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Abstract

Gold nanoparticles (AuNPs) have attracted scientific interest for their unique properties and diverse
applications, across biomedical fields, including sensing, diagnostics, and therapeutic interventions.
However, standard wet chemistry synthetic methods for particles synthesis bare limitations,
particularly in separating AuNPs from the reaction mixture. Therefore, there is a growing demand for
environmentally friendly synthesis routes that minimize waste and utilize non-toxic solvents. Despite
advances in this field, many current studies lack standardized protocols, and the underlying
mechanisms of the reducing reaction remain unclear. Through comprehensive spectroscopic and
morphological analyses, we investigated the redox reactions involved in AuNP formation with various
natural extracts, aiming to establish an optimized protocol for producing small, spherical, and
monodisperse AuNPs. Our findings demonstrate that cocoa powder extract effectively yields
reproducible, spherical AuNPs with a diameter of 11 nm. Comparative analysis with single cocoa
powder molecular components identified catechins, a class of flavonoids, as the primary reducing
agentin green AuNP synthesis. Catechins also form a protective layer around the AuNPs. However,
the simultaneous, unavoidable presence of this layer implemented with fatty acids and proteins,
although fundamental for colloidal stability, limits further functionalization of the AuNPs, high-
lighting a trade-off between stability and functional versatility.

1. Introduction

Metallic nanoparticles have gained enormous scientific and technological interest due to their large surface-to-
volume ratio, small size, and intriguing optical /thermal/electrical characteristics [ 1-3]. Owing to their unique
properties, such as stability, biocompatibility, low toxicity, and chemical inertness, gold nanoparticles (AuNPs),
in particular, have attracted the highest attention [4] as drug delivery system prior suitable functionalization [5].
However, effective in vivo application of AuNPs requires monodispersion and specific dimension, below 20 nm,
in order to overcome the biochemical barrier in the body [6].

© 2024 The Author(s). Published by IOP Publishing Ltd
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Routinely, AuNPs are synthesized via bottom-up approaches by reducing cationic Au(III) with a specific
reducing agent, followed by a stabilization with a capping agent to prevent particle aggregation. The classical
method introduced by Turkevich et alin 1951, remains one of the widely used approach to produce
monodisperse AuNPs, using trisodium citrate as a reducing and stabilizing agent [7]. By adjusting the citrate
concentration and its ratio to gold salt, particle sizes can be controlled, achieving colloidal AuNPs in the range of
20 nm or below. Citrate-capped AuNPs are particularly favorable for functionalization protocols, as ligand
exchange procedure allows for the replacement of citrate with desired functional groups. For example, in the
work of Deka et al AuNPs were conjugated to DNA strands to assess helicase activity [8]. Specifically for drug
delivery, S. Aryal and co-workers conjugated doxorubicin to AuNPs as anticancer carriers [9].

Despite the feasibility of classical chemical methods for synthesizing AuNPs, their limitations reside in the
difficulty of being separate from their reaction mixture, which in some cases may contain toxic chemicals and
organic solvents such as toluene [10]. Such considerations resulted in several reports proposing novel
environmentally-friendly routes for synthesizing AuNPs based on green chemistry [11], which prioritize uses of
safer solvents (i.e. water) [12]. In this regard, plant-based extracts are desirable as they bring crucial synergy
between nanotechnology tools and plant sciences, and could be potentially scaled-up to large production [13],
maintaining low temperatures/pressures, and, most important, minimizing chemical wastes [14]. Up to now,
AuNPs green synthesis has been achieved by using various plants, such as Aloe vera plant extracts [15] and black
tea leaf extracts [16] and even from microorganisms, such as bacteria like Pseudomonas aeruginosa [17] or fungi
(Candida Albicans [18]) [19], as well as other biological sources as enzymes and cell lines [20]. However, most of
the studies in this area lack standardized synthesis procedures. More importantly, the nature of the reaction and
the roles of specific extract constituents in the colloidal synthesis are still unknown. Moreover, the potential for
functionalization comparable to citrate-capped AuNPs, is still limited and challenging, as the natural stabilizing
layer formed during green synthesis imposes constraints on further modifications.

This study aims to compare various readily available natural extracts as reducing agent for Au(III) to
synthesize AuNPs under mild conditions without the use of any other chemical. Based on literature research, we
selected lemon juice [21], tea leaves [22], coffee [23], and cocoa powders [24] due to their commercial availability
and potential for one-step synthesis. Thorough spectroscopic and morphological analyses was performed to
elucidate the nature of the redox mechanism driving the AuNPs formation and to identify the most reproducible
protocol to producing clean, shape-controlled, and monodisperse AuNPs with dimensions less than 20 nm. The
stability of these AuNPs in physiological media was also assessed, as these is essential conditions to move into
further biological applications.

