On one hand in Fig. 5.8
we have shown that a value of rb = 6L/N ≈ 23 Mpc/h (for N = 256 and L = 1 Gpc/h)
was a good choice to obtain an under percent matching of the TreePM at all scales,
on the other hand we see in Fig. 5.9 that rb = 3L/N ≈ 12 Mpc/h for L/N ≈ 4 Mpc/h
produces an almost 2% deviation in the TreePM power spectra approaching kNyquist

and for L/N ≤ 2 Mpc/h leading to rb ≤ 6 Mpc/h the deviations are again below the
1%. Therefore it seems that for a fixed resolution L/N higher values of rb relative to
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L/N improve the TreePM agreement in our summation scheme (4.8). Also the finer the
resolution of the mesh the better this agreement and bigger values of rb/(L/N) are not
needed.

5.4 Performance

GrGadget inherits from Gadget-4 and Gevolution its parallel execution patterns.
However, the work we have done integrating Gevolution’s PM into Gadget-4 could
have effects degrading the overall performance of GrGadget if it is not done properly.
This could result in extremely large execution times even as the number working processors
is increased. In order to run the code in production we first need to understand if the
code scales, and it would be also interesting to know how much overhead we pay for using
a relativistic PM instead of the Newtonian. This section shows the results of some timing
and scalability tests we have subjected GrGadget to.

In figure 5.10 we show the result of a comprehensive measuremt of execution times
for GrGadget’s relativistic PM with respect to the total execution of the simulation,
in different problem configurations and by changing the number of MPI processes. In
general, we learn that the PM in GrGadget takes around 15% fraction of the total
execution time in the worst case. This is consistent with the knowledge that PM methods
are in practice far less computationally expensive than its BH-Tree counterpart.

The worst performance of the PM is obtained for the denser grids corresponding to
L = 250 Mpc/h with N = 512 and L = 500 Mpc/h with N = 512. This is expected as
the execution time of the PM code on an indivual MPI process depends on the number
of particles stored in local memory—the number of CIC projections and interpolations is
what actually depends on how many local particles there are, while the field computations,
that consist in FFTs and solving the partial differential equations for every mesh point,
are not affected. Total execution time of the parallel PM is then the time it takes for
the slowest process to finish. Hence, if there is an uneven distribution of particles among
MPI processes, some of them will finish the PM execution earlier and others will have
a delay because they perform more computations. In denser simulations there will be a
better resolution of the non-linear clustering which results in regions of the simulation box
containing more particles than others, at the same time the domain decomposition of the
PM does not take that clustering into consideration, instead it’s fixed by the geometry
of the box (see Fig. 4.1), and thus there will be an uneven distribution of computational
work among the MPI processes that results in the loss of performance of the PM with
respect to the rest of the code.

From Fig. 5.10 we observe there is not a strong correlation of the relative execution
time of the PM with the number of MPI processes running the code. That is, the PM
scales with the increase of computational resources approximately the same way the rest
of the code does.

In order to evaluate the overhead of the GR PM with respect to the Newtonian one, we
show in figure 5.11 a series of time measurements of the PM relative to the total execution
time for different simulation configurations. Again, we can appreciate the increase of
relative runtime of both Newtonian (in red) and GR (in blue) PMs when the resolution of
the simulation is increased (lower values of L/N); as we discussed previously this behaviour
is expected. The main observation, however, is that the computational cost of running a
GR PM is 10 times higher than the Newtonian original PM of Gadget-4. This is due
to the fact that: first, the code has not yet been thoroughly optimized and secondly, in
the GR PM there are more fields to take into account that increase the number of FFTs



