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Chapter 1

Introduction

Quantum field Theories (QFTs) have stood the test of time and so far has been one of
the most beautiful and successful theories in physics. The story of atom has started
centuries ago and we have made immense progress in understanding the building
block of matter and the universe around us especially in the last century. This has
been mainly possible because of triumph of Quantum field theories. Despite being
one of the most accepted and celebrated formalism, there is still a lot that is not well
understood in the formalism of standard Quantum Field Theory. For example, we
still do not have proper non-perturbative formulation of QFT and we still can not
properly apply it to strongly coupled system. One goal of present day theoretical
physics is to complete the understanding of QFTs in the regime of strong coupling
and many attempts has been done to achieve this goal.

The topic of this thesis is an approach to the study of QFT beyond perturbation
theory using as a tool the geometry of Anti-de Sitter (AdS) space. This has two main
goals:

• To bridge two celebrated approaches to strongly coupled QFT, both based
on symmetry and self-consistency, namely the “S-matrix bootstrap” and the
“Conformal bootstrap”, which apply respectively to massive and conformal
quantum field theories. More generally, the AdS geometry allows us to import
the techniques and progresses of Conformal Field Theories (CFTs) in the realm
of massive quantum field theory;

• To find new computational tools for QFT in cosmological backgrounds, in par-
ticular the de Sitter (dS) spacetime characterized by accelerated expansion,
which can be related to AdS via an analytic continuation.

Let us now illustrate in more details these points, starting from an explanation of the
bootstrap philosophy.

Summarized in a sentence, the bootstrap program is to know the unknowns not by
explicitly calculating them but rather using some consistency conditions. There are
some consistency conditions that a QFT should follow and the idea is to impose
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enough conditions so that we can determine the observables. This approach is es-
pecially useful in cases where the perturbative calculations are too tedious, or even
more importantly in cases where non-perturbative effects are important.

One of the most basic observables in QFTs are the scattering amplitudes, that deter-
mine the outcome of the collision between the particle-like excitations of the fields.
When applied to scattering amplitudes, this philosophy leads to the so-called “S-
matrix boostrap”. Examples of such conditions that apply to scattering amplitudes
are crossing symmetry [1] and unitarity [2]. Global symmetries that the theory might
have can also be used as the consistency condition.

In this context, there has been some progress in 2 to 2 scattering, but things get
complicated really fast when considering 2 to n for n > 2, i.e. multipoint scattering
amplitudes. In d = 2, for a class of theories known as integrable QFTs there is no 2 to
n scattering for n > 2 (see e.g. the discussion in [3, 4] and references therein), though
n to n will still remain relevant and one can factor it into product of 2 to 2 scattering
amplitudes. In this case the bootstrap program can be carried out successfully [5].
For d ≥ 3 instead one always has m to n scattering amplitudes for m ̸= n, i.e. particle
production cannot be avoided [6]. This is one of the reason why it is difficult to
bootstrap amplitudes in higher dimensions.

In its early incarnation, the goal of the S-matrix bootstrap was to fix completely the
scattering amplitude [7]. More recently there has been a revival of this idea with a
more humble and realistic approach [8–10] (see also the review [11] and references
therein). In the modern take, the goal is essentially to narrow down the space of
possible scattering amplitudes, restricting the possible parameter space that is con-
sistent with the constraints, also with the aid of numerical techniques.

With this new approach, in 1+ 1 dimensions it was found that for a fixed mass spec-
trum one can bound the couplings from above [9]. This was done by applying cross-
ing symmetry, analyticity and non-linear unitarity. In the case of theories with O(N)

symmetry (with the assumtpion that no bound states are present) it was found that
the boundary of allowed space contains vertices that correspond to known theories,
e.g. some integrable theories [12, 13].

What about higher dimensions? Obviously we cannot expect the same level of
progress in the determination of S-matrices in higher dimensions but there has been
development in this case as well, due to advancement of numerical techniques.In
[10] it is argued that the main difficulty that arises in higher dimensions is that one
needs to expand amplitude in terms of partial waves in order to impose unitarity
(in lower dimension, unitarity can be applied directly at level of S-matrix), while
crossing symmetry and analyticity are more transparent in terms of Mandelstam
variables. Thus one needs to use both descriptions to impose the full set of con-
straints, which is very inconvenient. In the modern approach, numerical techniques
are used to impose unitarity.
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As mentioned above, apart from scattering amplitudes, another context to which the
bootstrap philosophy has been applied very successfully in last few decades is that
of Conformal Field Theories (CFT) in the so-called Conformal bootstrap.

CFTs are those QFTs which have additional symmetries known as dilation (which
can be thought of as a scaling transformation) and "special conformal transforma-
tions", which together with the Poincaré group encompass the conformal group
SO(1, d + 1) in d (Euclidean) spacetime dimensions. These theories are important
because any QFT is scale-invariant in the limit of small (UV) or large (IR) distances.
It is not necessary that all scale-invariant theories are also invariant under the full
conformal group, but this is typically the case, especially if one insists on the con-
straint of unitarity [14–16]. Therefore CFTs can be thought of as “landmarks” in the
space of QFTs, as any UV-complete QFT can be seen as a renormalization group (RG)
flow from a CFTUV to a CFTIR [17]. The importance of CFTs also stems from the fact
that they can applied to describe second order phase transitions both in statistical
mechanics [18] and in condensed matter physics [19], perhaps the most famous ex-
amples being the Ising CFT that describes the critical point of water, and the O(N)

CFT that describes the second order magnetization transition in ferromagnets. Ex-
cept for the trivial examples of free massless fields, CFTs are typically strongly cou-
pled which makes them difficult to study with standard techniques. A perturbative
approach can be devised in some cases using the idea of dimensional continuation,
leading to the so-called ϵ expansion [20]: for example, if one wants to study the IR
fixed point of the ϕ4 theory in 3d, instead of computing Feynman diagrams in 3d, one
can compute them in d = 4 − ϵ in which the fixed point is weakly coupled. How-
ever to recover the physical result one eventually needs to perform an uncontrolled
extrapolation to the limit ϵ → 1.

The boostrap philosophy can be applied to the basic observables of CFTs, correlation
functions of local operators. Like the S-matrix bootstrap, this is an old idea dating
back to ref.s [21, 22], which observed that conformally invariant correlation functions
can be reduced to the 2-point and 3-point correlation functions by recursive use of
the convergent Operator Product Expansion (OPE) that these theories enjoy, and
moreover, analogously to scattering amplitudes, they are constrained by crossing
symmetry. Together with the symmetry under the conformal group, and unitarity,
crossing symmetry provides a very stringent set of constraints that one can hope
to solve, with some further input required to specify the theory, such as additional
global symmetries, or the scaling dimensions of light operators. However in practice
it is very hard to solve exactly this infinite set of constraints, and in the early days
this was accomplished with spectacular success only for some d = 2 CFTs [23].

The modern revival of the conformal bootstrap started with [24] that devised a nu-
merical method to implement the constraints to reduce the allowed parameter space
(this development in fact inspired also the revival in the S-matrix bootstrap that we
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mentioned above). Since this paper, various models have been studied using confor-
mal bootstrap, most notably the 3d Ising model [25] and O(N) models [26], and also
powerful analytical approaches have been developed (for a list of references, see the
reviews [27–29]).

Having briefly reviewed these two bootstrap approaches, the S-matrix and the Con-
formal bootstrap, let us now explain in what sense they can be bridged by studying
quantum field theory in AdS. To do so, we need to first explain some basic aspects
of QFT in the AdS background.

The geometry of (Euclidean) AdSD has several features that make it an ideal back-
ground to study QFT [30]. It introduces a dimensionful parameter, the radius, which
acts as an IR cutoff and can be used to probe the theory at different scales. Differ-
ently from other possible IR cutoffs, it preserves a large symmetry, namely the isom-
etry group SO(1, D). Moreover, it admits asymptotic observables, the correlators
on the conformal boundary, on which the symmetry acts as the conformal group.
This relation between a theory in AdS and a CFT on the boundary has first risen to
prominence in the context of the AdS/CFT correspondence [31] (see for instance the
reviews [32, 33] for a list of references). In that context the theory living in AdS is a
gravitational theory, such as string theory or supergravity, and it can be equivalently
described in terms of the boundary CFT, giving a realization of the holographic prin-
ciple. It is imporant to contrast with the case of a rigid QFT (i.e. without dynamical
gravity) in AdS, that will be our concern in this thesis. In the latter case the boundary
correlators represent only a subset of the possible observables of the theory, similarly
to scattering amplitudes for a QFT in flat space.

The boundary correlators for a QFT in AdS obey all the axioms of a d = D − 1 di-
mensional conformal field theory (CFT), with the only exception of the existence of
the stress-tensor operator. They are related to the S-matrix in the flat space limit [8,
34–50]. Therefore the QFT in AdS has boundary conformal correlators, to which the
conformal bootstrap can be applied, that are continuosly connected to the scatter-
ing amplitudes in flat space, to which the S-matrix bootstrap applies, thus relating
directly the two approaches. For example, in [8] the conformal bootstrap was ap-
plied and upon taking flat space limit, it exactly matches with the result obtained in
flat space with S-matrix bootstrap technique [9]. In other words, the study of QFT
in AdS provides us with an additional tool, alternative to the S-matrix bootstrap,
to the study of observables in massive quantum field theory: the conformal boot-
strap applied to the boundary correlators. This is valuable especially in view of the
fact that many properties of correlators in conformal field theories are much better
understood compared to the properties of scattering amplitudes [49].

There are other desirable properties of AdS as a background: (i) while offering an IR
regulator, in the sense that all correlation functions, even for massless fields, decay
fast at large distances, AdS space also has an infinite volume, and thus it allows for
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sharp phase transitions and symmetry breaking phases. Those would not be visible
if the IR behavior would be regulated using a finite volume; (ii) by placing a QFT
in AdS, we have a new lens to study the RG flow in the bulk, via the observables
of the boundary CFT [51–58]; (iii) in the special case in which the bulk theory is
conformal, the AdS background is an efficient tool to study conformal defects [59–
64] or boundary conditions [65–67].

Part of the work presented in this thesis concerns precisely the question of how the
bulk physics of the massive QFT maps to the boundary correlation functions. A
good understanding of this dictionary paves the way to import the progress in CFT
to massive quantum field theory, by applying the conformal bootstrap to the bound-
ary correlators either with numerical [8–10] or analytic techniques [68–72]. To make
progress in this direction, it is precious to consider benchmark examples of theories
that can be studied beyond the perturbative regime, and in which detailed informa-
tions can be obtained about both the bulk physics and the boundary correlators. The
method that we use to study QFT in AdS at finite coupling is the large N expansion,
combined with analytical conformal bootstrap methods. We apply this method to
gauge theories.

Let us briefly introduce the idea of the large N expansion. The parameter N rep-
resents the number of fields. It is sometimes possible to devise a 1/N expansion
of observables, which is alternative to the usual expansion at small values of the
coupling constants, and therefore allows us to retain finite coupling effects. For ex-
ample, the O(N) model has been studied in flat space using the large N expansion
in [73], which allowed to study the spontaneous symmetry breaking phase even at
strong coupling.

The combination of large N and analytic bootstrap has already been applied before
to the case of the O(N) and Gross-Neveu models in AdS in [74]. In this thesis we
first review this study for the case of O(N) model as it serves as a background before
considering gauge interactions. In the O(N) model one has N scalar fields with
quartic self-interactions. It is found that in AdS there can be spontaneous symmetry
breaking, leading to two possible phases: an O(N) symmetry-preserving phase, in
which the scalar fields are massive, and an O(N) symmetry-breaking (gapless) with
massless Goldstone bosons. It is also found that for a particular value of the bulk
mass-squared the theory enjoys conformal symmetry in the bulk, and thus the setup
can be related to a conformal boundary condition for the O(N) CFT in flat space. An
AdS analogue of a resonance in flat space is observed in the boundary correlators
of the gapless case. This study has been done in two steps, by first introducing
a Hubbard-Stratonovich field as an auxiliary field and then computing the exact
propagator at large N of this auxiliary field in terms of a unknown “bubble” or 1PI
function. In the second step, the 4-point boundary correlation function mediated by
this exact propagator is computed and one bootstraps the unknown bubble function
by demanding the absence of free double-trace operators on the boundary.
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After reviewing the O(N) model [74], the next step is to include gauge interactions,
Quantum Electrodynamics (QED) seems like the best candidate to start with. In this
thesis, we apply the approach of [74] to a strongly coupled gauge theory: QED in
AdS [75]. Asymptotically free gauge theories are a clear target to be studied using
the AdS background [76], possibly via the bootstrap of the boundary correlators.
It is therefore particularly important to understand how various gauge theory phe-
nomena are encoded in the conformal correlators. We perform the first steps in this
direction, studying the simple example of scalar QED (sQED) with N f flavors in the
large N f limit. This theory is asymptotically free and has an interesting structure of
phases for 2 < D < 4 (D can be kept as a continuous parameter at large N f ). In flat
space, it has a Coulomb phase and a Higgs phase separated by a second order phase
transition, described by an interacting CFT. In the Coulomb phase the massless ex-
citation is the photon, while in the Higgs phase there are Goldstone bosons of the
CPN f −1 model. We place the theory in AdSD with Dirichlet-type boundary condition
for the gauge field. These phases are still present in AdSD (and both are allowed for
an intermediate range of m2). In both phases we compute the four-point function of
the charged operators created by the scalar electrons of the bulk theory, from which
the dimensions of the exchanged operators can be extracted, for arbitrary values of
the scaled gauge coupling α = e2N f .

As an intermediate step, we compute the bubble diagram corresponding to the bulk
two-point correlator of a conserved current in the free theory. To this end, we em-
ploy and further develop the technique of the spectral representation for two-point
functions of a spinning operator [77]. The spectral representation allows us to read-
ily resum the bubble diagrams and obtain the exact propagator of the photon at the
leading order at large N f . The four-point function is then expressed as an exchange
diagram with this exact propagator. In the Coulomb phase, the spin 1 exchanged op-
erators are: a conserved current with protected dimension, and the finite-coupling
versions of the spin 1 double-trace operators of the matter fields, whose dimensions
and OPE coefficient we can follow to finite values of α (there is a caveat for integer
dimension D = 3 that we discuss below). In the Higgs phase, the external operators
are exactly marginal because the corresponding bulk fields are massless Goldstone
bosons. A classical analysis in AdS would suggest that the current operator becomes
non-conserved and gets an anomalous dimension. At finite coupling instead the
only remnant of this non-conserved current is in a specific feature of the spectrum of
the spin 1 double-trace operators, which is the AdS analogue of a resonance in flat
space. Going to the deep IR with a tuned value of the mass-squared we reach a crit-
ical point with bulk conformal symmetry, corresponding to a BCFT in flat space via
a Weyl rescaling, and we can extract the scaling dimensions of the spin 1 boundary
operators appearing in the boundary OPE of the gauge field.

Something special happens in the Coulomb phase in integer dimension D = 3: the
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double-trace jµ jµ of the boundary theory is classically marginal, and the correspond-
ing coupling gets a non-trivial β function triggered by the bulk gauge coupling.
Therefore, the conformal symmetry of the boundary gets broken. This is true in
ordinary perturbation theory [78, 79] and we explain that it remains true working at
large N f , finite coupling. We comment on the interpretation of this phenomenon as
an IR divergence that is not cured by the AdS length scale, and offer a novel point
of view on the computation of the β function from the spectral representation of
the propagator. This IR divergence persists when we tune the mass-squared of the
scalar to the critical value, and hinders the possibility to define a conformal bound-
ary condition for the IR CFT of 3d sQED by considering the RG in AdS with Dirichlet
conditions for the gauge field. Therefore, when we talk about the boundary CFT in
the Coulomb phase or at the bulk conformal point, we always refer to using a non-
integer value of D to regulate this divergence.

After scalar QED, one natural extension is fermionic QED. We first review it in flat
space, but while mostly the literature has focused on the CFT case, here we will also
look at scattering in the massive phase. In AdS space, the work is still ongoing.
Fermionic QED shows parity breaking due to appearance of a Chern-Simons terms
when the fermions are massive, and because of this the 1PI bubble has an additional
structure as compared to the scalar QED.

After dealing with gauge interactions in AdS space, one can analytically continue to
dS space. But let us first explain why dS space is relevant.

Our Universe has a positive curvature and it has an accelerated expansion. Simi-
larly, during the phase of cosmic inflation that preceded the hot Big Bang, the Uni-
verse underwent an accelerated expansion. Like during the inflationary phase and
in the present phase of the Universe, the dS geometry has also exponentially fast ac-
celerated expansion. In particular with regard to inflation, an especially interesting
set of observables in dS are the correlators of operators inserted at the late-time (i.e.
infinite future) conformal boundary. We refer to these as “cosmological correlators”.

It is a tedious task to directly compute cosmological correlators in dS space and thus
a cosmological bootstrap approach has been developed to understand cosmologi-
cal correlators in better ways, see the recent review [80] for a list of references on
the subject. Here constraints like unitarity, singularities, and the fact that dS space
admits a late-time conformal boundary were used to bootstrap correlators.

One way to study these cosmological correlators is by doing analytic continuation
from AdS [81–84].

These techniques has already led to important improvement in our understanding
of the late-time correlators in the dS space. For instance it has led to a derivation
of positivity and analyticity constraints for the spectral density that captures the
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conformal partial wave expansion of late-time four-point function [85, 86]. The ex-
istence of these constraints opens the door to the possibility of a non-perturbative
cosmological bootstrap approach for the late time correlators [86–89]

In this thesis we have reviewed the rotation from dS to AdS (Euclidean) which is
done in such a way that one can relate 4-point boundary correlation functions in
AdS to the late time boundary 4-point correlation functions in dS [81–84]. We have
also presented the result of [90] to get the exact propagator at large N in dS for O(N)

model. It is also found that for the case of O(N), there is no spontaneous symmetry
breaking [90] unlike the AdS case [74].

A second goal of this thesis is to present steps towards an extension of the study
done in [85, 90] to gauge interactions, particularly scalar QED. An important point
to note here is that the insertion of charged operator at the late time boundary is not
gauge invariant by itself, and one needs to do an appropriate dressing to make the
correlator gauge invariant. We do it by using Wilson lines. Similar subtleties are also
expected in case of dynamical gravity and hence we hope that understanding scalar
QED in AdS can give us some key insights for the problem of dynamical gravity as
well.

The rest of the thesis is organised as follows:

In chapter 2 we review some backround material that is used in the rest of the thesis.
We introduce the embedding formalism for both the AdS and dS space. We review
the spectral representation which allows to map two-point correlators from coordi-
nate space to functions of a spectral parameter ν, much like Fourier transformation
in flat space. We also show how to analytically rotate the Lagrangian from dS to AdS
for a scalar field theory.

In chapter 3 we review the O(N) model, first in flat space. We then review the com-
putation in the AdS case, where one uses both the bootstrap and large N techniques.
We review both the phases found in this theory. We also present results in the litera-
ture for the O(N) model in dS space.

In chapter 4 we discuss scalar QED at large N in flat space, studying both phases:
the Coulomb phase and the Higgs phase. We also consider the CFT which separates
the two said phase.

In chapter 5 we present the results obtained by applying both the large N and an-
alytical bootstrap methods to scalar QED in AdS. We studied the realization of the
different phases in AdS, and we also identify AdS analogue of resonance in flat space
in the Higgs phase. We also discuss the case with bulk conformal symmetry, and the
issue of IR divergences.

In chapter 6 we discuss the relation between vector propagators in AdS and dS space
and then we present the rotation of the Lagrangian of scalar QED from dS to AdS.
We discuss the strategy to compute the bubble in dS from this rotated lagrangian.
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In chapter 7 we discuss fermionic QED in flat space, pointing out the existence of
a bound state in the scattering amplitude of the fermions in the massive phase. We
then outline a strategy to study this theory in AdS.

In chapter 8 we summarize the thesis and presented the possible future directions.

In appendices we have discussed the analytic structure of the Proca propagator in
AdS, the inversion formula for the spectral representation of spin 1 two-point func-
tions, and its flat space limit.

In this thesis, we present the following publication:

• Scalar QED in AdS.
-Ankur, Dean Carmi, Lorenzo Di Pietro
J. High Energ. Phys. 2023, 89 (2023)., arXiv:2306.05551

Also the following two projects which are still ongoing have been included in the
thesis:

• Fermionic QED in AdS.
-Ankur, Dean Carmi, Lorenzo Di Pietro

• Scalar QED in dS
-Ankur, Lorenzo Di Pietro, Shota Komatsu, Veronica Sacchi, Victor Gorbenko

I have also worked on the following publication during the first few months of my
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we will review some of the preliminaries required to understand the
upcoming chapters. Here we will give the definition Anti-de Sitter (AdS) and de
Sitter (dS) spaces. We will also discuss the embedding formalism, where we will
embed these spaces in higher dimensional Minkowski space. The point of using
the embedding formalism is that it makes symmetries manifest, and it will be eas-
ier to keep track of indices (as we will see in later chapters). We will also review
the Spectral Representation and Harmonic functions as they are the key ingredients
that helps us to calculate boundary correlation functions. In this chapter we will be
mostly reviewing the work presented in the paper [77]. To discuss physics in AdS,
we will give a brief review of Conformal Field theories (CFTs) as we will be using
some of the techniques borrowed from CFT to understand the physics in AdS and
as well as in dS. We will also introduce late-time cosmological correlators, as these
are our key observables in dS space.

2.2 AdS and dS space

Both the AdS and dS space are maximally symmetric lorentzian surfaces with con-
stant Riemann scalar curvature. The difference between the two is related to the
sign of that constant curvature, if it is positive, it is considered to be dS space, while
if its is negative, it is called AdS. This change of sign, changes the physics drastically
but nevertheless, some possibe non-trivial analytic continuation from AdS to dS is
possible as we will see in later chapters. One thing to notice is that our universe
resemble close to dS space as observed curvature of our universe is considered to be
positive as well. One can view both the AdS and dS space as hypersurfaces in higher
dimensional space, defined as,

ηABXAXB = ±R2. (2.1)
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In the above equation + sign refers to dS space while the − sign refers to AdS space
and R2 is inversely proportional to the Ricci curvature of the space. Here, our con-
vention of the metric is mostly positive i.e.(-,+,+,+...) and XA denotes the coordinates
of bulk point in higher dimensional space, and they are related to the poincaré co-
ordinates xµ = (η, ya) or xµ = (z, ya) (we will be using η for dS geometry and z for
AdS geometry in this and next chapters and the index a runs from 1 to d) as follows:

XA
dS =

(
R2 − η2 + |y|2

2η
,

Rya

η
,

R2 + η2 − |y|2
2η

)
, (2.2)

XA
AdS =

(
R2 + z2 + |y|2

2z
,

Rya

z
,

R2 − z2 − |y|2
2z

)
. (2.3)

In this coordinate system, we can write the metric for both AdS and dS space in the
following form:

ds2
dS = R2−dη2 + dyadya

η2 , (2.4)

ds2
AdS = R2 dz2 + dyadya

z2 . (2.5)

The boundary of AdS space can be defined by taking the limit z → 0 and in the same
way we can define late time boundary by taking the limit η → 0 for dS case. In this
case, we will have boundary points P for both AdS and dS space parameterized by,

PA
dS/AdS =

(
R2 + |y|2

2
, Rya,

R2 − |y|2
2

)
. (2.6)

Which satisfies the relation P2 = 0 and Ya is a vector in Rd

2.3 Embedding Formalism AdS

In this section we will understand the map between the AdS geometry and the
higher dimensional Minkowski space where the interested geometry is embedded
in. It must be emphasized that here it is a rigid geometry where we will be placing
our Quantum Fields to interact among themselves and we are not doing a theory of
Quantum Gravity as in this case there is no dynamical gravity!

In this formalism we have embedded our Euclidean AdSd+1 space into higher di-
mensional space. This higher dimensional space is Md+2 and from this section
onwards we have put R = 1, in equations from previous section for sake of con-
venience.

These vector XA are still parameterized in terms of Poincare coordinates of AdSd+1,
i.e. (z,ya), and z = 0 correspond to the boundary of AdS space. Note that in this
thesis we will be using capital latin letters to denote the index of the vector in the
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Md+2, small latin index to denote the vector in the Rd and small greek letter to de-
note the index for AdSd+1 unless otherwise stated.

The point of this section is to write tensors in AdSd+1 without indices. We will
achieve this in two parts, first we will write a corresponding map which relates the
tensor Tµ1µ2...µj in AdSd+1 to the corresponding tensor TA1 A2...Aj in Md+2 and once
we have that, we will then write tensor TA1 A2...Aj without indices. The first step can
be achieved by the following relation:

Tµ1...µJ (x) =
∂XA1

∂xµ1
· · · ∂XAJ

∂xµJ
TA1...AJ (X). (2.7)

With this relation between tensors in AdS space and Minkowski space, we can work
with tensors in Minkowski space. But this achieves only half of the goal, as we still
have to keep track of the indices of the tensor. Now we will define another map
that will take us from tensors to some polynomial functions (and vice versa) and
we will do this with the help of polarization vectors W which satisfies the relation
W2 = 0 = X · W as follows:

T(X, W) = WA1 . . . WAJ TA1 ...AJ (X). (2.8)

One can find the inversion relation that will give us back the tensors from this well
defined polynomials using some differential operators KA as follows:

TA1 ...AJ (X) =
1

J!
(

d−1
2

)
J

KA1 . . . KAJ T(X, W). (2.9)

Note that these KA can be explicitly written as,

KA =
d − 1

2

(
∂

∂WA + XA

(
X · ∂

∂W

))
+

(
W · ∂

∂W

)
∂

∂WA + XA

(
W · ∂

∂W

)(
X · ∂

∂W

)
− 1

2
WA

(
∂2

∂W · ∂W
+

(
X · ∂

∂W

)(
X · ∂

∂W

))
.