2. Experimental section

2.1. Materials

Lemons, commercial tea (Twining’s© Pure green tea), coffee (Illy© blend 100% arabica ground coffee), and
cocoa powder (Mondo Natura©) were purchased from local markets in Trieste, Italy. Gold (IIT) chloride
solution, 1,3,7—dimethylxanthine (caffeine), 3,7-dimethylxanthine (theobromine), catechin, oxalic acid,
quercetin, and 11-mercaptoundecanoic acid (MUA) were purchased from Sigma-Aldrich Chemical Co. (St.
Louis, MO, USA). Coomassie Brilliant Blue G-250 (Bradford solution for protein determination was purchased
from Bio-Rad Laboratories (Hercules, CA, USA). 1 (mercaptoundec-11-yl)hexa(ethylene glycol)
(SH-(CH,);,-EG30H), for brevity TOEG3, was purchased from Prochimia Surfaces (Gdynia, Poland).

2.2. Preparation of AuNPs

Synthesis procedures reported in [21-24] were adapted to cocoa powder protocol for comparable methods.
Specifically, natural extracts (i.e., coffee powder, tea bags and cocoa powder) were prepared using 125 mg of
powder or leaves in 50 mL of milli-Q water, mixed for 15 min on a magnetic stirrer plate. For lemon, 1.1 mL of
juice was diluted with 48.9 mL of milli-Q water. The extracts were then purified with a 0.45 pm syringe filter and
mixed with varying concentrations of gold chloride, as detailed in table 1, before being brought to boil under
magnetic stirring. The reaction was maintained at boiling for 30 min to ensure the complete reduction of the
gold salt, then allowed to cool down to room temperature. Additional syntheses were conducted as follows:
caffeine and Theobromine syntheses was first performed according to the work of Reena et al [25]. Egg yolk-
based synthesis was performed according to the protocol by Nadaroglu and coworkers [26]. Synthesis with
catechin was adapted from Choi et al [27] to use the same gold chloride concentration and the same volume of
water as in the other syntheses. Quercetin synthesis was conducted by adding 0.5 mM of gold chloride to a 0.28
mM extract solution. Last, 1 mM of the oxalic acid extract was used to synthesize nanoparticles in a final volume
of 50 mL of milli-Q water and 0.5 mM of gold chloride. Prior to spectroscopic and microscopic measurements,
samples were diluted 1:10 with milli-Q water.
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Table 1. Summary of the natural extracts used in AuNPs
synthesis, the quantities of each extract, and the corresponding
gold chloride concentrations. For successful synthesis, the
maximum absorption wavelength is also reported. Citrate-
capped synthesis conditions are also shown for comparison.

Source Extract (mg) HAuCl, (mM) Amax (nm)
Cocoa 125 0.5 530 nm
125 0.05
12.5 0.5
1250 0.5
Coffee 125 0.5
125 2
Tea 125 0.5 540 nm
125 1
Lemon 125 (1 ml") 0.5
125 (1 ml*) 1

2.3. Microscopic and spectroscopic characterization of AuNPs

AuNPs morphology was verified by Transmission Electron Microscopy (TEM) (Philips EM 208) equipped with
an acquisition system Camera OLYMPUS QUEMESA, Software RADIUS (EMSIS electron microscopy imaging
company, Muenster, Germany). The average size distribution of the resulting nanoparticles was determined
through Fiji software by setting a mask in the range of 50~110 nm®. The aspect ratio of particles, in the range 01
where 1 is a perfect circle and values closer to 0 indicate a more irregular shapes, was calculated as described by
the following equation:

__ Minor axis

AR —
Major axis

measuring the length of the two axes with Fiji software. The aspect ratio (AR) is defined as the ratio of the width
(or shorter dimension) to the height (or longer dimension) of an object. For each type of particles 70 single
colloids were analyzed.

Atomic Force Microscopy (AFM) (Solver Pro, NT-MTD, Moscow, Russia instrument) performed at the
Nanolnnovation Laboratory-Elettra-Sincrotrone S.C.p.A Trieste was used to investigate NPs distribution and
their average height. The analysis was performed with NSG36 probe tip, set point 5,000 in semi-contact mode
with 1,00 gain. The investigated areas were 30 x 30 umz, 10 x 10 pmz, and3 x 3 pmz achieved with a resolution
of 512 points and a scan rate of 1,0000 Hz. AFM images were analyzed by Gwyddion software. Images were
processed and the AuNPs average height was determined by creating a mask with the command ‘mask grains by
threshold’ selecting all the values higher than the expected dimensions according to the intensity levels of the
image. Through the command ‘Distributions of grains’ the raw values of ‘maximum value’ and ‘equivalent disc
radius’ were exported, corresponding to the height and the radius of each particles analyzed. Data were then
imported into OriginLab software for statistical analysis. Data were plotted as histogram and fitted with
‘multipeak fitting’ with Gaussian model.