5.4. PERFORMANCE 65

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(P
(k

)
P(

k)
re

f)/
P(

k)
re

f

N=256
L/N = 1 M

pc/h
L/N = 1 M

pc/h
L/N = 1 M

pc/h
L/N = 1 M

pc/h
L/N = 1 M

pc/h
L/N = 1 M

pc/h

N=512

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(P
(k

)
P(

k)
re

f)/
P(

k)
re

f

L/N = 2 M
pc/h

L/N = 2 M
pc/h

L/N = 2 M
pc/h

L/N = 2 M
pc/h

L/N = 2 M
pc/h

L/N = 2 M
pc/h

Gadget4 TreePM
GrGadget PM
GrGadget TreePM

10 2 10 1 100

k/(Mpc 1h)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(P
(k

)
P(

k)
re

f)/
P(

k)
re

f

10 2 10 1 100

k/(Mpc 1h)

L/N = 4 M
pc/h

L/N = 4 M
pc/h

L/N = 4 M
pc/h

L/N = 4 M
pc/h

L/N = 4 M
pc/h

L/N = 4 M
pc/h

Figure 5.9: Matter power spectrum from cosmological simulations at z = 0 using GrGad-
get (the blue lines) and compared to Gadget-4 (the red line) at z = 0. The dotted line
is obtained with a simulation in which only the PM is used to compute forces. The plots
show the relative difference with respect to the power spectrum obtained with Gadget-4.
The left column corresponds to simulations with N = 256 grid points per dimension while
for the right column N = 512. The boxsize changes along the ranks so that for the top
plots the resolution is the highest L/N ≈ 1 Mpc/h, in the middle L/N ≈ 2 Mpc/h and the
bottom plots correspond to L/N ≈ 4 Mpc/h. In all cases ra = 1.5L/N and rb = 3L/N .
The grey dashed line indicate a 1% error.
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Figure 5.10: Fraction of total runtime spent in PM computations in GrGadget for
several combinations of the mesh size N = 128, 256 and 512; boxlength L = 250, 500,
1000 and 2000 Mpc/h; and number of MPI processes NMPI = 24, 48, 96 and 192. The
number of particles is determined as Np = N3.

and linear operations to perform—in the case of the Newtonian PM there is only one
gravitational potential field, while in the GR PM there are three scalars and one vector
potentials adding up to six components in total.

Strong scalability

To take profit of parallel execution, codes need to scale as the number of computational
resources increase—that is the number of processors. For example, it wouldn’t make sense
to run the code in a bigger machine if it takes the same amount of time or even less to
run it in a smaller one. The scalability of a code depends on many factors: the nature
of the problem (if it can be paralellized), the actual implementation (e.g. the domain
decomposition) and the coordination overhead of the participating processes. Ideally, for
a perfect parallel application the execution time TP,M depends on the number of processors
P and the linear size of the problem M

TP,M = α
M

P
, (5.1)

where α is a proportionality constant.

The strong scalability is a measure of how well the code follows the ideal scaling
behaviour (5.1). It is obtained by fixing the problem size and increasing the number of
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Figure 5.11: Fraction of total runtime spent in PM computations in GrGadget (with
the blue lines) and Gadget-4 (with the red lines) for two combinations of the mesh size
N = 256 (dashed lines) and 512 (solid lines). The boxlength varies between L = 250, 500,
1000 and 2000 Mpc/h. The number of MPI processes for N = 256 and 512 are NMPI = 48
and 192 respectively. The number of particles is determined as Np = N3.

MPI processes P , then the speedup s is computed as a function of P

sP ≡ TP0,M/TP,M , (5.2)

where P0 is a predefined number of processors chosen as a pivot, usually one has P0 = 1.
In the ideal case, if eq. 5.1 holds then

sP = P/P0. (5.3)

Affecting the speedup there are at least three competing factors: (i) the reduced time of
computation because the work load has been distributed among processes, (ii) if the work
load is not distributed evenly the speedup deviates from the ideal trend, and (iii) there is
also the overhead of inter-processes communication.

