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In this paper we consider some rational approximations to the fractional powers of self-adjoint positive
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1. Introduction

The numerical solution of problems involving fractional diffusion can lead to the computation of
fractional powers of unbounded operators. For instance, denoting by Δ the standard Laplace operator
and taking α ∈ (0, 1), the fractional Laplace equation

(−Δ)αu = f (1.1)

on a bounded Lipschitz domain subject to Dirichlet boundary conditions can be solved by computing

+∞∑
j=1

μ−α
j 〈 f , ϕj〉ϕj, (1.2)

where μj and ϕj are the eigenvalues and the eigenfunctions of −Δ, respectively, and 〈·, ·〉 denotes

the L2-inner product. In practice, in this situation the fractional derivative can be identified by the
fractional power. Keeping in mind this kind of application, in this work we are interested in the numerical
approximation of L −α , α ∈ (0, 1). Here L is a self-adjoint positive operator acting in a Hilbert space
H in which the eigenfunctions of L form an orthonormal basis of H , so that L −α can be written
through the spectral decomposition of L as in (1.2).

In recent years, this problem has been studied by many authors. Due to the properties of the function
λ−α , λ ∈ [�, +∞), � > 0, the most effective approaches are those based on a rational approximation
of this function. In the continuous setting of unbounded operators, methods based on the best uniform
rational approximation (BURA) of functions closely related to λ−α have been considered, for example,
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FAST AND ACCURATE APPROXIMATIONS 1599

in Harizanov et al. (2018), Harizanov et al. (2019, 2020) and Harizanov & Margenov (2018) by using
a modified version of the Remez algorithm. Another class of methods relies on quadrature rules for
the integral representation of λ−α; see Aceto & Novati (2019, 2020), Aceto et al. (2019), Bonito &
Pasciak (2015) and Vabishchevich (2018, 2020). Very recently, time-stepping methods for a parabolic
reformulation of the fractional diffusion equation (1.1) given in Vabishchevich (2015) have also been
interpreted in Hofreither (2020) as a rational approximation of λ−α .

In this paper, starting from the integral representation given in Bonito & Pasciak (2015, Eq. (4)),

L −α = 2 sin(απ)

π

∫ +∞

0
t2α−1(I + t2L )−1dt, α ∈ (0, 1), (1.3)

where I is the identity operator in H , after suitable changes of variables we consider an alternative
rational approximation based on the truncated Gauss–Laguerre rule. In order to construct the truncated
approach, we exploit the error analysis of the standard Gauss–Laguerre rule based on the theory of
analytic functions originally introduced in Barrett (1961). We are able to show that in the operator norm
the error decay is like

exp(−cm1/2),

where m is the number of inversions and c = 3.6α1/2 (cf. (6.10)). In this view, the formula seems to be
competitive with the Sinc quadrature studied in Bonito & Pasciak (2015) in which c = π(1 − α)1/2α1/2

by Remark 3.1 of the same paper. However, it appears to be slightly slower than that based on the
analysis given in and related to the BURA approach in which c = 2π(1 − α)1/2 although the approach
presented here does not suffer from the instability of the Remez algorithm.

We also present a further modification of the truncated Gauss–Laguerre rule, called the equalized
rule, that allows the number of inversions to be further reduced, to achieve the same accuracy, especially
when α � 1/2.

The paper is structured as follows. In Section 2 we present the Gauss–Laguerre approach. In
Sections 3 and 4, starting from the error analysis based on the theory of analytic functions, we present
the error estimate attainable with the Gauss–Laguerre approach for the approximation of λ−α . The
analysis is then extended in Section 5 to the case of the operator L −α . Finally, the truncated rules are
proposed in Section 6.

2. The Gauss–Laguerre approach

As already said in the introduction, we start from the integral representation given in (1.3). Setting
y = ln t we obtain

L −α = 2 sin(απ)

π

∫ +∞

−∞
e2αy(I + e2yL )−1dy, α ∈ (0, 1). (2.1)

Now we consider separately the two integrals

∫ 0

−∞
e2αy(I + e2yL )−1dy,

∫ +∞

0
e2αy(I + e2yL )−1dy
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and consider the changes of variable 2αy = −x and 2(1 − α)y = x, respectively, to obtain∫ 0

−∞
e2αy(I + e2yL )−1dy = 1

2α

∫ +∞

0
e−x(I + e−x/αL )−1dx,∫ +∞

0
e2αy(I + e2yL )−1dy = 1

2(1 − α)

∫ +∞

0
e−x(e−x/(1−α)I + L )−1dx.

Consequently, setting

I(1)(λ) :=
∫ +∞

0
e−x(1 + e−x/αλ)−1dx, (2.2)

I(2)(λ) :=
∫ +∞

0
e−x(e−x/(1−α) + λ)−1dx, (2.3)

the operator in (2.1) can be written as

L −α = sin(απ)

απ
I(1)(L ) + sin(απ)

(1 − α)π
I(2)(L ). (2.4)

It is easy to check that I(1)(L ) → I as α → 0 and I(2)(L ) → L −1 as α → 1.
By applying the n-point Gauss–Laguerre rule to both integrals with respect to the weight function

ω(x) = e−x, with weights w(n)
j and nodes ϑ

(n)
j (in ascending order), we obtain the following (2n−1, 2n)

rational approximation

L −α ≈ sin(απ)

απ
R(1)

n−1,n(L ) + sin(απ)

(1 − α)π
R(2)

n−1,n(L ) =: R2n−1,2n(L ), (2.5)

where

R(1)
n−1,n(λ) =

n∑
j=1

w(n)
j

(
1 + e−ϑ

(n)
j /α

λ

)−1

,

R(2)
n−1,n(λ) =

n∑
j=1

w(n)
j

(
e−ϑ

(n)
j /(1−α) + λ

)−1

.