(2.10)
In above equation we have introduced the pochammer notation i.e., (a)J = Γ(a +
J)/Γ(a). and KA satisfy following important properties (see [77] for more details):

• Transverse i.e. XAKA = 0

• traceless i.e. KAKA = 0

• symmetric i.e. KAKB = KBKA.

Thus we have the map from the Polynomial function to the tensor in Md+2 and vice
versa. Since we have to deal with differential equations, one needs to define differen-
tial operator that can act on these polynomial functions. Since, AdS space is curved,
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we need to find differential operator in d+2 (Md+2) dimensions, corresponding to
covariant derivative in AdSd+1. Note that unlike KA, these differential operators do
not commute and are transverse i.e. XA∇A = 0 and are defined as follows:

∇A =
∂

∂XA + XA

(
X · ∂

∂X

)
+ WA

(
X · ∂

∂W

)
. (2.11)

2.4 Propagators in AdS

With the differential operator defined as (2.11), one can write the equation that prop-
agators should satisfy. In this thesis we will use the notation that bulk to bulk prop-
agators are denoted as G while bulk to boundary ones are denoted as K and these G
propagators satisfy the following equation of motion:(

∇2
1 − ∆(∆ − d) + J

)
G∆,J (X1, X2, W1, W2) = −δ (X1, X2) (W12)

J + . . . ,

∇1 · K1G∆,J (X1, X2, W1, W2) = . . . .
(2.12)

Where ∆ are scaling dimensions and they are related to the mass squared terms as
M2 = ∆(∆ − d)− J for general spin J, K1 is the differential operator defined in 2.10
w.r.t. coordinate X1 and ". . . " represent local source terms which contributes only
contact terms to the propagator. In this embedding formalism, we can now find the
bulk to bulk propagators and here we will write propagators in terms of chordal
distance u i.e. defined as half of the square of distance between two points ζ:

u =
ζ

2
=

(X1 − X2)2

2
= −1 − X1 · X2. (2.13)

One thing to note is that most of the formulas presented here will be for general spin
J, later on we will use J = 0 or J = 1 depending on the model we are studying.
We will write the bulk to bulk propagators for general spin J as sum of different
functions (note that while propagators are written in term of polynomial functions,
we can use different KA operators defined in (2.10) to get back indices) as follows:

G∆,J (X1, X2, W1, W2) =
J

∑
k=0

(W12)
J−k ((W1 · X2) (W2 · X1))

k gk(u, ∆). (2.14)

Where, W12 = W1 · W2 and gk(u, ∆) are some generic functions of the chordal dis-
tance u and the scaling dimension ∆. By using the above formula it is clear that if
one tries to find the propagator for spin 0, we will have no polarization vector as
there will be no indices for spin 0 propagator. We can write the spin 0 propagator as
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follows:

G∆ (X1, X2)

=
Γ(∆)

2π
d
2 Γ
(

∆ − d
2 + 1

) 1

ζ (X1, X2)
∆ 2F1

(
∆, ∆ − d

2
+

1
2

, 2∆ − d + 1,− 4
ζ (X1, X2)

)
.

(2.15)
Where the ζ = 2u defined as (2.13) and mass to scaling dimension relation for spin
0 will remain same as in the [77],

m2 = ∆(∆ − d). (2.16)

There are two possible solutions to the above equation which we denote as ∆+ and
∆− = d − ∆+, with ∆+ ≥ d

2 . The general solution to the equation of motion of
the scalar field behaves near the boundary (u → ∞) as a linear combination of the
powers u−∆+ and u−∆− . The boundary conditions that preserve the AdS isometry
set to zero either one of these two modes, leaving only the other one. We will refer to
the boundary condition that sets to zero the dominant mode, i.e. u−∆− , as “Dirichlet
condition”. The propagator displayed above behaves like u−∆ near the boundary,
and it gives the correct answer for either of the two boundary conditions, depending
on whether the parameter ∆ is smaller or larger than d

2 .

For the case with spin 1, as we know that it has two indices and naturally it can be
expanded in terms of these two independent polarization vector as follows:

G (X1, X2, W1, W2) = W12g0(u, ∆) + (W1 · X2) (W2 · X1) g1(u, ∆). (2.17)

one can write in terms of two bulk coordinates X1 and X2 with indices as well by
applying KA and KB (2.10),

GA,B(X1, X2) = (ηAB + X1AX1B + X2AX2B − (1 + u)X1AX2B) g0(u, ∆)

+ (X1B − (1 + u)X2B) (X2A − (1 + u)X1A) g1(u, ∆).
(2.18)

where,

g0(u, ∆) = (d − ∆)F1(u)−
1 + u

u
F2(u),

g1(u, ∆) =
(1 + u)(d − ∆)

u(2 + u)
F1(u)−

d + (1 + u)2

u2(2 + u)
F2(u),

F1(u, ∆) = N (2u)−∆
2F1

(
∆,

1 − d + 2∆
2

, 1 − d + 2∆,− 2
u

)
,

F2(u, ∆) = N (2u)−∆
2F1

(
∆ + 1,

1 − d + 2∆
2

, 1 − d + 2∆,− 2
u

)
,

N =
Γ(∆ + 1)

2πd/2(d − 1 − ∆)(∆ − 1)Γ
(

∆ + 1 − d
2

) .

(2.19)
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Note that in [77], the scaling dimension of the spin 1 propagator is related to the
mass with the relation M2 = ∆(∆ − d)− 1 and the lagrangian that we will be using
in later chapters for scalar QED is different than used in [77], and for us the mass of
propagator mA is related to the spin 1 scaling dimension as follows:

M2 = m2
A − d = ∆(∆ − d)− 1. (2.20)

We can now use the above relation to find the scaling dimension for massless vector
field, ∆ = 1, d − 1. In general there are two solutions for ∆ in (2.20) namely ∆+ and
∆− and choosing one solution depends on the behaviour of the function at boundary
i.e. z = 0. The one that decays faster at boundary we call it Dirichlet.

Now, we have our bulk to bulk propagators for the case of O(N) model and Scalar
QED, both for the massive and the massless counterparts in AdS space. Naturally,
the other ingredient that we would need is bulk to boundary propagators and we
can define them by taking a proper limit of these bulk to bulk propagators, sending
one of the point to the boundary of AdS for general spin J,

K∆,J(X, P; W, Z) =
√
C∆,J

((−2P · X)(W · Z) + 2(W · P)(Z · X))J

(−2P · X)∆+J (2.21)

where the point P lies on the boundary and the polarization vector corresponding to
the boundary point is denoted by Z. The normalization constant C∆,J is fixed as

C∆,J =
(J + ∆ − 1)Γ(∆)

2πd/2(∆ − 1)Γ(∆ + 1 − h)
. (2.22)

One can also introduce corresponding DA
Z operator to recover indices which is bound-

ary analogue of the operator KA (2.10) introduced earlier as follows:

DA
Z =

(
h − 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA ∂2

∂Z · ∂Z
. (2.23)

where we have used the notation h = d
2 .

2.5 Spectral Representation

Like in flat space, we have the fourier transform of propagators, in the same way
we have analogue in AdS known as the Spectral Representation of propagators. In
this representation we map functions from space of coordinates to space in variable
ν. The analogy works very well even the variable ν in spectral representation can
be thought of as AdS analogue of the variable p in flat space fourier transformation.
This representation will be the key to do computations in the later chapters because
of two nice properties, one being able to spilt the bulk to bulk propagators into two
bulk to boundary propagators integrated over a common boundary point (as we
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will see in the later part of this section) and other property is that it helps us to
write infinite sum of certain diagrams with "Bubbles" ( we will see in later chapters)
as geometric sum. In this representation we will expand the propagator in terms
of basis functions called harmonic functions denoted by Ων,J , where the subscript
denotes that these harmonic functions are parameterized by the spectral parameter
ν and the spin J. So first let us see some key properties of these functions, like these
functions are eigen functions of the laplacian and are divergence free,(

∇2
1 + h2 + ν2 + J

)
Ων,J (X1, X2; W1, W2) = 0

∇1 · K1Ων,J (X1, X2; W1, W2) = 0
(2.24)

We can write these harmonic functions as difference of two bulk to bulk propagators
for general spin J as follows:

Ων,J (X1, X2; W1, W2) =
iν
2π

(
Gh+iν,J (X1, X2; W1, W2)− Gh−iν,J (X1, X2; W1, W2)

)
.

(2.25)
We can rewrite harmonic functions in term of bulk to boundary propagators as well
but this is an integral expression,

Ων,J (X1, X2; W1, W2) =
ν2√Ch+iν,JCh−iν,J

π J!(h − 1)J

∫
∂

dPKh+iν,J (X1, P; W1, DZ)Kh−iν,J (X2, P; W2, Z) ,

(2.26)

It is because of this relation that the spectral representation is also known as the
Split representation because we can split the harmonic functions in terms of bulk to
boundary propagators integrated over a common boundary point. Note that in this
integral, we have Z as polarization vector in one propagator while DZ in other, this
is to make sure that in the index notation, these two propagators are contracted over
one index. If we were to find expression for bulk to bulk propagators contracted
over one index, one can can use K operators instead of DZ.

One can find convolution of two harmonic functions as follows:

1

J!
(

d−1
2

)
J

∫
AdS

dYΩν̄,J (X1, Y; W1, K)
∫

dνΩν,J (Y, X2; W, W2) = Ων̄,J (X1, X2; W1, W2)

(2.27)
This is the other property of harmonic functions that will help us to resum certain
families of Feynman diagrams in AdS in later chapters.
So far we have seen that we can write these harmonic function in terms of the propa-
gators but our goal is to expand the propagators in terms of harmonic functions and
one can do that as follows [77]:

G∆,J (X1, X2; W1, W2) =
J

∑
l=0

∫
dνal(ν) ((W1 · ∇1) (W2 · ∇2))

J−l Ων,l (X1, X2; W1, W2)

(2.28)
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FIGURE 2.1: Splitting the bulk to bulk propagator in terms of bulk to bound-
ary propagator

where al(ν) is generic function of ν. We can use (2.26) in the above expression
and it will split the bulk to bulk propagator in terms of two of bulk to boundary
propagators as in figure 2.1. Let us see how we can write for spin 0 [74] and spin 1
propagator [77],

G∆=∆+ (X1, X2) =
∫ +∞

−∞
dν

1

ν2 +
(

∆ − d
2

)2 Ων (X1, X2) (2.29)

The above expression correspond to the bulk to bulk propagator with Dirichlet con-
dition and it is easy to check it is true as we can write the harmonic function using
(2.25) and do the integral. To do the integral, one should note that the first term in
(2.25) can be only closed in the contour in lower half plane and the second term can
be closed in the upper half plane and thus both terms contribute to give full propa-
gator.

Naively one would think this trick would work for any spin J as we can use (2.25)
everytime but this is not the case as the expression (2.28) suggest, let us check for
spin 1 case that would be relevant to study gauge propagator for Quantum Electro-
dynamics,

G∆,1 (X1, X2; W1, W2) =
∫ dνΩν,1 (X1, X2; W1, W2)

ν2 + (∆ − h)2

−
∫ dν (W1 · ∇1) (W2 · ∇2)Ων,0 (X1, X2)

(∆ − 1)(2h − ∆ − 1) (ν2 + h2)
.

(2.30)

The first term will give us the bulk to bulk propagator and in addition to this we
will have extra contribution from other unphysical poles in this term, which will be
cancelled by the second term in the expression (2.30). The details are in (A).
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2.6 Review of CFT

We wil briefly review some of the things about conformal field theories (CFTs). They
are like any other Quantum Field Theories for most of the part but they have ad-
ditional symmetries known as "Dilations" or scale transformations xµ → λxµ and
"Special conformal transformation" which can be viewed as a coordinate transfor-
mation x → x′(x) = xµ−aµx2

1−2(a·x)+a2x2 . These two symmetries extend the Poincaré group
to the conformal group with generators (in Rd) given by [17]:

Kµ = 2xµ(xν∂ν)− x2∂µ,

D = xµ∂µ,

Pµ = ∂µ,

Mµν = xν∂µ − xµ∂ν.

(2.31)

These generators satisfy the following relations:[
Mµν, Kρ

]
= δνρKµ − δµρKν,[

Kµ, Pν

]
= 2δµνD − 2Mµν,[

D, Pµ

]
= Pµ,[

D, Kµ

]
= −Kµ.

(2.32)

This additional symmetry has impact on structure of correlation functions and be-
cause of this, it restrict the possible form of the n-point correlation functions. In
general we can write n-point correlation functions as sum of (n − 1) point correla-
tion functions and this is called Operator Product Expansion or OPE. It is defined as
follows:

⟨O1 (x1)O2 (x2) · · · On (xn)⟩ = ∑
k

C12k (x12, ∂2) ⟨Ok (x2) · · · On (xn)⟩ (2.33)

where, C12k (x12, ∂2) are some differential operators (see [17] for more details). In
above expression we are expanding in |x1 − x2| and replacing O1 and O2 with Ok.
Note that O are primary operators and on the RHS of the equation we have included
all the contributions of descendants (i.e. derivatives of primary operators) in the co-
efficient C12k which are series expansions in the derivative ∂2, with relative coeffi-
cients fixed by the conformal symmetry. In CFTs, three point functions are fixed by
conformal symmetry up to some finite constants. Since in this thesis, we are dealing
with QED models, one important 3-point function would be of 2 scalar fields and
one vector field which would correspond to cubic interaction in QED. In general
3-point functions of two scalar fields and one operator of spin ℓ would be given by
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FIGURE 2.2: 3-point witten diagram in AdS space

[17],

⟨ϕ1 (x1) ϕ2 (x2)Oµ1 ...µℓ (x3)⟩ =
fϕ1ϕ2O

(
(

xµ1
13

x2
13
− xµ1

23
x2

23
) · · · x

µℓ
13

x2
13
− x

µℓ
23

x2
23
− traces

)
x∆1+∆2−∆3+ℓ

12 x∆2+∆3−∆1−ℓ
23 x∆3+∆1−∆2−ℓ

31

, (2.34)

Here, Oµ1···µℓ is spin ℓ operator while phi1 and ϕ2 are scalar/ spin 0 operators,
∆1, ∆2, ∆3 are scaling dimensions of ϕ1, ϕ2 and Oµ1···µℓ operator respectively. Note
that fϕ1ϕ2O is some constant which depends on the theory.

2.7 Three point functions

We need to know the 3-point function in embedding formalism 2.2. As it was men-
tioned in the Chapter 1 that AdS space has conformal boundary and because of this
3-operators inserted at boundary will result in 3-point CFT function and this would
also be fixed by conformal symmetry upto a constant like (2.34). One can consider
general cubic term in lagrangian in AdS as follows [77]:

gϕ1ϕ2h

∫
AdS

dx
√

g
(
ϕ2∇µ1 · · · ∇µJ ϕ1

)
hµ1···µJ , (2.35)

where gϕ1ϕ2h is the coupling constant.

〈
Oϕ1 (P1)Oϕ2 (P2)Oh (P3, Z)

〉
=

gϕ1ϕ2h√C∆1C∆2C∆,J

∫
AdS

dXK∆2,0 (X, P2)
K∆,J (X, P3; K, Z) (W · ∇)JK∆1,0 (X, P1)

J!
(

d−1
2

)
J

=

gϕ1ϕ2h√C∆1C∆2C∆,J
b (∆1, ∆2, ∆, J)

((Z · P1) P23 − (Z · P2) P13)
J

P
∆1+∆2−∆+J

2
12 P

∆1+∆−∆2+J
2

13 P
∆+∆2−∆1+J

2
23

,

(2.36)
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In the above expression we have ∆1,∆2 as the scaling dimensions of the scalar fields,
∆ for spin J operator and we have used the notation Pij = −2Pi · Pj. Also, note that
the normalization constants C∆1 and C∆2 for spin 0 are obtained by putting J = 0
in the expression (2.22) (note that if spin is not explicitly stated, assume that it is
spin 0 in this thesis). This 3 point function in AdS can be fixed up to a constant
(b (∆1, ∆2, ∆, J)) because of conformal symmetry like we saw in previous section and
to find the constant one need to evaluate the AdS integral (see [77] for details). We
can clearly see that (2.36) looks very similar to (2.34) and the constant b (∆1, ∆2, ∆, J)
can be written in terms of b (∆1, ∆2, ∆, 0) as a recursive relation (see [77]),

b (∆1, ∆2, ∆, J) = 2J
(

∆ + ∆2 − ∆1 − J
2

)
J

C∆,J

C∆,0

C∆1

C∆1+J

(∆1)J

(∆)J
b (∆1 + J, ∆2, ∆, 0) =

= C∆1C∆2C∆,J

π
d
2 Γ
(

∆1+∆2+∆−d+J
2

)
Γ
(

∆1+∆2−∆+J
2

)
Γ
(

∆+∆1−∆2+J
2

)
Γ
(

∆+∆2−∆1+J
2

)
21−JΓ (∆1) Γ (∆2) Γ(∆ + J)

(2.37)
for,

b (∆1, ∆2, ∆, 0) = C∆1C∆2C∆

π
d
2 Γ
(

∆1+∆2+∆−d
2

)
Γ
(

∆1+∆2−∆
2

)
Γ
(

∆1+∆−∆2
2

)
Γ
(

∆+∆2−∆1
2

)
2Γ (∆1) Γ (∆2) Γ(∆)

.

(2.38)

2.8 Embedding Formalism dS

In this section, we will be writing results of dS corresponding to results of AdS.
Note that here we will not be discussing propagators and correlation functions(we
will discuss them in later chapters). The main difference that comes in case of dS is
from the fact that in dS inner product of two vectors is normalized to 1 and not −1
i.e., ηABXAXB = 1.

In case of dS space, everything will remain same, we will embed this in higher
dimensional Minkowski space, and then we want to write propagators and other
things in terms of polarization vectors and not indices. One can define similar K
operator in dS in the same way we defined in AdS (2.10) as follows:

KdS
A =

d − 1
2

(
∂

∂WA − XA

(
X · ∂

∂W

))
+

(
W · ∂

∂W

)
∂

∂WA − XA

(
W · ∂

∂W

)(
X · ∂

∂W

)
− 1

2
WA

(
∂2

∂W · ∂W
−
(

X · ∂

∂W

)(
X · ∂

∂W

))
.

(2.39)

Note that one can visualize the difference between (2.10) and (2.39), by intuitively
connecting XAdS to XdS as XAdS = iXdS. In the same way, one we can find the
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differential operator in dS corresponding to (2.11) as,

∇A =
∂

∂XA − XA

(
X · ∂

∂X

)
− WA

(
X · ∂

∂W

)
. (2.40)

2.9 In-In formalism

When we are dealing with cosmology or physics in dS, one can define correlation
function on a fixed time slice and we do it by "in-in" formalism where expectation
value of product of fields A(t) at a fixed time slice is defined by (the in-in formalism
was applied to cosmology in [91–93], see also reviews in [94, 95]),

⟨A(t)⟩ =
〈(

Te−i
∫ t

t0
Hint(t′)dt′

)†

A(t)
(

Te−i
∫ t

t0
Hint(t′′)dt′′

)〉
. (2.41)

Here, the expectation value is defined with respect to the initial state which is gen-
eralization of the Bunch-Davis |Ω (t0)⟩.
Note that, in this formalism, we have different kind of propagators for internal
vertex points depending on where the vertex point is coming from, for example
it can come from left (l) (Anti-Time ordered) Hamiltonian or right (r) (Time or-
dered) Hamiltonian. So, we have 3 different bulk to bulk propagators defined as
Gll , Grr, Glr. In next chapter we will discuss the scalar field theory in dS and there
these three different propagators are defined as follows:

Gll
ν = Wν(s + iϵ), Grr

ν = Wν(s − iϵ), Glr
ν = Wν (s − iϵ sgn (tl − tr)) . (2.42)

Note that it is convenient to define them using the s = X1 · X2 which is related to
u as u = 1 − s and the variable ν is related to scaling dimension as ∆ = d

2 ± iν and
Wν(s) is defined as follows:

Wν(s) =
Γ
(

d
2 + iν

)
Γ
(

d
2 − iν

)
(4π)

d+1
2 Γ
(

d+1
2

) 2F1

(
d
2
+ iν,

d
2
− iν,

d + 1
2

,
1 + s

2

)
. (2.43)

We also need to find the propagator that can connect the bulk point to the point at
the late time boundary and we can call it as bulk to boundary propagator in this
context. Similar to bulk to bulk propagators, we can have two kinds of bulk to
boundary propagators depending on the bulk internal vertex point,

Kl
ν(s) =

1

4π
d
2 +1

Γ
(

d
2 − iν

)
Γ(iν)

(−2s + iϵ)
d
2−iν

Kr
ν(s) =

1

4π
d
2 +1

Γ
(

d
2 − iν

)
Γ(iν)

(−2s − iϵ)
d
2−iν

.

(2.44)
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2.10 Rotation from AdS to dS

The physics of dS space is very important as dS space resembles very much to our
own universe with expanding geometry. Similar to the case of AdS, also dS has a
conformal boundary, though in this case it is a spacelike one, namely the "late time
boundary" at future infinity (and, if we consider the full global dS, also the analogue
boundary at past infinity). So, in this case it makes sense to calculate observables
for at fixed time slice and hence we will be using "in-in" formalism explained in
previous section. Now the question is, can these late time cosmological correlators
be related to conformal boundary correlation function in AdS? To know this, first
we need to understand the relation between propagators in AdS and dS and then
we can try to answer the said question. As we saw in "in-in" formalism that in dS
there are different types of propagators, we need to analytically continue all three of
them to AdS space.

First, let us recall few things about AdS and dS space, starting from inner product of
the coordinates,

ηABXA
AdSXB

AdS =− 1,

ηABXA
dSXB

dS =1.
(2.45)

And the coordinates of AdS and dS space can written as follows:

XA
dS =

(
1 − η2 + |y|2

2η
,

ya

η
,

1 + η2 − |y|2
2η

)
,

XA
AdS =

(
1 + z2 + |y|2

2z
,

ya

z
,

1 − z2 − |y|2
2z

)
.

(2.46)

Looking at the above parameterization, one reasonable analytic continuation would
be η → ±iη (now after analytically continuing, η would correspond to the z coor-
dinate of EAdS) and since in "in-in" formalism,we have two kinds of internal coor-
dinates depending on if it is coming from left or right hamiltonian, one proposed
analytic continuation is [81–84] as follows:

ηl → e
iπ
2 ηl ,

ηr → e−
iπ
2 ηr.

(2.47)

With above transformation, our distance variable u and s will transform as well. But
first recall their definitions,

uAdS =
ζ AdS

2
=

(
XAdS

1 − XAdS
2

)2

2
= −1 − XAdS

1 · XAdS
2 = −1 − sAdS,

udS =
ζdS

2
=

(
XdS

1 − XdS
2

)2

2
= 1 − XdS

1 · XdS
2 = 1 − sdS.

(2.48)
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Now let us write scalar propagators for both the AdS and dS space in variable s as
follows:

GAdS
ν

(
sAdS

)
=

Γ
(

d
2 + iν

)
2π

d
2 Γ(1 + iν) (−2 (sAdS + 1))

d
2+iν 2F1

(
d
2
+ iν,

1
2
+ iν, 1 + 2iν,

2
sAdS + 1

)
,

(2.49)
Gll

ν = Wν(sdS + iϵ), Grr
ν = Wν(sdS − iϵ), Glr

ν = Wν

(
sdS − iϵ sgn (tl − tr)

)
.

(2.50)
where we have used,

Wν(sdS) =
Γ
(

d
2 ± iν

)
(4π)

d+1
2 Γ
(

d+1
2

) 2F1

(
d
2
+ iν,

d
2
− iν,

d + 1
2

,
1 + sdS

2

)
. (2.51)

Note, here we have used the notation Γ(a ± b) = Γ(a + b)Γ(a − b).

In this section, we have defined our propagators in the variable s for both AdS and
dS space and hence it makes sense to first see how s transforms under the analytic
continuation (2.47). There will be two transformation depending on if the coordinate
is coming from left or right Hamiltonian as follows:

sdS
(

Xl
1, Xr

2

)
→ sAdS (X1, X2) ,

sdS
(

Xl(r)
1 , Xl(r)

2

)
→ −sAdS

(
XAdS

1 , XAdS
2

)
.

(2.52)

Let us first take the case when one coordinate is coming from left and other one is
coming from right hamiltonian i.e. s

(
Xl

1, Xr
2
)
→ sAdS (X1, X2) and find the relation

between the propagator Glr
ν in dS and GAdS

ν in AdS and (we will use hypergeometric
identities),

Glr
ν (s

dS) →
Γ
(

d
2 ± iν

)
(4π)

d+1
2 Γ
(

d+1
2

) 2F1

(
d
2
+ iν,

d
2
− iν,

d + 1
2

,
1 + sAdS

2

)
. (2.53)

Where we have replaced sdS with sAdS and now we can use the following identity:

F(a, b, c, z) = (1 − z)−aF
(

a, c − b, c,
z

z − 1

)
. (2.54)

Glr
ν (sdS) will now become (for convenience, 2F1 is just represented by F),

Glr
ν (s

dS) → 1

4π
d+1

2

Γ
(

d
2 ± iν

)
Γ
(

d+1
2

) (
1 − sAdS

2

)−( d
2+iν)

F
(

d
2
+ iν,

1
2
+ iν,

d + 1
2

,−
(

1 + sAdS

1 − sAdS

))
.

(2.55)
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We further, use the following identities:

F(a, b, c, z) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

F(a, b, a + b + 1 − c, 1 − z)

+
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(1 − z)(c−a−b)F(c − a, c − b, 1 + c − a − b, 1 − z),

Γ(z)Γ
(

z +
1
2

)
=21−2z√πΓ(2z).