In figure 5.12 we show the result of strong scaling tests performed to the GrGadget,
for different simulation configurations: N = 128, 256 and 512, while L = 250, 500, 1000
and 2000 Mpc/h, the number of particles is always Np = N3. In this test, the problem
size is fixed and the number of processors is changed from P = 24, 48, 96 until 192; our
pivot is P0 = 24 for the smaller problems with N = 128 and 256, while for N = 512 the
pivot is P0 = 96 because that simulation size, due to its memory requirements, does not
fit into 1 or 2 computing nodes, we needed at least 3 nodes of HOTCAT cluster. The top
plots correspond to the strong scalability of the GrGadget total runtime and its GR
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Figure 5.12: Strong scalability test for GrGadget’s total time (top left), PM (top right)
and BH-Tree (bottom plot). The problem size is fixed for several combinations of N =
128 and 256, with L = 250, 500, 1000 and 2000 Mpc/h and the number of processors is
increased from P = 24, 48, 96 until 192. For N = 512 the number of processors changes
starting from P = 96 until 192.
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Figure 5.13: Weak scalability test for GrGadget’s total time (top left), PM (top right)
and BH-Tree (bottom plot). The problem size (particles, mesh points and volume) and
processors is multiplied by a factor of ×8, seeking to keep the work load per processor
constant. The number of particles is always Np = N3.

PM, from left to right respectively. In the bottom plot we show the strong scalability of
the BH-Tree. In general we see that in all instances there is some deviation from the
ideal trend, which is expected, but overall the code scales; i.e. it gains speedup with the
increase of processors.

Weak scalability

Weak scalability is another way to measure the parallelization of the code, or how well
eq. 5.1 holds. It is obtained by increasing the linear problem size M and the number of
processors P proportionally. Ideally the work load M/P per process remains the same
and one expects that the execution time TP,M remains constant.
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In figure 5.13 we show the results of the weak scalability test on GrGadget, for
different problem configurations. Just like in the case of the strong scalability, we can
notice that the BH-Tree scales better than the PM part of the code, but since the first
takes much of the runtime it follows that the entire code scales reasonably well.
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Conclusions

Cosmological N -body simulations where GR is implemented from first principles are
needed as we enter the era of precision cosmology. In order to profit from the data that
the upcoming galaxy surveys will provide with Euclid1, Rubin-LSST2, DESI3, Roman4,
SKAO5 and Spherex6 instruments, we need to consider the relativistic effects arising from
the geodesic trajectory of the light coming from the distant galaxies until it reaches our
telescopes, like weak lensing effects that change the position of the sources in the line
of sight, change its shape and magnification, redshift space distortions due to Doppler,
Sachs-Wolfe and integrated Sachs-Wolfe effects (Yoo, Fitzpatrick, and Zaldarriaga 2009).
These small effects could be the source of systematic errors if not taken into account, and
if measured properly they could provide a testing tool for GR in the large scales. Native
GR simulation codes are able to address those effects on the lightcone, naturally including
correction terms from the contributions of all metric degrees of freedom like the vector
potential that produces frame dragging. They can also be used to investigate not well
known phenomena like the effect of radiation in matter clustering, and the role of the
higher-order relativistic potentials like frame dragging in gravitational weak lensing and
the formation of structures.

In this context we have constructed a relativistic N -body TreePM code called Gr-
Gadget (Quintana-Miranda, Monaco, and Tornatore 2023), based on Gadget-4 in which
short-range gravitational interactions are computed with the help of the BH-Tree imple-
mented in Gadget-4, while the long-range contributions to the force are computed using
a relativistic PM library LibGevolution, that we have developed based on the existing
Gevolution code. The code works on the assumption that for the purpose of cosmology,
dark matter can be treated non-relativistically and then the equations of motion of tracer
particles tend to the Newtonian limit at scales well below the Hubble horizon. In our
setup we use a weak field approximation of GR, following the numerical approach already
well established by Gevolution, where the perturbations of the space-time metric with
respect to FLRW background are encoded as fields and simulated by the PM. The simu-
lation particles move according to their geodesic trajectories established by the metric of
space-time.