Clearly, formula (2.5) implies that using n points we have to perform 2n inversions.

3. Error analysis for a general function

In order to obtain an estimate of the error for the rational approximation defined in (2.5), we consider
the approach introduced in Barrett (1961) and based on the theory of analytic functions. Assuming
that we are working with a general function f and then considering the n-point Gauss–Laguerre rule
In(f ) for

I(f ) =
∫ +∞

0
e−xf (x) dx,
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we define the remainder as En(f ) = I(f ) − In(f ). For any given R > 1, the equation

Re(
√−z) = ln R

represents a parabola in the complex plane, which we denote by ΓR, symmetric with respect to the real
axis, with vertex in − (ln R)2 and convexity oriented towards the positive real axis. By writing z = a+ib,
the above equation reads

a = (
b2 − 4 (ln R)4 ) 1

4 (ln R)2 .

The parabola degenerates to [0, +∞) as R → 1. The theory given in Barrett (1961) states that if for a
given R the function f is analytic on or within ΓR except for a pair of simple poles, z0 and its conjugate
z0, then

En(f ) ≈ −4π Re

{
re−z0

[
exp

(√−z0

)]−2
√

n̄
}

, (3.1)

where r is the residue of f (z) at z0 and

n̄ = 4n + 2. (3.2)

This result follows from the fact that En(f ) can be written as a contour integral

En(f ) = 1

2π i

∫
Γ

qn(z)

Ln(z)
f (z) dz,

where Ln(z) is the Laguerre polynomial, qn(z) is the so-called associated function defined by

qn(z) =
∫ +∞

0

e−xLn(x)

z − x
dx, z /∈ [0, +∞),

and Γ is a contour containing [0, +∞) with the additional property that no singularity of f (z) lies on or
within this contour (for background see Davis & Rabinowitz, 1984, §4.6).

Denoting by C1 and C2 two arbitrary small circles surrounding the two poles the idea is then to
define Γ = ΓR ∪ C1 ∪ C2. In order to run this contour in the counterclockwise direction, one can
artificially add three line segments as shown in Fig. 1 to connect the circles with the parabola. Then,
following the black and the red arrows, the integrals along the line segments cancel and we obtain

En(f ) = 1

2π i

{∫
ΓR

−
∫

C1

−
∫

C2

}
qn(z)

Ln(z)
f (z) dz. (3.3)

At this point, the estimate is based on the relation given in Elliott (1967, Eq. (5.4)), namely

qn(z)

Ln(z)
= 2πe−z [exp

(√−z
)]−2

√
n̄
(

1 + O
(

1

n

))
, z /∈ [0, +∞).

Since [
exp

(
Re

(√−z
))]−2

√
n̄ = R−2

√
n̄ for z ∈ ΓR, (3.4)
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1602 L. ACETO AND P. NOVATI

Fig. 1. Contour chosen for a function f analytic on or within the parabola ΓR with the exception of two simple and conjugated
poles located inside C1 and C2, respectively.

the contribution on the parabola is given by

1

2π i

∫
ΓR

qn(z)

Ln(z)
f (z) dz = R−2

√
n̄ (3.5)

× 1

i

∫
ΓR

e−z [exp
(
i Im

(√−z
))]−2

√
n̄

f (z) dz

(
1 + O

(
1

n

))
:= φ(n).

In addition, using the residue theorem we have

1

2π i

{∫
C1

+
∫

C2

}
e−z [exp

(√−z
)]−2

√
n̄

f (z) dz

= Res

(
e−z [exp

(√−z
)]−2

√
n̄

f (z), z0

)

+ Res

(
e−z [exp

(√−z
)]−2

√
n̄

f (z), z0

)

= 2 Re

(
Res

(
e−z [exp

(√−z
)]−2

√
n̄

f (z), z0

))

= 2 Re

(
Res

(
f (z), z0

)
e−z0

[
exp

(√−z0

)]−2
√

n̄
)

.
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Therefore, from (3.3), by taking into account (3.5), we obtain

En(f ) = −4π Re

(
Res

(
f (z), z0

)
e−z0

[
exp

(√−z0

)]−2
√

n̄
)(

1 + O
(

1

n

))
+ φ(n).

Obviously, this implies formula (3.1) whenever the contribution from the parabola ΓR (i.e., φ(n)) can
be considered negligible. As for the modulus of the error, observing that∣∣∣∣Re

(
Res

(
f (z), z0

)
e−z0

[
exp

(√−z0

)]−2
√

n̄
)∣∣∣∣ � ∣∣Res

(
f (z), z0

)
e−z0

∣∣ [exp
(
Re

(√−z0

))]−2
√

n̄
,

we have

|En(f )| � 4π
∣∣Res

(
f (z), z0

)
e−z0

∣∣ [exp
(
Re

(√−z0

))]−2
√

n̄
(

1 + O
(

1

n

))
+ |φ(n)|.