Hydrodynamic diameter and zeta potential readouts were obtained by Dynamic Light Scattering (DLS)
(Zetasizer Nano, Malvern Instrument, UK) in a disposable microcuvette. UV—visible spectroscopic
measurements were carried out in the wavelength range of 200—800 nm (Perkin-Elmer, lambda 25, Waltham,
MA, USA). UV Resonant Raman (UVRR) experiments were carried out at the [UVS beamline in Elettra-
Sincrotrone Trieste. Measurements were performed using a 266 nm laser as the excitation source in a
backscattering configuration. Diffused Raman signal was collected and dispersed through a single-stage Czerny—
Turner spectrometer (Andor) with 750 mm of focal length, equipped with 1800 lines/mm holographic
reflection grating, 250 nm ruled. The laser beam power reaching the sample was approximately 0.1 mW. The
spectral resolution was near 8 cm . Fourier Transform Infrared Attenuated Total Reflection (FTIR-ATR)
measurements were performed at SISSI-Bio beamline at Elettra Sincrotrone Trieste, usinga VERTEX 70
interferometer (Bruker Optics, Billerica MA, US) equipped with a single reflection ATR accessory with a
diamond crystal (MIRacle Pike, Madison W1, US). Repeted spectra were acquired with a scanner speed of 5 kHz.
XPS measurements were performed at the Anchor-Sundyn laboratory of the ALOISA beamline of Elettra
Synchrotron [28], using a monochromatized Al Ko x-ray source (Omicron XM 1000) and a 150 mm
Hemispheric Analyzer (Specs) operated with E,,,s = 50 €V. The overall resolution was 0.6 V.
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2.4. Biochemical characterization of the samples

Bradford assay was carried out to estimate the protein concentration in natural extracts and synthesized AuNPs.
Measurements were performed using a spectrophotometer TECAN infinite F200 PRO (Tecan Trading AG,
Switzerland) at 595 nm. The protein amount was determined using a 0.1-1 mg mL ™' BSA calibration curve.
Each sample was analyzed in triplicate [29].

2.5. Functionalization protocol

Cocoa AuNPs and citrate-capped AuNPs, used as reference model, were functionalized by forming a mixed self-
assembled monolayer (mixed-SAM) with MUA and TOEG3. TOEGS3, a pegylated alkane thiol, acts as a spacer to
passivate the surface and properly direct associated linkers. Both particles were centrifuged at 14,462 X gup to
the complete formation of a pellet. The supernatant was discarded, and NPs resuspended in a 30:70% (v/v)
solution of MUA and TOEGS3 at scalar concentrations (1 uM, 2 pM, 3 pM, 4 uM, 5 pM, 10 uM), and incubated
overnight. The following day, UV—vis analysis was carried out to assess the extent of ligand-exchange. After that,
the solution was centrifuged again at 14,462 x gto remove any unbound ligands, the supernatant was discarded,
and the pellet was resuspended in 100 pL of milli Q-water, for further characterization.

3. Results and discussion

3.1. Synthesis of the AuNPs

In this study, we analyzed a panel of four food extracts starting from the literature review [25-28], slightly
modifying the synthesis protocols to guarantee comparable procedures among the different extracts.
Concentrations used are reported in table 1. For lemon juice extract, AuNPs consistently aggregated at all
concentrations tested. The solution color turned to black, and the UV—vis spectrum exhibited an aggregation
peak around 600 nm. For coffee powder, no color change was observed at either concentration, indicating a
failure in the AuNPs synthesis. However, the formation of AuNPs was evident when tea or cocoa extracts were
used. In the case of tea extract, ata 1.0 mM concentration of HAuCly, the solution color turned to dark purple,
pointing to high-size aggregates. Moreover, impurities remained in the reaction mixture even after filtration. At
variance, using cocoa extract, with 125 mg of cocoa powder and 0.5 mM HAuCly, resulted in successful synthesis
of AuNPs. The solution color changed from pale brown to dark red, suggesting the formation of colloidal
AuNPs. The maximum adsorption peak observed in the UV—vis spectroscopy was 530 nm, indicating that the
AuNPs were smaller than those obtained using tea extract. Several other relative concentrations of cocoa powder
and HAuCl, (as reported in table 1) were tested, to optimize the synthesis aiming to obtain a more
monodispersed batch of cocoa-based AuNPs (CAuNPs). In details, from 1250 mg of cocoa powder and 0.5 mM
of HAuCly, or 125 mg of cocoa and 0.05 mM HAuCl, resulted in no particle formation. In addition, the use of
12.5 mg of cocoa and 0.05 mM of HAuCl, produced incomplete nanoparticle synthesis, with residual gold
chloride indicating insufficient reduction. Therefore, we can conclude that the optimal conditions for green
AuNPs synthesis are 125 mg cocoa powder with 0.5 mM of HAuCl,. Under these conditions, we successfully
obtained spherical AuNPs, with acceptable monodispersity and sizes below 20 nm, through a one-step synthesis.