(2.56)

Now the transformation of Glr
ν (sdS) is as follows:

Glr
ν (s

dS) → 1

4π
d+1

2

Γ
(

d
2 ± iν

)
Γ
(

d+1
2

) (
1−sAdS

2

)( d
2+iν)

 Γ
(

d+1
2

)
Γ(−2iν)

Γ
( 1

2 − iν
)

Γ
(

d
2 − iν

)F
(

d
2
+ iν,

1
2
+ iν, 2iν + 1,

2
1 − sAdS

)

+
Γ
(

d+1
2

)
Γ(2iν)

Γ
( 1

2 + iν
)

Γ
(

d
2 + iν

) (
1−sAdS

2

)−2iν F
(

d
2
− iν,

1
2
− iν,−2iν + 1,

2
1 − sAdS

) ,

→ 1

4π
d+1

2

 Γ
(

d
2 + iν

)
Γ(−iν)

√
π21+2(iν)

((
1−sAdS

2

)) d
2+iν

F
(

d
2
+ iν, iν +

1
2

, 2iν + 1,
2

1 − sAdS

)
+ ν → −ν

 .

(2.57)

Finally we can use the identity F(a, b, c, z) = (1 − z)−aF
(
a, c − b, c, z

z−1

)
once again

and we will have the following relation between AdS and dS propagators:

Glr
ν (s

dS) → iν
2π

Γ(±iν)
[

GAdS
ν (sAdS)− GAdS

−ν (sAdS)
]

. (2.58)

Now let us take a look at the other scenario where both the coordinates are coming
from the same hamiltonian either right or left i.e. s

(
Xl

1, Xr
2
)
→ −sAdS (X1, X2). In

this case we want to find the similar relation between Gl(r)l(r)
ν and GAdS

ν and we start
as follows:

Wν(sdS) →
Γ
(

d
2 ± iν

)
(4π)

d+1
2 Γ
(

d+1
2

) 2F1

(
d
2
+ iν,

d
2
− iν,

d + 1
2

,
1 + sAdS

2

)
(2.59)

Now we can use the following identities to rewrite the transformation:

F(a, b, c, z) =
Γ(b − a)Γ(c)

Γ(b)Γ(c − a)(−z)a F
(

a, a − c + 1, a − b + 1,
1
z

)
+

Γ(a − b)Γ(c)
Γ(a)Γ(c − b)(−z)b F

(
b, b − c + 1, b − a + 1,

1
z

)
,

Γ(z)Γ
(

z +
1
2

)
= 21−2z√πΓ(2z).

(2.60)
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We can write the transformation as function of ν and −ν as follows:

Wν(sdS) → 1

4π
d+1

2

 Γ
(

d
2 + iν

)
Γ(−iν)

√
π21+2(iν)

(
−
(

1−sAdS

2

)) d
2+iν

F
(

d
2
+ iν, iν +

1
2

, 2iν + 1,
2

1 − sAdS

)
+ ν → −ν


(2.61)

We further use the following identity:

F(a, b, c, z) = (1 − z)−aF
(

a, c − b, c,
z

z − 1

)
. (2.62)

Finally, we can write it as linear sum GAdS
ν (sAdS) and GAdS

−ν (sAdS) as follows:

WdS
ν (sdS) → iν

2π
Γ(±iν)

[
1

(−1)(
d
2+iν)

GAdS
ν (sAdS)− 1

(−1)(
d
2−iν)

GAdS
−ν (sAdS)

]
. (2.63)

Upon further simplification we have the following relations:

Gll
ν (s

dS) → iν
2π

Γ(±iν)
[
eiπ( d

2+iν)GAdS
ν (sAdS)− eiπ( d

2−iν)GAdS
−ν (sAdS)

]
,

Grr
ν (s

dS) → iν
2π

Γ(±iν)
[
e−iπ( d

2+iν)GAdS
ν (sAdS)− e−iπ( d

2−iν)GAdS
−ν (sAdS)

]
.

(2.64)

In the same way one can relate boundary propagators of dS and AdS as well, [81–84]

Kl
ν(s) → (−ηc)

d
2−iν ei π

2 (
d
2−iν) Nν

NAdS
−ν

KAdS
−ν (X, P),

Kr
ν(s) → (−ηc)

d
2−iν e−i π

2 (
d
2−iν) Nν

NAdS
−ν

KAdS
−ν (X, P),

(2.65)

where,

NAdS
ν =

 Γ
(

d
2 + iν

)
2πd/2Γ(1 + iν)


1
2

,

Nν =
1

4π
d
2+1

Γ
(

d
2
− iν

)
Γ(iν).

(2.66)

We have seen how to relate, bulk to boundary and bulk to bulk propagators. To
relate the feynman diagrams in dS and AdS, we also need to understand the trans-
formation of the integration measure (for the internal bulk/vertex point) as follows:

i
∫ dηl

(−ηl)
d+1 → e−i π

2 (d−1)
∫ dz

zd+1 , −i
∫ dηr

(−ηr)d+1 → ei π
2 (d−1)

∫ dz
zd+1 . (2.67)
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Lagrangian in dS

Now we have all the important ingredients to rewrite the lagrangian in AdS that can
give us feynman diagrams for dS using the relation of propagators and integration
measure we found in previous section. We will consider lagrangian for single field
for the moment. As we are doing calculations in "in-in" formalism, we have two
fields ϕl and ϕr, we will further divide each one into two more fields and thus we
will have total four scalar fields ϕl/r

± depending on ±ν part of propagator obtained
upon analytic continuation to AdS.

We can define the matrix Dϕ as follows (GdS
ϕ,ll,+ denotes part of the propagator pro-

portional to GAdS
ϕ,ν and same for others):

[
GdS

ϕ,ll,+ GdS
ϕ,lr,+

GdS
ϕ,rl,+ GdS

ϕ,rr,+

]
= GAdS

ϕ,ν Dϕ, (2.68)

where,

Dϕ =
iν
2π

Γ(±iν)

[
eiπ( d

2+iν) 1

1 e−iπ( d
2+iν)

]
. (2.69)

Similarly, we can define the matrix Nϕ as follows (GdS
ϕ,ll,− denotes the part of the

propagator proportional to GAdS
ϕ,−ν and same for the others):

[
GdS

ϕ,ll,− GdS
ϕ,lr,−

GdS
ϕ,rl,− GdS

ϕ,rr,−

]
= GAdS

ϕ,−νNϕ, (2.70)

where,

Nϕ = − iν
2π

Γ(±iν)

[
eiπ( d

2−iν) 1

1 e−iπ( d
2−iν)

]
. (2.71)

Also note that the matrices Dϕ and Nϕ are singular and hence non-invertible as one
of the eigenvalue happened to be zero. So we can write these fields as follows:

ϕl/r
± = Cl/r

ϕ,±ϕ± + Cl/r
ϕ,±ϕ±. (2.72)

In above equation, we are we are picking coefficients Cl/r
ϕ,±, Cl/r

ϕ,± such that they diag-
onalize the matrices.

The coefficients Cl/r
ϕ,±, Cl/r

ϕ,± satisfy the following conditions :

Dϕ

[
Cl

ϕ,+

Cr
ϕ,+

]
=0,

Nϕ/A

[
Cl

ϕ,−
Cr

ϕ,−

]
=0,

(2.73)
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Dϕ

[
Cl

ϕ,+

Cr
ϕ,+

]
=λϕ,+

[
Cl

ϕ,+

Cr
ϕ,+

]
,

Nϕ

[
Cl

ϕ,−
Cr

ϕ,−

]
=λϕ,−

[
Cl

ϕ,−
Cr

ϕ,−

]
.

(2.74)

Let us look at the eigen equation for Dϕ,

iν
2π

Γ(±iν)
[
eiπ( d

2+iν)Cl
ϕ,+ + Cr

ϕ,+

]
= λϕ,+Cl

ϕ,+,

iν
2π

Γ(±iν)
[
e−iπ( d

2+iν)Cr
ϕ,+ + Cl

ϕ,+

]
= λϕ,+Cr

ϕ,+.
(2.75)

We can consider the solutions to be of the form,

Cl
ϕ,+ =

(
Cr

ϕ,+

)−1
= e−i π

2 (
d
2+iν)C. (2.76)

Upon solving, the set of equations we have, C = eiπ( d
2+iν) and hence,

Cl
ϕ,+ = ei π

2 (
d
2+iν),

Cr
ϕ,+ = e−i π

2 (
d
2+iν),

λϕ,+ = 2 cos
(

π

(
d
2
+ iν

))
· iν

2π
Γ(±iν).

(2.77)

Similarly, we can solve the following eigen equations for Nϕ:

− iν
2π

Γ(±iν)
[
eiπ( d

2−iν)Cl
ϕ,− + Cr

ϕ,−
]
= λϕ,−Cl

ϕ,−,

− iν
2π

Γ(±iν)
[
e−iπ( d

2−iν)Cr
ϕ,− + Cl

ϕ,−
]
= λϕ,−Cr

ϕ,−.
(2.78)

For this case, we can consider solution to be of the following form:

Cl
ϕ,− =

(
Cr

ϕ,−
)−1

= e−i π
2 (

d
2−iν)C. (2.79)

Upon solving, the set of equations for Nϕ we have, C = eiπ( d
2−iν) and hence,

Cl
ϕ,− = ei π

2 (
d
2−iν),

Cr
ϕ,− = e−i π

2 (
d
2−iν),

λϕ,− = −2 cos
(

π

(
d
2
− iν

))
· iν

2π
Γ(±iν).

(2.80)

Now with this information, we will first write the kinetic term of the lagrangian.
Recall that the kinetic term is nothing but the inverse of the propagator. Let us, first
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consider ϕ+ term where we have used the notation Cα
ϕ,+ = Cα

+ and for α, β = l/r,〈
ϕα
+ϕ

β
+

〉
= Dαβ

ϕ GAdS
ϕ,ν ,

=⇒ Cα
+Cβ

+ =
1

⟨ϕ+ϕ+⟩
Dαβ

ϕ GAdS
ϕ,ν ,

=⇒ (C+CT
+) =

1
⟨ϕ+ϕ+⟩

)DϕGAdS
ϕ,ν ,

=⇒ ⟨ϕ+ϕ+⟩ (CT
+C+)C+ = DϕGAdS

ϕ,ν C+,

=⇒ ⟨ϕ+ϕ+⟩ (CT
+C+) = λϕ,+GAdS

ϕ,ν ,

=⇒ ⟨ϕ+ϕ+⟩ =
λϕ,+GAdS

ϕ,ν

(CT
+C+)

.

(2.81)

In above equation (CT
+C+) index α is summed over.

Finally, we can have kinetic term in lagrangian as inverse of this propagator term as
follows:

LKin
ϕ,+ =

(CT
+C+)

λϕ,+

[ 1
2

(
∂ϕ+∂ϕ+ − m2ϕ2

+

)]
,

= − sin(iπν)
(
∂ϕ+∂ϕ+ − m2ϕ2

+

)
,

= −i sinh(πν)
(
∂ϕ+∂ϕ+ − m2ϕ2

+

)
.

(2.82)

Similarly we have the kinetic term for ϕ− fields,

LKin
ϕ,− = i sinh(πν)

(
∂ϕ−∂ϕ− − m2ϕ2

−
)

. (2.83)

After kinetic term, we can write potential as well [85],

VAdS
(

ϕl
+, ϕl

−, ϕr
+, ϕr

−
)
= e−i π

2 (d−1)V
(

ϕl
+ + ϕl

−
)
+ ei π

2 (d−1)V (ϕr
+ + ϕr

−) ,

= e−i π
2 (d−1)V

(
ei π

2 (
d
2+iν)ϕ+ + ei π

2 (
d
2−iν)ϕ−

)
+ ei π

2 (d−1)V
(

e−i π
2 (

d
2+iν)ϕ+ + e−i π

2 (
d
2−iν)ϕ−

)
.

(2.84)

Since we have the lagrangian, we can now relate diagrams in dS to diagrams in
AdS. We will use similar techniques to study gauge theory in dS, where in addition
to scalar fields, we will also have vector field and we will need to find relation be-
tween propagators in dS and AdS for vector fields and as well as between feynman
diagrams.
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Chapter 3

O(N) Model in AdS and dS

3.1 Introduction

O(N) model is a model with N number of scalar fields which are self interacting via
a O(N) symmetric quartic coupling. This model is used to describe phase transitions
in magnets.

In this chapter we will review what has been done for O(N) model in the literature
for flat space, AdS and dS. We will be referring to [73] for the case of flat space, [74]
for AdS and [90] for dS. The techniques explored in this chapter will become the basis
of the work done in Scalar QED and later chapter of the thesis. One important point
to note is that in this section we will be using a combination of large N and bootstrap
to calculate observable beyond the standard perturbation theory. The O(N) model
is a good starting point to understand interactions without invoking gauge fields,
and in next chapters we will see what subtleties arise in case of gauge interactions.

As stated earlier in the introduction of the thesis, AdS has nice properties such as
the curvature of AdS acts as IR regulator unlike flat space and we also have infinite
volume in AdS space unlike on the sphere and this gives the possibility of phase
transition. In this chapter we will see different phases of theory both in flat and AdS
space namely symmetry breaking (gapless) and symmetry preserving phase. We
will briefly comment on how this changes in dS.

3.2 O(N) Model in flat space

In this model there is O(N) symmetry under ϕi 7→ Mi
jϕ

j with MT M = I for real
scalar fields ϕi. First let us write the lagrangian for the O(N) model,

L =
1
2

(
∂ϕi
)2

+
m2

2

(
ϕi
)2

+
λ

2N

((
ϕi
)2
)2

. (3.1)

Here, we can see that λ is our quartic coupling, and it is the usual lagrangian of
scalar field theory except for the additional index of the field ϕ which denotes the
fact that we have N independent scalar fields and the index i runs from 1 to N. Also,
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FIGURE 3.1: Resummed σ propagator.
Double lines represent the resummed σ propagator and single black line rep-
resents the tree level σ propagator. The loop represent the bubble of scalar

fields.

note that summation on the repeated flavour index is implied. We are going to study
this theory on flat space RD as a reference for later.

In [74] and [73], the effective action is used in the large N limit to study different
phases, but in this section we will use different presentation based on resummation
of Feynaman diagrams to get the same results. First, we will introduce an auxillary
field known as Hubbard Stratonovich field i.e. σ, and rewrite the above lagrangian
in terms of this new field, this helps to do computation in large N conveniently.
Note that on-shell we have, σ = λ√

N
ϕiϕi and integrating it out we can get previous

lagrangian. Consequently, the lagrangian will become (Euclidean signature),

L =
1
2

(
∂ϕi
)2

+
m2

2

(
ϕi
)2

− 1
2λ

σ2 +
1√
N

σ
(

ϕi
)2

. (3.2)

In the above lagrangian, note that now we have a cubic coupling instead of a quartic
coupling. Now we will not be doing expansion in the coupling λ but instead we
will be doing expansion in 1

N and hence in this way, our results will be valid for any
value of λ. The idea here is that we will introduce resummed propagator or exact
propagator instead of simply using tree level propagagtor to calculate observables.
And we can do this by adding bubbles or 1PI diagrams to the tree level propagator
as in the figure 3.1.

Here, we can see that first term is usual tree level propagator while the second term
has extra loop and another tree level propagator but we can see that despite of this,
even this diagram will contribute at the same order of N, because each extra internal
vertex gives a factor of 1√

N
while the loop gives an additional factor of N as there

are N scalar field present in the loop. We can extend this logic to third, fourth and
other remaining infinite terms in the summation and hence it will become sum of
infinite terms in geometric series. In order to proceed, we need to calculate this loop
or bubble function for our case in flat space.

It is clear from the lagrangian (3.2) that the tree level propagator is given by (as there
is no other kinetic or quardatic term of σ),

⟨σσ⟩ = −λ. (3.3)
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FIGURE 3.2: 1PI diagram or bubble of two scalar fields.

Now let us take a look at the bubble term or the 1PI term in the figue 3.2,

2
∫ ddk

(2π)d
1

k2 + m2
1

(k + p)2 + m2 . (3.4)

An explicit calculation with feynman parameter gives:

BD
(

p2, M2) = ∫ dDk
(2π)D

1
(k2 + M2) ((k + p)2 + M2)

=
Γ
(
2 − D

2

) (
M2) D

2 −2

(4π)D/2(3 − D)

((
D − 6 − 4M2

p2

)
2F1

(
1, 2 − D

2
,

1
2

,− p2

4M2

)
+

(
1 +

4M2

p2

)
2F1

(
1, 2 − D

2
,−1

2
,− p2

4M2

))
.

(3.5)

Now we can use tree level propagator and the bubble to find the resummed or exact
propagator as in 3.1,

⟨σσ⟩ |resummed = −λ + (−λ)2BD(−λ) + . . . ,

=
−λ

1 + 2λBD
= − 1

1
λ + 2BD

.
(3.6)

This exact propagator is valid as long as there is no VEV of the field ϕ. This phase
is called O(N) symmetry preserving phase in which the scalar fields are massive.
On the other hand when ϕ fields attain VEV then the phase become gapless as the
scalar fields become massless goldstone bosons (shown in the figure 3.3). Let us see
what happens in this case, by writing the fields as constant field and fluctuations as
below:

ϕA = πA,

ϕN = (
√

NΦ + ρ),

σ = σ̂ +
√

NΣ.

(3.7)

Here, note that A runs from 1 to N − 1 and without the loss of generality we have
oriented ⟨ϕi⟩ in the direction of N. Though most of these equations remain same for
general dimension D, in gapless phase, we are now focused for D = 3. We can plug
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FIGURE 3.3: Different Phase in O(N)model

these back to our original lagrangian (3.2) and our modified lagrangian becomes,

L =
1√
N

(
σ̂πAπA +

√
NΣπAπA + NΦ2σ̂ + ρ2σ̂ + 2

√
NΦρσ̂ + N

√
NΣΦ2 +

√
NΣρ2 + 2NΦρΣ

)
−1
2λ

(
σ̂2 + 2

√
NΣσ̂ + NΣ2

)
+

m2

2

(
πAπA + NΦ2 + ρ2 + 2

√
NΦρ

)
+
(
∂µρ
)
(∂µρ) +

(
∂µπA

) (
∂µπA

)
.

(3.8)

Fluctuations in σ̂, π, ρ should be zero:

⟨σ̂⟩ =
〈

πA
〉
= ⟨ρ⟩ = 0. (3.9)

The equation for ρ gives: (
2
√

NΣΦρ + m2
√

NΦρ
)
= 0,

⇒
√

NΦ(Σ +
m2

2
)ρ = 0,

⇒ Σ =
−m2

2
.

(3.10)

Above, we have assumed Φ is not equal to zero.

Notice that by using the above result, the coefficients πAπA becomes zero which
implies mass of these fields are now zero in the broken phase.

For σ̂, we obtain: (
1√
N

πAπA +
√

NΦ −
√

N
λ

Σ

)
σ̂ = 0. (3.11)

Let us first evaluate the first term of the above expression i.e. ⟨ 1√
N

πAπA⟩ as follows:

√
N
∫

d3 pP
(

πA
)

, (3.12)

where P
(
πA) denotes propagator or πA fields.

Since πA have become massless,we have:

∼
√

N
∫ d3 p

p2 , (3.13)
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and the above integral is trivially zero in dimensional regularization. So we have
finally,

√
NΦ2 −

√
N

λ
Σ = 0,

Φ2 +
m2

λ
= 0 ⇒ Φ2 = −m2

λ
.

(3.14)

Important terms in ρ − σ̂ system are as follows:

(
∂µρ
)
(∂µρ) + 2Φρσ̂ − σ̂2

2λ
+

1√
N

σ̂πAπA. (3.15)

Note that in the above case for the bubble in σ̂ propagator we have the massless π

fields and hence the bubble corresponds to 2B3(p2, 0).

The σ̂ − ρ matrix for d = 3 is written below (along the diagonal the first entry is σ̂σ̂

and the the last entry is ρρ while off-diagonal terms are σ̂ − ρ and ρ − σ̂):

M =

(
− 1

λ − 2B3
(

p2, 0
)

2Φ
2Φ p2

)
. (3.16)

The inverse of above matrix is as follows:

M−1 =
1[

p2 (− 1
λ − 2B3

(
p2, 0

))
−4Φ2

] ( p2 −2Φ
−2Φ − 1

λ − 2B3
(

p2, 0
) ) . (3.17)

From above, the σ̂ propagator is as follows :

⟨σ̂σ̂⟩ = p2(
p2
(
− 1

λ − 2B3
)
− 4Φ2

) . (3.18)

With this new propagator, we can calculate S-matrix Amplitudes for two to two
scattering in gapless phase. It is also noted that these two phases are separated by
a CFT. Upon analyzing the structure of scattering amplitude in gapless phase, one
finds a resonance in the system.

3.3 O(N) model in AdS space

Now we want to implement the same techniques in case of AdSd+1 (Euclidean signa-
ture) space but there is one problem, the computation to calculate the bubble is not
straightforward. The idea that we will use is that AdS space has a conformal bound-
ary that will help us to bootstrap the bubble and hence we do not need to calculate
it directly. In this section, we will borrow the techniques like spectral representation
and embedding formalism explained in the chapter 2.
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FIGURE 3.4: One bubble and one σ propagator in the bulk

First we write the tree level propagator and the bubble in terms of the spectral rep-
resentation,

⟨σ(X)σ(Y)⟩ |tree level=
∫ ∞

−∞
dν

1
λ−1 Ων(X, Y), (3.19)

scalar bubble in the figure 3.2 = 2
∫ ∞

−∞
dνB̃(ν)Ων(X, Y). (3.20)

Note that here we do not know the form of B̃(ν) and we will bootstrap it later, but
first we will write the resummed propagator like in flat space (3.6) but this time
using the spectral representation. Note that to do so, we have to use convolution
relation of two harmonic functions that we discussed in the previous chapter (2.27)
and then we will again be able to write it as a geometric sum.

First let us see, the structure of just one tree level σ propagator and one bubble as in
the figure 3.4,

−
∫

AdS
dX1

∫ ∞

−∞
dν

1
λ−1 Ων(X, X1)

∫ ∞

−∞
dν̄2B̃(ν̄)Ων̄(X1, Y),

−
∫ ∞

−∞
dν

1
λ−1

∫
AdS

dX1Ων(X, X1)
∫ ∞

−∞
dν̄2B̃(ν̄)Ων̄(X1, Y),

−
∫ ∞

−∞
dν

1
λ−1 · 2B̃(ν)Ων(X, Y).

(3.21)

Similarly we can write the first correction to the tree level propagator which consists
of two sigma propagator and one bubble as in the figure 3.1,

−
∫ ∞

−∞
dν

1
λ−1 · 2B̃(ν) · 1

λ−1 Ων(X, Y). (3.22)

Now, in the same way, we can find the structure of 2nd term in the figure 3.1,

−
∫ ∞

−∞
dν

1
λ−1 · 2B̃(ν) · 1

λ−1 · 2B̃(ν) · 1
λ−1 Ων(X, Y). (3.23)
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We see the pattern of the geometric series and hence the resummed σ propagator at
large N is as follows:

⟨σ(X)σ(Y)⟩ = −
∫ ∞

−∞
dν

[
1

λ−1 +
1

λ−1 · 2B̃(ν) · 1
λ−1

+
1

λ−1 · 2B̃(ν) · 1
λ−1 · 2B̃(ν) · 1

λ−1 + · · ·
]

Ων(X, Y).
(3.24)

Performing the sum we obtain:

⟨σ(X)σ(Y)⟩ = −
∫ ∞

−∞
dν

1
λ−1 + 2B̃(ν)

Ων(X, Y). (3.25)

3.3.1 4-point boundary correlation function

We will now be calculating 4 point conformal boundary correlation functions and
we will be putting some self consistency conditions on this which will in turn put
conditions on the unknown B̃(ν) and hence we will be able to bootsrap it (see [74]).

Let us write the four point function up to leading order in 1
N ,

〈
ϕi (P1) ϕj (P2) ϕk (P3) ϕl (P4)

〉
=

[
δijδkl

(P12)
∆ (P34)

∆ +
δikδjl

(P13)
∆ (P24)

∆ +
δilδjk

(P14)
∆ (P23)

∆

]

+

[
δijδkl g12|34 + δikδjl g13|24 + δilδjkg14|23

N

]
+O(

1
N2 ).

(3.26)

Here different g are related to four point boundary correlation function mediated by
a σ field. For example g12|34 is,

g12|34 = 4
∫

dX1dX2 ⟨σ (X1) σ (X2)⟩

× K∆ (P1, X1)K∆ (P2, X1)K∆ (P3, X2)K∆ (P4, X2) ,

= −4
∫ ∞

−∞
dν

1
λ−1 + 2B̃(ν)

∫
dX1dX2Ων (X1, X2)

× K∆ (P1, X1)K∆ (P2, X1)K∆ (P3, X2)K∆ (P4, X2) ,

= −4
∫ ∞

−∞
dν

1
λ−1 + 2B̃(ν)

ν2
√
C d

2+iνC d
2−iν

π

∫
dP0

×
∫

dX1K∆ (P1, X1)K∆ (P2, X1)K d
2+iν (P0, X1)

×
∫

dX2K∆ (P3, X2)K∆ (P4, X2)K d
2−iν (P0, X2) .

(3.27)



Chapter 3. O(N) Model in AdS and dS 36

𝑃1

𝑃2 𝑃4

𝑃3 𝑃1 𝑃3

𝑃2

𝑃0

𝑃4

𝑥1 𝑥2 𝑥1 𝑥2

FIGURE 3.5: From 4-point function to two 3-point function
Double line represent the resummed σ propagator. Blue lines represent scalar

field.

