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A B S T R A C T

We introduce a model that extends the concept of air traffic flow management slot to the
concept of time window, allowing to effectively deal with a network of interacting regulations.
The model aims at minimising the total cost of delay of a time window allocation to flights
and is based on an integer programming problem. It consists in a market-based mechanism
between flights and a central authority to trade time windows, which fulfils the properties of
individual rationality (every participating airline has a non-negative profit from the mechanism)
and weak budget-balance (the mechanism requires no external subsidisation). Equity is assumed
to be respected because the First Planned First Served allocation is an endowment guaranteed
to all flights and allocated for free. The proposed market mechanism can be implemented in
a distributed manner preventing the disclosure of confidential information by airlines, and is
based on the Lagrangian relaxation of the integer optimisation problem, solved through the
subgradient algorithm. We present some computational experiments conducted to test the model
on some real instances of air traffic data.

. Introduction

Air traffic resources consisting in airports and airspace volumes have a limited capacity in terms of number of aircraft that can
nter the resource in a given period of time. The factor determining capacity is the amount of traffic that can be safely handled by
ir traffic controllers. In the current European Air Traffic Flow Management (ATFM) system, when an imbalance between traffic
emand and available capacity is foreseen in an airport or airspace volume, the Network Manager (NM) can impose an ATFM
egulation, which limits the rate of aircraft that can enter the regulated resource in a given period of time. This ATFM measure is
chieved by delaying the departure of flights from their origin airport. ATFM delays are imposed to flights through an ATFM slot,
15-minute tolerance time interval that flights have to comply with for departure. In the current system, ATFM slots are allocated

o flights according to a First Planned First Served (FPFS) principle.
Besides a better management of ATC sectors through configurations or splitting of sectors, alternatives to ATFM regulations to

esolve congestion are for example re-routing of traffic flows. These choices, however, ‘‘have a negative impact on the environment
ue to longer routes and/or sub-optimal altitude profiles’’ (Dalmau, 2022). ATFM regulations also have a negative economic
mpact because ATFM delays represent a cost for airlines: pre-pandemic estimations report Be 1.93 in 2018 and Be 1.76 in
019 (Performance Review Commission, 2019). Recently, new quantitative and qualitative indicators to assess the expected impact
f the costs ATFM regulations would impose on airspace users have been defined (Delgado et al., 2021). Therefore economic benefits
re possible by considering an allocation of ATFM slots that takes into account the different impact that delays have on costs
or airlines. Added to these savings are environmental benefits since a possible reduction in costs due to ATFM delays makes the
erouting option less attractive.
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The most immediate way to change the FPFS allocation is to let the NM centrally determine an allocation that minimises the
verall costs of the delay. However, this solution is not feasible mainly for two reasons: on the one hand, a single airline could
ventually have a higher cost of delay with this new allocation than with FPFS (for the benefit of the system optimum a user is
articularly penalised) and therefore it is not clear why it should agree to deviate from it. On the other hand, airlines need to
ommunicate their delay costs to the NM and this is sensitive information that is released very reluctantly. It is therefore necessary
o identify mechanisms which in some way involve airlines or which at least do not oblige them to disclose confidential information.

Since for each regulation the number of slots is fixed (see Section 3.1), modifying the FPFS allocation means in practice allowing
n exchange of slots (which we also refer to as slot trade or swap). In the United States context, Vossen and Ball (2006a,b) and Sherali
t al. (2011) propose mathematical programming models for the exchange between airlines (inter-airlines) of slots if some flights
re cancelled or further delayed compared to the initial allocation. Delays are assigned within a Ground delay program (Liu et al.,
019) where the ration by schedule (RBS) procedure is used to allocate slots (RBS follows the same principles of the FPFS). These
odels require trading to be regulated by a ‘‘mediator’’ (the FAA in their case), but they do not involve monetary aspects. However,

he possibility of designing ‘‘market-based mechanisms in which airlines would be able to buy and sell slots’’ is mentioned since
‘benefits could be substantial’’ (Vossen and Ball, 2006b). This suggestion was taken in by Castelli et al. (2011b) who developed

market mechanism that enables airlines to pay for delay reduction or receive compensation for delay increase by adapting
he Vossen and Ball (2006a) model to the European context. This mechanism fulfils some desirable properties for a market including
ndividual rationality (i.e., each participant has a non-negative payoff from entering the market) and budget balance (i.e., the overall
mount of prices paid and received by participants sums up to zero), and it can be implemented through two alternative distributed
pproaches that do not require airlines to disclose confidential information. Later, Granberg and Polishchuk (2012) show how to
esign mechanisms that can be used for the allocation of many different types of ATM resources, including ATFM slots. Even though
hese mechanisms are socially optimal (i.e., resources are distributed in the way that best serves the users community as a whole),
ruthful (i.e., each individual user has incentive to play fairly), and, under certain assumptions, individually rational, they are not
udget balanced because the resource owner gains profit from the users’ payments. Other truthful market mechanisms for ATFM
lot allocation are proposed by Rosenthal and Eisenstein (2016) and by Mehta and Vazirani (2020). However, these mechanisms
re centralised and therefore – even if no airline has an incentive to misreport the delay costs of its flights – airlines are forced
o reveal information that they prefer to keep to themselves. To simultaneously respect this request for confidentiality and still
nvolve airlines in the ATFM slot allocation process, for some years now EUROCONTROL1 has been developing UDPP, the User
riven Prioritisation Process (Pilon et al., 2016, 2019; Ruiz et al., 2019a). This mechanism requires that each Airspace User (AU)
ssociates a priority value to each of its flights, on the basis of which the FPFS allocation can then be modified (intra-airline). No
nter-airline exchanges are allowed, but in certain circumstances an AU can also get a slot that did not previously belong to it and
hus obtain a substantial reduction in the cost of the associated delay. Each AU can choose not to participate in the UDPP, and if
hey do, their FPFS allocation remains unchanged. UDPP has gained widespread acceptance among airlines and has become highly
efined after numerous validation exercises involving human in the loop simulations (SESAR, 2019). However, it is important to note
hat the assessment of the performance of the current version of UDPP is based solely on empirical data. Indeed, we have not found
ny established framework that can quantitatively or predictively assess the cost reduction benefits of this mechanism compared to
PFS. The only study we found regarding this mechanism was related to an outdated version (Zhang et al., 2021).

All the models that have been presented in this short review foresee the allocation of slots to a single capacitated resource.
n the not infrequent case, however, that one or more flights are subject to several regulations (our analysis of traffic data shows
hat in the week 1–7 July 2019 47% of regulated flights are subject to more than one regulation, see Section 5.2), Barnhart et al.
2012) demonstrate with a simple example that performing FPFS for each resource independently can produce inconsistencies,
.e., a regulation may impose on a flight an ATFM slot that is not compatible with the slot imposed on the same flight by another
egulation. It is therefore necessary to propose alternative algorithms. In Europe, for instance, when a flight is subject to multiple
egulations, the delay of the Most Penalising Regulation (MPR), meaning the one causing the highest delay, takes precedence and
s forced into all other regulations. In the U.S. other heuristics (named precedence RBS and exemption RBS) are applied (Barnhart

et al., 2012).
Our contribution fits into this context as it outlines a market-based approach to minimise the cost of ATFM delays in the presence

of multiple regulations, guaranteeing to airlines the confidentiality of their costs. We introduce a time interval, which we refer to
as time window, associated to each regulation a flight is subject to. A flight is expected to enter every regulated resource it has to
traverse within its corresponding time window. A set (or bundle) of time windows is initially allocated to each flight, and the time
windows of this bundle are possibly traded to form another bundle that decreases the flight delay cost. This exchange can be guided
by a central authority, assuming it has access to the cost information of the flights, or carried out in a distributed manner without
the need for each flight to communicate the costs of the delay. Our numerical computations based on real data instances of a test
day of the European airspace show that the market-based allocation may reduce the delay costs from 47% up to 89% with respect
to the initial allocation, while preserving cost confidentiality.

The idea of characterising the trajectory of a flight by a set of time windows is not entirely new in the ATM context, either at
the execution (while en-route) (Berechet et al., 2009; Han et al., 2010; Margellos and Lygeros, 2013; Rodríguez-Sanz et al., 2019,
2020) or tactical planning (on the day of operations) phases of a flight (Castelli et al., 2011a). More recently, the definition of a

1 EUROCONTROL, the European Organisation for the Safety of Air Navigation, is the international organisation that develops and maintains an efficient air
2

raffic management across Europe.



Transportation Research Part E 178 (2023) 103255I. Brugnara et al.

i
t
i
F
d

t
i
w
a
o
o
s
c
t

2

S
r

A
w

s

F
–

i
a
s

2

A
c
w

a
r
f

a
t

h
t
c
w

2
t
b

flight trajectory as a sequence of time windows allowed Bolić et al. (2021a,b) to quantify the flexibility that can be granted to flights
at the strategic level (up to 6 months ahead) taking into account changing airspace configurations and capacity. Flights complying
with time windows guarantee that they will not impact negatively any other flight.

None of these studies considers the time windows that characterise the flight trajectory as objects that can be traded in order to
mprove a system objective, such as the overall cost of the ATFM delay of flights subject to multiple regulations. A first hint of how
o solve this latter problem was provided by Castelli et al. (2011c), which is now significantly refined and extended in this paper
n several aspects, including the formulation of the distributed market mechanism, and its detailed implementation and resolution.
urthermore, we provide a realistic characterisation of the European airspace in terms of traffic, airspace configuration and cost
ata, as described in Section 5. Finally, all computational experiments are run on real data.

The remainder of this paper unfolds as follows. Section 2 introduces the main features of Air Traffic Management, and describes
he algorithm currently in place to allocate ATFM slots. The approach followed when airlines make available to an authority the costs
ncurred when their flights are delayed is presented in Section 3, which mathematically defines (a) the centralised allocation of time
indow bundles that minimises the overall cost of delay and (b) the market mechanism that allows to trade the bundles of an initial
llocation and reach the minimum ATFM delay cost allocation. The model relies on an integer linear programming formulation. If,
n the other hand, the costs of the delay cannot be revealed, the allocation and trading of the time window bundles can be carried
ut in a distributed manner. Section 4 develops the distributed model by applying the Lagrangian relaxation technique and the
ubgradient method. Section 5 describes how the dataset for the numerical experimentation was prepared, and Section 6 reports
omputational results on some subsets of the dataset. Section 7 contains the conclusions and some ideas for further development of
his work.

. Some key concepts of air traffic management

ATM is an extremely complex system, which has to cope with very different situations in daily operations (Niarchakou and
fyroeras, 2021; Cook, 2016). The evaluation of the proposed market mechanism can therefore only be based on a simplified
epresentation of ATM, especially with regard to slot allocation procedures (Section 2.1).

The whole airspace is divided in ATC sectors (or simply, sectors), which define the area of responsibility of air traffic controllers.
djacent sectors can be merged into collapsed sectors from time to time, in order to enable more effective use of resources. Sectors
hich are not collapsed are called elementary sectors.

In Europe the capacity of an ATC sector is defined as the maximum number of aircraft that can enter the given sector during a
pecified period of time (usually one hour), while permitting an acceptable level of air traffic controller workload.

If traffic demand in an airspace or airport is forecast to exceed capacity, the NM decides whether to apply flow restrictions.
low restrictions, called ATFM regulations, restrict the departure times of flights, assigning them controlled take-off times (CTOTs)
which may cause delays on some flights–, so that traffic is smoothed and avoid overload of the regulated sector or airport.

ATFM regulations are based on the principle that delays are both safer and less costly to be absorbed on the ground rather than
n the air. Therefore, any delay forecast in a capacity-constrained resource along a flight’s route is anticipated at the departure
irport before take-off, a practice known as ground-holding (Odoni, 1987). The flight receives an ATFM slot (also called departure
lot), a 15-minute time range during which the aircraft must take off.

.1. The allocation of ATFM slots

In this section, we present the main principles of the slot allocation procedures. ATFM slots are managed by the Computer
ssisted Slot Allocation (CASA) system, which is a largely automatic and centralised tool run by EUROCONTROL. CASA initially
alculates an Estimated Take-Off Time (ETOT) for each flight. This enables each flight to be given an Estimated Time Over (ETO),
hich is the point of entry at each sector through which the route is planned.