Since hereafter we assume that ∫
ΓR

|e−zf (z)| dz

is bounded, from (3.5) we obtain (see (3.2) and (3.4))

|φ(n)|[
exp

(
Re

(√−z0

))]−2
√

n̄
� cR−2

√
n̄[

exp
(
Re

(√−z0

))]−2
√

n̄
= O

(
exp(−n1/2)

)
and then

|En(f )| � 4π
∣∣Res

(
f (z), z0

)
e−z0

∣∣ [exp
(
Re

(√−z0

))]−2
√

n̄
(

1 + O
(

1

n

))
. (3.6)

4. Error analysis for λ−α

From (2.4) and (2.5) and defining

ε(i)
n (λ) =

∣∣∣I(i)(λ) − R(i)
n−1,n(λ)

∣∣∣ , i = 1, 2, (4.1)

we can write ∣∣λ−α − R2n−1,2n(λ)
∣∣ � sin(απ)

απ
ε(1)

n (λ) + sin(απ)

(1 − α)π
ε(2)

n (λ) . (4.2)

Hence, using the results of the previous section we can develop the error analysis by working separately
on the two integrals I(i)(λ), i = 1, 2.

4.1 First integral I(1)(λ)

The function involved in (2.2) is

f (z) = (1 + e−z/αλ)−1, (4.3)
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1604 L. ACETO AND P. NOVATI

whose poles are given by

zk = α ln λ + i(2k + 1)απ , k ∈ Z.

They are equally spaced along the line Re(z) = α ln λ, symmetric with respect to the real axis, and the
closest to the real axis are z0 = α ln λ + iαπ and z−1 = z0. It can immediately be verified that there
exists R > 1 such that the corresponding parabola Re((−z)1/2) = ln R contains only the poles z0 and z0
in its interior and that such an R satisfies

α

2

(√
(ln λ)2 + π2 − ln λ

)
< (ln R)2 <

α

2

(√
(ln λ)2 + 9π2 − ln λ

)
.

These bounds follow by imposing z0 ∈ ΓR (the left-hand one) and z1 = α ln λ + i3απ ∈ ΓR (the
right-hand one).

In order to apply (3.6), first we observe that(−z0

)1/2 = [− (α ln λ + iαπ)]1/2

=
√

α

2

(
γ − (λ) − iγ + (λ)

)
,

where

γ ± (λ) =
√√

(ln λ)2 + π2 ± ln λ. (4.4)

Then, recalling that z0/α = ln λ + iπ , we write

1 + e−z/αλ = 1 − e−(z−z0)/α = z − z0

α

+∞∑
j=0

(−1)j(z − z0)
j

αj(j + 1)!
.

In this case, the residue of the function given in (4.3) at the simple pole z0 is given by

Res
(
f (z), z0

) = lim
z→z0

z − z0

1 + e−z/αλ
= α.

Therefore, from (3.6) we have

ε(1)
n (λ) � 4παλ−α exp

(
−γ − (λ) (2αn̄)1/2

)(
1 + O

(
1

n

))
. (4.5)

4.2 Second integral I(2)(λ)

The function to consider in this case is

f (z) = (e−z/(1−α) + λ)−1,

whose poles are given by

zk = −(1 − α) ln λ + i(2k + 1)(1 − α)π , k ∈ Z.
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The only difference with respect to the integral I(1)(λ) is that the poles now have a negative real part.
Anyway, as before we can easily find a parabola containing in its interior only the poles z0 = −(1 −
α) ln λ + i(1 − α)π and its conjugate. We now have

(−z0

)1/2 =
√

1 − α

2

(
γ + (λ) + iγ − (λ)

)
,

where γ ± (λ) are defined in (4.4). As for the residue at z0 we easily find that Res
(
f (z), z0

) = (1−α)/λ.
Using (3.6) again, we have

ε(2)
n (λ) � 4π(1 − α)λ−α exp

(
−γ + (λ) (2(1 − α)n)1/2

)(
1 + O

(
1

n

))
. (4.6)

Finally, plugging in (4.2) the bounds (4.5) and (4.6) we have the following result.

Proposition 4.1 Let γ ± (λ) be defined in (4.4) and n̄ = 4n + 2. Denoting by

g(1)
n (λ) := λ−α exp(−γ − (λ) (2αn̄)1/2), (4.7)

g(2)
n (λ) := λ−α exp(−γ + (λ) (2(1 − α)n̄)1/2) (4.8)

the λ-dependent factors of ε
(1)
n (λ) and ε

(2)
n (λ), respectively, then we have

∣∣λ−α − R2n−1,2n(λ)
∣∣ � 4 sin(απ)

[
g(1)

n (λ) + g(2)
n (λ)

](
1 + O

(
1

n

))
. (4.9)

In order to verify the estimate provided in (4.9), in Fig. 2 we consider an example with λ = 10. Here
and below, nodes and weights of the Gauss–Laguerre rule have been computed using the MATLAB
function GaussLaguerre.m given in Van Damme (2020).

5. Error analysis for L −α

For simplicity, from now on we assume that σ(L ) ⊆ [1, +∞). Since L is self-adjoint and positive,
regarding the error we have∥∥L −α − R2n−1,2n(L )

∥∥ � max
λ�1

∣∣λ−α − R2n−1,2n(λ)
∣∣ , (5.1)

where ‖·‖ denotes the operator norm in H . By (4.9) we must therefore study the functions g(i)
n (λ),

i = 1, 2, for λ � 1. In particular, this means we study the functions γ ± (λ) (see (4.7) and (4.8)). By
(4.4) it is immediate to see that γ − (λ) → 0 and γ + (λ) → +∞ as λ → +∞. As a consequence, the
function g(1)

n (λ) has exactly one maximum at a certain λn > 1, whereas g(2)
n (λ) is monotone decreasing,

independently of α and n. At this point, in order to compute the right-hand side in (5.1) the first step
consists in finding the point of maximum λn.