Note that in above equation K denotes bulk to boundary propagator for spin 0 give
by (2.21) for J = 0

K∆(P, X) =

√C∆

(−2P · X)∆ , (3.28)

where the point P is at the boundary and point X is in the bulk and the normalization
constant is given by:

C∆ =
Γ(∆)

2πd/2Γ
(

∆ − d
2 + 1

) . (3.29)

Also, note that above we have used the relation of harmonic functions and bulk to
boundary propagators for spin 0 (see,(2.26)) as follows:

Ων (X1, X2) =
ν2
√
C d

2+iνC d
2−iν

π

∫
dP0K d

2+iν (P0, X1)K d
2−iν (P0, X2) . (3.30)

We can see that (3.27) which represent 4-point correlation function can be under-
stood as product of two 3-point correlation functions integrated over a common
point as shown in the figure (3.5).

Now we will do integral over bulk points X1 and X2, which will be given by 3-point
conformal boundary correlation functions as follows:

∫
dXK∆1 (P1, X)K∆2 (P2, X)K∆3 (P3, X) =

π
d
2

2

√
C∆1C∆2C∆3 Γ

(
−d

2
+

∆1 + ∆2 + ∆3

2

)

·
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1−∆2+∆3
2

)
Γ
(
−∆1+∆2+∆3

2

)
Γ (∆1) Γ (∆2) Γ (∆3)

· 1

(P12)
∆1+∆2−∆3

2 (P23)
∆2+∆3−∆1

2 (P31)
∆3+∆1−∆2

2

.

(3.31)
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We can use (3.31) in (3.27) and the problem will now just reduce to integral over the
commmon point P0 as follows:

g12|34 =− 4
∫ ∞

−∞
dν

1
λ−1 + 2B̃(ν)

ν2C d
2+iνC d

2−iν

16π

Γ2
(

∆ − d
4 +

iν
2

)
Γ2
(

∆ − d
4 − iν

2

)
Γ2
(

d
4 +

iν
2

)
Γ2
(

d
4 − iν

2

)
Γ2(∆)Γ2(∆ − d

2 + 1)Γ( d
2 + iν)Γ( d

2 − iν)

× 1

(P12)
∆− d

4− iν
2 (P34)

∆− d
4+

iν
2

∫ dP0

(P10)
d
4+

iν
2 (P20)

d
4+

iν
2 (P30)

d
4− iν

2 (P40)
d
4− iν

2
.

(3.32)
This integral is well known in literature in terms of conformal block K∆ and here
z and z̄ are cross ratios defined as P12P34

P13P24
= zz̄, P14P23

P13P24
= (1 − z)(1 − z̄), and the

constant k(∆) = π
d
2 Γ(∆− d

2 )Γ
2( d

2− ∆
2 )

Γd−∆Γ2( ∆
2 )

and hence,

1

(P12)
∆− d

4− iν
2 (P34)

∆− d
4+

iν
2

∫ dP0

(P10)
d
4+

iν
2 (P20)

d
4+

iν
2 (P30)

d
4− iν

2 (P40)
d
4− iν

2
=

1

(P12)
∆ (P34)

∆

(
k d

2−iνK d
2+iν(z, z̄) + k d

2+iνK d
2−iν(z, z̄)

)
.

(3.33)

Finally, we have our full expression of the σ exchange 4-point boundary Witten dia-
gram in terms of conformal blocks,

g12|34 =− 1

(P12)
∆ (P34)

∆

∫ dν

2π

1
λ−1 + 2B̃(ν)

·
Γ2
(

∆ − d
4 +

iν
2

)
Γ2
(

∆ − d
4 − iν

2

)
Γ4
(

d
4 +

iν
2

)
Γ2(∆)Γ2(∆ − d

2 + 1)Γ( d
2 + iν)Γ(iν)

K d
2+iν(z, z̄).

(3.34)

3.3.2 Bootstrapping the Bubble

Now, the next task is to put consistency conditions to bootstrap the unknown B̃(ν).
We will do that by checking consistency of the 4 point conformal boundary correla-
tion function (3.26) as done in [74]. One can take a projection on the O(N)-singlet
channel of (3.26) by contracting with δijδkl/N2, giving:

δijδkl

N2

〈
ϕi (P1) ϕi (P2) ϕk (P3) ϕk (P4)

〉
=

1

(P12)
∆ (P34)

∆ +
1
N

[
1

(P13)
∆ (P24)

∆ +
1

(P14)
∆ (P23)

∆ + g12|34

]
+O

(
1

N2

)
.

(3.35)

Here, we can see that disconnected diagrams from t and u channel contribute at
order of 1

N along with s channel connected diagram at large N. Note that connected
t and u channel in (3.26) after the projection shift to order of 1

N2 . Let us inspect
the OPE expansion of each term in this expression. The first term contains only the
identity operator. At 1

N , there are two kind of terms, the disconnected contribution
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or free fields (no interaction) that can written as sum of double trace operators [96],

1

(P13)
∆ (P24)

∆ +
1

(P14)
∆ (P23)

∆ =
1

(P12)
∆ (P34)

∆ ∑
ℓ,n

ℓ: even

2c2
n,ℓK2∆+2n+ℓ,ℓ(z, z̄), (3.36)

where K denotes the conformal block and,

c2
n,ℓ =

(−1)ℓ
[(

∆ − d
2 + 1

)
n
(∆)ℓ+n

]2

ℓ!n!
(
ℓ+ d

2

)
n
(2∆ + n − d + 1)n(2∆ + 2n + ℓ− 1)ℓ

(
2∆ + n + ℓ− d

2

)
n

.

(3.37)
The second kind term is g12|34, coming from the connected interaction term. The
integral expression (3.34) can be simplified by considering the contour integral with
closing the contour from below and for that we have to consider poles of this inte-
grand. Now, in (3.34) there are two kinds of poles, one that depend on the coupling
parameter λ coming from denominator of the σ propagator i.e. λ−1 + 2B̃(ν) = 0
and the other one is d

2 + iν = 2∆ + 2n (for n a non-negative integer). In the later
case note that these poles are coming from the factor in numerator of (3.34) i.e.
Γ2
(

∆ − d
4 − iν

2

)
. Since, it is Γ2, these are double poles and these poles are exactly at

the location of scalar double trace primaries for non-interacting theory. Correspond-
ing to these poles, there will be scaling dimension and these scaling dimension can
be thought of as representation of energy and we expect that energy states in an in-
teracting theory must be different from non-interacting theory. The only way this
would be possible only if contribution from these double poles is cancelled by the
first two disconnected / free field terms at the order of 1

N . But there is a problem
now, as mentioned earlier these are double poles while on the side of free field term,
these are just simple poles. That means g12|34 must have just simple poles overall,
and that means that the denominator i.e. B̃(ν) must have simple poles at these pre-
cise location with corresponding residues that help in cancellation of contribution
at these location at large N. This gives us the analytical structure of the unknown
function B̃(ν). Now we need to ask can there be additional poles in B̃(ν) ?

We know that B̃(ν) should be symmetric under the transformation ν → −ν and
these will give additional poles corresponding to what we just discussed (double
poles) but they will be in the upper half plane so they won’t contribute on closing
the contour from below. And additionally it is motivated that there will be no other
poles in B̃(ν) in [74]. The argument is that if there were new poles they will already
contribute at one loop correction which will result in new operators in the spectrum
and we do not expect this to happen perturbatively, hence there should be no other
poles. With the information about poles and expected behaviour at large ν (which
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will be same as scattering amplitude at large N in flat space), one can uniquely de-
termine the B̃(ν) as summation as the following (see [74] for more details):

B̃(ν) = −
∞

∑
n=0

2∆ + 2n − d
2

ν2 +
(

2∆ + 2n − d
2

)2

·

(
d
2

)
n

Γ(∆ + n)Γ(∆ + n − d
2 +

1
2 )Γ(2∆ + n − d

2 )

(4π)
d
2 Γ(n + 1)Γ(∆ + n + 1

2 )Γ(∆ + n − d
2 + 1)Γ(2∆ − d + n + 1)

.

(3.38)
This infinite sum can easily be done and the final resulting expression for B̃(ν) will
be in terms of regularized hypergeometric functions p F̃q[a1 . . . ap, b1 . . . bq, z] given by

B̃(ν) =
Γ(∆)Γ(∆ − d

2 +
1
2 )Γ(2∆ − d

2 )

4(4π)
d
2

×
Γ

(
∆ − d + 2iν

4

)
5F̃4

 {
d
2 , ∆, ∆ − d

2 +
1
2 , ∆ − d+2iν

4 , 2∆ − d
2

}{
∆ + 1

2 , ∆ − d
2 + 1, ∆ − d+2iν

4 + 1, 2∆ − d + 1
} ; 1


+Γ

(
∆ − d − 2iν

4

)
5F̃4

 {
d
2 , ∆, ∆ − d

2 +
1
2 , ∆ − d−2iν

4 , 2∆ − d
2

}{
∆ + 1

2 , ∆ − d
2 + 1, ∆ − d−2iν

4 + 1, 2∆ − d + 1
} ; 1

 .

(3.39)
Here, the most important property that we have used is that in AdS, boundary cor-
relation functions manifest conformal symmetry and upon taking singlet projection,
disconnected and connected diagrams contribute at the same order which helps us
to bootstrap the unknown B̃(ν) function.

3.3.3 Different Phases

Like in flat space we have found different phases separated by a CFT, similarly its
is found that one has different phases in AdS space as well, and one can do similar
things as writing lagrangian in terms of fluctuation as in flat space and higgs mech-
anism will kick in and now the bubble will consists of massless scalar fields and we
can incorporate this information in the bubble found in previous section (3.39) by
picking ∆ for massless scalar fields i.e. ∆ = d. Also, we can write matrix in spectral
representation in AdS space corresponding to what we had in flat space in broken
phase (3.16) as [74],

M(ν) =

(
− 1

λ − 2B̃(ν) 2|Φ|
2|Φ| ν2 + d2

4 .

)
(3.40)

One can inverse it to find the required propagator of σ field,

(M(ν))−1 =
1

det M(ν)

(
ν2 + d2

4 −2|Φ|
−2|Φ| − 1

λ − 2B̃(ν)

)
. (3.41)
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Upon analyzing the structure of σ field one finds AdS analogue of flat space reso-
nance in the system. [74]. It has also be noticed that these two separate phases are
separated by a CFT [74].

In the upcoming chapter, we will try to apply the same bootstrap technique as in this
chapter but to scalar QED and see what results we get.

3.4 O(N) model in dS space

In this section we will present the result of [90], in the context of the O(N) model.
The bubble can be written in the spectral representation as follows:

B(X, Y) =
∫ +∞

−∞
dν

ν

πi
B̂(ν)Gν(X, Y) (3.42)

Here, Gν(X, Y) is the scalar propagator in dS. In [85] this bubble is computed using
the rotation to AdS and for the case of dS3 [90] it is given by

B̂(ν)
∣∣
d=2 =

i
8πν

[
π − i coth

(
πνϕ

) (
ψ

(
−iνϕ +

iν
2
+

1
2

)
− ψ

(
iνϕ +

iν
2
+

1
2

))]
.

(3.43)
In the above equation, νϕ is related to scaling dimension of scalar propagator in dS
space and ψ is the digamma function.

With this bubble, one can calculate the exact propagator of the Hubbard-Stratonovich
field at large N as follows (in spectral representation):

⟨σ(X)σ(Y)⟩ =
∫ +∞

−∞
dν

ν

πi
fσ(ν)Gν(X, Y), (3.44)

where,

fσ(ν) =
1

1
λ − 2B̂(ν)

. (3.45)

In [90], by computing the effective potential, it is found that there is no symmetry
breaking in dS space unlike what we saw in AdS. As a result only one phase is acces-
sible in dS, namely the gapped symmetry-preserving phase. This suggests that dS
behaves effectively as a finite volume from the point of view of symmetry breaking.
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Chapter 4

Scalar QED in flat space

4.1 Scalar QED in flat Space

In this section, we will apply large N techniques to scalar QED in flat space [75] and
this will help us to calculate observables (in this case, scattering amplitude) beyond
standard perturbative techniques which is only valid for weak coupling.

Instead of considering one scalar field for electron, we are considering "N f " num-
bers of fields or we can call it "N f flavors" and the large N f is still a perturbative
technique but instead of doing perturbation in coupling we will be doing pertur-
bation in " 1

N f
" and in this way results are valid for any finite coupling. This has

been done before in case of O(N) model [74] and [73]. Though our computations
are valid for general dimensions, in our analysis we will be particularly focused on
3 dimensions of spacetime as in this case we will see different phases of the the-
ory: a Coulomb phase where we see massive scalar fields along with the massless
photon field, and a Higgs phase in which the IR excitations are 2N f − 2 massless
goldstone bosons parametrizing a CPN f −1 sigma model, while the gauge-field be-
comes massive. These two phases are separated by a transition point described by
a CFT (see the figure 4.1). Note that the continuous symmetries of this theory are
a flavor symmetry SU(N f ) rotating the scalar fields, and for integer D a magnetic
U(1) (D − 3)-form symmetry whose conserved current is 1

2π ⋆ F. The lagrangian of
our theory is the following (in Euclidean signature):

1
4e2 FµνFµν +

(
Dµ φa) (Dµ φa)∗ + m2φa∗ φa +

σ√
N f

(
φa φa∗

)
− σ2

2λ
(4.1)

⟨ϕ⟩ = 0⟨ϕ⟩ ≠ 0
m2

CoulombHiggs CFT

FIGURE 4.1: Different Phase of Scalar QED
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FIGURE 4.2: The double wavy line is the propagator of the photon at leading
order O(N−1

f ) in the large N f expansion, and exactly in α = e2N f , while the

single wavy line is the tree level propagator ∝ e2. The grey blob represents
the 1-loop 1PI correction to the two-point function that is ∝ N f . The dashed
line is the propagator of the complex scalars, with the arrow denoting the

flow of charge.

The first term in the above equation is usual Maxwell term, in the 2nd term which
introduces the interaction between gauge field and scalar field lies the covariant
derivative and here we have used the convention Dµ =

(
∂µ + iAµ

)
, e being the

electric charge/coupling and Aµ being the vector field. Note that the index a on the
scalar field φ denotes the number of the fields and it runs from 1 to N f . In the last
term, we have introduced the Hubbard-Stratonovich field σ which is an auxillary
field [73, 74] i.e. it’s equation of motion is not dynamic and is given by σ = λ√

N f
φa φa.

Integrating σ out one recovers the usual quartic interaction term among scalars with
λ as coupling constant.

To obtain the interactions mediated by both the vector field and the Hubbard-Stratonovich
field, we need the propagators of both of them in large N f . These exact propagators
in large N f are a geometric sum of different "bubbles" (1PI diagrams). The exact
propagator of the σ field will be same as we saw in previous chapter and for the
vector field we will do the resummation as seen in the figure 4.2

Notice that in this exact propagator there will be infinite diagrams to resum and this
is the consequence of going beyond standard perturbation theory where we would
have just considered the first term in this resummation i.e. the tree level propagator
to calculate scattering amplitudes. Also, in this way we keep both the α = N f e2 and
λ finite.

4.2 Bubble in the Flat Space (Coulomb Phase)

In this section we will be explicitly calculating the bubble for the case of scalar QED
in general dimensions D. Note that we need the bubble only for the vector field as
the bubble for the σ field will remain the same as we saw in last chapter for O(N)

model.
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As we see in the figure 4.2 we have 2 diagrams to consider while calculating this
bubble, one is coming from the cubic interaction and the other is coming from the
quartic interaction, combined we can write the required integral as the following in
the momentum space by integrating over the internal momenta k,

Iµν = N f

∫ dDk
(2π)D

[
(2k + p)µ(2k + p)ν

(k2 + m2) ((k + p)2 + m2)
− 2δµν

k2 + m2

]
. (4.2)

This integral can be written in terms of two functions denoted by F1(p) and F2(p) in
momentum space and now we will find the form of these two functions.

Iµν ≡ N f

[
F1(p)

(
pµ pν − δµν

p2

)
+ F2(p)δµν

]
pD−2. (4.3)

First multiply the above two equations with pµ pν and then will have,

I1 = Iµν pµ pν = N f

∫ dDk
(2π)D

[
((2k + p) · p)2

(k2 + m2) [(k + p)2 + m2]
− 2p2

(k2 + m2)

]
. (4.4)

We can further rewrite this integral using D1 and D2 which are functions of (k, p, m),

I1 = N f

∫ dDk
(2π)D

[
D2

1 + D2
2 − 2D1D2

D1D2
− 2p2

k2 + m2

]
,

= N f

∫ dDk
(2π)D

[[
D1

D2
+

D2

D1
− 2
]
− 2p2

k2 + m2

]
,

(4.5)

where D1 =
[
(k + p)2 + m2] , D2 =

[
k2 + m2].

Using the fact that we
∫ D2

D1
=
∫ D1

D2
, we can clearly see that integral I1 is zero and

hence we the function F2(p) must be zero as I1 also equates to I1 = N f F2(p) · pd and
we can explicitly see it as follows:

I1 = N f

∫ dDk
(2π)D

[
2 (D1 − D2)

D2
− 2p2

k2 + m2

]
,

= N f

∫ dDk
(2π)D

[
2
(
2k · p + p2)
k2 + m2 − 2p2

k2 + m2

]
,

= 0.

(4.6)

This is expected behaviour as due to gauge invariance, Iµν must be transverse.

Similarly we can now multiply Iµν by δµν and proceed to calculate the function F1(p),

I2 = N f

∫ dDk
(2k)D

[
(2k + p)2

(k2 + m2) ((k + p)2 + m2)
− 2D

k2 + m2

]
. (4.7)
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We can further rewrite the this integral as follows:

I2 = N f

∫ dDk
(2k)D

[
(4 − 2D)

k2 + m2 −
(

p2 + 4m2)
(k2 + m2) [(k + p)2 + m2]

]
. (4.8)

Now the first integral in above expression can be done using dimensional regular-
ization and note that 2nd integral is what has already been computed in [74] for the
case of O(N) model. Denoting the scalar bubble by B0(p2, m2) we get,

I2 = N f

[
(4 − 2D)

(2π)D (π)D/2 (m2) D
2 −1

Γ
(

1 − D
2

)
−
(

p2 + 4m2) · B0(p2, m2)

]
. (4.9)

When comparing with I2 = N f [F1(1 − D)] pD−2, we can find the expression for the
function F1(p). Note that since we have found F2(p) to be zero, we obtain the fol-
lowing:

Iµν = −N f B(1)(p2, m2)

(
δµν −

pµ pν

p2

)
,

B(1)(p2, m2) =
1

D − 1

[(
p2 + 4m2) B(0)(p2, m2)− (4 − 2D)

(4π)
D
2

(
m2) D

2 −1
Γ
(

1 − D
2

)]
.

(4.10)

We refer to B(1)(p2, m2) as the spin 1 bubble function.

With the gauge fixing term Lg. f . =
1

2e2ξ
(∂µ Aµ)2 , the tree level gauge propagator can

be written as follows:

⟨Aµ(p)Aν(−p)⟩|tree =
e2

p2

(
δµν −

pµ pν

p2

)
+ e2ξ

pµ pν

p4 . (4.11)

Now, with the spin 1 bubble we can calculate the exact propagator as follows:

⟨Aµ(p)Aν(−p)⟩| 1
Nf

=
e2ξ pµ pν

p4 +

(
δµν −

pµ pν

p2

) [
e2

p2 +
e2

p2 ·
(
−N f B(1)(p2, m2)

)
· e2

p2 + . . .+
]

=
1

N f

(
α

p2 + αB(1) (p2, M2)

(
δµν −

pµ pν

p2

)
+ ζ

pµ pν

p4

)
(4.12)

Where, α = e2N f is new coupling constant and ζ = e2N f ξ note that in large N f limit,
α will remain fixed.

4.3 Scattering in the Coulomb phase

The simplest observable to compute is the scattering amplitude of the charged scalars
ϕ∗aϕb → ϕ∗cϕd. The contribution from the gauge field is given by the diagrams in
figure 4.3 . It is immediate to write down the resulting amplitude using the exact
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FIGURE 4.3: Diagrams that compute the scattering amplitude at leading or-
der O(N−1

f ). The letters denote the SU(N f ) flavor index and the momenta
are all ingoing with p1 + p2 + p3 + p4 = 0.

photon propagator

i Tab→cd = i
1

N f

(
δabδcd T (s, t) + δacδbd T (t, s)

)
,

iT (s, t) = − α(s − 4M2 + 2t)
s − αB(1)(−s, M2)

.
(4.13)

The amplitude is crossing symmetric under simultaneous exchange of the flavor
indices b and c and the Mandelstam variables s and t. It also has analytic properties
that are expected in the interacting theory, e.g. as a function of complex s for fixed
t there is a pole at s = 0 due to the photon exchange and a two-particle branch-cut
starting at s = 4M2.

It is also interesting to check the unitarity of the amplitude, in particular after pro-
jecting to the singlet sector. Note that we can view the amplitude as the matrix
element

i Tab→cd = ⟨c, d| i T |a, b⟩ , (4.14)

where the asymptotic two-particle states are normalized as

⟨a′, b′|a, b⟩ = δaa′δbb′ × (momentum conserving delta’s) . (4.15)

Therefore the unit normalized flavor singlet state is

|S⟩ = 1√
N f

∑
a
|a, a⟩ , (4.16)

and the amplitude in the singlet sector is

i TS→S = i T (s, t) +O(N−1
f ) . (4.17)

Note that t only appears in the combination s − 4M2 + 2t = (s − 4M2) cos θ in the
numerator, where θ is the scattering angle. Therefore the decomposition in partial
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waves contains only spin J = 1. In the normalization of [4] we have

f S→S
J=1 (s) = − π

(16π)
D−1

2 Γ(D+1
2 )

α(s − 4M2)

s − αB(1)(−s, M2)
. (4.18)

Since this projection to the singlet sector is not suppressed by any small parameter,
the full non-linear unitarity constraint applies to it, for any α. In fact elastic unitarity
is saturated, i.e. for any α and any real s > 4M2 we have

2ℑ f S→S
1 (s) = 2

(s − 4M2)
D−3

2√
s

| f S→S
1 (s)|2 . (4.19)

This can be easily checked using the following identity valid for real s > 4M2

Im B(0)(−s, M2) = − MD−4

2D+1π
D−3

2 Γ
(D−1

2

)√4M2

s

( s
4M2 − 1

) D−3
2

. (4.20)

The fact that at leading order in the 1/N f expansion there is no particle production
is a consequence of the fact that we are resumming only one-loop diagrams. Note
that there is an additional contribution to the ϕ∗aϕb → ϕ∗cϕd amplitude from the
exchange of the σ field, i.e. from the scalar self-interaction, which however only
contributes to the J = 0 partial wave and similarly, when projected to the singlet
sector, at leading order at large N f saturates elastic unitarity.

For D ≤ 4 at subleading order in the 1/N f expansion we expect that IR divergences
make the amplitude of the charged particles ill-defined in the Coulomb phase, see
e.g. [97] for a recent discussion of IR divergences in sQED with D = 3. Therefore
one would need to consider some dressing of the asymptotic states, or replace the
scattering amplitude with some inclusive observable.

4.4 Higgs Phase

Note that at leading order at large N f , the Vacuum Expectation Values (VEVs) of
the hubbard-stratonovich as well as the scalar fields is unaffected by the presence of
gauge fields and thus those results remain same as in the previous chapter but note
that there is one small change as there are N f complex scalar fields or one can say
2N f real fields. So, even in presence of the gauge field, the mass term (now M2) of
scalar field is shifted to m2 + Σ. In this phase, while doing the minimization of the
effective potential, we do require M2 = 0, i.e. Σ = −m2 because of the non-zero
VEV of ϕa ∗ϕa. In this case global symmetry SU(N f ) is broken to SU(N f − 1). Let us
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expand the fields around the minimum and proceed to find the bubble in this case,

ϕA = πA ,

ϕN =

(√
N f Φ +

ρ√
2

)
e

i θ√
2Nf Φ ,

σ = −
√

N f m2 + σ̂ .

(4.21)

In the above equation, the values of the index A runs from 1 to N f − 1 and the
field fluctuations are denoted by the Goldstone bosons πA, the radial mode ρ and
the Hubbard-Stratonovich field σ̂. We can expand our lagrangian in terms of these
fluctuations as well,

L =
1

4e2 FµνFµν + N f Φ2Aµ Aµ + (DµπA)(DµπA)∗ +
1
2
(
∂µρ
)2

+
1
2
(
∂µθ
)2

+
√

N f

(
m2

λ
+ Φ2

)
σ̂ − σ̂2

2λ
+
√

2 Φ σ̂ ρ +
σ̂√
N f

(
1
2

ρ2 + πAπA ∗
)

+
√

2N f Φ Aµ (∂
µθ) +

√
2N f Φ ρ Aµ Aµ + 2ρAµ (∂

µθ) +
1
2

ρ2Aµ Aµ

+
1√

2N f Φ
ρ2Aµ (∂

µθ) +
1√

2N f Φ
ρ
(
∂µθ
)2

+
1

4N f Φ2 ρ2 (∂µθ
)2 .

(4.22)

Note that now the terms containing interaction with the gauge field and that are
relevant at leading order are same as the coulomb case (ϕa being replaced by πA)
except for the term with Aµ∂µθ and the term that is responsible for the photon to get
massive i.e. m2

A = 2e2N f Φ2. We can remove the first term by modifying our gauge
fixing term as the following,

Lg. f . =
N f

2ζ

(
∂µ Aµ +

√
2

N f
ζ Φ θ

)2

. (4.23)

Note that this new term did not introduce any other relevant interaction containing
the gauge field at leading order at large N f . Hence in summary, in the Higgs case the
photon gets massive and scalar fields become goldstone bosons (massless). Using
this result in the coulomb phase bubble, we can get the expression for the bubble in
the higgs phase where now the loop is of N f − 1 massless scalars,

B(1)(p2, 0) = − π

(16π)
D−1

2 Γ
(D+1

2

)
sin
(

πD
2

) (p2)
D−2

2 . (4.24)
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The massive tree level propagator is given by,

⟨Aµ(p)Aν(−p)⟩|mass-tree =
e2(

p2 + m2
A

) [δµν −
(1 − ξ)pµ pν

m2
Aξ + p2

]
,

=
e2(

p2 + m2
A

) (δµν −
pµ pν

p2

)
+ Sµν,

Sµν =
e2(

p2 + m2
A

) [ pµ pν

p2 − (1 − ξ)pµ pν

m2
Aξ + p2

]
=

e2ξ pµ pν

p2
(

p2 + m2
Aξ
) .