A regulation is characterised by a period of activation (start and end time), the allowed entering flow rate (in flights per hour),
nd some other specifications. The regulation is divided by CASA into a number of slots of equal width depending on the rate. Each
egulation is thus associated to a Slot Allocation List which is initially empty. Normally the capacity of each slot is equal to one
light, although in special circumstances it may be higher (Ruiz et al., 2019b).

The policy under which flights are assigned slots is First Planned First Served (FPFS). CASA sorts the flights entering the regulation
ccording to their ETO over the restricted location, and assigns a slot to each flight in this sequential order, as close as possible to
he ETO.

This order is also maintained when a flight is subject to multiple regulations by giving precedence to the regulation causing the
ighest delay, i.e., the Most Penalising Regulation (MPR). The flight receives an ATFM slot according to the FPFS order applied to
he MPR. The delay resulting from the MPR is used to find a slot in the other regulations crossed by the flight such that it is the
losest to the new ETO of the flight in those regulated sectors. The flight is then ‘‘forced’’ into the slots predetermined by the MPR
ithout following the FPFS logic in those regulations.

The FPFS policy on which the CASA system is based is considered fair and equitable by all parties involved (Lulli and Odoni,
007). However, from an efficiency point of view, it is not optimal as it does not consider the impact of ATFM delays to airlines in
erms of delay costs. If one considers the economical impact of ATFM delays on the flight profitability, there is typically a trade-off
etween fairness and efficiency (Barnhart et al., 2012).
3
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Moreover, in the current CASA logic (MPR-FPFS), the airspace users remain as passive actors, since they receive ATFM slots
hat are calculated and assigned to them based on pre-existing flight plan information and with limited options to influence the
lot sequences based on the impact of the resulting delays to their operations and daily schedules. To fix that, an important
oncept that could be implemented to optimise the cost of the ATFM measures is Collaborative Decision Making (CDM), a process
n which decisions are agreed by all stakeholders who actively take part in the decision-making (Niarchakou and Sfyroeras, 2021).
n particular, since the cost of delay for a flight is possibly known only by the airline operating it, the allocation of ATFM slots
ould benefit from an enhanced application of CDM. In this context, our proposal is to introduce a mechanism for exchanging slots.
ince it would be impossible to replicate the operational reality with absolute precision, we have adopted certain simplifications.
or example, the capacity of each time window is always equal to 1 and never higher as is sometimes the case, or the procedure for
PFS allocation of bundles can be called a CASA-like algorithm as it certainly follows the MPR rationale, but is not identical to the
ASA algorithm (see Appendix C and also Section 3). Thus, the objects that are exchanged, although very similar, do not inherit
xactly all the dynamics and characteristics of the actual slots. In order not to misuse the term ‘slots’, we refer to these objects as
ime windows (TWs) in the rest of the paper.

2.2. The cost of delays in ATM

On the day of operations, various factors cause flight delay, for example weather, ATFM measures, and issues attributable to
ircraft operators. There are two main types of costs that airlines experience due to delays: strategic delay costs and tactical delay
osts. Strategic costs are mainly due to schedule buffers, while tactical costs are those incurred on the day of operations due to
ctual delays.

A major component in the tactical cost of delay that impacts on airlines are the costs associated with delayed passengers, which
all into two categories: hard costs and soft costs. Hard costs are determined by passenger re-booking, compensation and care. Soft

costs are due to the loss of market share that comes from passenger dissatisfaction.
Tactical costs also include maintenance and crew costs. Tactical maintenance costs are due for example to the mechanical attrition

of aircraft waiting at gates, whereas tactical crew costs are based on the cost of crewing for additional minutes above those planned
at the strategic phase.

For maintenance and crew costs, one minute of delay does not depend on the extent of the delay. In contrast, longer passenger
delays have higher associated costs per minute than shorter ones, thus making tactical costs a super-linear function of delay length.

A comprehensive study on the costs of delays in the air traffic management system was carried out for EUROCONTROL by Cook
et al. (2004), and then updated and extended in subsequent years (Cook and Tanner, 2015; Cook et al., 2021). It estimates cost delay
figures for different phases of flight (e.g. en-route and at-gate), for a range of specific aircraft types and three cost scenarios (low,
base and high), separately for strategic and tactical delays. These estimations will be used as inputs in this research (see Section 5).

3. The central resource allocation problem

This section formalises the market mechanism for the TW allocation by a central authority when flights are subject to multiple
regulations. We first describe in mathematical terms the time window bundle allocation that minimises the cost of the delay as faced
by the central authority (Sections 3.1 and 3.2). This minimum cost allocation is then confronted with the initial allocation that is
currently granted. With a slight abuse of terminology, we refer to it as FPFS allocation (see Section 5.2 and Appendix C for details
on its implementation that mimics the Most Penalising Regulation principle). In particular, Section 3.3 introduces a mechanism
for the allocation of time window bundles to flights, alternative to FPFS, which is cost-efficient. The mechanism is market-based
since airlines can be seen as competitors contending for a limited resource, which is the capacity of regulated sectors or airports.
In addition, it satisfies some of the following properties commonly used in mechanism design (see Krishna, 2009, for a formal
treatment):

1. Individual rationality: each individual receives a non-negative utility from participating in the mechanism, so that it is
preferable to participate than not participate.

2. Budget balance: the mechanism requires no financing from outside. In particular, a mechanism is strongly budget balanced
if the total payment of the participants is equal to zero. The mechanism neither receives subsidisation from outside, nor
generates a surplus; it just redistributes money among participants. A mechanism is weakly budget balanced if the total
payment of the participants is larger or equal than zero: the mechanism can potentially generate a surplus.

3. Allocative efficiency: the mechanism maximises the sum of individual utilities.
4. Incentive compatibility: the best strategy for participants is to report their valuations truthfully. No agent can increase their

utility by misreporting their true preferences.

Myerson and Satterthwaite (1983) showed that in the presence of asymmetric information (i.e. the value of a given good for a given
agent is only known by such agent), it is not always possible that the above four properties are guaranteed. Indeed, under some
specific conditions and assumptions, Myerson and Satterthwaite proved that it is impossible to find a market mechanism that can
satisfy all four properties simultaneously. The mechanism proposed in Section 3.3 relaxes the fourth property, and thus assumes
that participants report their preferences honestly to the central authority. Section 4 will describe a distributed implementation of
such mechanism in which participants are assumed to act honestly introducing their preferences in a privacy-preserving manner.
4

The validity of this assumption is addressed in Appendix A.
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Table 1
Model’s notation.
 set of flights
 set of regulations
𝐾𝑟 capacity of regulation 𝑟 ∈  (in flights per hour)
𝑠𝑡𝑎𝑟𝑡𝑟 start time of regulation 𝑟 ∈ 
𝑒𝑛𝑑𝑟 end time of regulation 𝑟 ∈ 
𝐿𝑟 TW allocation list of regulation 𝑟 ∈ 
𝛥𝑟 TW width (in minutes) of regulation 𝑟 ∈ 
𝑁𝑟 number of TWs of regulation 𝑟 ∈ 
𝐼𝑗 lower bound of the 𝑗th TW in 𝐿𝑟
𝑈𝑗 upper bound of the 𝑗th TW in 𝐿𝑟
𝜖 time discretisation interval
𝐿̂𝑟 augmented TW allocation list of regulation 𝑟 ∈ 
𝑛𝑓 number of regulations crossed by flight 𝑓 ∈ 
𝑅𝑓 list of the regulations crossed by flight 𝑓 ∈ 
𝑟𝑖 𝑖th regulation crossed by flight 𝑓 ∈ 
𝐸𝑓 list of the expected times of entry of flight 𝑓 ∈ 
𝑒𝑖 expected entry time into 𝑟𝑖
𝑄𝑓 set of feasible bundles of flight 𝑓 ∈ 
𝑞𝑓 an element of 𝑄𝑓 , i.e., 𝑞𝑓 ∈ 𝑄𝑓 is a feasible bundle for flight 𝑓
𝑑𝑞𝑓 delay of bundle 𝑞𝑓
𝐶(𝑓, 𝑞𝑓 ) cost of bundle 𝑞𝑓 for flight 𝑓

3.1. Mathematical formulation

The proposed mathematical formulation requires the notation introduced in Table 1.
We consider a set of flights  that are scheduled within a period of time  , and a set of regulations  active during  that limit

the rate of flights entering a capacity constrained resource, either an airport or an airspace sector.
Each regulation 𝑟 ∈  has a capacity of 𝐾𝑟 flights per hour and is active for a time period [𝑠𝑡𝑎𝑟𝑡𝑟, 𝑒𝑛𝑑𝑟]. Each regulation 𝑟 is

ssociated to a TW allocation list 𝐿𝑟, a list of time windows of equal width that depends on the capacity. The TW width, expressed
n minutes, is

𝛥𝑟 =
60
𝐾𝑟

nd given that the duration 𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟 is expressed also in minutes, the number of time windows is

𝑁𝑟 =
⌊

(𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟)
𝛥𝑟

⌉

here ⌊⋅⌉ denotes rounding to the nearest integer.
For 𝑗 = 1,… , 𝑁𝑟 the time interval associated to the 𝑗th TW of the list [𝐼𝑗 , 𝑈𝑗 ] ∈ 𝐿𝑟 is given by

𝐼𝑗 = 𝑠𝑡𝑎𝑟𝑡𝑟 +
⌊

(𝑗 − 1) ⋅ 𝛥𝑟
⌉

𝑈𝑗 =

{

𝐼𝑗+1 − 𝜖 for 𝑗 = 1,… , 𝑁𝑟 − 1
𝑒𝑛𝑑𝑟 for 𝑗 = 𝑁𝑟

here 𝜖 = 1 second and the rounding is applied to an argument expressed in seconds (for example, an argument of 1 h, 10 min, 3 s
nd 15 hundredths of a second is rounded to 1 h, 10 min and 3 s).

The interval [𝑠𝑡𝑎𝑟𝑡𝑟, 𝑒𝑛𝑑𝑟] is thus partitioned into a set of disjoint segments, with a time discretisation of 1 s. Since ⌊𝑥⌉ < 𝑥 + 1
or any positive real number 𝑥, we have that

⌊

(𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟)
𝛥𝑟

⌉

− 1 <
(𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟)

𝛥𝑟

and thus
(

𝑁𝑟 − 1
)

⋅ 𝛥𝑟 < (𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟).

Since ⌊𝑥⌉ < ⌊𝑦⌉ for any 0 < 𝑥 < 𝑦 and since 𝑠𝑡𝑎𝑟𝑡𝑟 and 𝑒𝑛𝑑𝑟 are reported with a precision of one minute in our data,
.e. (𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟) = ⌊𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟⌉, it follows

⌊

(

𝑁𝑟 − 1
)

⋅ 𝛥𝑟⌉ < (𝑒𝑛𝑑𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑟)

o we conclude that 𝐼𝑁𝑟
< 𝑒𝑛𝑑𝑟.

The time discretisation is actually not necessary for the optimisation model, but it simplifies the bundle construction algorithm
Appendix B).
5

Hereinafter, a TW will be denoted interchangeably by an integer 𝑗 representing its position in the list 𝐿𝑟, or an interval [𝐼𝑗 , 𝑈𝑗 ].
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Each TW has capacity of 1 flight and represents the time interval in which a flight is allowed to enter the regulated resource
uring its regulated period. However, a flight is also allowed to enter a regulated resource before or after its regulated period. To
eal with the two situations uniformly, we augment the TW allocation list of each regulation 𝑟 with two ‘‘dummy’’ time windows

𝑗 = 0 and 𝑗 = 𝑁𝑟 + 1 defined by

𝐼0 = −∞, 𝑈0 = 𝑠𝑡𝑎𝑟𝑡𝑟 − 𝜖

𝐼𝑁𝑟+1 = 𝑒𝑛𝑑𝑟 + 𝜖, 𝑈𝑁𝑟+1 = +∞.

To simplify the model formulation, we assume these two additional time windows, placed at the beginning and at the end of 𝐿𝑟,
have infinite capacity, so that the number of flights that they can accommodate is not limited. Let us call 𝐿̂𝑟 the TW allocation list
augmented in this way, 𝐿̂𝑟 = [0, 1, 2,… , 𝑁𝑟 + 1].