3.2. Morphological characterization

The size and morphology of CAuNPs were characterized using TEM, DLS, and AFM. TEM analysis (figure 1(a))
revealed an average size distribution of 10.7 £ 3.1 nm with a spherical shape. Aspect ratio (AR) analysis was
carried out to estimate the approximately particles’ sphericity. An average AR of 0.92 + 0.06 was retrieved for
CAuNPs confirming the spherical morphology of the AuNPs. TEM images of CAuNPs revealed the presence of a
coating layer surrounding the particles. While the presence of such a shell around green AuNPs has been
reported in other studies [ 16, 24, 30], a plausible explanation about its composition and nature of this coating
remains unclear within the scientific literature.

The presence of the coating layer was also confirmed by DLS as an enlarged size distribution. In fact, a
bimodal distribution of CAuNPs size was measured, with a main average hydrodynamic diameter at48.2 £ 12.9
nm, and a second broader peak at 187.2 & 62.5 nm. Concurrently, a zeta potential of —28.6 £ 3.9 mV was
measured, confirming the stability of the synthesized AuNPs.

To extend the value of TEM data to a more natural environment (i.e., air, liquid solution) AFM imaging was
used to investigate the height of the colloids. AFM morphological analysis was performed from typical images as
the one in figure 1(c). From the particle analysis we can extract a bimodal size distribution, with the main average
height peaked at 9.6 + 0.1 nm and a second, slightly broader one at 19.8 £ 20.8 nm, pointing to the possible
presence of aggregates, although much smaller than in the DLS. The error in the statistical analysis is represented
by mean and standard deviation of the single peaks from the Gaussian fit.
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Figure 1. (a) Representative TEM image of CAuNPs. (b) Statistical analysis representing the average AR for CAuNPs.
(c) Representative AFM image of CAuNPs. (d) AFM height distribution with a double-gaussian fit. Scale bars are reported.

The discrepancy in the average size of CAuNPs retrieved from the three approaches arises from the
differences in the principles of the techniques. DLS, a scattering technique, is highly sensitive to aggregations or
to dust particles. For this, it is reasonable that the laser simultaneously measures two or more particles. In
addition, previous findings have shown that flavonoids tend to aggregate when measured with DLS, potentially
leading to false bioassay results [31]. Also, the coating of flavonoids provides a consistence increase in the average
hydrodynamic diameter [32]. On the other hand, TEM measurements are performed in vacuum condition and
particles are spread over the support grid. The resolution of TEM is about 1 nm or better, therefore at higher
magnification is it possible to distinguish laterally overlapped particles and measure them as single. However,
TEM measures the 2D, surface-projected profile of the particles. On the contrary, AFM can distinguish particle’s
3D profile, when deposited on a surface. AFM resolution is highest in the vertical direction, which defines
particle’s height (<1 nm). Thus, the two main peaks shown in figure 1(d) represent single particles (9.6 0.1
nm) and vertically overlapping particles (19.8 &= 20.8 nm), respectively. We highlight here how this integrated,
multi-technique morphological analysis offered valuable insights into the characteristics of CAuNPs. Next, we
concentrated on identifying the most relevant molecules present in the cocoa extract, and their role on
nanoparticles synthesis. Based on the literature, key components such as caffeine derivatives (e.g., theobromine),
flavonoids (e.g., catechins and quercetin), oxalates (e.g., oxalic acid), fatty acids, and proteins [33, 34] are
reported as key components. To investigate the role of each molecule as a potential reducing agent/stabilizer in
the formation of CAuNPs, AuNPs were synthetized by gold chloride to single cacao extract key components in
the amounts reported in table 2. For each component, the correct amounts of gold chloride was established
starting from reference protocols (reported in table 2), and correlated to the protocol used for the synthesis of
cocoa AuNPs [24]. A comprehensive chemical characterization of both the extract alone and the synthesized
AuNPs was conducted via a careful UV-vis, UVRR, ATR-FTIR, and XPS spectroscopy analysis.
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Table 2. Summary of cocoa extract components, the amount used to
synthesize AuNPs, and the correspondent gold chloride concentration.
Caffeine and theobromine were considered for caffeine derivatives. As
flavonoids, catechin, and quercetin were analyzed. Oxalic acid instead for
oxalates groups. Lastly, egg yolk was used as a possible source of proteins. For
the successful synthesis, maximum absorption wavelength is also reported.
Respective references are reported.