(4.25)
And thus the resummed propagator will be,

⟨Aµ(p)Aν(−p)⟩|exact = Sµν

+

(
δµν −

pµ pν

p2

)[
e2

p2 + m2
A
+

e2

p2 + m2
A
· (−N f B(1)(p2, 0)) · e2(

p2 + m2
A

) + . . .

]
,

=
e2ξkµkν

k2
(
k2 + m2

Aξ
) +(δµν −

pµ pν

p2

)
e2(

p2 + m2
A

)
+ αB(1)(p2, 0)

.

(4.26)

The bubble diagram at M2 = 0 reads

B(1)(p2, 0) = − π

(16π)
D−1

2 Γ
(D+1

2

)
sin
(

πD
2

) (p2)
D−2

2 . (4.27)

Neglecting the bubble the massive photon is a stable particle corresponding to the
pole at p2 = −m2

A. This value of p2 on the negative real axis is precisely on the
branch-cut of the power appearing in the bubble function. For 2 < D < 4 and any
α the actual pole of the exact propagator is for complex values of p2 and not in the
first sheet.1 The massive photon becomes a resonance, as expected given that it can
decay to pions.

An observable in the Higgs phase is the scattering amplitude of the pions, that can be
computed at leading order at large N f with the same techniques showed in section
4.3. Like we saw in the Coulomb phase, this amplitude is directly determined by
the exact propagator of the photon, and therefore in this case it will contain a spin
1 resonance. Like in the Coulomb phase, the J = 1 partial amplitude in the singlet
sector saturates elastic unitarity. An important difference with the Coulomb phase is
that in the Higgs phase we do not expect any IR divergence, therefore this scattering
amplitude remains an interesting observable of the theory also at subleading order
in the 1/N f expansion, or at finite N f .

1The equation for the zero of the denominator is p2 + C(p2)γ = −m2
A, with C > 0 and 0 < γ < 1.

On the first sheet Arg(p2) ∈ (−π, π) and Arg(C(p2)γ) = γ Arg(p2). Note that the solution cannot
have Arg(p2) = 0 because in that case both p2 and C(p2)γ are positive real numbers. As a result, in
the first sheet the arguments of p2 and C(p2)γ are either both in (0, π) and their sum has a positive
imaginary part, or both in (−π, 0) and their sum has negative imaginary part. In either case their sum
cannot equal the real number −m2

A. This proves that the solution is not in the first sheet.
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4.5 CFT at the phase transition

For completeness let us now briefly review the evidence that at large N f there is a
second order transition at m2 = m2

c , namely at M2 = 0 and |Φ|2 = 0. The photon
propagator with this value of the parameters and at leading order in the large N f

expansion is

⟨Aµ(p)Aν(−p)⟩| 1
Nf

=
1

N f

(
α

p2 + αB(1)(p2, 0)

(
δµν −

pµ pν

p2

)
+ ζ

pµ pν

p4

)
, (4.28)

where B(1)(p2, 0) is the power of momentum in eq. (4.27). In the IR limit (p2)
D−2

2 ≪ α

the propagator approaches the α-independent limit

⟨Aµ(p)Aν(−p)⟩| 1
Nf

,IR =
1

N f

(
1

B(1)(p2, 0)

(
δµν −

pµ pν

p2

)
+ ζ

pµ pν

p4

)
, (4.29)

from which we compute the two-point function of the gauge-invariant field strength
operator

⟨ 1
2π Fρµ(p) 1

2π Fσν(−p)⟩| 1
Nf

,IR =
CF

N f

δµν pρ pσ − δρν pµ pσ − δµσ pρ pν + δρσ pµ pν

(p2)
D−2

2
,

CF ≡ − (16π)
D−1

2 Γ
(D+1

2

)
sin
(

πD
2

)
4π3 .

(4.30)

Note that CF > 0 for 2 < D < 4. In position space this correlator is

⟨ 1
2π Fρµ(x) 1

2π Fσν(0)⟩| 1
Nf

,IR =
CF

N f

16

(4π)
D
2 Γ(D

2 − 1)

Iµν Iρσ − Iρν Iµσ

(x2)2 ,

Iµν ≡ δµν − 2
xµxν

x2 .

(4.31)

This takes precisely the form of the correlator for a two-form primary operator of
scaling dimension ∆F = 2 in a D dimensional CFT. Note that the unitarity bound
for a two-form is ∆ ≥ max(2, D − 2), so in the range 2 < D < 4 this bound is
saturated by F, reflecting the existence of the null operator corresponding to the
Bianchi identity dF = 0. In integer D the hodge dual ⋆F gives the conserved current
for a (D − 3)-form symmetry, but only in D = 3 this conserved current is compatible
with the unitarity of the CFT.

At leading order at large N f , and restricting to local operators, the CFT is the product
of two decoupled sectors, the mean field theory of the field strength operator, and
the free CFT of the matter fields, restricted to the singlet sector of the U(1) gauge
symmetry and with the conserved current removed Jµ = 0. Corrections to the CFT
data can be computed systematically in 1/N f expansion, e.g. using a diagrammatic
approach with the exact propagator and the standard interaction vertices involving
the matter fields. In addition in D = 3 there are also local monopole operators, for
which the 1/N f expansion is less straightforward but has also been developed, see
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e.g. [98–100].



51

Chapter 5

Scalar QED in AdS

5.1 Introduction

In this chapter, we will go through similar calculation as in previous chapter but
in AdS space instead of flat space. Scalar QED is a good example to start studying
gauge theories in AdS space, later we will try to extend it to the fermionic QED in
the chapter 7. Another advantage of studying interactions in AdS is that we can
analytically continue them to dS space (see chapter 6). All of this provides good
motivation to focus on theories in AdS space.

In this chapter we will present the work done in [75]. Let us recall the lagrangian
scalar QED (in Euclidean signature),

L =
1

4e2 FµνFµν + m2ϕaϕa∗ +
(

Dµϕa) (Dµϕa)∗ +
σ√
N

(ϕaϕa∗)− σ2

2λ
(5.1)

where, ϕ are complex scalar fields, Dµ is covariant derivative for QED, and Fµν is the
field strength and e2 is gauage coupling and λ is quartic coupling for scalar fields.
The possible relevant curvature coupling R ϕaϕa ∗ is absorbed in the definition of the
coupling m2. Note that since we are trying to go beyond standard perturbation the-
ory to get result for any finite coupling especially for strong ones, we will employ
large N techniques and thus here, we have N f number of scalar fields and the index
a runs from 1 to N f and we will be doing perturbation in 1

N f
and not in the coupling

constant. And like in chapter 3, here also we will have a bubble but this time this
bubble is made up of complex scalar fields and not real scalar fields. Again, we will
not explicitly calculate it like we did in the flat space in previous chapter 4, instead
here we will bootstrap it like we saw in the O(N) model, by using conformal consis-
tency conditions and applying analytical bootstrap methods. When calculating the
4-point boundary correlation function, since it is scalar QED, we will have exchange
of vector field and we will be using "resummed propagator" to do so. Also note
that in the lagrangian, we still have σ (Hubbard-Startonovich) propagator which
was there in O(N) model,so there will also be the four point boundary correlation
function mediated by resummed σ propagator and calculations will exactly be same
apart from some constant factors as in this case we have complex scalar fields and
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not the real scalar fields. In this chapter we are focused on the contribution from the
resummed vector field at large N. We will stay in arbitrary dimensions D = d + 1,
and thus we are setting up the problem in AdSd+1 and we are doing it in the embed-
ding formalism introduced in chapter 2

5.2 Resummed Propagator

Like we saw in the last chapter, where we did Scalar QED in flat space, we need the
exact or resummed propagator at large N f in the figure 4.2. In this chapter we will
be using spectral representation introduced in chapter 2, to find the expression for
the resummed propagator.

Let us first write the tree level photon propagator in terms of spectral representation,

⟨AM(X)AN(Y)⟩pert. theory ≡ G(1)
MN(X, Y)

=
∫ +∞

−∞
dν

e2

ν2 +
(

d
2 − 1

)2 Ω(1)
νMN(X, Y) +∇X

M∇Y
N L(u).

(5.2)
Let us recall the fact that AdS coordinates obey, X2 = Y2 = −1 and the harmonic
functions Ω(1)

νMN(X, Y) are the eigen functions of the laplacian operator and they are
transverse as well,

□XΩ(1)
νMN(X, Y) =

(
ν2 +

d2

4
+ 1
)

Ω(1)
νMN(X, Y),

∇X
MΩ(1)

ν N(X, Y) =0.
(5.3)

ν is a variable which is very similar to momentum p in flat space and the second
term in the expression of tree level propagator is the gauge dependent part which is
function of half of the chordal distance u = −1 − X · Y,

L(u) = e2ξG(0)
d ⋆ G(0)

d (u) = e2ξ
∫ +∞

−∞
dν

1(
ν2 + d2

4

)2 Ω(0)
ν (u). (5.4)

where, ξ is gauge coupling, ⋆ denotes the convolution, Ω(0)
ν (u) and G(0)

d are har-
monic function and propagator for massless field with ∆ = d for spin 0 respectively.

We can assume the bubble for spin 1 to take the following form:

⟨JM(X)JN(Y)⟩ = −N f

∫ +∞

−∞
dνB(1)(ν)Ω(1)

νMN(X, Y). (5.5)

Note, that factor of N f is there because there are N f no. of complex scalar fields.Now,
let us look at how one photon and one bubble will look and we will be using (2.27)
(see the figure 5.1),
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𝑥
𝑌𝑋

FIGURE 5.1: wavy line is photon propagator and the other object is bubble
and they are connected by internal vertex.

∫ +∞

−∞
dν

e2

ν2 +
(

d
2 − 1

)2 · (−N f )B(1)(ν)Ω(1)
νMN(X, Y)

+∇X
M∇Y

N L(u).

(5.6)

Now let us look at two photons connected at either end of bubble which will be the
first term in correction to the tree level propagator in the figure 4.2,

∫ +∞

−∞
dν

e2

ν2 +
(

d
2 − 1

)2 · (−N f )B(1)(ν) · e2

ν2 +
(

d
2 − 1

)2 Ω(1)
νMN(X, Y)

+∇X
M∇Y

N L(u).

(5.7)

Similarly, we can write the second term in correction which is made up of 3 photons
and 2 bubbles in the figure 4.2,

∫ +∞

−∞
dν

e2

ν2 +
(

d
2 − 1

)2 · B(1)(ν) · (−N f )e2

ν2 +
(

d
2 − 1

)2 · B(1)(ν) · (−N f )e2

ν2 +
(

d
2 − 1

)2 Ω(1)
νMN(X, Y)

+∇X
M∇Y

N L(u).
(5.8)
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We can continue with the rest of infinite terms in the figure 4.2 and thus, the re-
summed propagator will look like,

∫ +∞

−∞
dν

 e2

ν2 +
(

d
2 − 1

)2 +
e2

ν2 +
(

d
2 − 1

)2 · (−N f )e2B(1)(ν)

ν2 +
(

d
2 − 1

)2

+
e2

ν2 +
(

d
2 − 1

)2 · (−N f )e2B(1)(ν)

ν2 +
(

d
2 − 1

)2 · (−N f )e2B(1)(ν)

ν2 +
(

d
2 − 1

)2 + . . .

Ω(1)
νMN(X, Y)

+∇X
M∇Y

N L(u).
(5.9)

Clearly, it is a geometric series and we can sum these infinite terms to get the result
as follows:

⟨AM(X)AN(Y)⟩large N f

=
1

N f

∫ +∞

−∞
dν

α

ν2 +
(

d
2 − 1

)2
+ αB(1)(ν)

Ω(1)
νMN(X, Y) +∇X

M∇Y
N L(u). (5.10)

Here,we have introduced the new coupling parameter as α = e2N f which is fixed at
the limit of large N f .

5.3 4-point Function

To calculate boundary 4-point function mediated by the above resummed vector
field, we will first write the leading contribution which is given below,〈

ϕa (P1) ϕ∗b (P2) ϕ∗c (P3) ϕd (P4)
〉∣∣∣

O
(

N0
f

)
= δabδcd 1

(−2P1 · P2)
∆ (−2P3 · P4)

∆ + δacδbd 1

(−2P1 · P3)
∆ (−2P2 · P4)

∆ .
(5.11)

Points Pi are the points on boundary and the letter a denotes the index of the field
(a runs from 1 to N f ). Also, note that in above equation unlike the O(N) model,
there are only 2 channels (with disconnected diagrams), s and t as here the field
are complex and not real and as a result in the OPE decomposition we will have
double trace operators of any integer spin J, with dimensions 2∆ + 2n + J. Scaling
dimensions δ of complex scalar fields are related to mass of the complex scalar fields
as m2 = ∆(∆ − d). Here if ∆ > d

2 − 1, there is no conserved spin 1 operator because
the boundary theory is non-local.

We will consider next contribution at large N f which will also contain s and t channel
contribution only but this time we have connected diagrams mediated by a vector
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field whose expression is as follows:〈
ϕa (P1) ϕ∗b (P2) ϕ∗c (P3) ϕd (P4)

〉∣∣∣
O
(

N−1
f

) = δabδcdg12|34 + δacδbdg13|24. (5.12)

for,

gij|kl =
1

N f

∫ +∞

−∞
dν

α

ν2 +
(

d
2 − 1

)2
+ αB(1)(ν)

4
∫

X,Y
K∆ (Pi, X) i∇X

MK∆
(

Pj, X
)

K∆ (Pk, Y) (−i)∇Y
NK∆ (Pl , Y)Ω(1)MN

ν (X, Y).

(5.13)

where, we have used
∫

X,Y =
∫

dd+1X
∫

dd+1Y to denote integral over X and Y bulk
points and let us recall that K∆(P, X) represent bulk to boundary propagator for spin
0 whose expression is as follow (as we discussed in chapter 2),

K∆(P, X) =
√C∆

(−2X·P)∆ ,

C∆ ≡ Γ(∆)

2π
d
2 Γ(∆− d

2+1)
. (5.14)

We should remember that our theory is gauge invariant and hence in calculating
observables such as boundary 4-point correlation functions, only the transverse part
of the bulk to bulk photon propagator contributes as the longitudinal part is gauge
dependent and hence unphysical. We will now calculate the integral in the gij|kl as
[77]∫

X,Y
K∆ (Pi, X) i∇X

MK∆
(

Pj, X
)

K∆ (Pk, Y) (−i)∇Y
NK∆ (Pl , Y)Ω(1)MN

ν (X, Y)

=
1(

−2Pi · Pj
)∆

(−2Pk · Pl)
∆

1

8π
d
2 Γ(∆)2Γ

(
1 − d

2 + ∆
)2F

(1)
d
2+iν

(u, v),

=
1(

−2Pi · Pj
)∆

(−2Pk · Pl)
∆

1

8π
d
2 Γ(∆)2Γ

(
1 − d

2 + ∆
)2

(
CνK(1)

d
2+iν

(u, v) + (ν → −ν)

)
.

(5.15)

Here, first we used the split representation for Ω(1)
ν (X, Y) and we split it into bulk

to boundary spin-1 propagator and then we pair up the three bulk to boundary
propagators to give a boundary 3-point correlation function and in this way we have
two 3-point boundary correlation function. Note that these two boundary 3-point
correlation functions are then integrated over a common point on the boundary. The
last integral is done using conformal partial wave F (1)

d
2+iν

(u, v) (u and v are conformal
invariant cross ratios) for spin-1 which was further divided into conformal blocks of
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spin-1 K(1)
d
2+iν

(u, v) with and the coefficient Cν is given by,

Cν ≡
Γ
(

d
4 +

iν
2 + 1

2

)4
Γ
(
− d

4 + ∆ ± iν
2 + 1

2

)2

2π
(

d
2 + iν − 1

)
Γ(iν)Γ

(
d
2 + iν + 1

) . (5.16)

Finally we have 4-point connected boundary correlation function given by,

gij|kl =
1

N f

1(
−2Pi · Pj

)∆
(−2Pk · Pl)

∆

1

2π
d
2 Γ(∆)2Γ

(
1 − d

2 + ∆
)2

∫ +∞

−∞
dν

α

ν2 +
(

d
2 − 1

)2
+ αB(1)(ν)

(
CνK(1)

d
2+iν

(u, v) + (ν → −ν)

)
.

(5.17)

In the above expression, one can note that for the case of α << 1, we can neglect the
bubble contribution and it will become boundary 4-point function in perturbation
theory with exchange via tree level photon propagator. In this case, clearly, there is a
pole at ν = ±i

(
d
2 − 1

)
and this correspond to having a conserved current operator

in the OPE. In case of finite α or strong coupling, there can still be a conserved current
operator in OPE if the pole is still at that location and for that, we need the following
condition,

B(1)
(
±i
(

d
2
− 1
))

= 0. (5.18)

5.4 Bootstrapping the Bubble

In the previous two sections, we have used spectral representation to find the re-
summed propagator and split representation of the Ων to find the expression of the
4-point function in terms of the bubble. Let us recall that this bubble in not known
like in the case of flat space in the previous chapter 4, so the only thing left is to find
the expression for the bubble. Like we saw in the O(N) model in chapter 3 [74].
Here we will not directly compute the bubble but instead we will bootstrap it using
self consistency condition for the boundary 4-point function. First we will take the
singlet projection of the full 4-point function by contracting it with the 1

N2
f
δabδcd,

1
N2

f

〈
ϕa (P1) ϕ∗a (P2) ϕ∗b (P3) ϕb (P4)

〉
=

1

(−2P1 · P2)
∆ (−2P3 · P4)

∆

+
1

N f

(
1

(−2P1 · P3)
∆ (−2P2 · P4)

∆ + g12|34

)
+O

(
N−2

f

)
.

(5.19)

Here, we again notice that upon taking singlet projection we have only s channel
disconnected diagram at the leading order and t channel disconnected diagram now
contribute at the order of 1

N f
along with the connected s channel diagram mediated
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by a photon.Also, the t channel connected diagram shifted to the order of 1
N2

f
. This

fact will help us to bootstrap the unknown bubble. Let us further analyse the ex-
pression, the first term is just simply identity operator. The second term contains
two contribution, the disconnected or the free field (no interaction) one can be ex-
panded into conformal blocks K2∆+2n+J with coefficients proportional to c2

n,J ,

c2
n,J =

2J
(

∆ − d
2 + 1

)2

n
(∆)2

n+J

J!n!
(

J + d
2

)
n
(2∆ + n − d + 1)n(2∆ + 2n + J − 1)J

(
2∆ + n + J − d

2

)
n

.

(5.20)

Now let us look at the second term at order of 1
N f

, there are two kind of poles in

g12|34, double poles at ν = ν±n ≡ ±i
(

2∆ + 2n + 1 − d
2

)
(for n non-negative inte-

ger)coming from Γ
(
− d

4 + ∆ ± iν
2 + 1

2

)2
. In ordinary perturbation theory α ≪ 1, the

term involving the function B(1) (ν) in the denominator can be neglected, and these
double poles have the effect of producing an O(α) anomalous dimension for the
spin 1 double-trace operators of dimension 2∆ + 2n + 1. The other poles are α de-

pendent coming from the denominator ν2 +
(

d
2 − 1

)2
+ αB(1)(ν) of the exact photon

propagator. Now in an interacting theory we expect the scaling dimensions of the
spin 1 double trace operators to be different from the non-interacting theory and
this would make sense only if the disconnected term at 1

N f
is getting cancelled by

a negative contribution from g12|34. But as we have noticed there are double poles
in g12|34 while on the side of free field term, there are just simple poles. That means
g12|34 must have just simple poles overall, and that means that the denominator i.e.
B(1)(ν) must have simple poles at these precise location with corresponding residues
that help in cancellation of contribution at these location at large N f . This gives us
the following condition,

c2
n,J=1

= 2πi Res

2
1

2π
d
2 Γ(∆)2Γ

(
1 − d

2 + ∆
)2

α

ν2 +
(

d
2 − 1

)2
+ αB(1)(ν)

Cν


∣∣∣∣∣∣∣
ν=ν−n

,
(5.21)

Near the pole, bubble will behave as,

B(1)(ν) ∼
ν∼ν−n

b(1)n

i
(
ν − ν−n

) + . . . (5.22)
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and we can solve the (5.21) to give,

b(1)n

=
Γ
(

d
2 + n + 1

)
Γ(n + ∆ + 1)Γ

(
− d

2 + n + ∆ + 1
2

)
Γ
(
− d

2 + n + 2∆ + 1
)

(4π)
d
2 Γ
(

d
2 + 1

)
Γ(n + 1)Γ

(
n + ∆ + 3

2

)
Γ
(
− d

2 + n + ∆ + 1
)

Γ(−d + n + 2∆ + 1)
.

(5.23)
In ordinary perturbation theory, i.e. in an expansion in α, the bubble function ap-
pears in the numerator as a loop correction to the photon exchange diagram. At any
finite order in perturbation theory we cannot have new operators appearing in the
spectrum, but rather we can only generate a series of corrections to the OPE data of
the GFF theory. As a result, the singularities in (5.22) are the only singularities of
B(1)(ν) in the complex plane.

If in addition the function B(1)(ν) would decay at infinity in the complex plane,
by a simple contour argument the function would be uniquely fixed in terms of
the location of the poles and the residues. However in generic dimension B(1)(ν)

does not decay, and this manifests in a divergence of the sum over poles with the
prescribed residues. This is due to (bulk) UV divergences in the loop that computes
the bubble. The summand (symmetrized under ν → −ν) behaves as

B(1)
n (ν) ≡ 2iν−n b(1)n

ν2 − (ν−n )2
∼

n→∞
− nd−2

(4π)
d
2 Γ( d

2 + 1)
(1 + . . . ) , (5.24)

where the dots denote a series of 1/n corrections, such that the coefficients of the
1/n2k and 1/n2k+1 corrections are (even) polynomials in ν of degree ν2k. In any d we
can make the sum convergent by subtracting sufficient terms, say 2m, in the Taylor
expansion of the summand B(1)

n (ν) around ν = 0, which contains only even powers.
After resumming the resulting convergent series, we account for the subtraction by
adding a polynomial in ν of degree 2m with arbitrary coefficients.1

From the structure described above we see that no subtraction is needed only for
d < 1. In the more interesting range 1 ≤ d < 3 we have (in [88], expression for

1The same procedure can be derived from the fact that B(1)(ν) behaves at infinity as

B(1)(ν) ∝
|ν|→∞

|ν|d−1 . (5.25)

This growth implies that the contour argument determines B(1)(ν) when d < 1, while for 1 ≤ d < 3
we can only use it to determine B(1)(ν) − B(1)(0), for 3 ≤ d < 5 we can only use it to determine
B(1)(ν)− B(1)(0)− 1

2 ν2B(1)′′ (0), and so on. The behavior for ν → ∞ corresponds to the flat space limit
in momentum space with ν ∼ Lp, see the appendix C, and therefore can be fixed by computing the
behavior of the spin 1 bubble in Rd+1. However this limit also requires to scale ∆ ∼ Lm → ∞. Since we
cannot prove that the leading power in the growth at large ν does not depend on ∆ (though a posteriori
this will turn out to be true) we prefer to use the argument based on the structure of the series in the
main text.
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bubble as sum of poles can also be found but it is not regularized.)

B(1)(ν)|1≤d<3 =
∞

∑
n=0

[
B(1)

n (ν)− B(1)
n (0)

]
+ a0 , (5.26)

where the infinite sum is now convergent, but a0 is a constant that remains unde-
termined. We have the further constraint (5.18) coming from the condition of gauge
invariance, and we can use it to fix a0. We get

B(1)(ν)|1≤d<3 =
∞

∑
n=0

[
B(1)

n (ν)− B(1)
n (i

(
d
2 − 1

)
)
]

. (5.27)

Note that, if one computes the loop with a choice of regulator, the coefficient a0 is UV
divergent if the regulator does not preserve gauge invariance (e.g. a sharp cutoff).
The coupling that reabsorbs the UV divergence in a0 is in fact the mass of the gauge
field. In the range 3 ≤ d < 5 we need to perform one more subtraction to get a
convergent sum

B(1)(ν)|3≤d<5 =
∞

∑
n=0

[
B(1)

n (ν)− B(1)
n (0)− ν2

2
B(1)′′

n (0)
]
+ a0 + a1(ν

2 + ( d
2 − 1)2) .

(5.28)
and there are two undetermined constants a0,1. We can again impose the gauge-
invariance condition (5.18) to fix a0, obtaining

B(1)(ν)|3≤d<5 =
∞

∑
n=0

[
B(1)

n (ν)− B(1)
n (i

(
d
2 − 1

)
)− ν2 + ( d

2 − 1)2

2
B(1)′′

n (0)

]
+ a1(ν

2 + ( d
2 − 1)2) .

(5.29)

However in this case the coefficient a1 remains undetermined, and in fact computing
explicitly the loop with a UV regulator one would find that a1 is UV divergent, even
with a gauge-invariant regulator. The UV divergence in a1 is reabsorbed in the gauge
coupling, which indeed is finite in the range 1 ≤ d < 3 but needs to be renormalized
in the range 3 ≤ d < 5. More subtractions are needed if d is further increased.