The flight plan of each flight 𝑓 ∈  individuates a list 𝑅𝑓 = [𝑟1,… , 𝑟𝑛𝑓 ] of the regulations crossed along the route of 𝑓 from
its departure to its destination, and a list 𝐸𝑓 = [𝑒1,… , 𝑒𝑛𝑓 ] of the expected times of entry into each regulated resource. The list 𝐸𝑓
is defined with respect to the original (pre-regulated) flight plan and its 𝑖th element 𝑒𝑖 is the expected time of entry into the 𝑖th
element 𝑟𝑖 of 𝑅𝑓 . The length of the two lists 𝑛𝑓 = |𝑅𝑓 | is the number of regulations affecting flight 𝑓 .

One time window must be assigned to each flight 𝑓 ∈  for each regulated resource it crosses. A dummy time window is also a
feasible assignment. We denote this bundle of time windows by 𝑞𝑓 = [𝑇𝑊1,… , 𝑇𝑊𝑛𝑓 ] where 𝑇𝑊𝑖 ∈ 𝐿̂𝑟𝑖 for 𝑖 = 1,… , 𝑛𝑓 .

Since we assume that flights cannot be anticipated, every time window in 𝑞𝑓 must end after the corresponding entry time of 𝑓 ,
i.e. 𝑒𝑖 ≤ 𝑈𝑇𝑊𝑖

for all 𝑖 = 1,… , 𝑛𝑓 .
If 𝑛𝑓 > 1, we assume that the flying time 𝑒𝑖+1 − 𝑒𝑖 between consecutive resources 𝑟𝑖 and 𝑟𝑖+1, for 𝑖 = 1,… , 𝑛𝑓 − 1, is fixed. A

bundle 𝑞𝑓 is compatible with the fixed flying times if there exists a sequence of time instants [𝑡1,… , 𝑡𝑛𝑓 ] such that 𝐼𝑇𝑊𝑖
≤ 𝑡𝑖 ≤ 𝑈𝑇𝑊𝑖

for all 𝑖 = 1,… , 𝑛𝑓 and 𝑡𝑖+1 − 𝑡𝑖 = 𝑒𝑖+1 − 𝑒𝑖 for all 𝑖 = 1,… , 𝑛𝑓 − 1. The sequence [𝑡1,… , 𝑡𝑛𝑓 ] represents the re-planned times of entry
in each regulated resources and is a temporal shift of the trajectory [𝑒1,… , 𝑒𝑛𝑓 ]. Among the possible sequences [𝑡1,… , 𝑡𝑛𝑓 ], for each
𝑇𝑊𝑖 the smallest shift occurs when 𝑡𝑖 = 𝐼𝑇𝑊𝑖

. Therefore, the delay 𝑑𝑞𝑓 experienced by flight 𝑓 due to bundle 𝑞𝑓 is due to the time
window that leads to the largest among these smallest shifts. Specifically,

𝑑𝑞𝑓 = max
𝑖=1,…,𝑛𝑓

min
𝑡𝑖

{(𝑡𝑖 − 𝑒𝑖)+ ∶ 𝐼𝑇𝑊𝑖
≤ 𝑡𝑖 ≤ 𝑈𝑇𝑊𝑖

} = max
𝑖=1,…,𝑛𝑓

{(𝐼𝑇𝑊𝑖
− 𝑒𝑖)+} (1)

being (⋅)+ = max{⋅, 0}. The delay is strictly positive if 𝑒𝑖 < 𝐼𝑇𝑊𝑖
for at least one 𝑇𝑊𝑖 ∈ 𝑞𝑓 .

A delay 𝑑𝑞𝑓 causes to flight 𝑓 a cost 𝐶(𝑓, 𝑞𝑓 ), which is a non-linear non-decreasing function of the delay, and depends on the
flight 𝑓 through factors such as type of aircraft and number of passengers.

We say that a bundle 𝑞𝑓 is feasible for 𝑓 if either 𝑞𝑓 is empty, and in this case 𝑓 is cancelled, or it satisfies the following
requirements:

(i) it contains a time window 𝑇𝑊𝑖 for each regulation in 𝑅𝑓 and 𝐸𝑖 ≤ 𝑈𝑇𝑊𝑖
component-wise;

(ii) it is compatible with the fixed flying times;
(iii) the delay is acceptable, i.e. it satisfies the bound 𝑑𝑞𝑓 ≤ 𝑀𝑎𝑥𝐷𝑒𝑙𝑓 where 𝑀𝑎𝑥𝐷𝑒𝑙𝑓 is the delay beyond which it is more

convenient to cancel 𝑓 .

We denote by 𝑄𝑓 the set of all feasible bundles for flight 𝑓 . Appendix B describes a simple algorithm for constructing the set
𝑄𝑓 .

3.2. The optimal allocation

The allocation of time windows to flights that minimises the total cost of delay is given by the optimal solution of the following
binary optimisation problem (TW allocation problem):

min
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝐶(𝑓, 𝑞)𝑥(𝑓, 𝑞) (2a)

∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥(𝑓, 𝑞) ≤ 1 ∀𝑟 ∈ , 𝑘 ∈ 𝐿𝑟 (2b)

∑

𝑞∈𝑄𝑓

𝑥(𝑓, 𝑞) = 1 ∀𝑓 ∈  (2c)

𝑥(𝑓, 𝑞) ∈ {0, 1} ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓 (2d)

The objective function (2a) minimises the sum of all delay costs. Constraint (2b) is the capacity constraint, which guarantees
that no more than one flight is assigned to any time window. Constraint (2c) is the allocation constraint, which guarantees that
every flight receives one and only one bundle from its set of requests. Constraint (2d) is the integrality constraint. The variable
𝑥(𝑓, 𝑞) is equal to one when flight 𝑓 is assigned to bundle 𝑞, and zero otherwise. Problem (2) is 𝑁𝑃 -hard as we can reduce to it the
𝑁𝑃 -complete Maximal Independent Set (MIS) problem (Lawler et al., 1980).

A feasible solution of problem (2) always exists, because for all 𝑓 ∈  , 𝑄𝑓 always contains either the empty bundle corresponding
6

to flight cancellation, or the bundle composed of all ‘‘dummy’’ time windows that consumes no capacity.
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The allocation given by the application of the optimal solution of problem (2) will be denoted by ∗ = {𝑞∗𝑓 }𝑓∈ . The allocation
= {𝑎𝑓 }𝑓∈ given by the FPFS rule constitutes a feasible solution of problem (2).
In the particular case when || = 1 and flights compete for time windows in a single capacity constrained resource 𝑟, problem

2) simplifies into the following:

min
∑

𝑓∈

∑

𝑘∈𝑄𝑓

𝐶(𝑓, 𝑘)𝑥(𝑓, 𝑘) (3a)

∑

𝑓∈

∑

𝑘∈𝑄𝑓

𝑥(𝑓, 𝑘) ≤ 1 ∀𝑘 ∈ 𝐿𝑟 (3b)

∑

𝑘∈𝑄𝑓

𝑥(𝑓, 𝑘) = 1 ∀𝑓 ∈  (3c)

𝑥(𝑓, 𝑘) ≥ 0 ∀𝑓 ∈  , 𝑘 ∈ 𝑄𝑓 (3d)

The integrality constraint was dropped since, in this case, the solutions of the linear relaxation are automatically integral. The
eason is that problem (3) has the form of an assignment problem, and so the constraint matrix is totally unimodular.

In presence of a single regulation, the FPFS allocation  minimises the total delay, or in other words  is an optimal solution of
roblem (3) when 𝐶(𝑓, 𝑘) = 𝑑𝑘 (Castelli et al., 2011b). This fact is no longer true in presence of many interacting regulations (Ruiz
t al., 2019c).

For what will follow in the next section, it is convenient to reformulate problem (2) in terms of maximisation of a total value,
nstead of minimisation of a total cost. Let us define the value of a bundle 𝑞 to flight 𝑓 as the difference between the cost of the
undle 𝑎𝑓 assigned to 𝑓 under the FPFS, and the cost of 𝑞:

𝑉 (𝑓, 𝑞) = 𝐶(𝑓, 𝑎𝑓 ) − 𝐶(𝑓, 𝑞). (4)

he value is positive if 𝑞 causes a delay smaller than the delay of 𝑎𝑓 , and negative otherwise. Then, we consider the following
roblem:

𝑍𝐼𝑃 = max
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝑉 (𝑓, 𝑞)𝑥(𝑓, 𝑞) (5a)

∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥(𝑓, 𝑞) ≤ 1 ∀𝑟 ∈ , 𝑘 ∈ 𝐿𝑟 (5b)

∑

𝑞∈𝑄𝑓

𝑥(𝑓, 𝑞) = 1 ∀𝑓 ∈  (5c)

𝑥(𝑓, 𝑞) ∈ {0, 1} ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓 (5d)

Trivially, problem (5) is equivalent to problem (2) in the sense that their optimal solution is the same, because the objective
function only differs by a constant term. In fact,

∑

𝑓∈

∑

𝑞∈𝑄𝑓

(

𝐶(𝑓, 𝑎𝑓 ) − 𝐶(𝑓, 𝑞)
)

𝑥(𝑓, 𝑞) =
∑

𝑓∈
𝐶(𝑓, 𝑎𝑓 )

∑

𝑞∈𝑄𝑓

𝑥(𝑓, 𝑞) −
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝐶(𝑓, 𝑞)𝑥(𝑓, 𝑞)

=
∑

𝑓∈
𝐶(𝑓, 𝑎𝑓 ) −

∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝐶(𝑓, 𝑞)𝑥(𝑓, 𝑞)

where the last equality follows from constraint (5c).

3.3. Pricing the exchange

The allocation ∗ given by the optimal solution of problem (5) could be perceived as unfair by airlines, because it is not always
true that 𝐶(𝑓, 𝑞∗𝑓 ) ≤ 𝐶(𝑓, 𝑎𝑓 ), or in other terms the utility 𝑉 (𝑓, 𝑞∗𝑓 ) can be negative. Some flights reduce their delay with respect to
the FPFS while some other increase their delay. In order to design a mechanism which is both allocative efficient and individual
rational, as well as weakly budget balanced, we introduce the possibility of payments between airlines that accompany the optimal
allocation and attach a price 𝑝(𝑞∗𝑓 ) to each bundle 𝑞∗𝑓 ∈ ∗. In this way, airlines who are penalised by the optimal allocation with
respect to the FPFS receive a monetary compensation, whereas airlines who are better off after the implementation of the optimal
allocation can possibly be charged for the delay reduction.

In order to find a set of prices ∗ = {𝑝(𝑞∗𝑓 )}𝑓∈ that support the optimal exchange, if we consider the optimal solution found for
the linear relaxation of problem (5), the values of the associated dual variables are optimal for the following problem:

𝑍𝐿𝑃 = min
∑

𝑓∈
𝑢(𝑓 ) +

∑

𝑟∈

∑

𝑘∈𝐿𝑟

𝜋(𝑘) (6a)

𝑢(𝑓 ) +
∑

𝑟∈

∑

𝑘∈𝐿𝑟∶𝑘∈𝑞
𝜋(𝑘) ≥ 𝑉 (𝑓, 𝑞) ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓 (6b)

𝜋(𝑘) ≥ 0 ∀𝑟 ∈ , 𝑘 ∈ 𝐿𝑟 (6c)
7
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Variables 𝜋(𝑘) are the dual variables associated to the capacity constraint (5b) and 𝑢(𝑓 ) are the dual variables associated to the
assignment constraint (5c). Variables 𝜋(𝑘) can be interpreted as prices of time windows, and 𝑢(𝑓 ) can be interpreted as utilities of
users. It is then natural to assume a linear pricing of bundles, so that 𝑝(𝑞) = ∑

𝑘∈𝑞 𝜋
∗(𝑘) where 𝜋∗(𝑘) are the optimal dual variables.

If we also assume that the utility of a flight when assigned a bundle 𝑞𝑓 is −𝐶(𝑓, 𝑞𝑓 ) − 𝑝(𝑞𝑓 ), a market mechanism that charges 𝑝(𝑞∗𝑓 )
o each flight 𝑓 for the assigned bundle 𝑞∗𝑓 would not satisfy individual rationality, because some flights would incur a greater cost
ith 𝑞∗𝑓 than with 𝑎𝑓 and additionally be forced to make a payment.