Extract
(mg HAuCl, Amax
Component or mM) (mM) (nm) References
Caffeine 0.5mM 0.5 [24]
125mg 1
Theobromine 0.5mM 0.5
125mg 100
Catechin 0.5mM 0.5 539 [26]
nm
Quercetin 0.5 mM 0.5
Oxalicacid 1 mM 0.5
Egg yolk 1ml 10 [28]

3.3. Synthesis and characterization of catechin-capped AuNPs

Among the key components of cocoa extract, only catechin enabled the successful synthesis of AuNPs,
identifying it as the main agent in CAuNP formation. UV-vis analysis displayed a maximum absorption peak at
539 nm (figure 3(S) (a) in the supplementary materials). TEM analysis revealed an average size distribution of
36.4 £ 8.8 nm, larger than the CAuNPs, with spherical morphology and in the presence of a coating shell. The
average particle height measured by AFM (figure 3(S)(b) in the supplementary material), was 48.3 = 7.4 nm. DLS
measurements yielded an average diameter of 80.7 &+ 51.6 nm, showing, as in the case of CAuNPs, higher values
than expected. The zeta-potential value measured —29.1 £ 8.5mV.

The ability of synthetizing AuNPs from catechins-enriched solutions supports to the hypothesis of the
relevant role played by flavonoids as gold reduction agents in cocoa extracts. In details, as shown by our data,
both CAuNPs and catechin-capped AuNPs had an altered hydrodynamic diameters in DLS measurements.
Pohjala and Tammela previously reported an aggregating behavior in phenolic compounds, particularly
flavonoids, at higher concentrations when analyzed by DLS, leading to false bioassay results [31]. From the
literature, cocoa powder, seems to contain a high content of catechins per serving, in the range of 81.40—447.62
pgg ' in commercial products [34]. Therefore, it is reasonable to associate the bimodal distribution and the
higher hydrodynamic diameter obtained by DLS analysis on catechin-capped AuNPs and CAuNPs to flavonoids
aggregating tendency.

3.4. Spectroscopic characterization

To shed light on the chemical origin of the observed particle coating layer, an extensive spectroscopic analysis
was performed. The absorption spectrum of cocoa extract was compared with the molar extinction coefficients
of the expected components, as depicted in figure 2. The cocoa extract spectrum is marked by an absorption
peak at 273 nm and a strong absorption tail below 250 nm. In details, line-shape similarities between cocoa
extracts spectrum and those of caffeine, theobromine, and catechin can be appreciated, while quercetin and
oxalic acid show a non-matching absorption fingerprint. Notably, catechin exhibits a characteristic absorption
peak at 278 nm [34-37]. The measured spectra also align with the presence of proteins in the extract, as protein
typically display a broad peak at 280 nm and a substantial increase of absorbance below 230 nm [37]. To quantify
the proteins concentration in the solution, Bradford assays was carried out, confirming the presence of
0.10-0.11 mgmL ™" protein concentration in both the cocoa extract and the CAuNPs solution.

To gain further insights, vibrational spectroscopy (ATR-FTIR and UV Resonant Raman) measurements
were carried out, with the corresponding spectra shown in figure 3. The ATR-FTIR spectra of drop casted-cocoa
extract at high energy show three specific peaks at 2925 cm ™, 2855 cm ™!, and 1745 cm ™, absent in both
catechin and theobromine solutions, which can be considered as a fingerprint of the fatty acid presence
(symmetric and asymmetric stretching vibrations of aliphatic CH, groups, plus triglycerides ester carbonyls)
[38, 39]. The similarity between cocoa extract and catechin solution appears also from the ATR-FTIR spectra in
the 6001900 cm ™' range: peaksat 1610cm ™', 1519 cm™ !, 1146 cm ™!, and 1030 cm ™!, absent in the
theobromine spectrum (figure 3(a)). The presence of proteins, already confirmed by Bradford assay, aligns with
the amide-I and amide-II bands in the FTIR spectra, at ~1650 cm™ ' and ~1550 cm ™! [40], respectively. We
further observed that in CAuNPs, the presence of catechin, proteins, and fatty acids was increased. It is possible
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Figure 3. (a) ATR-FTIR spectrum of cocoa AuNPs, cocoa extract and theobromine/catechin solutions respectively in the wavenumber
range of 600-1900 cm™'and 2700-3700 cm . (b) UVRR spectra collected at Aoy = 266 nm of cocoa AuNPs, cocoa extract and
theobromine/catechin solutions respectively, both in drop and drop-casted. The spectra of theobromine aqueous solution, and
catechin, are shown for comparison.

that catechin, which is easily oxidized, promotes protein precipitation on the surface of the AuNPs. UVRR
spectra (figure 3(b)), collected at 266 nm, support this hypothesis. The intense, broad peak observed at 1610
cm !, can be associated with catechin derivatives. However, peaksat 1320 cm ', 1466 cm 'and 1613 cm !
might point to the presence of theobromine. However, the presence of an intense peak at 1613 cm™ ',
characteristic of catechin, was also found on the NPs surface. The lack of a complete correspondence between
pure catechin peaks supports a chemical modification of catechins after the synthesis reaction. Tables 4 and 5
supplementary materials reported a summary of peak assignation for ATR-FTIR and Raman analysis.