The final sums simplify when d is even. For d = 2 (i.e. AdS3) we obtain

B(1)(ν)|d=2 =
ν
[
−2(2∆ − 3)ν +

(
ν2 + 4(∆ − 1)2) (i ψ

(
∆ − iν

2

)
− i ψ

(
∆ + iν

2

))]
16π (ν2 + 1)

,

(5.30)
where ψ(x) denotes the digamma function. For d = 4 (i.e. AdS5) we obtain

B(1)(ν)|d=4 =
ν2 + 1

2048π2ν (ν2 + 4)
[
(∆ − 1)(2∆ − 5)(2∆ − 7)ν

(
4 − 3ν2)

−4
(
ν2 + (2∆ − 3)2) (ν2 + (2∆ − 5)2) (i ψ

(
∆ − iν

2 − 1
2

)
− iψ

(
∆ + iν

2 − 1
2

))]
+ ã1(ν

2 + 1) ,

(5.31)
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where the tilde denotes that we reabsorbed a ∆-dependent constant in the undeter-
mined coefficient. As a check of the result, we can compute the flat-space limit by
taking ν = Lp, p being the modulus of the momentum in flat space, and ∆ = Lm,
and sending L → ∞, see the appendix C. We find that the AdS results approach the
flat space answer for the bubble computed with a dimreg regulator in eq. (4.10), up
to a polynomial in the momentum when d ≥ 3 which reflects the ambiguity in the
choice of the regulator (which we left unspecified in AdS).

We can also write the sum in generic d in terms of a generalized hypergeometric
function. In the rest of the paper we focus on the range 1 ≤ d < 3 in which case the
expression reads

B(1)(ν)
∣∣∣
1≤d<3

= B(ν)−B
(

i
(

d
2
− 1
))

,

B(ν) ≡
π

1−d
2 2−2∆ν2Γ(∆ + 1)Γ

(
2∆ − d

2 + 1
)

(
∆ − d

4 +
1
2

)
Γ
(
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2
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)
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2 + 3
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2 + 3
2

; 1

]
.

(5.32)

Having fixed the form of the exact propagator of the photon, we now study the
physical observables that we can extract from it in the various phases of the theory.

5.5 Coulomb Phase in AdS

For m2 ≥ m2
c,1 there is stable minimum of the AdS effective potential at ϕa = 0 and

with a non-zero expectation value ∝ Σ for the Hubbard-Stratonovich field, which
gives a physical mass-squared M2 = m2 + 2Σ to the scalar fluctuations above the
Breitenlohner-Freedman (BF) bound [101]. The analysis of the effective potential at
leading order at large N f is not affected by the gauge field and therefore we will not
repeat it here but simply refer to the case of the self-interacting scalars [74], from
which one can also read off the (scheme-dependent) value of m2

c,1. This phase of
the gauge theory is the Coulomb phase, in which the photon mediates a long-range
force between the scalars. We concentrate in the range 1 ≤ d < 3 in which the theory
is strongly-coupled at large distances. We assume Dirichlet boundary conditions for
the gauge field.

The observables we will consider are the scaling dimensions of the spin 1 boundary
operators that are exchanged in the connected four-point of the charged operators,
at the leading order in the 1/N f expansion. Equivalently, these are the operators
that appear in the boundary channel expansion of the bulk two-point function of
the gauge field. Setting the AdS scale L = 1, they depend on two parameters, the
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FIGURE 5.2: On the left: Plot of B(1)(ν) (green line) on the negative imagi-
nary ν axis, together with − 1

α (ν
2 + ( d

2 − 1)2) for α = 10 (orange curve) and
α = 50 (blue curve) in units of the AdS radius. We have taken d = 5/2
and ∆ = 21/20 for the external operators. The intersections are highlighted
with black dots, the corresponding values of ν give the scaling dimensions of
spin 1 operators via ∆ = d

2 + iν. The arrows denote the direction of increas-
ing coupling constant α. The dashed vertical lines correspond to the spin 1
double-trace operators in the free theory. On the right: Zoom of the previ-

ous plot near the origin. There all the curves − 1
α

(
ν2 +

(
d
2 − 1

)2
)

for any α

intersect B(1)(ν) at the point iν = d
2 − 1. The corresponding operator is the

conserved current of the global symmetry.

gauge coupling α and the mass-squared M2, which we will trade with the scaling
dimension ∆ of the boundary charged operator.

5.5.1 1 ≤ d < 3 , d ̸= 2: scaling dimensions from weak to strong coupling

We first consider d ̸= 2 in order to regulate the IR divergence that appears in AdS3.
The spectrum of the spin 1 boundary operators is determined by the poles of the
exact propagator (5.10) in the complex ν plane, i.e. by the zeroes of the denominator

1
α

(
ν2 +

(
d
2
− 1
)2
)
+ B(1)(ν) = 0 . (5.33)

The solutions {ν∗n}n≥0 are located on the negative imaginary ν axis, and they corre-
spond to the exchange of an operator with scaling dimension ∆n = d

2 + iν∗n (since
the function is symmetric under ν → −ν we could equivalently look at the positive
imaginary axis). We cannot find a closed form expression for these solutions, but
we can easily visualize them by plotting the function B(1)(ν) in eq. (5.32) as a func-
tion of ν along the negative imaginary axis, for a given ∆ and d. This is showed in
figure 5.2. We see that for small values of α the scaling dimensions approach their
minimal values ∆(0)

n = 2∆ + 2n + 1 which are just the values in the free theory. The
anomalous dimension increases monotonically as a function of the coupling, with no
level crossing. The maximum value of ∆n is still separated by a gap from ∆(0)

n+1 and is
reached in the limit α → ∞, corresponding to the zeroes of B(1)(ν). In addition to this
tower of solutions, for any value of α there is also an additional zero at iν∗ = d

2 − 1
which corresponds to the conserved current, as follows from the condition of gauge
invariance (5.18) that we used to fix the bubble function.
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d < 2

FIGURE 5.3: Poles (crosses) and integration contour (red curve) of the spectral
representation of the photon propagator in the complex ν plane. The poles
at ±ν∗n gives the finite coupling version of the double-trace operators arising
from the matter fields. The poles at ±i( d

2 − 1) give the conserved current. For
d < 2 they cross the contour and we need to add to the contour two circles

surrounding them.

Note that as we go from d > 2 to d < 2 the conserved current poles in the upper-
and lower-half ν plain cross the integration contour on the real ν axis, as illustrated
in figure 5.3. As a result to ensure continuity in d the contour needs to be changed
by adding circles surrounding these two poles, similarly to what is done for scalar
AdS propagators with alternate boundary conditions. This is related to the fact that
the two boundary modes of the vector field in AdS

Aµ ∼
z→0

zd−2 e2 jµ + aµ + . . . , (5.34)

exchange dominance as we go from d > 2 to d < 2. Here we are using Poincaré
coordinates (z, xµ), µ = 1, . . . , d, with boundary at z = 0, jµ denotes the boundary
conserved current and aµ the boundary gauge field. The dots denote subleading
contributions from descendants, and also from higher dimensional operators when
the gauge field is coupled to matter. The Dirichlet boundary condition sets aµ = 0.

The contribution from the piece of the contour surrounding the pole naively requires
evaluating Ω(1)

ν MN at ν = i( d
2 − 1), however the harmonic function itself is singular

there, it has a single pole. One should then evaluate the residue at the resulting
double pole, but alternatively we observe that the residue of Ω(1)

ν MN is longitudinal,
namely

Ω(1)
ν MN(X, Y) ∼

ν→i( d
2−1)

∇X
M∇Y

N F(u)
ν − i( d

2 − 1)
+ Ω̄(1)

MN(X, Y) . (5.35)

Recalling that the ν integral computes the two-point function of the gauge field,
thanks to gauge-invariance we can ignore the longitudinal piece and simply con-
sider the finite term denoted as Ω̄(1)

MN(X, Y).
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5.5.2 d = 2: IR divergence and breaking of conformal invariance

In the limit d → 2 the poles associated to the conserved current pinch the contour, see
figure 5.3, making the propagator of the photon with Dirichlet boundary condition
singular in AdS3. This singularity arises in the spectral representation of the photon
propagator from the behaviour of the ν integral in eq. (5.2) around ν = 0

∼
∫ dν

ν2 . (5.36)

The analogy between the ν integral and momentum space integrals in flat space
suggests the interpretation of this divergence as an IR divergence in the bulk of AdS.
On the other hand from the point of view of the boundary conformal theory this
manifests like a UV divergence and can be reabsorbed in a running coupling, which
leads to a breaking of conformal invariance.

We can understand the relation between this divergence and the running of the cou-
pling as follows: adding the marginal interaction on the boundary

δSboundary =
κ0

2

∫
ddx ĵµ ĵµ , (5.37)

gives an additional contribution to the propagator of the gauge field, represented by
the diagram in fig. 5.4. Using d ̸= 2 as a regulator, the contribution of this diagram
is expected to be proportional to the value of the harmonic function at the pole that
is pinching the contour, namely Ω̄(1)

MN(X, Y) up to longitudinal terms, and therefore

the pole 1
d−2 can be absorbed by a renormalization of the coupling κ0 ∝ µd−2

d−2 . This in
turn gives rise to a β function for κ.

Instead of computing the diagram, a simple way to obtain this β function is by look-
ing at the boundary condition of the gauge field [78, 79] (similar results in the scalar
case were discussed earlier in [102, 103]). In d = 2 the boundary conserved current
appears as the coefficient of a logarithmic mode in the near boundary expansion of
the gauge field

Aµ|d=2 ∼
z→0

log z e2 ĵµ + aµ + . . . . (5.38)

Using dimreg and comparing (5.38) with (5.34) we see that the d = 2 current ĵµ is
related to d dimensional counterpart as

jµ =
1

d − 2
ĵµ +O(1) . (5.39)

The resulting pole in the near-boundary expansion must be reabsorbed by a re-
definition of the constant mode

aµ = −κ0 ĵµ , κ0 =

(
e2

d − 2
+ κ(µ)

)
µ2−d . (5.40)

This mixed boundary condition corresponds to turning on the double-trace coupling
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2
jµjµ

FIGURE 5.4: The correction to the propagator at leading order in the bound-
ary current-current interaction. The wavy lines are bulk-to-boundary propa-

gators, and the boundary point is integrated over.

κ0
2 ĵµ ĵµ[103] which is classically marginal in d = 2.2 Here κ0 denotes the bare dimreg

coupling, κ(µ) the renormalized coupling, and µ is the dimreg scale. We then obtain
the leading order β function for the coupling

0 =
dκ0

d log µ
⇒ βκ =

dκ

d log µ
= −e2 +O(κ2, e4, e2κ) , (5.41)

which depends only on the bulk coupling and not on κ itself at leading order.

We can use the same logic to compute the β function of κ at leading order for small κ

and large N f , at any value of α. The only difference is that the boundary OPE coeffi-
cient e2 of ĵµ in the expansion of the gauge field gets now replaced by the coefficient
of 1

ν2 in the expansion around ν → 0 of the full propagator (5.10). In this way we get

βκ|large N f = − 1
N f

α

1 + α
8π ((3 − 2∆) + 2(∆ − 1)2ψ(∆))

+O(κ2, N−2
f , N−1

f κ) . (5.42)

As a result, both in perturbation theory and at large N f the Dirichlet boundary con-
dition in AdS3 in the Coulomb phase does not preserve the isometry and it does
not allow to define a set of boundary conformal correlator. It would be interesting
to explore the existence of fixed points for the coupling κ with some appropriate
scaling of the coupling with e2 or 1

N f
. As the derivation did not use any detail of

the matter sector, the existence of this boundary running couplings is a generic phe-
nomenon for 3d gauge theories in AdS, and persists even for the pure gauge theory.
An important exception is the case with a Chern-Simons term in the Lagrangian.

2To fix the normalization of the current-current coupling, one needs to consider the d-dimensional
boundary action in the presence of the source. With the normalization in (5.34) one finds that the
coupling between the source and the current is −

∫
ddx (d − 2) aµ jµ which in the limit d → 2 gives

−
∫

ddx aµ ĵµ.
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5.6 Higgs Phase in AdS

For m2 ≤ m2
c,2 the AdS effective potential has minimum with ϕa =

√
N f Φa ̸= 0 and

with vanishing mass-squared of the scalar fluctuations M2 = 0. This is the Higgs
phase, in which the gauge field gets a mass m2

A = 2e2Φ2, and the N f − 1 massless
scalar fluctuations correspond to Goldstone bosons for the spontaneous breaking
of the flavor symmetry. We refer again to [74] for the discussion of the effective
potential, we simply recall that m2

c,1 < m2
c,2 and as a result in AdS there is a range of

parameters in which the Coulomb and the Higgs phase are both possible.

The Lagrangian for the Higgs phase in AdS is the same as the one in flat space in eq.
(4.22). The corresponding large N f propagator of the gauge field is

⟨AM(X)AN(Y)⟩large N f , Higgs phase

=
1

N f

∫ +∞

−∞
dν

α

ν2 + (∆A − d
2 )

2 + αB(1)(ν)|∆=d
Ω(1)

ν MN(X, Y) +∇X
M∇Y

N L(u) ,
(5.43)

where m2
A = (∆A − 1)(∆A − d + 1). Goldstone bosons in AdS are associated to the

existence of a conformal manifold of boundary theories, on which the bulk global
symmetry acts [74]. In this Higgs phase, a U(1) factor of the spontaneously bro-
ken symmetry is gauged, and in the boundary conformal theory this means that
the marginal operators are charged under the would-be U(1) symmetry, which con-
sequently is explicitly broken by the marginal couplings. The current operator is
therefore not protected anymore, and classically it would get a scaling dimension
∆A above the unitarity bound ≥ d − 1.

The observables we will consider are the scaling dimensions of the spin 1 boundary
operators that are exchanged in the connected four-point of the Goldstone bosons
πA, at the leading order in the 1/N f expansion. Equivalently, these are the operators
that appear in the boundary channel expansion of the bulk two-point function of the
massive gauge field. Setting the AdS scale L = 1, they depend on two parameters,
the gauge coupling α and the mass-squared m2

A, which we will trade with the scaling
dimension ∆A. Unlike the Coulomb phase, having generated a mass for the gauge
field there is no IR divergence in this phase, and there is no need to discuss d = 2
separately.

5.6.1 Spin 1 resonance in AdS

The spectrum of spin 1 operators is determined by the zeroes of the denominator of
the photon propagator

1
α

(
ν2 + (∆A − d

2 )
2
)
+ B(1)(ν)|∆=d = 0 . (5.44)

We show the solutions {ν∗n} in fig. 5.5. They determine the scaling dimensions of
the exchanged operators via ∆n = d

2 + iν∗n . Like in the Coulomb phase, the scaling
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i ⌫

FIGURE 5.5: Plot of B(1)(ν) (green line) on the negative imaginary ν axis,
together with − 1

α (ν
2 +(∆A − d

2 )
2) for α = 10 (orange curve) and α = 50 (blue

curve) in units of the AdS radius, and ∆A = 8.5. We are in d = 2, i.e. AdS3.
The intersections are highlighted with black dots, the corresponding values of
ν give the scaling dimensions of spin 1 operators via ∆ = d

2 + iν. The arrows
denote the direction of increasing coupling constant α. The dashed vertical
lines correspond to the spin 1 double-trace operators in the limit α → 0 with
∆A fixed. The red dot correspond to the dimension ∆A of the non-conserved
spin one operator associated to the massive vector classically. There is no

operator with this scaling dimension in the interacting theory.

dimensions approach the ones of the spin 1 double trace operators ∆(0)
n = 2d+ 2n+ 1

in the limit of small α, and increase monotonically as we increase α, without level
crossing.

Besides the absence of the conserved current, we see a new feature in the spectrum
of the Higgs phase if we compare the anomalous dimensions ∆n − ∆(0)

n in the two
regimes ∆(0)

n < ∆A and > ∆A. Note that contrarily to the classical expectation, in
the interacting theory there is no spin 1 operator with dimension ∆A, due to the
resummation of the bubble. As proposed in [8] the quantity

δl=1(n) =
π

2

(
∆(0)

n − ∆n

)
, (5.45)

is related in the flat space limit to the spin 1 phase shift δl=1(s) in the scattering
amplitude of the pions (the relation between n and s involves a certain average over
a window of the discrete values of n centered around the value such that ∆(0)

n ∼ √
s,

see [8] for the precise formulation of the flat space limit). The feature in δl=1(n)
displayed in fig. 5.6 when ∆(0)

n ∼ ∆A is the AdS avatar of the existence of a resonance
in flat space, which is characterized by a similar step behaviour of δl=1(s) around
s ∼ m2

A.

5.7 Conformal Point

Let us now consider the limit in which λ and α are sent to +∞, and the mass-squared
of the charged scalars is fine-tuned to have bulk conformal symmetry. Tuning the
mass-squared is equivalent to fixing a particular value for the scaling dimension ∆
of the boundary charged operator, so the first question to ask is what value of ∆, if
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FIGURE 5.6: The black dots are the values of (5.45), related to the anoma-
lous dimension of the n-th double-trace operator, as a function of n at finite
coupling in the Higgs phase. The dashed line is the a fit with a Breit-Wigner

phase shift, i.e. Arg
(

−1
n−x+iy

)
. Both plots are for d = 2, i.e. AdS3 and the

value of the parameters ∆A and α, as well as of the fitted parameters x and y,
are indicated under each panel. Note that as expected the resonance broad-

ens as the coupling α increases.

any, gives rise to conformal symmetry in the bulk. Note that, unlike in flat space,
the correlation length is always finite in AdS, i.e. the correlation functions always
decay exponentially as a function of the large geodesic distance [30], and there is
no symmetry enhancement, so it is more subtle to detect the conformal point. Nev-
ertheless, there are some important consequences of the bulk conformal symmetry:
up to a Weyl rescaling the theory in AdS becomes equivalent to a conformal bound-
ary condition for the CFT on a half flat-space (at least this is the case if also the
boundary condition preserves conformal symmetry, more on this below). As a re-
sult there is a convergent bulk OPE expansion for correlation functions, and among
the boundary operators there is a displacement operator with protected scaling di-
mension D = d + 1.

In similar setups, a criterion to detect the conformal value of a free parameter ∆ from
the two-point function ⟨OO⟩ of a bulk operator O was proposed in [74]. It uses the
fact that the bulk OPE expansion of the two-point function of identical operators
contains the identity, and this contribution to the bulk OPE is simply a power law
ζ−∆O of the chordal distance squared ζ that is going to zero. In a massive theory this
leading power is generically accompanied by subleading integer shifted “pseudo-
descendant" powers ζ−∆O+k, with k ∈ N, but in a CFT, barring the existence of
other primary operators of integer dimension k, these powers must be absent. It was
found in examples that there exists a value of ∆ setting to zero simultaneously the
coefficients of all of these powers, and this determines the conformal value. This
criterion can be also implemented in ν space, i.e. from the spectral representation
of the two-point function: in this case one requires that the expansion at large ν

matches the expansion of the spectral representation of the power-law ζ−∆O , given
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by [74]

ζ̂−∆O(ν) = (4π)
d+1

2
Γ( d+1

2 − ∆O)

4∆O Γ(∆O)

Γ(− d
2 + ∆O ± iν)

Γ( 1
2 ± iν)

. (5.46)

Applying this criterion to the bulk two-point function of the operator Φ∗Φ (or equiv-
alently, the Hubbard-Stratonovich field σ) in sQED at leading order at large N f , the
resulting value of ∆ will be identical to the one found in the O(N) model, simply be-
cause at this order this two-point function is not affected by the gauge interactions.
Therefore one finds that in d = 2 the value is ∆ = 1 [74]. More generally for any
dimension 1 < d < 3 we know from the study of the O(N) BCFT at large N in flat
space [104–106] that the conformal value is ∆ = d − 1. We can then plug this value
in the spectral representation of the large N f two-point function of the bulk gauge
field, which in this limit becomes simply

⟨AM(X)AN(Y)⟩large N f , conformal point

=
1

N f

∫ +∞

−∞
dν

1
B(1)(ν)|∆=d−1

Ω(1)
ν MN(X, Y) +∇X

M∇Y
N L(u) ,

(5.47)

and read-off the spectrum of spin 1 boundary operators appearing in the boundary
OPE of the gauge field from the poles of (B(1)(ν)|∆=d−1)

−1 and also their bulk-to-
boundary OPE coefficients squared from the residues. In general d we cannot find
these values analytically, but for any specific d their numerical values can be ex-
tracted from the explicit expression (5.32), and one can check the positivity of the
squared OPE coefficients.

At the integer value d = 2, i.e. AdS3, the bubble function evaluated at ∆ = 1 simpli-
fies to

B(1)(ν)|d=2,∆=1 =
ν3 coth

(
πν
2

)
16(ν2 + 1)

, (5.48)

which, besides the double zero at ν = 0, has single zeroes at νk,± = ±i(2k + 1),
with k ∈ N and k ≥ 1, giving boundary operators of dimension ∆k = 2k + 2. The
corresponding residues are

2πiResνk,+

[
(B(1)(ν)|d=2,∆=1)

−1
]
=

256k(k + 1)
(2k + 1)3 ≥ 0 . (5.49)

However in this case, as we have explained in section 5.5.2, the double pole at ν = 0
and the associated divergence in the integral representation of the propagator imply
the existence of a spin one operator of dimension 1 in the boundary spectrum, whose
scalar bilinear is classically marginal and breaks conformal invariance.3 Note that
the operator giving rise to the boundary running coupling in the deep IR α → ∞ is
not simply the boundary mode of the gauge field which is visible at weak coupling:
recall that the boundary current is related to the bulk gauge field by Aµ ∼

z→0
e2 jµ log z,

3It makes sense to talk about the bilinear of the operator and to sum up the scaling dimensions
because we are working at large N f .
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therefore when we take e2 → ∞ to reach the IR jµ is set to 0. Instead it is an operator
from the matter sector that mixes with the gauge field at strong coupling, and that is
why its properties are controlled by the bubble function.

Because of this, we cannot use Weyl rescaling to flat space and we fail to construct
a conformal boundary condition for the IR fixed point of sQED with a Dirichlet
boundary condition for the gauge field in AdS3. Note that this does not exclude
the possibility that in flat space we might be able to define a conformal boundary
condition for the IR fixed point of 3d gauge theories by starting the RG flow with a
Dirichlet condition for the gauge field in the UV, because AdS and flat space with a
boundary are not equivalent along the RG flow. It would be interesting to explore
this question purely in flat space, for instance using the large N f expansion as a
computational tool.
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Chapter 6

Scalar QED in dS

In this chapter we will study scalar QED in dS. As we have already seen in chapter
2 in the case of a scalar field theory, one way to study late-time correlators in dS is
by doing a rotation from dS to AdS. In this chapter we will see how to generalize
that procedure to gauge theories. Gauge theories in dS are particularly interesting
as insertions of charged operators on the late-time boundary are not gauge invariant
by themselves, and we have to do an appropriate dressing to make the correlation
functions gauge invariant.

6.1 Rotation from dS to AdS

In this chapter we will see what is the relation between AdS and dS space physics
for the case of Scalar QED. Note that this work is still in progress.

The goal of this section is to compute lagrangian in AdS (Euclidean signature) that
will give us the same theory a in dS space. As computations in dS space are tedious
to do, our goal is to relate the observables in dS space to the observables in AdS
space.

First, let us find the massless propagator of the gauge field in dS in the embedding
space introduce in the chapter 2. The Lagrangian of this theory is

−1
4

FµνFµν − 1
2ξ

(
∇µ Aµ

)2 . (6.1)

The equation of motion can be calculated as follows:[
−∇2gνµ +∇µ∇ν − 1

ξ
∇ν∇µ

]
Aµ =0

=⇒
[
−∇2gνµ +

(
1 − 1

ξ

)
∇ν∇µ + Rρνσµgρσ

]
Aµ =0

=⇒
[(
−∇2 + d

)
gνµ +

(
1 − 1

ξ

)
∇ν∇µ

]
Aµ =0.

(6.2)



Chapter 6. Scalar QED in dS 71

We can now write the embedding space equivalent of the above equation for general
gauge parameter ξ as follows:(

−∇2
X + d +

(
1 − 1

ξ

)
1

d−1
2

(WX · ∇X) (KX · ∇X)

)
GdS

A (X, Y; WX, WY)

= (WX · WY) δd+1(X, Y).

(6.3)

Note that in the above equation, we have used the ∇ and K operator defined for dS
in (2.40) and (2.39) respectively. We can write the propagator GdS

A as,

GdS
A (X, Y; WX, WY) = (WX · WY) G0(u) + (WX · Y) (WY · X) G1(u). (6.4)

We can solve the differential equation for both the G0 and G1 component to find the
propagator. We are restricting to d = 3 as it will model close to our universe and we
have noticed simplification in the "Yennie Gauge" i.e. ξ = 3 [107, 108]. G0 and G1 are
given by,

G0 =
1

4π2u
,

G1 =
1

8π2u2 .
(6.5)

Similarly, the equation of motion in AdS for massless vector field is :(
−∇2

X − d +

(
1 − 1

ξ

)
1

d−1
2

(WX · ∇X) (KX · ∇X)

)
GAdS (X, Y; WX, WY)

= (WX · WY) δd+1(X, Y).

(6.6)

One can solve it using similar structure for AdS propagator as in (2.17) for d = 3 and
ξ = 3 and the solution for Dirichlet boundary condition would be :

g0 =
1

4π2u
− 1

4π2(u + 2)
,

g1 =
1

8π2u2 − 1
8π2(u + 2)2 .

(6.7)

Similarly, one can solve for Neumann boundary condition as the following:

g0 =
1

4π2u
+

1
4π2(u + 2)

,

g1 =
1

8π2u2 +
1

8π2(u + 2)2 .
(6.8)

We want to compute correlation functions at late time boundary and thus we will be
using "in-in" formalism here. For that we will be defining different vector propaga-
tors in dS like we saw for scalar field theory. We found the following relation with
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the massless propagators in AdS upon rotation,

GdS
A,ll/rr =

1
2
(GAdS

A,+ + GAdS
A,−)

GdS
A,lr/rl =− 1

2
(GAdS

A,+ − GAdS
A,−).