In order to fulfil individual rationality, we consider the allocation 𝑎𝑓 as an endowment guaranteed to all flights. Then the market
echanism, mediated by the central authority, takes place in two steps:

1. First, the FPFS bundles  are allocated for free, as in the current system.
2. Next, the optimal allocation ∗ is implemented and the dual prices are charged for the bundle exchange: each flight pays

𝑝(𝑞∗𝑓 ) for the assigned bundle 𝑞∗𝑓 and receives the price 𝑝(𝑎𝑓 ) for the released time windows in 𝑎𝑓 .

For flight 𝑓 the cost after step 1 is 𝐶(𝑓, 𝑎𝑓 ), and the cost after step 2 is 𝐶(𝑓, 𝑞∗𝑓 ) + 𝑝(𝑞∗𝑓 ) − 𝑝(𝑎𝑓 ). Therefore the utility variation
f 𝑓 when taking part in the mechanism is 𝛥𝑢(𝑓 ) = 𝐶(𝑓, 𝑎𝑓 ) −𝐶(𝑓, 𝑞∗𝑓 ) + 𝑝(𝑎𝑓 ) − 𝑝(𝑞∗𝑓 ). Now we show the condition under which the
ndividual rationality condition 𝛥𝑢(𝑓 ) ≥ 0 holds.

The complementary slackness conditions between the linear relaxation of problem (5) and its dual (6) are

𝑥∗(𝑓, 𝑞) > 0 ⟹ 𝑢∗(𝑓 ) +
∑

𝑟∈

∑

𝑘∈𝐿𝑟∶𝑘∈𝑞
𝜋∗(𝑘) = 𝑉 (𝑓, 𝑞) ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓 (7a)

∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥∗(𝑓, 𝑞) < 1 ⟹ 𝜋∗(𝑘) = 0 ∀𝑟 ∈ , 𝑘 ∈ 𝐿𝑟. (7b)

If the optimal solution of the linear relaxation of (5) is integer, then the optimal allocation {𝑞∗𝑓 }𝑓∈ satisfies

𝑢∗(𝑓 ) = 𝑉 (𝑓, 𝑞∗𝑓 ) − 𝑝(𝑞∗𝑓 ) (8a)

𝑢∗(𝑓 ) ≥ 𝑉 (𝑓, 𝑞) − 𝑝(𝑞) ∀𝑞 ∈ 𝑄𝑓 . (8b)

q. (8a) follows from complementary slackness (7a) and Eq. (8b) follows from the feasibility (6b) of the optimal solution. Putting
hem together yields

𝑉 (𝑓, 𝑞∗𝑓 ) − 𝑝(𝑞∗𝑓 ) ≥ 𝑉 (𝑓, 𝑞) − 𝑝(𝑞) ∀𝑞 ∈ 𝑄𝑓 . (9)

n particular, since  is a feasible solution, taking 𝑞 = 𝑎𝑓 gives

𝛥𝑢(𝑓 ) = 𝐶(𝑓, 𝑎𝑓 ) − 𝐶(𝑓, 𝑞∗𝑓 ) + 𝑝(𝑎𝑓 ) − 𝑝(𝑞∗𝑓 ) ≥ 0 (10)

hich is the property of individual rationality: every agent has a non-negative profit when selling its FPFS bundle 𝑎𝑓 and buying
𝑞∗𝑓 . Eq. (9) says that not only flight 𝑓 prefers bundle 𝑞∗𝑓 over 𝑎𝑓 , but also over every other bundle 𝑞 ∈ 𝑄𝑓 .

Now we show that the complementary slackness conditions are sufficient to impose that the weak budget balance property holds,
i.e.,

∑

𝑓∈

(

𝑝(𝑞∗𝑓 ) − 𝑝(𝑎𝑓 )
)

≥ 0. (11)

Let us define  =
⋃

𝑟∈ 𝐿𝑟 the set of all time windows. Eq. (7b) says that every time window which is unassigned under the optimal
solution ∗ has a price zero. It follows that

∑

𝑓∈
𝑝(𝑞∗𝑓 ) =

∑

𝑘∈
𝜋∗(𝑘) (12)

where (5b) has also been used. So the net turnout resulting from the market mechanism is
∑

𝑓∈

(

𝑝(𝑞∗𝑓 ) − 𝑝(𝑎𝑓 )
)

=
∑

𝑘∈
𝜋∗(𝑘) −

∑

𝑓∈

∑

𝑘∈𝑎𝑓

𝜋∗(𝑘) =
∑

𝑘∈⧵
⋃

𝑓∈ 𝑎𝑓

𝜋∗(𝑘) ≥ 0. (13)

Taking a closer look at how the mechanism works, consider the monetary flow associated to each time window 𝑘 ∈ . There
are four cases:

(i) If 𝑘 is assigned both under the FPFS allocation  and under the optimal allocation ∗, respectively to flight 𝑓 and to flight
𝑔, then 𝑓 sells time window 𝑘 to 𝑔 at the price 𝜋∗(𝑘) and the central authority is not involved in the exchange.

(ii) If 𝑘 is assigned under  to a flight 𝑓 and it is unassigned under ∗, then 𝑓 receives 𝜋∗(𝑘) from the central authority, but
𝜋∗(𝑘) = 0 due to complementary slackness (7b).

(iii) If 𝑘 is not assigned under  but it is assigned to a flight 𝑔 under ∗, then 𝑔 pays 𝜋∗(𝑘) ≥ 0 to the central authority.
(iv) If 𝑘 is not assigned in  nor in ∗, then there is no monetary flow associated to it.

Again, from this reasoning it follows that the total revenue for the central authority is larger or equal to zero. The mechanism
8

can produce a surplus, but not incur a deficit. In presence of a single regulation || = 1, Castelli et al. (2011b) proved that
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∑

𝑓∈

(

𝑝(𝑞∗𝑓 ) − 𝑝(𝑎𝑓 )
)

= 0 and the mechanism is strongly budget balanced. They also showed that case (iii) cannot happen for
|| = 1, because all time windows that are unassigned under  are also unassigned under ∗.

Eqs. (9) and (12) together show that the allocation ∗ = {𝑞∗𝑓 }𝑓∈ and the prices ∗ = {𝑝(𝑞∗𝑓 )}𝑓∈ form a Walrasian equilibrium
nd ∗ is the set of market-clearing prices (Bikhchandani and Mamer, 1997). However, the complementary slackness conditions (7a)
nd (7b) can guarantee that the individual rationality and weak budget balance properties hold only in the case that the duality
ap between problem (5) and its linear relaxation is zero. Otherwise, the integer optimal solution of problem (5) is not guaranteed
o form a Walrasian equilibrium with the prices given by the optimal solution of (6). In particular, problem (6) may estimate utility
alues that are greater than the actual ones. Under these circumstances, it can be decided that initially only a subset of flights are
llowed to exchange time windows so that a smaller problem for which the zero duality gap holds is considered, see Section 6.5. All
lights belonging to this subset are allowed to exchange time windows and prices are negotiated between airlines. We remark that
n the case of a unique regulation, the individual rationality and strong budget balance properties always hold, because problem
3) always gives integer optimal solutions, as mentioned in Section 3.2.

. A distributed market mechanism

The market mechanism described in Section 3.3 is a centralised model for the allocation of time windows to flights and the
alculation of supporting prices. It requires that the central authority, who is in charge of solving problem (5), has complete
nowledge of the delay cost data 𝐶(𝑓, 𝑞) ∀𝑓 ∈  ∀𝑞 ∈ 𝑄𝑓 , which can be possibly evaluated for each flight only by its aircraft

operator. However, the cost of delay for flights represent confidential information in the commercially competitive air transport
industry, and airlines could be reluctant to communicate their delay costs to the central authority.

This section develops a decentralised version of the market mechanism, which does not require the explicit disclosure of private
information by airlines, and instead allows to elicit their preferences in an indirect way. This mechanism also relieves the central
authority of the burden of solving the NP-hard problem (5) by relaxing it into a set of trivial problems, one for each flight 𝑓 ∈ 
(see problem (17) below). The solution to these latter problems is then attributed to the airlines operating the flights to prevent the
explicit disclosure of private information.

Throughout the section we make use of well-known Lagrangian relaxation theory results and we refer the reader unfamiliar with
them to, e.g., Fisher (2004).

4.1. The Lagrangian dual of the allocation problem

The Lagrangian relaxation of problem (5) with respect to the capacity constraint (5b) is

𝑍𝐿𝑅(𝜆) = max
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝑉 (𝑓, 𝑞)𝑥(𝑓, 𝑞) +
∑

𝑘∈
𝜆𝑘

(

1 −
∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥(𝑓, 𝑞)

)

(14a)

∑

𝑞∈𝑄𝑓

𝑥(𝑓, 𝑞) = 1, ∀𝑓 ∈  (14b)

𝑥(𝑓, 𝑘) ≥ 0, ∀𝑓 ∈  , 𝑘 ∈ 𝑄𝑓 (14c)

𝜆𝑘 ≥ 0, ∀𝑘 ∈  (14d)

here 𝜆𝑘 are the Lagrangian multipliers. The second term in the objective function (14a) has the role of penalising capacity
iolations. The integrality constraint (5d) has been dropped because the constraint matrix of problem (14) is totally unimodular.

It is convenient to rewrite objective function (14a) in an alternative form:
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝑉 (𝑓, 𝑞)𝑥(𝑓, 𝑞) +
∑

𝑘∈
𝜆𝑘

(

1 −
∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥(𝑓, 𝑞)

)

=

=
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝑉 (𝑓, 𝑞)𝑥(𝑓, 𝑞) −
∑

𝑓∈

∑

𝑞∈𝑄𝑓

∑

𝑘∈𝑞
𝜆𝑘𝑥(𝑓, 𝑞) +

∑

𝑘∈
𝜆𝑘 =

=
∑

𝑓∈

∑

𝑞∈𝑄𝑓

[

𝑉 (𝑓, 𝑞) −
∑

𝑘∈𝑞
𝜆𝑘

]

𝑥(𝑓, 𝑞) +
∑

𝑘∈
𝜆𝑘

(15)

Eq. (15) shows that problem (14) is separable into | | problems, one for each 𝑓 ∈  . The Lagrangian subproblem for flight 𝑓 is

𝑍𝐿𝑅(𝑓, 𝜆) = max
∑

𝑞∈𝑄𝑓

[

𝑉 (𝑓, 𝑞) −
∑

𝑘∈𝑞
𝜆𝑘

]

𝑥(𝑓, 𝑞) (16a)

∑

𝑞∈𝑄𝑓

𝑥(𝑓, 𝑞) = 1 (16b)

𝑥(𝑓, 𝑘) ≥ 0 ∀𝑘 ∈ 𝑄𝑓 (16c)
∑ ∑
9

and 𝑍𝐿𝑅(𝜆) = 𝑓∈ 𝑍𝐿𝑅(𝑓, 𝜆) + 𝑘∈ 𝜆𝑘. Each subproblem for 𝑓 ∈  can be locally solved by the airline operating 𝑓 .
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Problem (16) can be solved in linear time by inspection as

𝑍𝐿𝑅(𝑓, 𝜆) = max
𝑞∈𝑄𝑓

{

𝑉 (𝑓, 𝑞) −
∑

𝑘∈𝑞
𝜆𝑘

}

, (17)

lways corresponding to optimal integer values for the variables 𝑥(𝑓, 𝑘) in (16).
We can interpret ∑𝑘∈𝑞 𝜆𝑘 as the cost of a bundle 𝑞 according to the prices 𝜆. The optimal solution of problem (17) is the bundle

∈ 𝑄𝑓 that maximises the utility of 𝑓 if we interpret Lagrangian multipliers as prices of time windows.
The Lagrangian dual of problem (5) is

𝑍𝐿𝐷 = min
𝜆≥0

𝑍𝐿𝑅(𝜆). (18)

ince the formulation (14) is totally unimodular, 𝑍𝐿𝐷 = 𝑍𝐿𝑃 and the optimal Lagrange multipliers that solve problem (18) are
ptimal dual variables for the linear relaxation of problem (5). Hence, if the duality gap between problem (5) and its linear relaxation
s null, 𝑍𝐿𝐷 = 𝑍𝐿𝑃 = 𝑍𝐼𝑃 and the optimal Lagrange multipliers are equilibrium prices that support the optimal exchange.