XPS measurements were also carried out, to investigate the chemical constitution of these organic residues
and synthetized AuNPs to identify the presence of radicals. Representative XPS spectra collected on cocoa
extract, catechin, theobromine solutions, and CAuNPs, all deposited by drop casting on an Au(111) surface, are
displayed in figure 4. To simplify the peak attribution, we also measured XPS spectra of catechin- synthesized
AuNPs. We assigned most of the peaks referring to a previous work of Rouxhet et al [41]. Regarding cocoa
extract, the analysis of the broad C 1 s photoemission curve shows a first peak at 284.33 eV, which indicates the
presence of C—C and C—H bonds and is compatible with the coexistence of aliphatic chains, typical of fatty acids
molecules. Also peaks at 287.6 eV and 289.1 eV, assigned respectively to C=0 and COO- groups, are
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Figure 4. XPS spectra collected on cocoa extract, theobromine, catechin, catechin AuNPs, and cocoa AuNPs deposited by drop-
casting on Au(111) surface.

characteristics of fatty acids, as well as oxalate carboxylic groups. The peak at 286.3 eV instead, can be assigned to
the flavonoid hydroxyl groups, already detected by FTIR measurements. The O 1 s peak analysis was made by
using four components: a small one at 530.9 eV, due to the COO— contribution, and two other peaks at 532.7 eV
and 534.1 eV, which can be assigned respectively to hydroxyls and COOH groups. A further weak peak can be
assign to the carboxylic C=0 and OH oxygen atoms [39]. Lastly, another weak component at 535.5 eV, can be
reasonably attributed to food preservative carbonates. As expected, the N 1 s XPS spectrum only shows some
faint features of difficult assignment. Overall, the cocoa extract solution has much more affinities with the
catechin solution than with the theobromine one, in agreement with our previous vibrational spectroscopy
results. In particular, the C 1 s catechin peak deconvolution allows the identification of four chemical shifted
components, respectively at 284.44, 286.35, 287.85, and 289.1 eV, close in energy to the ones derived from cocoa
C1 s peak fit. The component at 286.35 eV can be assigned to the five C—-OH carbon atoms of the catechin
molecule, while the further nine C atoms to the 284.44 eV peak. The peaks at 287.85 eV (C=0) and 289.1 eV
(COO—) instead, constituting less than 15% of the total carbon atoms, can be assigned to oxidized and/or
radical forms of catechins. Regarding the O 1 s peak, three components have been found, respectively at 531.2
eV, 532.7,and 534.0 eV. The first component can be assigned to C=0 oxygen atoms and confirms, as seen from
the C 1 s peak analysis, that a small fraction of catechins is oxidized. The peaks at 532.7 eV and 534.0 eV instead
can be assigned respectively to the hydroxyl’s oxygen atoms and to the remaining oxygen of the catechin rings.

In the case of catechin AuNPs, in the C 1 s peak we identified the same components detected in pure
catechin, respectively at 284.69 eV, 286.38 eV, 287.7 eV, and 289.1 eV. Interestingly, the peak area relative to the
C—OH atoms decreased in catechin AuNPs, while the low energy peak area increased. All these spectral
modifications are compatible with an oxidation reaction of catechin molecules during NPs synthesis. This is also
supported by the O 1 s peak line shape modification. A similar oxidation process of catechins in cocoa extract
during the CAuNPs synthesis can be inferred by spectra analogies. Table 3 provides a detailed summary of peaks
assignation for XPS analysis.

Our results support an oxidation of the original catechin compounds upon AuNPs synthesis reaction,
confirming its role as a reducing agent in the synthesis of gold nanoparticles. In detail, catechins are composed of
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Table 3. Summary table of peaks assignation in XPS analysis for the considered systems.