Proposition 5.1 Let λn be the maximum of the function g(1)
n (λ). Then for n large enough,

λn = λ̃n(1 + O(n−1/3)),
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1606 L. ACETO AND P. NOVATI

Fig. 2. Absolute error and its estimate given by (4.9) for λ = 10.

where

λ̃n = exp

⎛⎝((nπ2

4α

)2/3

− π2

)1/2
⎞⎠ .

Proof. By imposing d
dλ

g(1)
n (λ) = 0, after some manipulation we arrive at the equation

√
(ln λ)2 + π2 − ln λ

(ln λ)2 + π2
= 2α

n̄
, (5.2)

whose solution is denoted by λn. Since√
(ln λ)2 + π2 − ln λ

(ln λ)2 + π2
= π2(

(ln λ)2 + π2
) (√

(ln λ)2 + π2 + ln λ
) (5.3)

� π2

2
(
(ln λ)2 + π2

)3/2 ,
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FAST AND ACCURATE APPROXIMATIONS 1607

by (5.2) we first observe that there exists a constant c independent of n such that
(
ln λn

)3 � cn, for n
large enough. Writing

ln λ = s
√

(ln λ)2 + π2,

where

s = s(λ) = 1√
1 + (

π
ln λ

)2
, (5.4)

by (5.2) and (5.3) we obtain

π2(
(ln λ)2 + π2

)3/2
(1 + s)

= 2α

n
.

As a consequence

λn = exp

⎛⎝(( nπ2

2α(1 + s(λn))

)2/3

− π2

)1/2
⎞⎠ .

Since asymptotically
(
ln λn

)2 � cn2/3, from (5.4) we have

s(λn) = 1 + O(n−2/3)

and therefore

λn = exp

⎛⎝((nπ2

4α

)2/3

− π2 + O(1)

)1/2
⎞⎠ . (5.5)

Writing ((
nπ2

4α

)2/3

− π2 + O(1)

)1/2

=
((

nπ2

4α

)2/3

− π2

)1/2

+ σn

we easily find that

σn = O(n−1/3).

Finally, we obtain the result since

λn = exp

⎛⎝((nπ2

4α)

)2/3

− π2

)1/2
⎞⎠ exp(σn).

�
This approximation is rather good, as can be observed in Fig. 3 where we plot ln λn and ln λ̃n for

n = 10, 11, . . . , 120. Here the value of λn that verifies (5.2) has been numerically computed by using a
nonlinear solver.
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1608 L. ACETO AND P. NOVATI

Fig. 3. Comparison between ln λn (solid lines) and ln λ̃n (dashed lines) for n = 10, 11, . . . , 120.

Proposition 5.2 Let g(1)
n (λ) and g(2)

n (λ) be the functions defined in (4.7) and (4.8), respectively. Then

max
λ�1

g(1)
n (λ) = g(1)

n (λn) = exp

(
−3

(
nα2π2

)1/3
)(

1 + O
(

n−1/3
))

, (5.6)

max
λ�1

g(2)
n (λ) = g(2)

n (1) = exp
(
− (8π(1 − α)n)1/2

) (
1 + O

(
n−1/2

))
. (5.7)

Proof. First of all we need to evaluate γ − (
λn

)
(2αn)1/2. Using (4.4) and (5.2) we have

(
γ − (

λn

))2 = 2α

n

((
ln λn

)2 + π2
)

.

By (5.5) we also have

(
ln λn

)2 + π2 =
(

nπ2

4α

)2/3

+ O(1) (5.8)
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and hence

γ − (
λn

) =
(( α

2n

)1/3
π4/3 + O(n−1)

)1/2

=
( α

2n

)1/6
π2/3

(
1 + O(n−2/3)

)
.

Consequently,

γ − (
λn

)
(2αn)1/2 = (2nα2π2)1/3

(
1 + O(n−2/3)

)
.

Using the result obtained in Proposition 5.1 we can write

λ−α
n = exp

⎛⎝−α

⎛⎝((nπ2

4α

)2/3

− π2

)1/2
⎞⎠⎞⎠(

1 + O
(

n−1/3
))

= exp

(
−
(

nα2π2

4

)1/3)(
1 + O

(
n−1/3

))
.

Therefore, we have

g(1)
n (λn) = exp

(
−
(

nα2π2

4

)1/3)(
1 + O

(
n−1/3

))
× exp

(
−(2nα2π2)1/3

(
1 + O(n−2/3)

))
= exp

(
−
(

nα2π2
)1/3 (

4−1/3 + 21/3
))(

1 + O
(

n−1/3
))

.

Finally, recalling that n = 4n + 2 we obtain the result.
As for the function g(2)

n (λ), the situation is much simpler. Indeed, since it is monotone decreasing,
using (4.4) and (4.8) we have

max
λ�1

g(2)
n (λ) = g(2)

n (1) = exp
(
− (2π(1 − α)n)1/2

)
= exp

(
− (8π(1 − α)n)1/2

) (
1 + O

(
n−1/2

))
.

�
Finally, we can prove the following result.
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1610 L. ACETO AND P. NOVATI

Proposition 5.3 Let R2n−1,2n(L ) be the rational approximation given in (2.5). Then, with respect to
the operator norm in H , we have for n large enough

∥∥L −α − R2n−1,2n(L )
∥∥ � 4 sin(απ) exp

(
−3(nα2π2)1/3

) (
1 + O(n−1/3)

)
. (5.9)

Proof. First of all, by comparing (5.6) with (5.7) for n large enough we can write

g(2)
n (1)

g(1)
n (λn)

� 1

n
.