We solve problem (18) via the subgradient method (Fisher, 2004, Section 6). First of all, the central authority fixes the initial
rices 𝜆0, for example 𝜆0 = 0. Then the subgradient method proceeds in an iterative way. At iteration 𝑡, each flight 𝑓 determines
he bundle 𝑞∗𝑡𝑓 that maximises its utility variation when exchanging the FPFS endownment 𝑎𝑓 with another bundle 𝑞 ∈ 𝑄𝑓 , at the
urrent prices 𝜆𝑡:

𝑞∗𝑡𝑓 = argmax
𝑞∈𝑄𝑓

{

𝑉 (𝑓, 𝑞) − 𝑝𝑡(𝑞)
}

= argmax
𝑞∈𝑄𝑓

{

𝑉 (𝑓, 𝑞) − 𝑝𝑡(𝑞) + 𝑝𝑡(𝑎𝑓 )
}

(19)

where 𝑝𝑡(𝑞) =
∑

𝑘∈𝑞 𝜆
𝑡
𝑘. Notice that 𝑓 only needs to communicate the optimal solution 𝑥𝑡 of (16) according to prices 𝜆𝑡, i.e. its most

preferred bundle 𝑞∗𝑡𝑓 , and not the optimal value 𝑍𝐿𝑅(𝑓, 𝜆) to the central authority.
Then the central authority computes the following quantity

𝑆𝐺𝑡
𝑘 = 1 −

∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥𝑡(𝑓, 𝑞) ∀𝑘 ∈ . (20)

The vector 𝑆𝐺𝑡 is a subgradient of 𝑍𝐿𝑅(𝜆) at the point 𝜆𝑡. The sum in (20) represents the number of flights whose demanded bundle
𝑞∗𝑡𝑓 contains time window 𝑘. Then the prices are centrally updated according to

𝜆𝑡+1𝑘 = max(0, 𝜆𝑡𝑘 − 𝜇𝑡𝑆𝐺
𝑡
𝑘) ∀𝑘 ∈  (21)

where 𝜇𝑡 is the step length and will be discussed in Section 4.2.
Eq. (21) has the following interpretation: for each 𝑘 ∈ 

(i) if 𝑆𝐺𝑡
𝑘 < 0, the demand for time window 𝑘 exceeds the capacity, so the price of 𝑘 is raised;

(ii) if 𝑆𝐺𝑡
𝑘 > 0, less capacity is used than available, so the price of 𝑘 is lowered;

(iii) if 𝑆𝐺𝑡
𝑘 = 0, there is already a balance between demand and capacity, so the price is unchanged.

The market mechanism is configured in a series of exchanges of information between the central authority and the aircraft
operators. Each iteration proceeds as follows:

1. The central authority communicates prices 𝜆𝑡 to all aircraft operators.
2. Each aircraft operator solves problem (16) according to prices 𝜆𝑡 and communicates the demanded bundle 𝑞∗𝑡𝑓 to the central

authority.
3. The central authority computes the imbalance between the demand 𝑞∗𝑡𝑓 and the capacity of time windows according to Eq. (20)

and updates the prices of time windows 𝜆𝑡 according to (21).

In the rest of this section, we discuss the details of the iterative market mechanism, i.e., of the subgradient method applied to
problem (18). Hereinafter, we call (𝐼𝑃 ) the problem (5), (𝐿𝑃 ) its linear relaxation, (𝐿𝑅(𝜆)) the problem (14) and (𝐿𝐷) the problem
(18).

4.1.1. Termination of the iterative market mechanism
Under appropriate choice of the stepsize the subgradient algorithm converges to the optimal solution of (𝐿𝐷).
If at iteration 𝑡 the bundles demanded by flights happen to form an allocation 𝑥𝑡 that respects the capacity, i.e. 𝑆𝐺𝑡

𝑘 ≥ 0 ∀𝑘 ∈ , or
in other words 𝑞∗𝑡𝑓 share no time windows, then the allocation will constitute a feasible solution for (𝐼𝑃 ). Indeed, thanks to property
(19), the prices 𝜆𝑡 are such that the exchange is individual rational, and each user also maximises the individual utility. However,
we remark that there is no guarantee that the prices satisfy the weak budget balance property (11). It can occur that the solution
𝑥𝑡 of problem (𝐿𝑅(𝜆𝑡)) is feasible but not optimal for (𝐼𝑃 ). In this case, the complementary slackness conditions do not hold.

If the solution is not only capacity-compliant but also satisfies complementary slackness 𝑆𝐺𝑡 ⋅ 𝜆𝑡 = 0, i.e. all unassigned time
windows have zero price, then 𝑍𝐿𝑅(𝜆𝑡) = 𝑍𝐼𝑃 , so 𝑥𝑡 is an optimal solution of (𝐼𝑃 ) and 𝜆𝑡 is an optimal solution of problem (6),
they form a Walrasian equilibrium, and the subgradient algorithm stops.

When the duality gap 𝑍𝐿𝐷 −𝑍𝐼𝑃 is zero, an optimal solution (𝜆∗, 𝑥∗) always exists, i.e., (𝜆∗, 𝑥∗) feasible for (𝐿𝐷) and (𝐼𝑃 ) and
∗
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uch that the complementary slackness conditions hold. Unfortunately, determining the value of 𝑥 may be not easy even when the
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subgradient algorithm makes the sequence 𝜆𝑡 converge to 𝜆∗. In presence of multiple optimal solutions for (𝐿𝑅(𝜆∗)), each optimal
solution of (𝐼𝑃 ) is among the optimal solutions of (𝐿𝑅(𝜆∗)), but the opposite is not necessarily true. Hence, the solution of (𝐿𝑅(𝜆∗))
may provide an assignment 𝑥 which is not optimal for (𝐼𝑃 ).

Generally speaking, there is no way of proving that the subgradient algorithm has converged to the optimal values 𝜆∗. To resolve
this difficulty, the method is usually terminated upon reaching an arbitrary iteration limit (Fisher, 2004).

4.2. Choice of stepsize

A choice of a stepsize for the subgradient method that guarantees convergence to the minimum of the Lagrangian function is

𝜇𝑡 =
𝜖𝑡
(

𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃
)

‖𝑆𝐺𝑡
‖

2
(22)

where 0 < 𝜖 < 𝜖𝑡 ≤ 2. In (22) the numerator depends on the difference between the current Lagrangian objective function value
and the minimum of the Lagrangian function, and the denominator is the square norm of the subgradient vector. Unfortunately,
in general, the minimum of the Lagrangian function is unknown and one uses a lower bound on this minimum. In our case, both
𝑍𝐿𝑃 and 𝑍𝐿𝑅(𝜆𝑡) are unknown because the objective function coefficients of the Lagrangian function 𝑉 (𝑓, 𝑞) (the costs of delay) are
unknown to the central authority. The rest of this section proposes a way to compute an estimate for the difference 𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃
o be used in the stepsize formula.

.2.1. Cost elicitation
First of all, we discuss how the preferences communicated by airlines through (19) during the course of the distributed market

echanism actually provide information on costs 𝐶(𝑓, 𝑞) to the central authority.
Recall that 𝑝𝑡(𝑞) = ∑

𝑘∈𝑞 𝜆
𝑡
𝑘 is the price of a bundle 𝑞 at iteration 𝑡. Eq. (19) says that for all 𝑓 ∈ 

𝑉 (𝑓, 𝑞∗𝑡𝑓 ) − 𝑉 (𝑓, 𝑞) ≥ 𝑝𝑡(𝑞∗𝑡𝑓 ) − 𝑝𝑡(𝑞) ∀𝑞 ∈ 𝑄𝑓 . (23)

he right-hand side of Eq. (23) is a known quantity, whereas the left-hand side is unknown. Eq. (23) represents a set of |𝑄𝑓 |

nequalities each involving the values of a pair of bundles. At every iteration, we can add a new set of |𝑄𝑓 | inequalities for each
∈  and build up a system of inequalities incrementally. Notice that, however, the total number of inequalities collected by the

nd of the iterative market mechanism is limited, because if at some iteration 𝑡 the bundle demanded by 𝑓 happens to be the same
undle demanded at an earlier iteration 𝑡′ < 𝑡, i.e. 𝑞∗𝑡𝑓 = 𝑞∗𝑡′𝑓 , then we can simply update the right-hand side of the old inequalities
nstead of adding a new set of inequalities, if the new right-hand side is larger than the old one.

We can also take advantage of the fact that the cost is a non-decreasing function of the delay to write an additional relation
etween values:

𝑉 (𝑓, 𝑞) ≥ 𝑉 (𝑓, 𝑞) ∀𝑞 ∈ 𝑄𝑓 , 𝑞 ∈ 𝑄𝑓 ∶ 𝑑𝑞 < 𝑑𝑞 . (24)

n addition, from Eq. (4) it follows that 𝑉 (𝑓, 𝑎𝑓 ) = 𝐶(𝑓, 𝑎𝑓 ) − 𝐶(𝑓, 𝑎𝑓 ) so

𝑉 (𝑓, 𝑎𝑓 ) = 0. (25)

The system of inequalities (23) together with (24) and (25) defines ∀𝑓 ∈  a convex polyhedron in a |𝑄𝑓 |-dimensional space
hich gets smaller during the course of iterations, and which contains a point corresponding to the real combination of values
(𝑓, 𝑞) ∀𝑞 ∈ 𝑄𝑓 . This polyhedron represents all the information that has been elicited about the cost of delay for flight 𝑓 . Now let
1, 𝑞2,… , 𝑞

|𝑄𝑓 |
be the bundles in 𝑄𝑓 ordered by increasing delay. One can obtain a lower bound 𝐿𝐵(𝑓, 𝑞) ≤ 𝑉 (𝑓, 𝑞) on the value of

ach bundle 𝑞 ∈ 𝑄𝑓 by exploiting this elicited information. The tightest possible lower bound is the solution of the following linear
rogram, whose constraints define the polyhedron described before:

𝐿𝐵𝑡(𝑓, 𝑞𝑘) = min 𝑣(𝑞𝑘) (26a)

𝑣(𝑞𝑖) − 𝑣(𝑞𝑗 ) ≥ 𝑐𝑡𝑖𝑗 ∀𝑞𝑖 ∈ 𝑄𝑓 , 𝑞𝑗 ∈ 𝑄𝑓 (26b)

𝑣(𝑞𝑖−1) ≥ 𝑣(𝑞𝑖) ∀𝑞𝑖 ∈ 𝑄𝑓 ⧵ {𝑞1} (26c)

𝑣(𝑎𝑓 ) = 0 (26d)

onstraints (26b) correspond to Eq. (23), constraints (26c) correspond to Eq. (24) and (26d) to (25). The coefficients of constraints
26b) are updated at each iteration as follows: for all 𝑞𝑗 ∈ 𝑄𝑓

𝑐𝑡𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑐𝑡−1𝑖𝑗 if 𝑞𝑖 ≠ 𝑞∗𝑡𝑓
max

(

𝑝𝑡(𝑞𝑖) − 𝑝𝑡(𝑞𝑗 ), 𝑐𝑡−1𝑖𝑗

)

if 𝑞𝑖 = 𝑞∗𝑡𝑓
(27)

nitialised at 𝑡 = 0 with
0

11

𝑐𝑖𝑗 = −∞ ∀𝑞𝑖 ∈ 𝑄𝑓 , 𝑞𝑗 ∈ 𝑄𝑓 . (28)
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Similarly, changing the objective function (26a), one obtains an upper bound 𝑈𝐵(𝑓, 𝑞) ≥ 𝑉 (𝑓, 𝑞) for all 𝑞 ∈ 𝑄𝑓

𝑈𝐵𝑡(𝑓, 𝑞𝑘) = max 𝑣(𝑞𝑘) (29a)

𝑣(𝑞𝑖) − 𝑣(𝑞𝑗 ) ≥ 𝑐𝑡𝑖𝑗 ∀𝑞𝑖 ∈ 𝑄𝑓 , 𝑞𝑗 ∈ 𝑄𝑓 (29b)

𝑣(𝑞𝑖−1) ≥ 𝑣(𝑞𝑖) ∀𝑞𝑖 ∈ 𝑄𝑓 ⧵ {𝑞1} (29c)

𝑣(𝑎𝑓 ) = 0 (29d)

Notice that in doing this, we are effectively eliciting information on costs, but only the information which is necessary for the
ubgradient procedure to converge, and the bounds are not strict generally.