1sci.esa.int/web/euclid
2www.lsst.org
3www.desi.lbl.gov
4roman.gsfc.nasa.gov
5www.skao.int
6spherex.caltech.edu

71

sci.esa.int/web/euclid
www.lsst.org
www.desi.lbl.gov
roman.gsfc.nasa.gov
www.skao.int
spherex.caltech.edu


72 CHAPTER 6. CONCLUSIONS

The TreePM in GrGadget is able to resolve the clustering represented by the sim-
ulation particles down to scales orders of magnitude smaller than the mesh size. This
means that the energy-momentum tensor, that sources the equations of the fields that
represent the perturbations of the metric, is computed from a fully non-linear distribution
of particles and as a consequence the predictive power of GrGadget gives an improve-
ment for mesh quantities with respect to the pure PM implementation of Gevolution.
We have checked this claim by testing the power spectra of the potential fields in the weak
gravitational approximation, that show an increase in amplitude for short-wave modes in
GrGadget with respect to pure PM simulations; see figures 5.6 and 5.7. This may be
very useful, e.g. when assessing the possibility of detecting the frame-dragging effect of
collective rotatory motion of a matter distribution—characterized by the vorticity of the
velocity field or more precisely by the amplitude of the divergenceless component of the
∆T 0

i part of the energy-momentum tensor containing the information of the local total
momentum carried by matter, see eq. (2.73).

Through the testing phase of GrGadget we have validated that the code performs
simulations that on the Mpc scales and below, produce the same non-linear clustering that
we obtain from a Newtonian code like Gadget-4, while in the Gpc scales as we approach
the Hubble horizon the relativistic features in the matter power spectrum start to become
evident and are in agreement with the results obtained from Gevolution simulations.

By studying the convergence of the two-point correlation function of matter in Gr-
Gadget for varying mesh resolutions, we find that the relativistic PM becomes numeri-
cally unreliable when it comes to resolving forces for modes one order of magnitude below
the Nyquist frequency for a mesh size of L/N ≈ 4 Mpc/h or above. In finer meshes,
L/N < 2 Mpc/h, we obtain a smoother transition from the PM and Tree force regimes.
Another factor that plays in, is the gr-smoothing parameter rb that we introduced to tune
the scale in which we wish to transition from GR to predominantly Newtonian forces. We
have tested that it can be reduced down to rb ≈ 3L/N , enlarging the GR regime without
compromising the integrity of the particle’s geodesics with the numerical noise coming
from the relativistic PM at the distances where the discretization of space approximation
starts to fall apart.

Outlook

GrGadget’s and its supporting library LibGevolution’s source codes are available in
the public domain7. However, we state here as a disclaimer, that we are still working to
implement all the API guarantees described in section 4.3. We aim to implement also a
set of routines to obtain particle and fields information on the lightcone from which we
can actually reproduce the observable quantities of astronomy.

We are planning an upcoming production simulation of GrGadget, for which we
have been granted 30’000 CPU-hours with ISCRA-C on the supercomputer Galileo100 at
CINECA. With these resources we plan to run a simulation with a grid size N = 2048 in a
comoving box of L = 2 Gpc/h, with Np = 20483 particles. For a simulation of this size we
have a mass resolution of m0 ≈ 8 × 1010M�/h, and we can obtain lightcone observables
up to z ≈ 1.8. The optimal capabilities of GrGadget to simulate the formation of
non-linear structures can be exploited, so that we can identify DM halos from the particle
snapshots to study their mass functions as a function of redshift and study the effects that
higher-order relativistic potentials can have on them. The same DM halos can be used
either as biased tracers of galaxies or we can populate them with simulated galaxies using

7https://github.com/grgadget

https://github.com/grgadget
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Halo Occupation Distribution model (Berlind et al. 2003), to obtain a mock catalog from
which we can extract the two-point correlation function and cross-correlation with the
weak lensing convergence; both of which are observables in galaxy surveys. The effects of
GR will be naturally incorporated into this analysis as we will perform ray tracing back in
time from the observer until the source correcting for the photon’s deviation angle and for
the variation in redshift due to the perturbations of the metric along its path. It will be
interesting to compare the result from a simulation like this in GrGadget with similar
studies done with Gevolution; for example, the two point statistics of halo number
counts from relativistic simulations (Lepori et al. 2022).