Therefore,

max
λ�1

(
g(1)

n (λ) + g(2)
n (λ)

)
� max

λ�1
g(1)

n (λ) + max
λ�1

g(2)
n (λ)

� g(1)
n (λn) + g(2)

n (1)

= g(1)
n (λn)

(
1 + O

(
n−1

))
.

By Propostion 5.2 we find the result. �
To test the estimate just given in Proposition 5.3 we work with the operator

L = [
diag(1, 2, . . . , 100)

]8 (5.10)

so that σ(L ) ⊆ [
1, 1016

]
. In Fig. 4 we plot the error and its estimate (5.9) with respect to the number

of inversions, that is, 2n. From now on, for discrete operators the error is plotted with respect to the
Euclidean matrix norm.

Notwithstanding the above result, experimentally (see Fig. 5) it can immediately be observed that

max
λ�1

(
g(1)

n (λ) + g(2)
n (λ)

)
≈ max

(
g(1)

n (λn), g(2)
n (1)

)
.

This is because the contribution of a function in correspondence of the maximum of the other one is
negligible. In order to understand whenever g(2)

n (1) may be greater than g(1)
n (λn) for some values of n

and α (as in Fig. 5 for α = 0.75) we just need to compare g(2)
n (1) with g(1)

n (1).
Using (4.4), (4.7) and (4.8) the equation g(1)

n (1) = g(2)
n (1) is approximatively equivalent to

exp
(
− (2παn)1/2

)
= exp

(
− (2π(1 − α)n)1/2

)
,

whose solution is α = 1/2 independently of n. This means that for α � 1/2,

max
λ�1

(
g(1)

n (λ) + g(2)
n (λ)

)
≈ g(1)

n (λn)
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FAST AND ACCURATE APPROXIMATIONS 1611

Fig. 4. Error and its estimate given by (5.9) for the operator defined in (5.10).

and therefore the error decays like exp
(−cn1/3

)
for some absolute constant c (cf. (5.6)), whereas for α >

1/2 the situation is a bit more complicated. By comparing (5.6) with (5.7) we have that asymptotically
g(2)

n (1) decay faster than g(1)
n (λn), so after a certain n∗ the decay rate is still of type exp

(−cn1/3
)

also
for α > 1/2. Anyway, for n � n∗ the decay rate is of type exp

(−cn1/2
)

. The integer n∗ comes from the
solution with respect to n of

g(1)
n (λn) = g(2)

n (1).

Using Proposition 5.2 we can estimate it by solving

exp

(
−3

(
nα2π2

)1/3
)

= exp
(
− (8π(1 − α)n)1/2

)
.

We easily find

n∗ ≈ 4.5
α4

(1 − α)3
. (5.11)
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1612 L. ACETO AND P. NOVATI

Fig. 5. Behavior of the functions g(1)
n (λ), g(2)

n (λ), g(1)
n (λ) + g(2)

n (λ) for n = 30.

The previous considerations can be summarized as follows:∥∥L −α − R2n−1,2n(L )
∥∥ ≈ 4 sin(απ)S(n, α), (5.12)

where

S(n, α) =
{

g(1)
n (λn) (∀n ∧ α � 1/2) ∨ (n > n∗ ∧ α > 1/2),

g(2)
n (1) (n � n∗ ∧ α > 1/2)

(5.13)

(see (5.6) and (5.7)).

6. Truncated approaches

The idea of truncating the Gauss–Laguerre rule is clearly not new and is essentially a consequence of
the fact that the weights decay exponentially. Among the existing papers on this point we recall Berger
(1969), where a truncated approach has been used for the computation of the Laplace transform, and
Mastroianni & Monegato (2004), where the authors develop the error analysis of the truncated Gauss–
Laguerre rule for a general, absolutely continuous f .

Here we focus on the case where f is an arbitrary continuous function that satisfies 0 � f (x) � 1,
since this is the case for the functions that appear in the definition of I(i)(λ), i = 1, 2. In fact, we clearly
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FAST AND ACCURATE APPROXIMATIONS 1613

have that for λ � 1 (see (2.2) and (2.3)),

0 � (1 + e−x/αλ)−1 � 1, 0 � (e−x/(1−α) + λ)−1 � 1.

Suppose that a sequence of error approximations
{
εn

}
n�1 is available, that is,

∣∣I(f ) − In(f )
∣∣ � εn, (6.1)

where now In(f ) is the n-point Gauss–Laguerre approximation of I(f ), with 0 � f (x) � 1. Since

∫ +∞

0
e−xf (x) dx �

∫ +∞

0
e−x dx,

let sn be the solution of

∫ +∞

sn

e−x dx = εn,

that is,

sn = − ln εn. (6.2)

We consider the truncated rule

Ikn
(f ) =

kn∑
j=1

w(n)
j f (ϑ(n)

j )

= In(f ) −
n∑

j=kn+1

w(n)
j f (ϑ(n)

j ),

where kn � n is the smallest integer such that ϑ
(n)
j � sn for j � kn. Therefore,

∣∣I(f ) − Ikn
(f )

∣∣ =
∣∣∣∣∣∣I(f ) − In(f ) +

n∑
j=kn+1

w(n)
j f (ϑ(n)

j )

∣∣∣∣∣∣
�
∣∣I(f ) − In(f )

∣∣ + n∑
j=kn+1

w(n)
j .