If we reformulate the cost elicitation problem in terms of costs instead of values, we can write an additional relation between
hem: not only we know that the cost function is non-decreasing, but also that it is superlinear. This means that the unit cost of
elay is a non-decreasing function of the delay:

𝐶(𝑓, 𝑞)
𝑑𝑞

≤ 𝐶(𝑓, 𝑞)
𝑑𝑞

∀𝑞 ∈ 𝑄𝑓 , 𝑞 ∈ 𝑄𝑓 ∶ 𝑑𝑞 < 𝑑𝑞 , 𝑑𝑞 ≠ 0. (30)

This is a linear constraint, thus it can be included in our linear problem, and it makes constraint (24) redundant, since it is
stricter. Relation (25) is substituted by

𝐶(𝑞) = 0 if 𝑑𝑞 = 0. (31)

Then problem (26) becomes

𝐿𝐵
𝑡
(𝑓, 𝑞𝑘) = min 𝑐(𝑞𝑘) (32a)

𝑐(𝑞𝑗 ) − 𝑐(𝑞𝑖) ≥ 𝑐𝑡𝑖𝑗 ∀𝑞𝑖 ∈ 𝑄𝑓 , 𝑞𝑗 ∈ 𝑄𝑓 (32b)

𝑑𝑞𝑖 ⋅ 𝑐(𝑞𝑖−1) ≤ 𝑑𝑞𝑖−1 ⋅ 𝑐(𝑞𝑖) ∀𝑞𝑖 ∈ 𝑄𝑓 ⧵ {𝑞1} (32c)

𝑐(𝑞2) ≥ 0 (32d)

𝑐(𝑞1) = 0 (32e)

We conclude this subsection with a word of caution. Even though the distributed mechanism does not require ‘‘explicit’’ disclosure
of delay costs, the arguments presented in this subsection show how a central authority could estimate these values based on the
bundles communicated by the airlines during the algorithm iterations. The quality of the estimate depends on the number of different
bundles observed: the fewer the number of bundles, the worse the estimates. In Section 6.4 we show on an example data instance
that the estimates obtained are rough in almost all cases, therefore there is no risk of cost information disclosure in practice.

4.2.2. Computation of the stepsize
Returning to the problem of choosing an appropriate stepsize for the subgradient method, a possible approach would be to

compute an upper bound on 𝑍𝐿𝑅(𝜆𝑡) and a lower bound on 𝑍𝐿𝑃 based on the upper and lower bounds on values obtained in
Section 4.2.1, and plug these bounds in Eq. (22). In particular, at each iteration 𝑡 a lower bound 𝑍𝐿𝐵𝑡 ≤ 𝑍𝐿𝑃 can be computed as

𝑍𝐿𝐵𝑡 = max
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝐿𝐵𝑡(𝑓, 𝑞)𝑥(𝑓, 𝑞) (33a)

∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥(𝑓, 𝑞) ≤ 1 ∀𝑟 ∈ , 𝑘 ∈ 𝐿𝑟 (33b)

∑

𝑞∈𝑄𝑓

𝑥(𝑓, 𝑞) = 1 ∀𝑓 ∈  (33c)

𝑥(𝑓, 𝑞) ≥ 0 ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓 (33d)

See Appendix D.1 for a proof that problem (33) indeed provides a lower bound on 𝑍𝐿𝑃 . An upper bound 𝑍𝑈𝐵𝑡(𝜆𝑡) ≥ 𝑍𝐿𝑅(𝜆𝑡) can
be computed as

𝑍𝑈𝐵𝑡(𝜆𝑡) =
∑

𝑓∈
𝑈𝐵𝑡(𝑓, 𝑞∗𝑡𝑓 ) + 𝑆𝐺𝑡 ⋅ 𝜆𝑡 (34)

since 𝑍𝐿𝑅(𝜆𝑡) =
∑

𝑓∈ 𝑉 (𝑓, 𝑞∗𝑡𝑓 ) + 𝑆𝐺𝑡 ⋅ 𝜆𝑡. It follows that 𝑍𝑈𝐵𝑡(𝜆𝑡) −𝑍𝐿𝐵𝑡 ≥ 𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃 . Then the stepsize is computed as

𝜇𝑡 =
𝜖𝑡
(

𝑍𝑈𝐵𝑡(𝜆𝑡) −𝑍𝐿𝐵𝑡)

‖𝑆𝐺𝑡
‖

2
. (35)

Problem (33) has always a finite optimal value since 𝑎𝑓 is a feasible solution and 𝐿𝐵𝑡(𝑓, 𝑎𝑓 ) = 0, so 𝑍𝐿𝐵𝑡 ≥ 0. However, problem
(29) can be unbounded and so it can happen that 𝑍𝑈𝐵𝑡(𝜆𝑡) = +∞, thus this method is not viable. In Ranieri (2010) a method is
proposed to compute a looser lower bound on 𝑉 (𝑓, 𝑞) without solving the linear problem (26), but he does not provide a way to

𝑡
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compute an upper bound on 𝑍𝐿𝑅(𝜆 ).
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Now we propose another method to compute the stepsize, which instead is always viable. The idea is to estimate the difference
𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃 directly, instead of estimating bounds on 𝑍𝐿𝑅(𝜆𝑡) and 𝑍𝐿𝑃 separately and then taking the difference. First of all, we

can write

𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃 =
∑

𝑓∈
𝑉 (𝑓, 𝑞∗𝑡𝑓 ) + 𝑆𝐺𝑡 ⋅ 𝜆𝑡 − max

𝑥∈𝑆

∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝑉 (𝑓, 𝑞)𝑥(𝑓, 𝑞) (36)

where 𝑆 is the set of solutions 𝑥 satisfying constraints (5b) and (5c). Thanks to (5c) we can write

𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃 = 𝑆𝐺𝑡 ⋅ 𝜆𝑡 − max
𝑥∈𝑆

∑

𝑓∈

∑

𝑞∈𝑄𝑓

(

𝑉 (𝑓, 𝑞) − 𝑉 (𝑓, 𝑞∗𝑡𝑓 )
)

𝑥(𝑓, 𝑞). (37)

The maximisation problem appearing in (37) involves differences between values 𝑉 (𝑓, 𝑞) − 𝑉 (𝑓, 𝑞∗𝑡𝑓 ). A finite upper bound on these
quantities is readily available thanks to Eq. (23). This gives a finite lower bound on 𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃 (due to the minus sign in front
of the maximum) that can be plugged in the stepsize formula.

More precisely, once we have 𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞) ≥ 𝑉 (𝑓, 𝑞) − 𝑉 (𝑓, 𝑞∗𝑡𝑓 ) obtained as

𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞) = 𝑝𝑡(𝑞) − 𝑝𝑡(𝑞∗𝑡𝑓 ) (38)

we can solve the following linear problem:

𝑍𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 = max

∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞)𝑥(𝑓, 𝑞) (39a)

∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥(𝑓, 𝑞) ≤ 1 ∀𝑟 ∈ , 𝑘 ∈ 𝐿𝑟 (39b)

∑

𝑞∈𝑄𝑓

𝑥(𝑓, 𝑞) = 1 ∀𝑓 ∈  (39c)

𝑥(𝑓, 𝑞) ≥ 0 ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓 . (39d)

To simplify the notation, let us define the residual

𝑅𝐸𝑆𝑡 = 𝑆𝐺𝑡 ⋅ 𝜆𝑡 −𝑍𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 (40)

which will satisfy 𝑅𝐸𝑆𝑡 ≤ 𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃 (see again Appendix D.1). Finally we set

𝜇𝑡 = 𝜖𝑡
𝑅𝐸𝑆𝑡

‖𝑆𝐺𝑡
‖

2
. (41)

It can be proved (see Appendix D.2) that 𝑅𝐸𝑆𝑡 ≥ 0 and so the stepsize is non-negative, whenever the duality gap 𝑍𝐼𝑃 − 𝑍𝐿𝐷 is
zero. Therefore, in that case, there is no risk that a step of subgradient iteration moves in the opposite direction of −𝑆𝐺𝑡.

The bounds 𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞) obtained with (23) can be improved by exploiting the ordered structure of 𝑄𝑓 (the monotonicity of

ost functions). They are updated recursively with

𝑈𝐵
𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑝𝑡(𝑞𝑖) − 𝑝𝑡(𝑞∗𝑡𝑓 ) for 𝑖 = 1

min
(

𝑝𝑡(𝑞𝑖) − 𝑝𝑡(𝑞∗𝑡𝑓 ), 𝑈𝐵
𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞𝑖−1)

)

for 𝑖 = 2,… , |𝑄𝑓 |.
(42)

hen we can leverage the information obtained at previous iterations to write

𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞𝑖) = min

(

𝑈𝐵
𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞𝑖), 𝑈𝐵𝑡′

𝑑𝑖𝑓𝑓 (𝑓, 𝑞𝑖)
)

∀𝑞𝑖 ∈ 𝑄𝑓 for 𝑡′ < 𝑡 if 𝑞∗𝑡′𝑓 ≥ 𝑞∗𝑡𝑓 . (43)

Of course, the tightest possible upper bound on 𝑉 (𝑓, 𝑞) − 𝑉 (𝑓, 𝑞∗𝑡𝑓 ) can be found by solving a linear problem analogous to (29)

𝑈𝐵𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞𝑘) = max 𝑣(𝑞𝑘) − 𝑣(𝑞∗𝑡𝑓 ) (44a)

𝑣(𝑞𝑖) − 𝑣(𝑞𝑗 ) ≥ 𝑐𝑡𝑖𝑗 ∀𝑞𝑖 ∈ 𝑄𝑓 , 𝑞𝑗 ∈ 𝑄𝑓 (44b)

𝑣(𝑞𝑖−1) ≥ 𝑣(𝑞𝑖) ∀𝑞𝑖 ∈ 𝑄𝑓 ⧵ {𝑞1} (44c)

𝑣(𝑎𝑓 ) = 0 (44d)

but the combination of (42) and (43) allows to drastically reduce the computational cost, and will be used to present the results in
Section 6.

Similarly one could find a lower bound 𝐿𝐵𝑡
𝑑𝑖𝑓𝑓 (𝑓, 𝑞) ≤ 𝑉 (𝑓, 𝑞)−𝑉 (𝑓, 𝑞∗𝑡𝑓 ) and use it to compute an upper bound on 𝑍𝐿𝑅(𝜆𝑡)−𝑍𝐿𝑃

to be used in the stepsize formula. However this does not always work because there could not exist a feasible solution 𝑥 ∈ 𝑆 for
which ∑

𝑓∈
∑

𝑞∈𝑄𝑓
𝐿𝐵𝑡

𝑑𝑖𝑓𝑓 (𝑓, 𝑞)𝑥(𝑓, 𝑞) > −∞.
The downside of this method is the computational cost of solving a linear problem (39) at every iteration of the subgradient
13
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5. Data collection

5.1. Traffic data

We tested the model on real traffic data collected from the Demand Data Repository (DDR2) of EUROCONTROL. In particu-
ar (Niarchakou and Sfyroeras, 2021),

• Each regulation is characterised by its associated traffic volume,2 the sub-periods in which it is divided and the capacities of
each sub-period.

• Each flight is characterised by: aircraft type, airline, ATFM delay, most penalising regulation, departure airport and destination
airport, Estimated Take-Off Time (ETOT) and Estimated Time of Arrival (ETA), and the list of intersections, i.e., the estimated
times of entry into each sector crossed along the flight route according to the Initial Trajectory, also called M1 trajectory, which
is based on the Last Filed Flight Plan from the aircraft operator.

5.2. Data extraction

We processed the data about all flights and regulations on the 4th of July 2019 in all Europe. There were a total of 39080 flights
and 203 regulations during that day. We selected data relative to one day because there are typically few regulations at night, so it
is unlikely to have a regulation straddling the midnight.