With our code we will be able to study the vector modes of the metric perturbations.
It has been shown that the acceleration produced by vector modes is at its peak 10−3 with
respect to the standard gravitational acceleration (Barrera-Hinojosa et al. 2020) and the
effects on weak lensing have been are so far considered negligible (Thomas, Bruni, and
Wands 2015). However, recent studies have concluded that their signal present in Redshit-
Space Distortions should not be negligible in the upcoming surveys, so that not accounting
for them would lead to systematic errors in theoretical predictions (Bonvin et al. 2018).
The theoretical models for vector modes are challenged by the fact that vorticity becomes
stronger in the non-linear scales where the dark matter fluid departs significantly from
the perfect fluid approximation because of orbit crossing. The extraction of the signal of
the vector modes would require the use of N -body simulations with a high resolution on
those non-linear scales.

Furthermore, motivated by the fact that GrGadget is a development branch of the
widely used Gadget-4 code, and because the PM sector is called only by the computation
of the gravity force, our code can be easily extended to simulations of galaxies or galaxy
clusters by switching on the hydrodynamics, star formation and feedback sectors.

Another possible application of GrGadget can be found in the sector of modified
gravity, for theories whose formulation are worked out in a general relativistic context. The
alternative equations can be naturally integrated in the PM code and short-range/small-
velocity limits can be theoretically derived and introduced in the BH-Tree for a fully
consistent treatment. This line of development would be precious in the formulation
of tests of gravity, because relativistic effects may hide smoking-gun features of specific
classes of modified gravity theories. An interesting possibility is to find the specific signal
enhancement of vector modes in alternative models of gravity such as Hu-Sawicki’s f(R);
for example it is known that the amplitude of the vector potential could be 50% larger in
f(R) simulations with respect to ΛCDM (Thomas et al. 2015).





Appendix A

Perturbations of the Ricci tensor

In this appendix we show the symbolic computation of the connection and Ricci tensor for
a perturbed FLRW metric. The results obtained here were used in Chapter 2 to obtain
the field equations (2.69), (2.71), (2.74) and (2.75).

Connection

We compute the Christoffel symbols (affine connection components) for the physical metric
g up to order ε3/2 in the perturbations. We write the Christoffel symbols as

Γµνα =
gµσ

2
(−gνα,σ + gνσ,α + gασ,ν)

=
ḡµσ + ∆gµσ

2
(−ḡνα,σ + ḡνσ,α + ḡασ,ν −∆gνα,σ + ∆gνσ,α + ∆gασ,ν)

= Γ̄µνα + ∆gµσ ḡσλΓ̄λνα +
ḡµσ + ∆gµσ

2
(−∆gνα,σ + ∆gνσ,α + ∆gασ,ν)

hence

∆Γµνα = ∆gµσ ḡσλΓ̄λνα +
ḡµσ + ∆gµσ

2
(−∆gνα,σ + ∆gνσ,α + ∆gασ,ν) (A.1)

Then the perturbations of the Christoffel symbols are

∆Γ0
00 = Ψ,0 − cBsΨ,s +O(ε2)

∆Γi00 = c2Ψ,
i − cBi,0 − cBiH+ c2Ψ,l(2Φγli − hli) +O(ε2)

∆Γ0
0i = Ψ,i −

Bi
c
H− 2ΨΨ,i +O(ε2)