Using the bound (Mastroianni & Occorsio, 2001, Eqs. (2.4) and (2.7))

w(n)
j � C(ϑ

(n)
j − ϑ

(n)
j−1)e

−ϑ
(n)
j , j = 2, . . . , n,
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1614 L. ACETO AND P. NOVATI

where C is a constant independent of n, we have (see (6.2))

n∑
j=kn+1

w(n)
j � C

n∑
j=kn+1

(ϑ
(n)
j − ϑ

(n)
j−1)e

−ϑ
(n)
j � C

∫ +∞

ϑ
(n)
kn

e−y dy = Ce−ϑ
(n)
kn � Ce−sn = Cεn,

so that finally

∣∣I(f ) − Ikn
(f )

∣∣ � (1 + C)εn.

Remark 6.1 Experimentally, one can easily check that the approximation

w(n)
j ≈ (ϑ

(n)
j − ϑ

(n)
j−1)e

−ϑ
(n)
j

is very accurate and hence in the numerical experiments we take C = 1.

6.1 A balanced approach

Let kn � n be the smallest integer such that (see (5.9))

ϑ
(n)
j � − ln

(
4 sin(απ) exp

(
−3

(
nα2π2

)1/3
))(

1 + O
(

n−1/3
))

, j � kn.

Using the above theory we have that for n large enough,

∥∥L −α − R2kn−1,2kn
(L )

∥∥ � 4(1 + C) sin(απ) exp

(
−3

(
nα2π2

)1/3
)

(6.3)

×
(

1 + O
(

n−1/3
))

.

In order to derive error estimates with respect to kn, that is, with respect to the number of inversions, we
first need to prove the following result.

Proposition 6.1 For k large enough, the kth root of the Laguerre polynomial of degree n satisfies

ϑ
(n)
k = ck

k2π2

4n
(1 + O(n−2)), 1 < ck �

(
1 + 1

k

)2

. (6.4)

Proof. First of all we need to study the asymptotic behavior of the roots of J0(z), the Bessel function
of the first kind of order 0. By Szegö (1939, Eq. (1.71.7)),

J0(z) =
(

2

πz

)1/2

cos
(

z − π

4

)
+ O(z−3/2),
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FAST AND ACCURATE APPROXIMATIONS 1615

we observe that there is a root, say jk, in I = [π/2 + kπ , (k + 1)π] since J0(z) changes sign. Now let

zk = 3

4
π + kπ ∈ I (6.5)

be the solution of cos
(
z − π

4

) = 0, so that J0(zk) = O(k−3/2). Therefore,

zk − jk = J0(zk)

J′
0(ξ)

, ξ ∈ I.

Now, since

J′
0(ξ) =

(
2

π

)1/2 [
−1

2
ξ−3/2 cos

(
ξ − π

4

)
− sin

(
ξ − π

4

)
ξ−1/2

]
+ O(ξ−5/2)

and

∣∣∣sin
(
ξ − π

4

)∣∣∣ � √
2

2

we deduce that J′
0(ξ) = O(k−1/2). From the above considerations we have

zk − jk = O(k−1)

and then using (6.5) we get

j2k =
(

3

4
π + kπ + O(k−1)

)2

= (kπ)2
(

1 + 3

4k
+ O(k−2)

)2

.

By Abramowitz & Stegun (1970, Eq. (22.16.8)),

ϑ
(n)
k = j2k

4n + 2

[
1 + j2k

4 (4n + 2)2

]
+ O

(
n−5

)
we obtain the result. �

Now we want to solve with respect to k,

ϑ
(n)
k = − ln

(
4 sin(απ) exp

(
−3

(
nα2π2

)1/3
))(

1 + O
(

n−1/3
))

. (6.6)

For k large enough, by (6.4) the solution of (6.6) satisfies

ck
k2π2

4n
(1 + O(n−2)) = − ln (4 sin(απ)) + 3

(
nα2π2

)1/3 + O(n−1/3), (6.7)
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1616 L. ACETO AND P. NOVATI

that is,

ck
k2π2

4n
= 3

(
nα2π2

)1/3
(1 + O(n−1/3)).

By the definition of ck we thus have k ∼ n2/3 and therefore

k2
(

1 + O(k−1/2)
)

= 12α2/3π−4/3n4/3

which leads to

n1/3 = k1/2

121/4α1/6π−1/3

(
1 + O(k−1/2)

)
.

Using this value in (6.3) we find∥∥L −α − R2k−1,2k(L )
∥∥ � 4(1 + C) sin(απ)

× exp
(
−3

π

121/4 α1/2k1/2
(

1 + O(k−1/2)
)) (

1 + O(k−1/2)
)

� 4(1 + C)Ĉ sin(απ) exp
(
−3

π

121/4 α1/2k1/2
)

,

where the constant Ĉ takes account of the term
(
1 + O(k−1/2)

)
.

We remark, however, that the above analysis can be simplified by neglecting the terms ln (4 sin(απ))

and ck in (6.7), and solving directly

k2π2

4n
= 3

(
nα2π2

)1/3
.

Using the floor function, we denote by

k(1)
n =

⌊
2
√

3

(
αn2

π2

)1/3⌋
, (6.8)

which experimentally is confirmed to be a value rather close to kn, in a reasonable range of values of α,
say α ∈ [0.05, 0.95], leading to a method that is almost indistinguishable from the one with kn. Since

n ≈ π

α1/2

(
k(1)

n

2
√

3

)3/2

(6.9)

using (6.3) we find

∥∥∥L −α − R
2k(1)

n −1,2k(1)
n

(L )

∥∥∥ ≈ 4(1 + C) sin(απ) exp

(
−3.6α1/2

(
2k(1)

n

)1/2
)

. (6.10)
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FAST AND ACCURATE APPROXIMATIONS 1617

Fig. 6.
∥∥L −α − R2j−1,2j(L )

∥∥ vs the number of inversions 2j, for j = n (Laguerre) and j = k(1)
n (balanced).