(6.9)

In the above equation, GAdS
A,+ and GAdS

A,− denotes massless photon propagator in AdS
with the Dirichlet and Neumann boundary condition respectively.

We can define the matrix DA as follows (where we have used the notation that GdS
A,ll,+

denotes the part of the propagator that is proportional to GAdS
A,+ and same for the

others): [
GdS

A,ll,+ GdS
A,lr,+

GdS
A,rl,+ GdS

A,rr,+

]
= GAdS

A,+DA. (6.10)

Where the matrix DA is given by,

DA =
1
2

[
1 −1
−1 1

]
. (6.11)

In the same way we have defined the matrix NA as follows (where we have used the
notation that GdS

A,ll,− denotes the part of the propagator that is proportional to GAdS
A,−

and same for the others): [
GdS

A,ll,− GdS
A,lr,−

GdS
A,rl,− GdS

A,rr,−

]
= GAdS

A,− NA. (6.12)

Where the matrix NA is given by,

NA =
1
2

[
1 1
1 1

]
. (6.13)

Also note that the matrices D and N are singular and hence non-invertible as one of
the Eigenvalues happens to be zero. So we can write these fields as follows:

Al/r
± = Cl/r

A,±A± + Cl/r
A,±A±. (6.14)

Here we are picking the coefficients Cl/r
A,± and Cl/r

A,± in a such a way that they diago-
nalize the matrices. and the condition on these coefficients is as follows:

DA

[
Cl

A,+

Cr
A,+

]
=0,

NA

[
Cl

A,−
Cr

A,−

]
=0,

(6.15)
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DA

[
Cl

A,+

Cr
A,+

]
=λA,+

[
Cl

A,+

Cr
A,+

]
,

NA

[
Cl

A,−
Cr

A,−

]
=λA,−

[
Cl

A,−
Cr

A,−

]
.

(6.16)

Let us look at the eigen equation for DA,

1
2

[
Cl

A,+ − Cr
A,+

]
= λA,+Cl

A,+,

1
2

[
−Cl

A,+ + Cr
A,+

]
= λA,+Cr

A,+.
(6.17)

We can consider solution to be of the following form,

Cl
A,+ =

(
Cr

A,+
)−1 . (6.18)

Upon solving, the set of equations we have

Cl
A,+ = i,

Cr
A,+ = −i,

λA,+ = 1.

(6.19)

Similarly, we can solve the following eigen equation for Nϕ:

1
2

[
Cl

A,− + Cr
A,−
]
= λA,−Cl

A,−,

1
2

[
Cl

A,− + Cr
A,−
]
= λA,−Cr

A,−.
(6.20)

For this case, we can consider solution to be of the form,

Cl
A,− =

(
Cr

A,−
)−1 . (6.21)

Upon solving, we get the following results:

Cl
A,− = 1,

Cr
A,− = 1,

λA,− = 1.

(6.22)

Now with this information, we will first write the kinetic term of the lagrangian.
Recall that kinetic term is nothing but the inverse of the propagator. Let us first
consider for A+ where we have used the notation Cα

A,+ = Cα
+ and for α, β = l/r,

⟨A+A+⟩ =
λA,+GAdS

A,+

(CT
+C+)

. (6.23)
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In the above equation in (CT
+C+), the index α is summed over. Finally, we can have

kinetic term in lagrangian as inverse of this propagator term,

LKin
A,+ =

(CT
+C+)

λA,+

[
1
4 FµνFµν + 1

2ξ

(
∇µ Aµ

+

)2
]

= −2
[

1
4 FµνFµν + 1

2ξ

(
∇µ Aµ

+

)2
]

.
(6.24)

Similarly we have the following kinetic term for A−,

LKin
A,− =

(CT
−C−)

λA,−

[
1
4 FµνFµν + 1

2ξ

(
∇µ Aµ

−
)2
]

= 2
[

1
4 FµνFµν + 1

2ξ

(
∇µ Aµ

−
)2
]

.
(6.25)

We can now plug the expression of the dS fields in terms of the AdS fields A+ and
A− inside the dS Lagrangian. In this way we will obtain the AdS lagrangian whose
boundary correlators correspond to the dS late-time correlators.

First let us take a look at cubic interaction,

LInt
dS
(

Aµ, ϕ1, ϕ2
)
= eAµ

[
ϕ1∂µϕ2 − ϕ2∂µϕ1

]
+

e2Aµ Aµ

2

[
(ϕ1)

2 + (ϕ2)
2
]

. (6.26)

Where, we have chosen to write the complex field ϕ in terms of ϕ1 and ϕ2 real scalar
fields. The kinetic term, mass term and the self interaction quartic term for these
scalar fields in the rotated lagrangian will be same as we see earlier in simple scalar
field theory.

After the rotation (2.47) the required interaction lagrangian will be given by by
LInt,l + LInt,r where,

LInt,l = e−
iπ
2 (d−1)LInt

dS

(
Al
+ + Al

−−, ϕl
1,+ + ϕl

1,−, ϕl
2,+ + ϕl

2,−
)

,

LInt,r = e
iπ
2 (d−1)LInt

dS
(

Ar
+ + Ar

−,, ϕr
1,+ + ϕr

1,−, ϕr
2,+ + ϕr

2,−
)

.
(6.27)

Note that since we have relation (upon rotation) for scalar fields for general dimen-
sion d + 1 and for massless vector fields only for d = 3, we have kept d for scalar
fields in further calculations where it is implied that d = 3. The reason for doing so is
that, we have noticed that the dependence on d vanishes in the rest of the expression
as we will see and hence the only d dependence that will be relevant to generalize
the expressions will come from the vector fields. First let us take a look at cubic
interaction term,

LInt,l
1 =ee−

iπ
2 (d−1) (iAµ

+ + Aµ
−
) [

eiπ( d
2+iν) (ϕ1,+∂µϕ2,+ − ϕ2,+∂µϕ1,+

)
+ eiπ( d

2−iν) (ϕ1,−∂µϕ2,− − ϕ2,−∂µϕ1,−
)

+eiπ( d
2 )
(
ϕ1,+∂µϕ2,− − ϕ2,+∂µϕ1,− + ϕ1,−∂µϕ2,+ − ϕ2,−∂µϕ1,+

)]
,

(6.28)
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LInt,r
1 = ee

iπ
2 (d−1) (−iAµ

+ + Aµ
−
) [

e−iπ( d
2+iν) (ϕ1,+∂µϕ2,+ − ϕ2,+∂µϕ1,+

)
e−iπ( d

2−iν) (ϕ1,−∂µϕ2,− − ϕ2,−∂µϕ1,−
)

+e−iπ( d
2 )
(
ϕ1,+∂µϕ2,− − ϕ2,+∂µϕ1,− + ϕ1,−∂µϕ2,+ − ϕ2,−∂µϕ1,+

)]
.

(6.29)

Now we can add both terms to give final cubic term as follows:

LInt,l
1 + LInt,r

1 :

(2e)
(
ϕ1,+∂µϕ2,+ − ϕ2,+∂µϕ1,+

) [
(−Aµ

+) sin (π(iν +
1
2
)) + (Aµ

−) cos (π(iν +
1
2
))

]
+(2e)

(
ϕ1,−∂µϕ2,− − ϕ2,−∂µϕ1,−

) [
(−Aµ

+) sin (π(−iν +
1
2
)) + (Aµ

−) cos (π(−iν +
1
2
))

]
+(2e)

(
ϕ1,+∂µϕ2,− − ϕ2,+∂µϕ1,− + ϕ1,−∂µϕ2,+ − ϕ2,−∂µϕ1,+

) [
(−Aµ

+)
]

.
(6.30)

Here note that in the last term, there is mixing of ϕ+ and ϕ− fields in the cubic
interaction with the Dirichlet field condition and not with the Neumann one. This
coupling is not gauge invariant and we expect this to give mass to the Dirichlet
vector field because it mixes with ϕ+ and ϕ−.

Let us take a look at quartic interaction now,

LInt,l
2 =

e2

2
[
−(A+)

2 + (A−)2 + 2i(A+ · A−)
]
×[

eiπ( 1
2+iν) (ϕ2

1,+ + ϕ2
2,+
)
+ eiπ( 1

2−iν) (ϕ2
1,− + ϕ2

2,−
)
+ 2eiπ( 1

2 ) (ϕ1,+ϕ1,− + ϕ2,+ϕ2,−)
]

,
(6.31)

LInt,r
2 =

e2

2
[
−(A+)

2 + (A−)2 − 2i(A+ · A−)
]
×[

e−iπ( 1
2+iν) (ϕ2

1,+ + ϕ2
2,+
)
+ e−iπ( 1

2−iν) (ϕ2
1,− + ϕ2

2,−
)
+ 2e−iπ( 1

2 ) (ϕ1,+ϕ1,− + ϕ2,+ϕ2,−)
]

.
(6.32)

One can add these two terms to finally give the following quartic interaction term,

LInt,l
2 + LInt,r

2 :

(e2)
(
ϕ2

1,+ + ϕ2
2,+
) [(

−(A+)
2 + (A−)2) (cos π(iν +

1
2
))− 2(A+ · A−)(sin (π(iν +

1
2
)))

]
+(e2)

(
ϕ2

1,− + ϕ2
2,−
) [(

−(A+)
2 + (A−)2) (cos π(−iν +

1
2
))− 2(A+ · A−)(sin (π(−iν +

1
2
)))

]
+(e2) (ϕ1,+ϕ1,− + ϕ2,+ϕ2,−) [(−4(A+ · A−))]

(6.33)

6.2 Observables for a gauge theory in dS

Once we have the Lagrangian that will relate the boundary correlators in AdS to the
late time boundary correlators in dS, the next goal is to perform the computation in
AdS.
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Some things that we can compute are: the late-time four point function of the scalar
fields at the tree-level, namely the photon exchange diagram; the one-loop correc-
tions to the photon propagator, i.e. the dS spin 1 bubble; combining the previous
two, one can compute the late-time correlation function at one-loop and also at fi-
nite coupling in the large N f expansion, upon resumming the bubble. This work is
currently in progress.

One important subtlety that arises is that in dS we need to include an appropriate
dressing of the charged operator insertions at late times to make the correlator gauge
invariant. We do so by including Wilson lines attached to the late-time insertion
points. In order to preserve conformal invariance, the Wilson lines are restricted to
lie along geodesics. We hope that this can give us an important insight to attack
the problem with dynamical gravity in dS, where similar subtleties related to gauge-
invariance arise (in that case, under diffeomorphisms). Another problm we plan to
investigate regards the nature of the Higgs phase. In the case of the O(N) model
in dS space [90], there was no spontaneous symmetry breaking, so it is natural to
wonder if can we see a Higgs phase in the case of scalar QED.
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Chapter 7

Fermionic QED

In this chapter, we will study fermionic QED at large N f mostly in flat space for D =

3, and we discuss the first step towards the study of this theory on AdS background,
similarly to what we did for the scalar QED case. In flat space we will see that there
is a possibility of different massive phases separated by a CFT, similarly to the case
of scalar QED. Due to appearance of Chern-Simons terms in 3 dimensions when the
fermions are massive, parity is broken in the massive phases of fermionic QED.

7.1 Fermionic QED in Flat space

This section is a review of fermionic QED but mostly literature has focused on the
CFT and here we will also look at scattering in the massive phase. The lagrangian of
the theory (in Euclidean signature) is given by,

1
4

FµνFµν + ψ̄a∂µγµψa + ieAµψ̄aγµψa + mψ̄aψa. (7.1)

Here also, there are N number of fermionic matter fields ψ and the index a runs from
1 to N. Also note that summation over index a is implied. The Dirac adjoint of the
fermionic field is denoted by ψ̄, γµ are the Dirac gamma matrices, Aµ is the vector
field and the index µ in the lagrangian refers to the spacetime index. e is the gauge
coupling and m is the mass term of the fermionic field.

We have taken γ matrices to coincide with the σ Pauli matrices. Some useful identi-
ties:

γν = σν

{γµ, γν} = 2δµν

Tr {γµγνγσ} = iϵµνσ Tr(I) = 2iϵµνσ.

(7.2)

Now, we will take a look at the form of fermionic bubble in flat space 7.1.
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FIGURE 7.1: Fermionic Bubble in flat space coming from cubic interaction
term.

=− d3k
(2π)3 Tr

[
(−ieγµ)

(
i ̸ k + m
k2 + m2

)
(−ieγν)

(
i( ̸ k+ ̸ p) + m
(k + p)2 + m2

)]
,

= e2
∫ d3k

(2π)3 Tr

[
(ikσγµγσ + mγµ)

(
i(k + p)δγνγδ + mγν

)
(k2 + m2)((k + p)2 + m2)

]
,

= e2
∫ d3k

(2π)3 Tr

[
−kσ(k + p)δγµγσγνγδ + imkσγµγσγν + im(k + p)δγµγνγδ + m2γµγν

(k2 + m2)((k + p)2 + m2)

]
.

(7.3)
One can simplify it further using the trace identities obtaining,

Iµν = 2e2
∫ d3k

(2π)3

[(
k · (k + p) + m2) gµν − 2kµkν − kµ pν − kν pµ − mpσϵµνσ

]
(k2 + m2) [(k + p)2 + m2]

. (7.4)

Because of the last term in numerator, there will be one extra term as compared to
the the scalar bubble we saw in chapter 4 and we can assume the fermionic bubble
to take the following form,

Iµν =

[
F1(p)

(
pµ pν

p2 − δµν

)
+ F2(p)δµν

]
p + F3(p)pλϵµνλ. (7.5)

In the above equation note that the last term i.e. F3(p)pλϵµνλ breaks the parity and
is special for D = 3. We can now equate (7.4) and (7.5) and contract both sides by
pµ pν and after simplification it would give us, F2(p) = 0 which is expected from the
gauge invariance. Contracting with δµν instead gives

−2F1(p) · p = e2

[
−
√

m2

2π
−
(

p2 − 4m2) B0
3

]
. (7.6)

Where B0
3 is scalar bubble in flat space for D = 3. Thus we can write F1(p) as,

F1(p) =
e2

2p

√m2

2π
+
(

p2 − 4m2) 1

8π
√

m2

arctan
(√

p2/4m2
)

√
p2/4m2

 . (7.7)

Finally, to get the form of F3(p), we can contract Iµν with pλϵλµν and simplify it to
give,

F3(p) = −2e2mB0
3. (7.8)
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The above bubble is with one loop of fermionic fields. to get the bubble with N f

number of fermionic fields, we can multiply it with N f . After having our fermionic
bubble fixed, we can now get the resummed photon propagator by doing geomet-
ric same as we did with the case of scalar QED 4.2. We thus find the resummed
propagator as,

⟨Aµ(p)Aν(−p)⟩| 1
Nf

=
ξ pµ pν

p4 +

(√
p2 + (α f )

)
√

p2

(
(αg)2 +

(√
p2 + (αF)

)2
) (δµν −

pµ pν

p2

)

+
(αg)pλϵλµν

p2

(
(αg)2 +

(√
p2 + (α f )

)2
) .

(7.9)
In the above equation, we have used the gauge fixing term as Lg. f . =

1
2ξ (∂µ Aµ)2 ,

and the new coupling parameter is given by α = N f e2, and we refer the function
f and g as F1(p) = e2 f and F3(p) = e2g. Note that this resummed propagator has
one additional structure as compared to the scalar QED. Recall that the additional
structure contains a function g which is linear in m and thus we can have different
propagator for different sign of m and thus different phases as well. These two
phases are separated by m = 0 and it denotes the CFT point. Studying the amplitude
of ψψ̄ → ψψ̄ at leading order in 1

N f
one finds a pole in the spin 1 partial wave,

meaning that massive vector exchange can be interpreted as the bound state.

7.2 Fermionic QED in AdS

In this section, we will discuss the ongoing work in AdS. The idea is to apply again
the bootstrap and large N f techniques. In this case, when we write the bubble func-
tion in the spectral representation, it will contain an additional structure due to the
breaking of parity, similarly to what we discussed in flat space. Unlike the scalar
QED case, where in the spectral representation the bubble contained only the spin 1
harmonic function Ω(1)

ν MN(X, Y), here we need to add a parity odd transverse struc-
ture. We propose that this parity odd structure can be written as FMN

ν (X, Y) =

ϵMNRSXR∇Y
S Ω(0)

ν MN(X, Y). This term is inspired from the flat space structure. As
a result, to compute the resummed propagator with this bubble, we need to be able
to compute also convolution integrals that involve the new parity odd structure. The
first required integrals is given below:∫

AdS
dYΩ(1)M

ν̄,N (X, Y)FNP
ν (Y, Z) ∝ FMP

ν (X, Z) . (7.10)

This proportionality is due to the fact that on the L.H.S. there is a parity odd term
(the product of a parity even and a parity odd term) and hence on the R.H.S. we
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need a parity odd term as well. Another required integral is∫
AdS

dYFM
ν̄,N(X, Y)FNP

ν (Y, Z) ∝ Ω(1)MP
ν (X, Z) (7.11)

This proportionality is due to the fact that on the L.H.S. there is parity even term
(the product of two parity odd terms) and hence on the R.H.S. we need a parity even
term as well.

We are currently figuring out the constants of proportionality which might depend
on ν, ν̄. Once we have the resummed propagator, we can try to bootstrap the bubble
by computing the 4-point boundary correlation function with the exact propagator
containing the unknown bubble. Then, we can study the realization of the massive
phase in AdS, as well as the point with bulk conformal symmetry. Another thing
that we hope to find is the AdS analogue of the bound state in flat space.
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Chapter 8

Summary and Outlook

In this thesis, we have motivated the study of massive QFTs in AdS and dS space
beyond standard perturbation theory. We have used a combination of techniques
from two approaches, namely large N and analytical conformal bootstrap, to achieve
this goal. We have reviewed the embedding formalism (which makes correlation
functions convenient to compute) and also the spectral representation which plays
a key role in resumming the Feynman diagrams that dominate at large N. As the
thesis is focused on both AdS and dS space, we have explained the rotation from dS
to AdS which allows one to relate 4-point late time boundary correlation functions
in dS with the 4-point boundary correlation functions in AdS [81–84].

We have then reviewed the O(N) model in both flat and AdS space [85],describing
the different phases of the theory, namely the symmetry breaking and the symmetry
preserving phase. We have seen how a combination of large N and conformal boot-
strap can be applied to get results beyond standard perturbation theory in AdS. We
have presented the AdS analogue of a resonance. Upon analytical continuation of
this model to dS space, one finds that there is no spontaneous symmetry breaking
[90].

After reviewing the O(N) model, we have presented the results obtained in [75] on
scalar QED. Here we have also used a combination of large N and analytical boot-
strap to get results for any finite coupling. We found two phases of the theory: a
Coulomb phase where the scalar fields are massive and the vector field is massless,
and a Higgs phase where the scalar fields are massless Goldstone boson and the vec-
tor field is massive. In the latter phase, we also noticed AdS analogue of resonance
in flat space. We briefly discussed the case with conformal symmetry in the bulk.
We also explained the first steps to extend this work to fermionic QED in AdS. The
presence of parity breaking in D = 3 requires us to add parity-odd structures to the
bubble before we attempt to bootstrap it. We also saw that for fermionic QED in flat
space, there is a spin 1 bound state and there are two phases separated by a CFT.

In this thesis, we also explained the rotation of the Lagrangian from dS to AdS for
scalar QED. The main motivation of this work is to understand gauge invariance



Chapter 8. Summary and Outlook 82

in dS: we need to do an appropriate dressing of the charged operators at the late-
time boundary to make the correlation functions gauge invariant. An important
outcome of the study of the rotation to AdS is that we have noticed that vector field
with Dirichlet boundary condition couples with ϕ fields with different boundary
conditions. This coupling is not gauge invariant and hence we expect this to give
mass to the Dirichlet vector field.

We conclude by mentioning some possible future directions:

• Complete the projects about fermionic QED in AdS and scalar QED in dS.

• Considering purely a Chern-Simons kinetic term for the gauge field, it would
be interesting to study the boundary correlation functions for Chern-Simons
matter theory in AdS3, and to try to elucidate the unusual properties under
crossing symmetry of the scattering of anyons [109–111] from the point of view
of the boundary conformal correlators;

• Scattering amplitudes of charged particles in abelian gauge theories in flat
space have IR divergences in D ≤ 4. A direction for the future is to under-
stand the AdS counterpart of the inclusive observables that give finite results,
using the behavior in the flat-space limit as a diagnostic of the IR properties,
see [50, 112] for work in this direction. In particular one could compute the
1 loop diagrams in AdS that correspond to the IR divergent amplitude in flat
space, and study their behavior in the flat-space limit to look for an appropriate
prescription that gives a finite result. The IR divergences can also be studied
at large N f and finite coupling, by computing at next-to-leading order in the
1/N f expansion;

• It would be interesting to try to apply bootstrap techniques to the boundary
correlators of gauge theories in AdS. An important problem in this direction is
to understand what are the minimal set of assumptions that allow to single out
a particular gauge theory. A nice feature of the Dirichlet boundary condition is
that the gauge group becomes a global symmetry at the boundary and there-
fore is visible in the conformal bootstrap. A natural target in this case is the
four-point function of the non-abelian currents, see [113] for recent numerical
progress on this problem. Even for a fixed gauge group and matter content,
in this setup one always finds not just a single conformal theory but rather a
continuous family of them parametrized by the dimensionless combination of
the gauge coupling and the AdS radius. Therefore important inputs for the
bootstrap problem can come from the regime of weak coupling where the data
of the conformal theory can be reliably computed in perturbation theory.

• It would be interesting to obtain explicit position-space expressions for loop
diagrams with gauge fields. For this, one can use similar techniques to those
obtained in [114, 115] for scalar and fermionic diagrams. Presumably there will
be various relations between the spinning diagrams and the scalar diagrams.
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• After understanding scalar QED in dS, one natural extension would be to do
fermionic QED in dS. One can compute the fermionic bubble in this case and
get the exact photon propagator for dS at large N f .

• As was mentioned earlier, understanding the subtlety in gauge theory in dS
can help in attacking the problem in dS with dynamical gravity. One natural
step forward would be to include dynamical gravity in the case of O(N) and
QED models.
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Appendix A

Curious case of Proca-Propagator

In this section we will take a closer look at the proca propagator 2.30. As it was
mentioned before that second term in the propagator cancels the unphysical terms
in the first term of the propagator. Here, we will explicitly show this calculation.

G∆,1 (X1, X2; W1, W2) =
∫ dνΩν,1 (X1, X2; W1, W2)

ν2 + (∆ − h)2

−
∫ dν (W1 · ∇1) (W2 · ∇2)Ων,0 (X1, X2)

(∆ − 1)(2h − ∆ − 1) (ν2 + h2)
.

(A.1)

Note that h = d
2 we can write Ων,J (X1, X2; W1, W2) as difference of two bulk to bulk

propogator.

Ων,J (X1, X2; W1, W2) =
iν
2π

(
Gh+iν,J (X1, X2; W1, W2)− Gh−iν,J (X1, X2; W1, W2)

)
(A.2)

also we have for spin 1,

G∆,1 (X1, X2, W1, W2) = W12g0(u, ∆) + (W1 · X2) (W2 · X1) g1(u, ∆) (A.3)

here we have used the notation W12 = W1 · W2 and ,

(W1 · ∇1) (W2 · ∇2)Ων,0 (X1, X2) =
iν
2π

[
−W12

(
G′

h+iν(u)− G′
h−iν(u)

)
+ (W1 · X2) (W2 · X1)

(
G′′

h+iν(u)− G′′
h−iν(u)

)]
(A.4)

In above expression, G′(u) denotes derivative of G(u) with respect to u. Also G∆

denotes the spin 0 bulk to bulk propagator and we can use above expression in A.1,

G∆′,1 (X1, X2; W1, W2) =
∫ dν

ν2 + (∆′ − h)2 · iν
2π

(W12 (g0(u, ∆)− g0(u, ∆̄))

+ (W1 · X2) (W2 · X1) (g1(u, ∆)− g1(u, ∆̄)))

−
∫ dν · iν

2π(∆′ − 1)(2h − ∆′ − 1) (ν2 + h2)[
−W12

(
G′

∆(u)− G′
∆̄(u)

)
+ (W1 · X2) (W2 · X1)

(
G′′

∆(u)− G′′
∆̄(u)

)]
(A.5)
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Note that in above expression, ∆ = h + iν.
Let us consider only W12 term and only with ∆.