∆Γi0j = −Φ,0δ
i
j +

cγil

2
(Bj|l −Bl|j) +

hij,0
2

+ cBiΨ,j +O(ε2)

∆Γ0
ij = −2ΨHγij

c2
+

1

2c
(Bi|j +Bj|i) +

1

2c2
(hij − 2Φγij),0 +

H
c2

(hij − 2Φγij)

− Bl

c
Φ,lγij +

1

c
(BiΦ,j +BjΦ,i) +O(ε2)

∆Γkij = Φ,
kγij − Φ,iδ

k
j − Φ,jδ

k
i +HB

k

c
γij +

γsk

2
(−hij|s + his|j + hjs|i)

+ (hks − 2Φγks)(−Φ,sγij + Φ,iγsj + Φ,jγis) +O(ε2)

(A.2)
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Ricci tensor

This section is devoted to the computation of the components of the Ricci tensor starting
from the Christoffel symbols computed previously. The computations are quite long hence
we are going to follow this strategy: as a general rule do not expand unless no further
simplifications can be performed, write down partial results, and thoroughly use the spatial
covariant derivative instead of partial derivatives. By writing Γµνα = Γ̄µνα + ∆Γµνα we
can expand (2.21).

Rαβ = R̄αβ + ∆Γναβ;ν −∆Γναν;β + ∆Γνλν∆Γλαβ −∆Γνλβ∆Γλαν (A.3)

where ∆Γµαβ;ν denotes covariant derivative of ∆Γµαβ with the background connection Γ̄.
Notice that ∆Γ, being the difference of two connections it is in fact a tensor. The first
index of Rαβ is raised using the physical metric gµν = ḡµν + ∆gµν :

Rαβ = R̄αβ + ḡασ∆Rσβ + ∆gασR̄σβ + ∆gασ∆Rσβ (A.4)

Component R00

Using equation (A.3)

∆R00 = ∆Γν00;ν −∆Γν0ν;0 + ∆Γνλν∆Γλ00 −∆Γνλ0∆Γλ0ν

= ∆Γn00|n −∆Γn0n,0 + 3H∆Γ0
00 −H∆Γn0n

+ ∆Γn0n∆Γ0
00 + ∆Γnln∆Γl00 −∆Γn00∆Γ0

0n −∆Γn0l∆Γl0n

= ∆Γn00|n −∆Γn0n,0 + 3H∆Γ0
00 −H∆Γn0n + ∆Γnln∆Γl00 −∆Γn00∆Γ0

0n +O(ε2)

(A.5)

∆R00 = c2Ψ|n
n + 3HΨ,0 + 3Φ,00 + 3HΦ,0 − c2Ψ,l(Φ,

l + Ψ,
l) + 2c2ΦΨ|l

l − c2Ψ|nl h
nl +O(ε2)

(A.6)

Terms like Bn|n and hnn have been eliminated due to the constraints on B and h, see eq.
(2.56).

Component R0i

Using equation (A.3)

∆R0i = ∆Γν0i;ν −∆Γν0ν;i + ∆Γνλν∆Γλ0i −∆Γνλi∆Γλ0ν

= ∆Γ0
0i,0 + ∆Γn0i|n −∆Γ0

00|i −∆Γn0n|i + 3H∆Γ0
i0 −H

γin
c2

∆Γn00

+ ∆Γn0n∆Γ0
0i + ∆Γnln∆Γl0i −∆Γ0

li∆Γl00 −∆Γnli∆Γl0n

= ∆Γ0
0i,0 + ∆Γn0i|n −∆Γ0

00|i −∆Γn0n|i + 3H∆Γ0
i0 −H

γin
c2

∆Γn00 +O(ε2)

(A.7)

∆R0i = 2Φ,i0 + 2HΨ,i −
2

c
H2Bi −

1

c
H,0Bi +

c

2
(Bi|n

n −Bn|in) + cBnΨ|ni +O(ε2)