As a preprocessing stage, we excluded flights having the same origin and destination airport, flights with unknown origin or
destination airport, and regulations with zero capacity. The resources used to execute each flight 𝑓 are the intersected airspace
sectors, the departure airport and the destination airport; we are interested only in the regulated resources. In order to form the set
𝑅𝑓 (see Section 3.1), we selected the resources for which the following three conditions hold:

(i) the resource is regulated;
(ii) the time of entry into the resource falls within the regulation period;

(iii) the flight is not excluded from the regulation by the corresponding traffic volume definition.

In the case the resource is an airspace sector, the time of entry in point (ii) is the ETO over the sector taken from the intersections;
in the case the resource is the departure airport, the time of entry is the ETOT, and in the case the resource is the arrival airport,
the time of entry is the ETA. The times of entry in each resource will constitute the inputs 𝐸𝑓 of the model together with 𝑅𝑓 .
Point (ii) requires another specification: if the flight is subject to more than one regulation, we actually require that the interval
[𝑒𝑖, 𝑒𝑖+𝑀𝑎𝑥𝐷𝑒𝑙𝑓 ] (where 𝑒𝑖 is the time of entry) intersects with the regulation period, because due to the delay in the Most Penalising
Regulation the flight may be pushed inside the regulation period even if the time of entry was before the start of the regulation.
That is why in Section 3.1 we included a ‘‘dummy’’ time window at the beginning of a regulation, and not only at the end.

Point (iii) means that we check whether the flight is captured by the flows associated to the traffic volume. In addition, if the
resource is the departure airport, we check that the traffic volume does not capture only inbound flights, and vice versa for the
destination airport.

Since airspace sectors are sometimes non-convex, it can happen that a flights enters into a sector more than once. In these cases,
we kept only the first intersection with the sector.

Regulations can be applied to collapsed sectors, but intersections of flights are always with elementary sectors. We verified that
for our test day (4 July 2019), for each regulation associated with a collapsed sector, the opening schemes indicate that all elementary
sectors of that collapsed sector were active during the time interval in which that regulation was in force. Since an elementary sector
can be included in more than one collapsed sector, but only one of them can be active at a given time, we could associate each
collapsed sector with the elementary sectors composing it (the configuration, i.e. the structure of collapsed sectors, was available
from the data) and we considered a flight subject to a regulation on a collapsed sector if the flight crosses an elementary sector
inside it.

Let 𝐹 be the subset of flights which are found to be associated to at least one regulation according to our analysis, i.e. the flights
for which 𝑅𝑓 ≠ ∅. We obtained |𝐹 | = 11354. Finally, let 𝐹 ′ ⊂ 𝐹 be the subset of flights departing from outside the ATFM Area
(which includes States receiving the full ATFM service from EUROCONTROL) and the ATFM Adjacent Area (which includes FIRs
adjacent to the ATFM Area) and exempted flights (e.g. official, humanitarian and emergency flights). These categories of flights
are not subject to ATFM measures. We did not include airborne flights (which are also not subject to the ATFM slot allocation) in
𝐹 ′ because the data did not specify the time of creation of regulations. We obtained |𝐹 ′

| = 1016. For each flight 𝑓 ∈ 𝐹 ′, for each
𝑖 ∈ 𝑅𝑓 , we blocked the TW of 𝑟𝑖 containing 𝑒𝑖, meaning that no other flight can be assigned this TW in the optimal allocation.
lights in 𝐹 ′ will not participate in the market mechanism. If a flight does not wish to join, but prefers to keep its FPFS time window,
t can be excluded from the market by placing it in the set 𝐹 ′ (see also Appendix A). For each 𝑓 ∈ 𝐹 ⧵ 𝐹 ′, a bundle containing any
locked time window is considered not feasible.

2 A traffic volume is a tool used in ATFM to select a specific volume of air traffic. It is related to an aerodrome or an airspace sector, and to one or more
14

raffic flows that can be either included or excluded from the regulation.
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Fig. 1. Normalised histogram of the number of regulations crossed by flights in 𝐹 ⧵ 𝐹 ′, 4 July 2019.

Fig. 2. Normalised cumulative histogram of the number of flights in 𝐹 ⧵ 𝐹 ′ subject to a regulation, 4 July 2019.

On our test day, on average, a flight in 𝐹 ⧵𝐹 ′ crosses 1.6 regulations and 39% of flights are subject to more than one regulation
(see Fig. 1, which shows the number of regulations crossed by a flight). Fig. 2 shows a cumulative histogram of the number of flights
subject to a regulation. The average is 85, and only 16% of cases comprise more than 150 flights. Based on these histograms, to
test the market mechanism on meaningful real instances, in Section 6 we used the examples of two regulations with a number of
flights each not too small but also not too large as the latter cases are rare (see also Table 3). Applications on larger instances can
be found in Appendix E. We extended the analysis of traffic data for seven days (from the 1st to the 7th of July 2019) and found
that a regulated flight crosses on average 1.9 regulations and 47% of regulated flights are subject to more than one regulation, thus
motivating the need for a multiple regulation allocation system such as the one proposed in this work.

In principle, it would have been possible to use the ATFM delay from the data to obtain the FPFS TW allocation. However,
the resulting allocation would not respect the capacities of time windows, because it was impossible to reproduce exactly the real
environment due to the intricacies of the ATM system rules, which we tried nevertheless to take into account to the best of our
possibilities. Thus we applied the algorithm in Appendix C instead.

As a check, we compared the set 𝑅𝑓 obtained for each flight with the Most Penalising Regulation indicated in the data. For 98%
of the flights the MPR was included in 𝑅𝑓 . In addition, there was a small number of flights for which we found 𝑅𝑓 ≠ ∅ but the
MPR was not present in the data, meaning that the flight was not subject to any regulation in reality; we decided to ignore these
flights.

For reasons of computational efficiency, the size of 𝑄𝑓 was limited by setting 𝑀𝑎𝑥𝐷𝑒𝑙𝑓 = 60 min ∀𝑓 ∈  . This is reasonable
since the typical ATFM delays are below 60 min.

As a last note, it is straightforward to adapt the construction of TW allocation lists for regulations having more than one sub-
period. We build a TW list as described in Section 3.1 for each sub-period, and then the allocation list 𝐿𝑟 is the union of all these
TW lists.

5.3. Cost data

As anticipated in Section 2.2, delay costs can be estimated relying on the values reported in Cook et al. (2021). To reflect the
likely range of costs, they are assigned under three scenarios (‘‘low’’, ‘‘base’’ and ‘‘high’’) for four flight phases (at-gate, taxi, en-route
15
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and arrival management), and are calculated for 18 common types of aircraft. In this work, we only consider the at-gate tactical
delays.

To assign delay costs to flights whose aircraft is not among the 18 reference types, aircraft in the data were clustered in 18
roups whose centroid is the reference type, based on the square root of the Maximum Take-Off Weight (MTOW), as in Bolić et al.
2017).

Flights of low cost airlines were assigned to the low cost profile, flights into a hub airport were assigned to the high profile, and
ll other flights to the base profile, as in Bolić et al. (2017).

We attached the cost of delay specifically to each regulated flight, based on the aircraft type, company, destination, and flight
ength, which are available from the data. We also attached the cost of cancellation which was estimated in Cook et al. (2021) as
ell. Due to the clustering, many flights have the same cost of delay, which is unrealistic, thus we added a small Gaussian zero-mean
oise to each cost 𝐶(𝑓, 𝑞).

. Computational results

All algorithms were coded in Python and making use of NumPy, a package for scientific computing. All experiments were
erformed using the FICO XPRESS optimisation software, version 8.12.3. It is a software specifically devoted to solving mixed-
nteger linear programming problems. We ran it on a 64 bit Intel(R) Xeon(R) W-2145 @3.70 GHz 16 core CPU computer, having
1 GB of RAM memory and Ubuntu 20.04 operating system. On this architecture, the most computationally demanding example
nstance presented here (Section 6.5) took 105 s to execute.

First of all, we recall the formula (41) for the stepsize in the subgradient method elaborated in Section 4.2.2:

𝜇𝑡 = 𝜖𝑡
𝑅𝐸𝑆𝑡

‖𝑆𝐺𝑡
‖

2
. (45)

In addition to formula (45), we experimented with a heuristic method to adapt the stepsize, which we now describe. The idea is not
to use 𝑅𝐸𝑆𝑡 directly in the stepsize formula, but just to monitor the trend of the Lagrangian function during iterations. We initialise
𝜇0 as in (45). Then, we half 𝜇𝑡 every time the objective function fails to improve after a given number of iterations 𝑛 according to
the estimate given by 𝑅𝐸𝑆𝑡, and at least 𝑛 iterations have passed since the last time we halved 𝜇𝑡. That is:

𝜇𝑡+1 =

{ 𝜇𝑡
𝛾 if 𝑅𝐸𝑆𝑡−𝑖 ≥ 𝑅𝐸𝑆𝑡−𝑛 and 𝜇𝑡 = 𝜇𝑡−𝑖 ∀𝑖 = 0,… , 𝑛 − 1

𝜇𝑡 otherwise
(46)

with 𝛾 = 2, and 𝜇0 = 𝜖0
𝑅𝐸𝑆0

‖𝑆𝐺0
‖

2 . This piece-wise constant stepsize can be seen as a modification of a common rule used in the
ubgradient method, which halves the stepsize every 𝜈 iterations for some fixed 𝜈. In this case, 𝜈 is dynamically adapted based on
he behaviour of the function. The parameters 𝑛 and 𝜖0 need to be tuned, and we found that 𝑛 = 4 and 𝜖0 = 3 work well in general.

e will use these values in the rest of this section if not otherwise stated.
A rule of thumb to initialise 𝜆𝑡 is to set 𝜆0 at random uniformly in an interval corresponding roughly to the range of equilibrium

rices, which can be determined after a number of trials on similar-sized instances. We observed that generally setting 𝜆0 at random
orks better than setting 𝜆0 = 0. We believe that this is because in this way initial prices are on average closer to their final
quilibrium value, which makes convergence faster.

To illustrate the computational experience gained, we describe the results obtained on some instances involving two regulations
nd extracted from the real data (Section 5), which are representative of the average case (see Figs. 1 and 2). We first discuss the
onvergence of the subgradient depending on the different stepsizes (45)–(46) and conclude that the best choice is to rely on the
euristic approach (Section 6.1). This is the stepsize used in the subsequent examples. In the first case, we present an instance
roducing a weakly budget balanced solution (Section 6.2), then a case where the subgradient does not converge and therefore
W capacity is not respected (Section 6.3). Since we observe a decreasing number of violated time windows as the subgradient
dvances, we deem the final solution acceptable from an operational point of view. In the third case, the optimal solution obtained
hrough the market mechanism is illustrated in more detail (Section 6.4). We conclude with a greedy algorithm to derive a feasible
olution when the duality gap is not equal to zero (Section 6.5). Appendix E reports some additional computational experiments
erformed on data instances of various sizes.

.1. Subgradient convergence — Regulations LBSAU04 and LBSCU04

First of all, we consider two regulations, LBSAU04 and LBSCU04, affecting two collapsed sectors in Bulgaria, that were both
imiting the rate to 40 flights per hour due to adverse weather, the first from 13:00 to 14:31 and the second from 13:00 to 16:15.

e take as  the set of all flights affected by at least one of the two regulations, and  the set of time windows on the two
egulations. The set  comprises a total of 111 flights, of which 15 flights were affected by both regulations. The cost of the initial
PFS allocation is e 960.20. We verified that the duality gap for this instance is zero, and the cost of the TW allocation (5) is e
63.36 leading to 72.6% cost savings.

Fig. 3 shows with a blue line the decrease in the Lagrangian function in the first 100 iterations of the subgradient algorithm
16

pplied to such data instance, using stepsize (45). After 100 iterations, the objective value reaches 100.83% of its minimum value
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Fig. 3. Lagrangian objective value 𝑍𝐿𝑅(𝜆𝑡) vs number of iterations 𝑡 (with zoom over the last 10 iterations). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

(the pink dotted line), and the prices are still not exactly at their equilibrium. The algorithm does not converge to an optimal solution
of problem (𝐼𝑃 ) even after 300 iterations.