Position (eV) Area (%) Width (eV) Assignation
Cocoa Extract Cls 284.33+£0.03 11.7£0.3 1.26 £0.07 C-C/C-H
286.3+0.1 39.8+ 1.1 1.34+0.12 C-OH
287.6+0.2 30.5+3.6 1.5+1.0 9:0
289.1+£0.8 13.3£3.1 1.6+1.3 COO™ /K,CO;4
290.6 0.9 4.540.9 1.44+1.0 KH£O3
K2p 294.48 £0.02 60.7+£9.7 1.60 +0.08 Carbonates K 2ps»
297.19+£0.05 39.24+49 2.0+0.3 Carbonates K 2p />
Ols 530.9£0.7 3.6+0.1 1.44+1.0 C@7
532.7t1.1 36.9+0.9 1.9+1.5 C—ZQ(—OH)
534.14+0.2 49.7£1.1 1.6+14 C=0=C-O(-OH)
5355+ 1.4 9.7+£0.6 1.5+1.2 Carbonates
Theobromine Cls 284.0+1.1 4.8+0.2 1.5+1.3 c-C
285.1+0.1 13.5+£0.3 1.240.6 c-C
286.5+0.1 64.9+0.3 2.00£0.16 C-N
289.05+0.05 16.8 £0.6 1.6 0.2 N—(QZO)—N
Ols 531.79+0.01 100" 1.80 £0.02 N-(C=0)-N
Nls 399.46 £0.07 27.8+0.4 1.50£0.13
401.04 +0.04 72.2+0.4 1.73+£0.07
Catechin Solution Cls 284.44+0.01 355+0.1 1.30 £0.02 C-H
286.35+0.01 52.0£0.2 1.45+0.03 gfoH/CﬁngfC
287.85+0.07 5.7+0.1 1.1+0.3 C=0
289.1+0.2 6.7 +£0.1 1.6+0.3 COOH
Ols 531.3+0.3 7.7+0.2 1.6 £0.4 C:Q
532.88 +0.04 84.44+0.1 1.5+0.1 C-OH
534.0+0.5 7.9+0.1 1.5+04 C-0-C
Catechin AuNPs Cls 284.69 +0.04 46.35+0.08 1.83 £0.06 QfH
286.38 +£0.08 31.73+0.02 1.3+0.1 C-OH/C-C-0-C
287.7+0.2 16.7£0.2 1.7+14 C=0
289.14+0.4 5.0+0.1 1.3+£0.5 QOOH
Ols 531.24+0.3 8.8+0.2 1.4+0.3 C=0
532.70 +0.05 90.0+0.6 1.8+0.3 C-OH
534+2 5.3+0.2 242" C*Q*C
Cocoa AuNPs Cls 283.8+0.2 13.5+1.7 0.89+0.35 C-C/C-H"
285.01 £0.05 50.3+0.7 1.59+0.35 C-C/C-H"
286.64 £0.14 18.8+ 1.0 1.3+£0.7 goH/Cfgofc
287.8+3.2 9.0+24 — C=0
288.7+1.1 83+1.7 1.9+0.6 COO™
Ols 531.8+0.6 37.2+0.5 1.7+0.4
533.240.8" 52410" 1.5+1.5
533.8" 1.0 +1.0" —

two pharmacophores: the catechol group in the B ring, the resorcinol in the A ring, and a hydroxyl group in the C
ring, as shown in figure 4(S) in the supplementary materials. The only oxidable —OH groups are in the C ring.
Alternately, the —OH groups in A and B rings, act as anti-oxidants and stabilize electrons throughout chinone-
hydroquinone simile processes [42]. It is possible to assume that catechin groups act as reducing agents and as
electron donors. By oxidation, catechins give two e™ to Gold(III) for its reduction, and at the same time,
catechins loose two H'. The—OH group of the B ring seems to be the most reactive, and after the oxidation, the
oxidated —O groups bind with the bulk gold of AuNPs, creating a catechin coating as shown in figure 4(S) in the
supplementary materials. This hypothesis is also supported by previous findings on polyphenols and flavonoids
studies in green synthesis [43].

3.5. Synthesis and characterization of cocoa AuNPs from low percentage fatty acids powder

The combined spectroscopic and morphological analysis presented here confirmed the presence of a coating
layer around the CAuNPs, providing insight into its chemical composition, i.e. flavonoids and fatty acid/protein
residuals. However, when moving forward towards CAuNPs bio-functionalization, we found that this layer
presents a challenge for removal. In this respect, we followed several physical and/or chemical routes, but no
effect was sorted. Aware of the availability of different types of cocoa powder, with diverse concentrations of fatty
acids, we repeated the synthesis using a lower-fat powder (reduced from 22% to 11%). The new AuNPs batch
was then analyzed using UV—vis, DLS, AT-FTIR spectroscopy, and TEM microscopy. UV—vis spectroscopy
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Figure 5. (a) ATR-FTIR spectrum of CAuNPs with low percentage of fatty acids (black) in the wavenumber range of 800-1800 cm '

and 2700-3500 cm . (b) Respective TEM micrograph of CAuNPs with lower content of fatty acids. Scale bar is reported.