By using the operator (5.10) again, in Fig. 6 we compare the two errors provided by applying the
n-point Gauss–Laguerre rule and the corresponding balanced formula, that is,

∥∥∥L −α − R2j−1,2j(L )

∥∥∥ , j = n, k(1)
n .

We observe great improvement in terms of the computational cost attainable with the truncated
approach.

In Fig. 7 we focus attention on the truncated (balanced) approach. We plot the error and its estimate
(6.10) with C = 1 with respect to the number of inversions, that is, 2k(1)

n . The results show the accuracy
of the estimate.

When α > 1/2 the above estimate may be optimistic for n � n∗ (cf. (5.11)). Working with (5.12)–
(5.13) with S(n, α) = g(2)

n (1) and following the same analysis that starts from (6.6), by (5.7) we find
that k = 2(1 − α)1/4 (2n/π)3/4 and then the value

k(2)
n := 2

⌊
(1 − α)1/4

(
2n

π

)3/4
⌋

(6.11)
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1618 L. ACETO AND P. NOVATI

Fig. 7. Error and its estimate given by (6.10) for the operator defined in (5.10).

is very close to kn. Therefore,∥∥∥L −α − R
2k(2)

n −1,2k(2)
n

(L )

∥∥∥ ≈ 4(1 + C) sin(απ) (6.12)

× exp

(
−2.96(1 − α)1/3

(
2k(2)

n

)2/3
)

for (n � n∗) ∧ (α > 1/2),

which expresses an initial convergence very fast with respect to the number of inversions. For α > 1/2,
one should use the first k(2)

n Laguerre points for n � n∗ and then switch to the first k(1)
n for n >

n∗. Anyway, experimentally it can be observed that the corresponding method does not offer valuable
improvement with respect to the choice of the first k(1)

n , independently of α and n.
Therefore, the balanced approach that we propose is the one based on (6.8), and reported in the

figures, with error estimate given by (6.10) independently of α and n.

6.2 An equalized approach

The idea is to work separately on the two integrals and hence to consider approximations of the type

L −α ≈ sin(απ)

απ
R(1)

kn1−1,kn1
(L ) + sin(απ)

(1 − α)π
R(2)

kn2−1,kn2
(L ),
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FAST AND ACCURATE APPROXIMATIONS 1619

in which R(i)
kni−1,kni

(λ), i = 1, 2, represents the truncated Gauss–Laguerre rule for I(i)(λ) based on the

first kni
roots of the Laguerre polynomials of degree ni. For n1 �= n2 we then use different sets of points,

and clearly the total number of inversions is now kn1
+ kn2

.

We first consider the case where, for a given n, ε
(1)
n (λ)/α � ε

(2)
n (λ)/(1 − α) (cf. (4.1) and (4.2))

and we define n1 = n. Then we evaluate kn1
= k(1)

n1 as in (6.8) and we approximate I(1)(L ) with

R(1)
kn1−1,kn1

(L ). Then we find n2 (� n1) such that

g(1)
n1

(λn1
) = g(2)

n2
(1),

that is,

exp

(
−3

(
n1α

2π2
)1/3

)
= exp

(
− (

8π(1 − α)n2

)1/2
)

(6.13)

(cf. (5.6) and (5.7)). At this point we compute as in (6.11),

kn2
= k(2)

n2
= 2

⌊
(1 − α)1/4

(
2n2

π

)3/4
⌋

, (6.14)

and use the Gauss–Laguerre rule R(2)
kn2−1,kn2

(L ) for the second integral. Clearly, for each n the error

estimate for the equalized approach remains that of the balanced approach given by (6.10), but now we
have fewer inversions. In this view, we have to find the relationship between kn1

and kn2
. From (6.13)

we get

n2 = 9

8
π1/3 α4/3

1 − α
n2/3

1

so that using (6.14) we can express kn2
in terms of n1. Then by (6.9) we obtain

kn2
≈ 3.09

α3/4(1 − α)1/2
k3/4

n1
,

from which we deduce that (kn1
+ kn2

) � 2kn1
.

As for the case ε
(1)
n (λ)/α < ε

(2)
n (λ)/(1 − α) the arguments follow the same line. Let n2 = n and

compute the second integral with R(2)
kn2−1,kn2

(L ). Then solving (6.13) with respect to n1 (� n2) we

obtain

n1 = (8(1 − α))3/2

27α2π1/2
n3/2

2 .
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1620 L. ACETO AND P. NOVATI

Fig. 8. Comparison between the errors provided by the balanced and equalized approaches with the Sinc quadrature studied in
Bonito & Pasciak (2015).

Consequently, as in (6.8),

kn1
= k(1)

n1
=
⎢⎢⎢⎣2

√
3

(
αn2

1

π2

)1/3
⎥⎥⎥⎦ ,

and we compute the first integral with R(1)
kn1−1,kn1

(L ). Using (6.11) we also have

kn2
= 2

⌊
(1 − α)1/4

(
2n2

π

)3/4
⌋

and therefore, collecting the above expressions, we finally obtain

kn1
≈ 0.61

(1 − α)2/3

α
k4/3

n2
.

As before, the error estimate for the equalized approach is that of the balanced approach given by (6.12)
but the number of inversions that we have to consider is now (kn1

+ kn2
) � 2kn2

.
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FAST AND ACCURATE APPROXIMATIONS 1621

In Fig. 8 we consider the comparison between our two truncated approaches together with Sinc rule
analyzed in Bonito & Pasciak (2015).