(A.8)
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Component Ri0

Using equation (A.3)

∆Ri0 = ∆Γνi0;ν −∆Γνiν;0 + ∆Γνλν∆Γλi0 −∆Γνλ0∆Γλiν

= ∆Γni0|n −∆Γnin,0 + 3H∆Γ0
i0 −H

γni
c2

∆Γn00

+ ∆Γn0n∆Γ0
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= ∆Γni0|n −∆Γnin,0 + 3H∆Γ0
i0 −H

γni
c2

∆Γn00 +O(ε2)

(A.9)

∆Ri0 = ∆R0i

Component Rij

Using equation (A.3)

∆Rij = ∆Γνij;ν −∆Γνiν;j + ∆Γνλν∆Γλij −∆Γνλj∆Γλiν
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+ 2H∆Γ0
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(A.10)
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H,0
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2
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− hnmΦ|nmγij + hnjΦ|in + hniΦ|jn +O(ε2)

(A.11)

Component R0
0

We use equation (A.4) to raise the first index of the Ricci tensor:

∆R0
0 = ḡ0σ∆Rσ0 + ∆g0σR̄σ0 + ∆g0σ∆Rσ0
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But we don’t substitute the results for the Ricci tensor with down indexes, it is less
cumbersome first to arrive to an expression containing ∆Γ terms and then use (A.2)

(ac)2∆R0
0 = −6ΨH,0 + (2Ψ− 1)∆Γn00|n + ∆Γn0n,0 − 3H∆Γ0

00 +H∆Γn0n

−∆Γnln∆Γl00 + ∆Γn00∆Γ0
0n

(A.12)

a2∆R0
0 = −Ψ|nmh

nm −Ψ|n
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n + Φ,
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− 3
1

c
Φ,00 − 3

H
c

Φ,0 +O(ε2)

(A.13)

Component R0
i

∆R0
i = ḡ0σ∆Rσi + ∆g0σR̄σi + ∆g0σ∆Rσi
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(A.15)

Component Ri
0

∆Ri0 = ḡiσ∆Rσ0 + ∆giσR̄σ0 + ∆giσ∆Rσ0
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(A.17)

Component Ri
j

∆Rij = ḡiσ∆Rσj + ∆giσR̄σj + ∆giσ∆Rσj
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s0|j) +O(ε2)

(A.18)
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Ricci scalar R

R = R0
0 +Rii (A.20)

hence

a2∆R = a2∆R0
0 + a2∆Rii

= −2Ψ|n
n − 6

H
c2

Ψ,0 − 12
H,0
c2

Ψ− 12
H2
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Ψ + 4Φ|n

n − 6
Φ,00
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− 18

H
c2

Φ,0

+ 4ΨΨ|n
n + 2Ψ|nΨ|

n − 4ΦΨ|n
n + 2Ψ|nΦ|

n + 16ΦΦ|n
n + 6Φ|nΦ|

n + 2ΦR̄(3)

− hlnR̄(3)n
l − 2hnlΦ|nl +O(ε2)

(A.21)





Appendix B

Nyquist-Shannon Theorem

Here we present a proof to the Theorem 1.

Proof. Let f ∈ H2([0, L]) we can write:

f =
∑
k∈Z
〈uk, f〉uk. (B.1)

Now let’s define f̃l, for 0 ≤ l < N , as the following sum:

f̃l =
1

N

N−1∑
n=0

ω−lnf(xn), (B.2)

then using the expansion (B.1) we obtain:

f̃l =
1

N

∑
k∈Z

n−1∑
n=0

ω−lnuk(xn)〈uk, f〉 =
1

N

∑
k∈Z

n−1∑
n=0

(ωk−l)n〈uk, f〉, (B.3)

where we have used the fact that uk(xn) = ωkn. Since ω is an N -root of unity we have
that:

1

N

N−1∑
n=0

(ωk−l)n =

{
1, k − l = zN, z ∈ Z
0, otherwise

(B.4)

and equation (B.3) becomes:

f̃l =
∑
z∈Z
〈ul+zN , f〉. (B.5)

Each one of the terms 〈ul+zN , f〉 is an alias of f̃l, and the fact that there can be multiple
non-zero aliases, leads to the aliasing phenomenon. If all non-zero modes of f lie in the
interval [−kN , kN ] with N − kN > kN , ie. N > 2kN , then for every l ∈ [0, N) there is at
most one non-zero alias.

f̃l =


〈ul, f〉, 0 ≤ l ≤ kN
〈ul−N , f〉, N − kN ≤ l < N

0, kN < l < N − kN
(B.6)
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Conversely for every k ∈ [−kN , kN ] we are able to find a finite sampling sum that computes
it:

〈uk, f〉 =

{
f̃k, 0 ≤ k ≤ kN
f̃k+N , −kN ≤ k < 0

(B.7)

Due to the fact that ωN = 1, equation (3.24) and the statement of the Theorem follows
from (B.7).

Exact interpolating kernel

In section 3.2 we have deduced an expression for W
(low)
N in real space , eq. (3.32), and we

have also obtained the expression for Whittaker-Shannon interpolation formula that uses

W
(low)
N as a perfectly interpolating filter following the conditions of the Nyquist-Shannon

theorem.
Notice for N odd we can choose W

(low)
N with cut-off frequency that satisfies 2kN + 1 =

N . Then W
(low)
N takes a form that we call Sinc filter because of its resemblance and

similar role to the Sinc function:

W (Sinc)(x) = W
(low)
N

∣∣∣
Nodd

(x) =
1

L

sin(πNL x)

sin( πLx)
. (B.8)

Interesting is the fact that W (Sinc) for any N will satisfy equation (3.40) for any x = kL/N ,
ie.

φk =
L

N

N−1∑
n=0

φnW
(Sinc)

(
(k − n)

N
L

)
, (B.9)

simply because

W (Sinc)(kL/N) =
1

L

sin(πk)

sin(πk/N)
. =

1

L
×
{
N, N divides k

0, otherwise
(B.10)

and that’s independent of the values of φ(x) at the grid points. That tempt us to use

W (Sinc) instead of W
(low)
N as a reference exact interpolator.

Trouble comes when N is even. In that case kN = (N − 2)/2 according to Theorem 1.
A signal with mode kN +1 cannot be completely reconstructed from the N samples, hence

W
(low)
N is has a frequency cut-off at kN , having 2kN + 1 modes, one mode short from N .

That has consequences, the first is that the identity (B.9) is not satisfied by W
(low)
N unless

φ = W
(low)
N ∗φ. On the other hand, W (Sinc) does satisfy (B.9) but it can be shown that it

does not interpolate a function φ with modes below kN . The reason lies in the fact that
the modes of W (Sinc) below kN are not uniform, see figure B.1.

In summary:

• W (Sinc) is an exact interpolator of grid points but not necessarily so for functions
with kN modes,

• W (low)
N is an exact interpolator of functions with kN modes but it might fail to

exactly interpolate the grid points unless they correspond to values of function with
kN modes,

• when N is odd, hardly the most common case because powers of 2 are usually chosen,

both functions W (Sinc) and W
(low)
N are identical.
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Figure B.1: W (Sinc) power spectrum, discrete FT and true FT. For N odd, we see the

same features of W
(low)
N that makes W (Sinc) an exact interpolator, while for N even, the

modes below kN are not flat and that makes W (Sinc) fail to be an exact interpolator.
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Figure B.2: Trying to interpolate a signal with W
(low)
N and W (Sinc). When N is odd,

W
(low)
N and W (Sinc) are they interpolate the exactly. When N is even, W (Sinc) deviates a

little bit from W
(low)
N and fails to interpolate exactly.
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