exhibited a maximum absorption peak at 530 nm, consistent with the previous synthesis, with no significant
changes in peak shape or intensity. DLS reported an average hydrodynamic diameter of27.9 + 9.7 nm. As
previously described in the work of Kejok et al the values of the hydrodynamic diameter are influenced by the
presence of the coating layer [32]. In fact, reducing the spot we subsequently obtained different hydrodynamic
diameter values pointing out to a thinner capping layer. ATR-FTIR and TEM analyses, reported in Panel A and B
of figure 5, respectively, confirmed this hypothesis. The three characteristic peaks corresponding to fatty acid
residues, at 1745, 2855, and 2915 cm ™' respectively, are no longer present in CAuNPs (black spectrum). TEM
analysis indicated that the particle core size distribution remained consistent with the one obtained previously
using cocoa powder with 22% fat content, however, the new sample exhibits improved homogeneity

(figure 5(b)), and the coating layer that previously caused particle aggregation is now absent. Moreover, FTIR
spectra suggest that minimal protein traces may still be present.

Collectively, these results suggest that variations in fatty acids concentrations in the cocoa extract influence
CAuNPs synthesis, specifically affecting nanoparticle homogeneity and presence of a coating layer. We therefore
attribute the formation of the coating layer, which previously linked the particles together, primarily to fatty
acids, with protein playing a minor role. Nonetheless, the role of catechins as the reducing and stabilizing agent is
confirmed, as successful synthesis was achieved regardless of the content of the fatty acid content in the cacao
powder.

3.6. CAuNPs passivation through mixed- SAM formation

Although the coating layer on CAuNPs was significantly reduced by using to a cocoa extract with lower fat
content, it remained partially intact, as shown from the high-magnification TEM images (not reported here).
Several washing procedures were adopted in attempts to remove this layer to enable biomolecule attachment to
the gold surface for biomedical applications. Washing procedures including water, organic solvents such as
ethanol and chloroform, and oil-based solvents were tested. However, none successfully removed the coating,
and the use of the organic solvents led to aggregation. These observations point to the relevant role of the coating
layer in stabilizing and protecting the AuNPs.

In particular, capitalizing on our expertise on citrate-capped AuNPs, we aimed at creating a functional SAM
by mixing MUA and TOEG3 alkanethiols, by means of a simple ligand-exchange procedure, following the
protocol optimized and described by Deka et al [44]. The MUA-TOEG3 combination enhances the stability and
orientation of the functional groups (-OH end group of MUA), facilitating surface passivation (TOEG3). UV-
Vis spectra of CAuNPs after functionalization attempts, reported only a slight shift (to 535 nm) for all the six
concentrations of MUA:TOEG3 mix used (see figure 5(S) in the supplementary materials). Moreover, after the
final centrifugation, the resuspension of the pellet was unsuccessful, forming instead dark grains. At variance,
citrate-capped AuNPs demonstrated a larger redshift as the relative linker:spacer (MUA:TOEG3) concentration
increased, indicating successful surface coating.

While these studies advance our understanding of the key chemical constituents in the green synthesis of
AuNPs from cocoa extracts, the effective functionalization of these nanoparticles continues to be a challenge.
The catechin-based coating layer, possibly enriched with proteins, impedes ligand exchange, and instead
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promotes AuNP coalescence. Further investigations with alternative functionalization strategies will be
necessary to exploit the functional groups that are available on CAuNPs.

4. Conclusions

In this comprehensive study, we optimized the green chemistry-based synthesis of spherical gold nanoparticles
(AuNPs) through a combination of morphological and spectroscopic techniques. The synthesis parameters,
including the type and quality of food extracts, the gold-to-extract ratio, and the reaction temperature were
meticulously refined. Among the various extracts tested, cocoa powder emerged as the most effective, producing
AuNPs with an average size of 11 nm and good dispersion. While previous studies have reported the synthesis of
AuNPs using cocoa extract, our in-depth analysis provided new insights into the redox reaction steps,
identifying catechins as the primary reducing agents driving the AuNP synthesis. Additionally, fatty acids and
proteins present in the cocoa extract contributed to the formation of a protective layer around the AuNPs,
preventing aggregation. The layer’s thickness can be reduced by using cocoa powder lower fatty acid content.
However, despite these optimizations, complete removal of the protective layer proved challenging, which
hindered the subsequent functionalization of the AuNPs for biotechnological applications. While further
investigations are required to meet the functionalization efficiency of the classical citrate-stabilized AuNPs, our
findings contribute clarity to the often-inconsistent results reported in the literature regarding the green
synthesis of AuNPs and lay the groundwork for future applications.
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