G∆′,1 (X1, X2; W1, W2) |∆,W12 =
∫ dν · W12 · iν

2π

[
g0(u, ∆)

ν2 + (∆′ − h)2 +
G′

∆(u)
(∆′ − 1)(2h − ∆′ − 1) (ν2 + h2)

]
(A.6)

where,

g0(u, ∆) =(d − ∆)N (2u)−∆
2F1

(
∆,

1 − d + 2∆
2

, 1 − d + 2∆,− 2
u

)
− 1 + u

u
N (2u)−∆

2F1

(
∆ + 1,

1 − d + 2∆
2

, 1 − d + 2∆,− 2
u

) (A.7)

and,

N =
Γ(∆ + 1)

2πd/2(d − 1 − ∆)(∆ − 1)Γ
(

∆ + 1 − d
2

) (A.8)

G′
∆(u) =A

(
2
u2

)[
∆
(−2

u

)∆−1

2F1

(
∆,

1 − d + 2∆
2

, 1 − d + 2∆,− 2
u

)

+
∆
2

(−2
u

)∆

2F1

(
∆ + 1,

3 − d + 2∆
2

, 2 − d + 2∆,− 2
u

)] (A.9)

where,

A =
Γ(∆)(−4)−∆

2πd/2Γ
(

∆ + 1 − d
2

) (A.10)

looking at the four terms of the integrand proportional to W12,
first term:

=
iν
2π

Γ(∆ + 1)
Γ(∆ + 1 − h)

(2u)−∆(2 h − ∆)
2πh (ν2 + (∆′ − h)2) (2 h − 1 − ∆)(∆ − 1)

2F1

(
∆,

1 − 2 h + 2∆
2

, 1 − 2 h + 2∆,− 2
u

) (A.11)

2nd term:

=
iν
2π

Γ(∆ + 1)
Γ(∆ + 1 − h)

−(2u)−∆ ( 1+u
u

)
2πh (ν2 + (∆′ − h)2) (2 h − 1 − ∆)(∆ − 1)

2F1

(
∆ + 1,

1 − 2 h + 2∆
2

, 1 − 2 h + 2∆,− 2
u

) (A.12)

3rd term:

=
iν
2π

Γ(∆ + 1)
Γ(∆ + 1 − h)

(2u)−∆ (− 1
u

)
2πh (ν2 + h2) (2 h − 1 − ∆′)(∆′ − 1)

2F1

(
∆,

1 − 2 h + 2∆
2

, 1 − 2 h + 2∆,− 2
u

) (A.13)
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4th term:

=
iν
2π

Γ(∆ + 1)
Γ(∆ + 1 − h)

(2u)−∆ ( 1
u2

)
2πh (ν2 + h2) (2h − 1 − ∆′)(∆′ − 1)

2F1

(
∆ + 1,

3 − 2h + 2∆
2

, 2 − 2h + 2∆,− 2
u

) (A.14)

Note that, in all of these 4 terms 2F1
Γ[∆+1−h] have no poles. Poles in each terms are as

follow:
First and 2nd term:

ν = ±i
(
∆′ − h

)
(Expected Poles)

ν = i (h + n + 1)

ν = i (h − 1)

ν = −i (h − 1) .

(A.15)

3rd and 4th term:

ν = ±ih

ν = i (h + n + 1)
(A.16)

For the integral, closing the contour from below. We noted that residue of terms 1st
and 2nd at ν = −i (h − 1) were exactly cancelled by residue of 3rd and 4th term at
ν = −ih. Similar cancellation will take place for the shadow part with terms involv-
ing ∆̄ and Same thing will happen for terms proportional to (W1 · X2) (W2 · X1).
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Appendix B

Inversion Formula

We have a bulk two-point function in AdSd+1 of conserved current operators

⟨J(X, W1)J(Y, W2)⟩ ≡ FJ(X, Y; W1, W2) . (B.1)

In the spectral representation we rewrite FJ in an expansion in a basis of transverse
spin 1 harmonic functions in AdSd+1

FJ(X, Y; W1, W2) =
∫ +∞

−∞
dν F̃J(ν)Ω(1)

ν (X, Y; W1, W2) . (B.2)

We want to invert this formula and find an expression for F̃J(ν) as an integral of
FJ(X, Y; W1, W2) over spacetime.

We start from the identity∫
AdSd+1

dd+1X Ω(1)
ν′ (Z, X; W1, K)Ω(1)

ν (X, Y; W, W2)

=
d − 1

2
δ(ν − ν′) + δ(ν + ν′)

2
Ω(1)

ν (Z, Y; W1, W2) .
(B.3)

We want to evaluate it at Z = Y. We will use that

Ω(1)
ν (Z, Y; W1, W2) =

iν
2π

(
G d

2+iν(Z, Y; W1, W2)− G d
2−iν(Z, Y; W1, W2)

)
, (B.4)

and

G∆(Z, Y; W1, W2) = W1 · W2 g∆
0 (u) + (W1 · Y)(W2 · Z) g∆

1 (u) , u ≡ (Y − Z)2

2
. (B.5)

Therefore

Ω(1)
ν (Z, Y; W1, W2) =

iν
2π

[
W1 · W2

(
g

d
2+iν
0 (u)− g

d
2−iν
0 (u)

)
+(W1 · Y)(W2 · Z)

(
g

d
2+iν
1 (u)− g

d
2−iν
1 (u)

)]
.

(B.6)
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Acting with (K1)A(K2)B

( d−1
2 )2 we obtain

(K1)A(K2)B

( d−1
2 )2

Ω(1)
ν (Z, Y; W1, W2)

=
iν
2π

[
(ηAB + XAXB + YAYB + X · Y XAYB)

(
g

d
2+iν
0 (u)− g

d
2−iν
0 (u)

)
+(XB + X · Y YB)(YA + X · Y XA)

(
g

d
2+iν
1 (u)− g

d
2−iν
1 (u)

)]
.

(B.7)

We now contract with ηAB and we obtain

(K1) · (K2)

( d−1
2 )2

Ω(1)
ν (Z, Y; W1, W2)

=
iν
2π

[
(d + (1 + u)2)

(
g

d
2+iν
0 (u)− g

d
2−iν
0 (u)

)
−u(1 + u)(2 + u)

(
g

d
2+iν
1 (u)− g

d
2−iν
1 (u)

)]
.

(B.8)

In the limit Z → Y in which u goes to zero, both terms g
d
2+iν
0,1 (u)− g

d
2−iν
0,1 (u) have a

finite limit. We are left with

(K1) · (K2)

( d−1
2 )2

Ω(1)
ν (Z, Y; W1, W2)|Z=Y =

d(d + 1)ν
(
d2 + 4ν2) sinh(πν)Γ

(
d
2 ± iν − 1

)
2d+4π

d+3
2 Γ
(

d+3
2

) .

(B.9)

As a result we obtain

(K1) · (K2)

( d−1
2 )3

∫
AdSd+1

dd+1X Ω(1)
ν′ (Z, X; W1, K)Ω(1)

ν (X, Y; W, W2)|Z=Y = C(1)
ν

δ(ν − ν′) + δ(ν + ν′)
2

,

C(1)
ν =

d(d + 1)ν
(
d2 + 4ν2) sinh(πν)Γ

(
d
2 ± iν − 1

)
2d+4π

d+3
2 Γ
(

d+3
2

) . (B.10)

To obtain the inversion formula, we will then simply redefine in eq. (B.2) W1 → W,
then multiply both sides by Ω(1)

ν (Z, X; W1, K), where K is the differential operator
that frees the index contracted with W, and we then act with (K1 · K2) and integrate
X over AdSd+1. Finally we set Y = Z. We then get

(K1) · (K2)

( d−1
2 )3

∫
AdSd+1

dd+1X Ω(1)
ν (Y, X; W1, K)FJ(X, Y; W,W2) = C(1)

ν F̃J(ν) , (B.11)

Note that the dependence on W1,2 on the left-hand side disappears after we act with
K1 · K2.
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We will now use the following decomposition of the two-point function

F(X, Y; W1, W2) = (W1 · W2) F0(u) + (W1 · Y)(W2 · X) F1(u) . (B.12)

Acting with K1 · ∇X we find

K1 · ∇X F(X, Y; W1, W2) =
d − 1

2
(W2 · X)Div , (B.13)

where

Div = (u + 1)F′
0(u) + (d + 1)F0(u)− (d + 2)(u + 1)F1(u) + (1 − (u + 1)2)F′

1(u) .
(B.14)

This combination needs to vanish, to enforce that the operator is transverse.
Let us plug this decomposition in the formula above. We use

(K1) · (K2)

( d−1
2 )3

Ω(1)
ν (Y, X; W1, K)(W · W2) F0(u)

=
(K1) · (K2)

( d−1
2 )2

Ω(1)
ν (Y, X; W1)BGBD(X)(W2)D F0(u)

= Ω(1)
ν (Y, X)ABGBD(X)GA

D(Y) F0(u)

= Ω(1)
ν (Y, X)ABηAB F0(u) .

(B.15)

where GAB(Z) = ηAB + ZAZB is the transverse projector in Z, and

(K1) · (K2)

( d−1
2 )3

Ω(1)
ν (Y, X; W1, K)(W · Y)(W2 · X) F1(u)

=
(K1) · (K2)

( d−1
2 )2

Ω(1)
ν (Y, X; W1)BGBD(X)YD(W2 · X) F1(u)

= Ω(1)
ν (Y, X)ABGBD(X)GAC(Y)YDXC F1(u)

= Ω(1)
ν (Y, X)ABXAYB F1(u) .

(B.16)

We will also use the analogous decomposition for the harmonic function (which is
transverse, and in fact one can check that the corresponding Div vanishes)

Ω(1)
ν (X, Y; W1, W2) = (W1 · W2)ων

0(u) + (W1 · Y)(W2 · X)ων
1(u) . (B.17)

Freeing up the indices, this decomposition becomes

Ω(1)
ν (Y, X)AB = (ηAB + YAYB + XAXB + Y · X YAXB)ων

0(u)

+ (YB + Y · X XB)(XA + Y · X YA)ων
1(u) ,

(B.18)
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and therefore

ηABΩ(1)
ν (Y, X)AB = (d + (1 + u)2)ων

0(u)

− u(1 + u)(2 + u)ων
1(u) ,

(B.19)

and

Ω(1)
ν (Y, X)ABXAYB =

[
(1 + u)

[
1 − (1 + u)2]]ων

0

+
[
1 − 2(1 + u)2 + (1 + u)4

]
ων

1

(B.20)

As a result we obtain the inversion formula,

F̃J(ν)

=
Vol

(
Sd)

C(1)
ν

∫ +∞

0
du
√

g(u)
[
(d + (1 + u)2) F0(u)− u(1 + u)(2 + u) F1(u)

]
ων

0(u) .

+
Vol

(
Sd)

C(1)
ν

∫ +∞

0
du
√

g(u)
[
−u(1 + u)(2 + u) F0(u) + (1 − (1 + u)2)2 F1(u)

]
ων

1(u).

(B.21)

Note that
√

g(u) = 1
2 (u(2 + u))

d−1
2 and Vol

(
Sd) = 2π

d+1
2

Γ( d+1
2 )

.

Also the expression for ων
1(u) and ων

0(u) are given below,

ων
0(u) =

iν
2π

(
g

d
2+iν
0 (u)− g

d
2−iν
0 (u)

)
, (B.22)

This can be explicitly written in terms of hypergeometric functions,

ων
0(u) =

ν sinh(πν)
(
d2 + 4ν2) Γ

(
d
2 − 1 + iν

)
Γ
(

d
2 − 1 − iν

)
2d+4π

d+3
2 Γ
(

d+3
2

)
[
(d + 1)2F1

(
d
2
− iν,

d
2
+ iν;

d + 1
2

;−u
2

)
−(u + 1)2F1

(
d
2
+ 1 − iν,

d
2
+ 1 + iν;

d + 3
2

;−u
2

)]

ων
1(u) =

ν sinh(πν)
(
d2 + 4ν2) Γ

(
d
2 − 1 + iν

)
Γ
(

d
2 − 1 − iν

)
2d+4π

d+3
2 Γ
(

d+3
2

)
u(2 + u)[

(d + 1)(1 + u)2F1

(
d
2
− iν,

d
2
+ iν;

d + 1
2

;−u
2

)
−
(
d + (1 + u)2)

2 F1

(
d
2
+ 1 − iν,

d
2
+ 1 + iν;

d + 3
2

;−u
2

)]
.

(B.23)
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Appendix C

Flat space Limit

Note that the decomposition (B.12) can be written in any coordinates xµ on AdSd+1

as
F(x, y)µν = − ∂u

∂xµ∂yν
F0(u) +

∂u
∂xµ

∂u
∂yν

F1(u) . (C.1)

To take the flat-space limit, we need to restore the radius of AdS L in our formulae.
To do that, we replace the parameter u by u/L2. We then take L → ∞, and identify
u with half of the square-distance in flat space Rd+1, which in Cartesian coordinates
can be written simply as (x − y)2/2. We will also use the notation r = |x − y|, so
that after the limit L → ∞ we can identify u with r2/2. The flat-space limit is then

L−2α

(
− ∂u

∂xµ∂yν
F0
(

L−2u
)
+ L−2 ∂u

∂xµ

∂u
∂yν

F1
(

L−2u
))

−→
L→∞

δµν f0(u)− (x − y)µ(x − y)ν f1(u),
(C.2)

where the lower-case is used to denote the functions in flat space and 2α can be
defined as mass dimension of the function f0(u) in flat space. From this we see that,

L−2αF0(L−2u) −→
L→∞

f0(u) ,

L−2α−2F1(L−2u) −→
L→∞

f1(u) .
(C.3)

Equivalently we can write that the expansion of the AdS functions is

F0
(

L−2u
)

=
L→∞

L2α
(

f0(u) +O
(

L−2))
F1
(

L−2u
)

=
L→∞

L2αL2 ( f1(u) +O
(

L−2)) .
(C.4)

The resulting two-point function in flat space is then written as

f (x, y)µν = δµν f0(u)− (x − y)µ(x − y)ν f1(u) . (C.5)
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Given a function of the distance h(u), we can obtain a transverse function by apply-
ing to it a transverse projector

(∂2δµν − ∂µ∂ν)h(u)

= δµν∂ρ((x − y)ρh′(u))− ∂µ((x − y)νh′(u))

= δµν(2uh′′(u) + d h′(u))− (x − y)µ(x − y)νh′′(u) .

(C.6)

Therefore transversality is equivalent to the existence of a function h(u) such that

f0(u) = 2uh′′(u) + d h′(u) ,

f1(u) = h′′(u) .
(C.7)

Taking a derivative of f0(u) we get

f ′0(u) = (2 + d) f1(u) + 2u f ′1(u) . (C.8)

Indeed this equation coincides with the flat-space limit (C.3) of Div = 0.

C.0.1 Inversion formula in flat space

The Fourier transform in flat space is

f (x, y)µν =
∫ dd+1 p

(2π)d+1 (−p2δµν + pµ pν)h̃(p2)e−ip(x−y) . (C.9)

h̃(p2) is a radial Fourier transform of h(u).

Comparing with equation (C.5) we get

(−p2δµν + pµ pν)h̃(p2) = δµν f̃0(p2) +
∂2

∂pµ∂pν
f̃1(p2) . (C.10)

Moreover

∂2

∂pµ∂pν
f̃1(p2) =

∂

∂pµ
( f̃ ′1(p2)2pν) = 2δµν f̃ ′1(p2) + 4pµ pν f̃ ′′1 (p2) . (C.11)

As a result
h̃(p2) = − 1

p2 ( f̃0(p2) + 2 f̃ ′1(p2)) = 4 f̃ ′′1 (p2) . (C.12)

f̃0,1 can be written as a single integral over the distance, using the radial Fourier
transform

f̃0,1(p2) = (p2)−
d−1

4 (2π)
d+1

2

∫ +∞

0
dr r

d+1
2 J d−1

2
(
√

p2 r) f0,1(r2/2) , (C.13)
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where we used the definition u = r2

2 in the argument of the functions in position
space. Using the identity

d
dp2

(
(p2)−

d−1
4 J d−1

2
(
√

p2 r)
)
= − r

2
(p2)−

d+1
4 J d+1

2
(
√

p2 r) (C.14)

we can then write also h̃(p2) as a single integral as follows

h̃(p2) = −(p2)−
d+3

4 (2π)
d+1

2

∫ +∞

0
dr r

d+1
2

[
J d−1

2
(
√

p2 r) f0(r2/2)

− r√
p2

J d+1
2
(
√

p2 r) f1(r2/2)

]
.

(C.15)

Another possibility is to use the second equality in (C.12) and use the following
identity for the Bessel function

d2

d(p2)2

(
(p2)−

d−1
4 J d−1

2

(√
p2 r
))

= −1
4

r2(p2)−
d+3

4

[
J d−1

2
(
√

p2 r)− d+1√
p2 r

J d+1
2
(
√

p2 r)
]

.
(C.16)

This gives the following alternative integral expression,

h̃(p) = −
(

p2)− d+3
4 (2π)

d+1
2

∫ +∞

0
drr

d+5
2

[
J d−1

2

(√
p2r
)

− d + 1√
p2r

J d+1
2

(√
p2r
)]

f1
(
r2/2

) (C.17)

C.0.2 Limits of the kernel function

In (B.21) the kernel of the transform is the special function

ων
0(u) =

iν
2π

(
g

d
2+iν
0 (u)− g

d
2−iν
0 (u)

)
, (C.18)

where

g
d
2+iν
0 (u) =

π− d
2 2−

d
2−iνΓ

(
d
2 + iν + 1

)
u− d

2−iν−1

((d − 2)2 + 4ν2) Γ(iν + 1)

(
u(d − 2iν) 2F1

(
d
2
+ iν, iν +

1
2

; 2iν + 1;− 2
u

)
−2(u + 1) 2F1

(
d
2
+ iν + 1, iν +

1
2

; 2iν + 1;− 2
u

))
.

(C.19)

In this subsection we will compute the expansion of ων
0(u) in the flat-space limit

in which we replace u with L−2u = L−2r2/2 and at the same time ν = Lp, where

p is the modulus of the momentum in flat space. Since g
d
2+iν
0 (u) is a sum of two

hypergeometric functions, we will also accordingly split ων
0(u) in two terms that we
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call ων
0(u)|1st hyp and ων

0(u)|2nd hyp.

To find the approximation of ων
0(u)|1st hyp we use the following rewriting of the first

hypergeometric function, exploiting the integral expression

2−
d
2−iν

(
r2

2L2

)− d
2−iν−1

2F1

(
d
2
+ iν, iν +

1
2

; 2iν + 1;−4L2

r2

)

= 2−
d
2−iν

(
r2

2L2

)− d
2−iν−1 Γ(2iν + 1)

Γ(iν + 1
2 )

2

∫ 1

0
dt tiν− 1

2 (1 − t)iν− 1
2

(
1 +

4L2t
r2

)− d
2−iν

=
t= ry

2L

2−
d
2−iν

(
r2

2L2

)− d
2−iν−1 Γ(2iν + 1)

Γ(iν + 1
2 )

2

( r
2L

)iν+ 1
2
∫ 2L

r

0
dy yiν− 1

2

(
1 − ry

2L

)iν− 1
2
(

1 +
2Ly

r

)− d
2−iν

= 2−
d
2−iν

(
r2

2L2

)− d
2−iν−1 Γ(2iν + 1)

Γ(iν + 1
2 )

2

( r
2L

) d
2+2iν+ 1

2
∫ 2L

r

0
dy y−

d+1
2

(
1 − ry

2L

)iν− 1
2
(

1 +
r

2Ly

)− d
2−iν

≈
ν=pL, L→∞

L
d
2+2 2

1−d
2 r−

d+3
2

ei π
4
√

p√
π

∫ ∞

0
dy y−

d+1
2 e−i rp

2 (y+ 1
y ) + . . . .

(C.20)

In the last line we use the asymptotic approximation for the ratio of Gamma func-
tions

Γ(2iν + 1)
Γ(iν + 1

2 )
2
≈ 22iνe

iπ
4
√

ν√
π

(C.21)

The prefactor of the first hypergeometric function is

iν
2π

π− d
2 Γ
(

d
2 + iν + 1

)
((d − 2)2 + 4ν2) Γ(iν + 1)

L−2u(d− 2iν) ≈
ν=pL, L→∞

−L
d
2−2 2−3π− d

2−1 r2 i
d
2+2 p

d
2 + . . . .

(C.22)

Putting things together we obtain

ων
0(L−2u)|1st hyp ≈

ν=pL, L→∞
Ld 2 Re

[
−2−

d+5
2 e

iπ(d+5)
4 π− d+3

2 p
d+1

2 r
1−d

2

∫ ∞

0
dy y−

d+1
2 e−i rp

2 (y+ 1
y )
]

= Ld 2−
d+3

2 π− d+1
2 p

d+1
2 r

1−d
2 J d−1

2
(rp) .

(C.23)
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The 2nd hypergeometric function in g
d
2+iν
0 (u) gets rewritten as

2−
d
2−iν

(
r2

2L2

)− d
2−iν−1

2F1

(
d
2
+ iν + 1, iν +

1
2

; 2iν + 1;−2L2

r2

)
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d
2−iν

(
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2L2
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2−iν−1 Γ(2iν + 1)

Γ(iν + 1
2 )

2
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0
dt tiν− 1
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2

(
1 +

4L2t
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)− d
2−iν−1

=
t= ry
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Γ(iν + 1
2 )

2

( r
2L
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2
∫ 2

r
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dy yiν− 1
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2
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1 +
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r
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(
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Γ(iν + 1
2 )

2

( r
2L

) d
2+2iν+ 3
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r

0
dy y−

d+3
2
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(
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d
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4
√

p√
π

∫ ∞

0
dy y−

d+3
2 e−i rp

2 (y+ 1
y ) + . . . .

(C.24)

The prefactor of the second hypergeometric function is

− iν
2π

2(u + 1)
π− d

2 Γ
(

d
2 + iν + 1

)
((d − 2)2 + 4ν2) Γ(iν + 1)

≈
ν=pL, L→∞

−L
d
2−1 2−2 π− d

2−1 i
d
2+1 p

d
2−1 .

(C.25)

As a result we get

ων
0(u)|2nd hyp ≈

ν=pL, L→∞
Ld 2 Re

[
−2−

d+5
2 e

iπ(d+3)
4 π− d+3

2 p
d−1

2 r−
d+1

2

∫ ∞

0
dy y−

d+3
2 e−i rp

2 (y+ 1
y )
]

= −Ld 2−
d+3

2 π− d+1
2 p

d−1
2 r−

d+1
2 J d+1

2
(rp) .

(C.26)

Putting the first and the second hypergeometric together we obtain

ων
0(u) ≈

ν=pL, L→∞
Ld 2−

d+3
2 π− d+1

2 p
d+1

2 r
1−d

2

(
J d−1

2
(rp)− 1

rp
J d+1

2
(rp)

)
. (C.27)

Now simplifying ων
1

ων
1(u) =

iν
2π

(
g

d
2+iν
1 (u)− g

d
2−iν
1 (u)

)
, (C.28)

where

g
d
2+iν
1 (u) =

π− d
2 2−

d
2−iνΓ

(
d
2 + iν + 1

)
u− d

2−iν−1

((d − 2)2 + 4ν2) Γ(iν + 1)

(
2(1 + u)(d/2 − iν)

(2 + u) 2F1

(
d
2
+ iν, iν +

1
2

; 2iν + 1;− 2
u

)
−2(d + (1 + u)2)

u(2 + u) 2F1

(
d
2
+ iν + 1, iν +

1
2

; 2iν + 1;− 2
u

))
.

(C.29)



Appendix C. Flat space Limit 96

Taking the first hypergeometric function:

2−
d
2−iν

(
r2

2L2

)− d
2−iν−1

2F1

(
d
2
+ iν, iν +

1
2

; 2iν + 1;−4L2

r2

)
≈
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2+2 2

1−d
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d+3
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ei π
4
√

p√
π

∫ ∞

0
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d+1
2 e−i rp

2 (y+ 1
y ) + . . . .

(C.30)

Prefactor of first hypergeometric function:

iν
2π

π− d
2 Γ
(

d
2 + iν + 1

)
((d − 2)2 + 4ν2) Γ(iν + 1)

2(1 + u/L2)(d/2 − iν)
(2 + u/L2)

≈
ν=pL, L→∞

−L
d
2 2−3π− d

2−1 i
d
2+2 p

d
2 + . . . .

(C.31)

now, the first hypergeometric can be simplified to:

ων
1(L−2u)|1st hyp ≈

ν=pL, L→∞
Ld+2 2 Re

[
−2−

d+5
2 e

iπ(d+5)
4 π− d+3

2 p
d+1

2 r−
d+3

2
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0
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d+1
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2 (y+ 1
y )
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(C.32)

Now looking at 2nd hypergeometric fucntion:

2−
d
2−iν

(
r2

2L2

)− d
2−iν−1

2F1

(
d
2
+ iν + 1, iν +

1
2

; 2iν + 1;−2L2

r2
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4
√
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(C.33)

Prefactor of 2nd hypergeometric function:

iν
2π

π− d
2 Γ
(

d
2 + iν + 1

)
((d − 2)2 + 4ν2) Γ(iν + 1)

(
−2(d + (1 + u/L2)2)
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(C.34)

Now the 2nd hypergeometric can be simplified to:

ων
1(u)|2nd hyp ≈

ν=pL, L→∞
Ld+2 2 Re

[
−2−

d+5
2 e

iπ(d+3)
4 π− d+3

2 p
d−1
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∫ ∞

0
dy y−

d+3
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(C.35)
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Putting the first and the second hypergeometric together we obtain

ων
1(u) ≈

ν=pL, L→∞
Ld+2 2−

d+3
2 π− d+1

2 p
d+1

2 r
1−d

2
1
r2

(
J d−1

2
(rp)− d + 1

rp
J d+1

2
(rp)

)
. (C.36)

Also noting that
√

g(u) du = 1
2 dr rdL−d−1 in flat space limit, the integral in B.21 will

become,
L−2α+d+1F̃J(ν)

∣∣∣
ν=pL

→
L→∞

p2h̃
(

p2) . (C.37)
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Appendix D

Important Integrals

Following are the important relations and integrals that might come handy:

∫
∂

dP
PA1 . . . PA2l

(−2P · Y)2h+2l =
πh(2h + 2l)−hYA1 . . . YA2l

(−Y2)h+2l − traces . (D.1)

For P to be the point on boundary and Y to be a generic coordinate.

Also we have the following relation:

(W1 · ∇1)
J K∆2 =

C∆2 (W1 · ∇1)
J

(−2P2 · X1)
∆2

= C∆2 (∆2)J
(2W1 · P2)

J

(−2P2 · X1)
∆2+J , (D.2)

[
∇2, (W · ∇X)

n] = −n (2h − 1 + 2DW − n) (W · ∇X)
n (D.3)

for,DW = W · ∂W .
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