7. Conclusions

In this work we have considered the construction of very fast methods based on the Gauss–Laguerre rule
and we have been able to provide accurate error estimates that can be used to a priori select the number
of points to use. We observe that while all the experiments concern the artificial example (5.10), other
tests on finite difference discretizations of the Laplace operator have essentially led to identical results.

Funding

GNCS-INdAM; University of Pisa (PRA_2020_61); FRA-University of Trieste.

Acknowledgements

The authors are members of the INdAM research group GNCS.

References

Abramowitz, M. & Stegun, I. (1970) Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. New York: Dover Publications.

Aceto, L., Bertaccini, D., Durastante, F. & Novati, P. (2019) Rational Krylov methods for functions of
matrices with applications to fractional partial differential equations. J. Comput. Phys., 396, 470–482.

Aceto, L. & Novati, P. (2019) Rational approximations to fractional powers of self-adjoint positive operators.
Numer. Math., 143, 1–16.

Aceto, L. & Novati, P. (2020) Padé-type approximations to the resolvent of fractional powers of operators. J. Sci.
Comput., 83, Article number: 13.

Barrett, W. (1961) Convergence properties of Gaussian quadrature formulae. Comput. J., 3, 272–277.
Berger, B. S. (1969) Dynamic response of an infinite cylindrical shell in acoustic medium. J. Appl. Mech., 36,

342–345.
Bonito, A. & Pasciak, J. E. (2015) Numerical approximation of fractional powers of elliptic operators. Math.

Comp., 84, 2083–2110.
Davis, P. J. & Rabinowitz, P. (1984) Methods of Numerical Integration. San Diego: Academic Press.
Elliott, D. (1967) Truncation errors in Padé approximations to certain functions: an alternative approach. Math.

Comp., 21, 398–406.
Harizanov, S., Lazarov, R., Margenov, S., Marinov, P. & Vutov, Y. (2018) Optimal solvers for linear systems

with fractional powers of sparse SPD matrices. Numer. Linear Algebra Appl., 25, e2167.
Harizanov, S., Lazarov, R., Margenov, S., Marinov, P. & Pasciak, J. E. (2020) Analysis of numerical methods

for spectral fractional elliptic equations based on the best uniform rational approximation. J. Comput. Phys.,
408, 109285.

Harizanov, S., Lazarov, R, Marinov, P., Margenov, S. & Pasciak, J. E. (2019) Comparison analysis of
two numerical methods for fractional diffusion problems based on the best rational approximations of tγ

on [0, 1] . Advanced Finite Element Methods with Applications (FEM 2017) (T. Apel, U. Langer, A. Meyer &
O. Steinbach eds), Lecture Notes in Computational Science and Engineering, vol. 128. Cham: Springer.

Harizanov, S. & Margenov, S. (2018) Positive approximations of the inverse of fractional powers of SPD
M-matrices. Control Systems and Mathematical Methods in Economics (G. Feichtinger, R. Kovacevic & G.
Tragler eds). Lecture Notes in Economics and Mathematical Systems, vol. 687. Cham: Springer.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/42/2/1598/6140849 by U
niversita degli Studi di Trieste user on 10 M

ay 2022

24



1622 L. ACETO AND P. NOVATI

Hofreither, C. (2020) A unified view of some numerical methods for fractional diffusion. Comput. Math. Appl.,
80, 332–350.

Mastroianni, G. & Monegato, G. (2004) Truncated quadrature rules over (0, ∞) and Nyström-type methods.
SIAM J. Numer. Anal., 41, 1870–1892.

Mastroianni, G. & Occorsio, D. (2001) Lagrange interpolation at Laguerre zeros in some weighted uniform
spaces. Acta Math. Hung., 91, 27–52.

Stahl, H. R. (2003) Best uniform rational approximation of xα on [0, 1] . Acta Math., 190, 241–306.
Szegö, G. (1939) Orthogonal Polynomials. Providence, RI: American Mathematical Society.
Vabishchevich, P. N. (2015) Numerically solving an equation for fractional powers of elliptic operators. J. Comput.

Phys., 282, 289–302.
Vabishchevich, P. N. (2018) Numerical solution of time-dependent problems with fractional power elliptic

operator. Comput. Meth. Appl. Math., 18, 111–128.
Vabishchevich, P. N. (2020) Approximation of a fractional power of an elliptic operator. Numer. Linear Algebra

Appl., 27, e2287.
Van Damme, G. (2020) Legendre, Laguerre and Hermite-Gauss quadrature. MATLAB Central File Exchange.

Available at https://www.mathworks.com/matlabcentral/fileexchange/26737-legendre-laguerre-and-hermite-
gauss-quadrature.s

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/42/2/1598/6140849 by U
niversita degli Studi di Trieste user on 10 M

ay 2022

25

https://www.mathworks.com/matlabcentral/fileexchange/26737-legendre-laguerre-and-hermite-gauss-quadrature
https://www.mathworks.com/matlabcentral/fileexchange/26737-legendre-laguerre-and-hermite-gauss-quadrature

	Fast and accurate approximations to fractional powers of operators
	1. Introduction
	2. The Gauss--Laguerre approach
	3. Error analysis for a general function
	4. Error analysis for l -a 
	4.1 First integral I1l 
	4.2 Second integral I2l 

	5. Error analysis for L-a 
	6. Truncated approaches
	6.1 A balanced approach
	6.2 An equalized approach

	7. Conclusions