This behaviour is not caused by the approximation we did by employing the lower bound in the stepsize formula. As a comparison,
we report in the same plot (Fig. 3) the result when we run the subgradient algorithm using the ideal stepsize (22), pretending that
costs are known (yellow line). The convergence profile is very similar. In this case also, convergence to an optimal solution of (𝐼𝑃 )
does not happen, even if the final value is slightly lower, 100.42% of the minimum.

We found that this is a general trend on other data instances. Using the ideal formula (22) for the stepsize, the subgradient
algorithm rarely converges to a capacity-compliant solution within a reasonable number of iterations, because prices converge too
slowly.

In instances for which the duality gap is zero, the subgradient algorithm always converges as discussed in Section 4.1.1, at least
asymptotically if the ideal stepsize is used.

Notice that we used the highest value possible for 𝜖𝑡 that guarantees convergence, i.e. 𝜖𝑡 = 2. If we use a higher value, on some
instances a faster convergence can be achieved, but on some others the objective value diverges. With (45) we used 𝜖0 = 3 to
compensate for the fact that 𝑅𝐸𝑆𝑡 is an underestimate of the true residual.

When we use the heuristic formula (46) on our example instance (Fig. 4) the algorithm finds an optimal solution of (𝐼𝑃 ) at
iteration 83 and terminates. We often achieved finite termination at optimality on other small-size instances (two regulations and
comparable number of flights) with the heuristic formula.

Fig. 5 shows the true value of the residual 𝑍𝐿𝑅(𝜆𝑡) − 𝑍𝐿𝑃 together with its underestimate 𝑅𝐸𝑆𝑡. It is evident that this
underestimate is able to reproduce the trend in the real residual. When the real residual increases, the underestimate increases too
and when the real residual decreases, the underestimate decreases, even if the magnitude of the two is quite different. This provides
justification to the empirical formula (46), as the underestimate is able to correctly capture when the real objective function fails
to improve for 𝑛 iterations.

Fig. 6 shows the stepsize sequence obtained when we run the subgradient algorithm with the ideal stepsize rule (22), and the
stepsize sequence obtained when we use the heuristic rule (46). The heuristic stepsize tends to be higher, and we believe that this
is the reason of the success of this formula: if the magnitude of the step is higher, prices 𝜆𝑡 tend to converge faster, provided that
they converge at all. Of course, the drawback is that convergence is not guaranteed, so this represents a more aggressive strategy
for scheduling the stepsize than (22), or actually its version (45) in the case of unknown costs, but less robust.

6.2. Weakly budget balanced solution — Regulations LOVS04N and LOWB304A

We present an example that shows that the subgradient algorithm finds a capacity-compliant solution that is also weakly budget
balanced, even if it does not satisfy the complementary slackness conditions.
17
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Fig. 4. Lagrangian objective value 𝑍𝐿𝑅(𝜆𝑡) vs number of iterations 𝑡 (with zoom where finite convergence is attained).

Fig. 5. Goodness of the lower bound on the residual. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Comparison between stepsize sequences. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
18
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Fig. 7. Convergence profile (with detail of the last iterations).

The example is relative to two interacting regulations, LOVS04N and LOWB304A, and a total of 145 flights affected by at least
one of them. We verified that the duality gap for this instance is zero.

Fig. 7 displays the converge profile on this instance, with a zoom on the last iterations to show that convergence is not attained at
the minimum of the Lagrangian function, but at a slightly higher value. Nonetheless, at iteration 100 the solution of the Lagrangian
problem turns out to be capacity-compliant, and also weakly budget balanced, even if it does not satisfy complementary slackness.
Although the solution is not optimal, the subgradient algorithm may be stopped, as the resulting market mechanism implied by the
current solution satisfies the desired properties.

We remark that we can assess the degree to which this near-optimal solution departs from optimality. Specifically, we have that
𝑍𝐼𝑃 −

∑

𝑓∈ 𝑉 (𝑓, 𝑞∗𝑡𝑓 ) ≤ 𝜆𝑡 ⋅ 𝑆𝐺𝑡 (Geoffrion, 1974).

6.3. Capacity constraint violation — Regulations LHSUH04A and LONE3504

We introduce an example that shows that when the subgradient algorithm does not converge to a solution which respects the
capacity constraint, often the violation of the capacity constraint is small. We consider the regulations LHSUH04A and LONE3504
which affect a total of 233 flights. Fig. 8 shows the convergence profile for our third example instance. The Lagrangian objective
value reaches 100.59% of its minimum after 150 iterations.

As we discussed in Section 4.1, due to the way the subgradient algorithm is designed, it tends to reduce capacity violations
during the course of iterations. A step of the subgradient algorithm tends to raise the price of time windows for which the demand
exceeds the capacity, so that at the next iteration the demand will be lower.

More quantitatively, let us define the total overload of a time window allocation as the total number of flights exceeding the
capacity of time windows (i.e. 1 flight per time window). Recall that the number of flights whose demanded bundle at iteration 𝑡
contains time window 𝑘 is 1 − 𝑆𝐺𝑡

𝑘. Then, at iteration 𝑡, the overload 𝑂𝐿𝑡
𝑘 of time window 𝑘 is given by 𝑂𝐿𝑡

𝑘 = max(0,−𝑆𝐺𝑡
𝑘) and

the total overload is given by ∑

𝑘∈ 𝑂𝐿𝑡
𝑘.

Fig. 9 reveals that the total overload indeed tends to decrease during iterations. If the subgradient algorithm would converge to
an optimal solution, then the total overload would be zero. At the same time, as shown in Fig. 10, the surplus ∑𝑓∈

(

𝑝𝑡(𝑞𝑡𝑓 ) − 𝑝𝑡(𝑎𝑓 )
)

tends to increase, and after 60 iterations it rises above zero.
At iteration 𝑡 = 131, there is only one flight in excess with respect to the capacity, i.e. the total overload is 1, and the surplus

is positive, in particular it amounts to e 44.57. Although one flight could not be appropriately accommodated by the algorithm,
in practice it might happen that the ATFM controllers and/or the airlines could re-allocate such flight in cost-efficient manner.
Therefore, even with this small capacity violation, we can be content with this solution.

To sum up what we discussed in this section and in Section 4.1.1, these are the factors that prevent convergence of the subgradient
algorithm to an optimal solution of our allocation problem:

1. The duality gap may be non-zero, in which case the prices which solve the Lagrangian dual do not support the optimal
allocation.

2. There may be multiple solutions of the Lagrangian relaxation subproblem, so even when the duality gap is zero and the prices
have converged exactly, the subgradient algorithm may not find the optimal allocation.
19
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Fig. 8. Convergence profile.

Fig. 9. Total overload.

Fig. 10. Surplus.
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3. Even if costs were known and the ideal stepsize sequence was used, finite convergence would not be guaranteed, and
asymptotic convergence does not yield the solution to the allocation problem.

4. By using an heuristic stepsize rule, in not all cases finite convergence is attained.

When the subgradient algorithm stops without converging to the optimal solution, two situations can arise. Either the subgradient
algorithm solution provides a set of bundles that do not cause slot overloads (i.e., no time windows are assigned to more than one
flight), or conversely, some slot overload does occur (i.e., some time windows are assigned to more than one flight). In the former
case, flights may decide to accept the proposed solution if it is weakly budget balanced. In the latter case, the presence of slot
overloads can be handled with the heuristic presented in Section 6.5.

We also note, as we have already pointed out, that it is not uncommon in operations to accept some slot overloads, i.e., two
flights in the same sequence time window are often accepted in a sector, especially if there is a nearby empty slot, typically in the
range between −20 min and +60 min, that can compensate for the overload. Therefore, the acceptability of this type of ‘‘imperfect’’
olution may be worth further investigation in the future.

.4. Market mechanism solution — Regulations ME1204 and MKK04

Here we introduce an example on an instance of smaller size (in terms of number of flights), for which the space limitation of
he paper allows us to report the solution.

The interested regulations are ME1204 and MKK04, affecting two en-route sectors near Marseille, France. The regulation reason
or both was ATC Staffing. Regulation MKK04 was active from 11:40 to 13:00 with a capacity of 38 flights/hour, and regulation
E1204 was active from 12:00 to 13:40 with a capacity of 30 flights/hour. There were 39 flights subject to regulation ME1204 and

0 flights subject to MKK04, of which 15 to both of them, for a total of 64 flights. Regulation ME1204 has 50 time windows and
KK04 has 51 time windows. At first sight, it may seem weird that the number of flights subject to a regulation is smaller than the

umber of TWs available. But the point is that, if no delay was assigned to flights, some time windows would have more than one
light passing through them, and some other time windows would have no flights at all: the purpose of a regulation is to smooth
he traffic over the regulation period.

With the subgradient algorithm an optimal solution is found after only 37 iterations. The total delay under the FPFS allocation
s 105 min and the total cost of delay is e 1159.90. Under the optimal allocation the total delay is slightly higher, 106 min, but

the cost is almost halved, e 619.72. The surplus from the market mechanism is e 7.26. The sum of profits (utility variations) of all
flights is thus ∑

𝑓∈ 𝛥𝑢(𝑓 ) =
∑

𝑓∈ (𝑉 (𝑓, 𝑞∗𝑓 ) − 𝑝(𝑞∗𝑓 ) + 𝑝(𝑎𝑓 )) = e 1159.90 − e 619.72 − e 7.26 = e 532.92.
It is interesting to look closely at the optimal solution. Table 2 lists all the monetary transactions between flights and the central

uthority (CA) prescribed by the market mechanism. The first column is the TW being exchanged, the second column is the flight
elling the TW (releasing the TW from its FPFS allocation), the third column is the flight buying the TW (taking up the TW under
he optimal allocation), and the fourth column is the payment associated with the TW exchange, i.e. the price of the TW (see
ection 3.3). Time windows not appearing in the table either are not assigned under the FPFS policy nor under the optimal policy,
r they are assigned to the same flight in both policies (we omitted virtual transactions from a flight to itself from the table). Out
f the total of 64 flights, 24 flights were allocated with the same time windows under both FPFS and optimal policy. These are the
lights who are willing to participate in the process but for whom it is most convenient to keep the FPFS bundle.

As an example, consider the two rows of the table involving time windows r1 k48 and r1 k49. Flights f28 and f54 exchange
heir FPFS TWs; f28 increases its delay and thus receives a net amount of e 23.12 – e 10.8 = e 12.32 from f54 as a compensation.
n many cases the transactions occur between a pair of flights swapping a time window, as in the example, but in other cases they
onsist in more complex trading cycles involving three or more flights.

Most trades occur between flights, and only 5 trades occur between a flight and the central authority (see again cases (ii) and
iii) in Section 3.3). Of these, all are e 0 except one in which flight f63 pays e 7.26 to the central authority for TW r1 k18 and this
epresents the surplus of the market mechanism. In the last case, we are in the presence of an airline that is willing to pay for a
urrently free TW. In such a situation, the central authority may decide to allocate it free of charge, so that in practice the exchange
ould be fully budget balanced. However, a similar policy should be agreed upon with all airlines in advance. In fact, reducing the
rice paid by f63 for TW r1 k18 from e 7.26 to e 0.00 may be unfair, since other flights may then prefer this TW at zero price to
heir allocated TW, and (19) would not hold.

We remark that some TW exchanges or some central authority TW allocations may naturally occur with price equal to e 0.
his is always the case when a flight sells a TW to the central authority, due to the complementary slackness condition. It can also
appen when a flight exchanges a pair of slots with another flight. For instance, considering Table 2 again, f18 sells its FPFS time
indow r2 k5 at e 0 to f19 so that this f19 can sell r2 k4 to f18 and allows it to decrease its delay. In this type of TW exchange,
nd in general in circular TW exchanges, the difference in TW prices may be more important than the price of each individual TW,
specially if no other flight is interested in the TWs being considered. As another example, the circular exchange of TWs r2 k45,
46, and k47 between f3, CA, and f23 at e 0 is justified even if f3 gets a TW with a greater delay. It allows f3 to be compensated
n regulation r1, where its profit is positive because it receives compensation of e 24.03 for the increase in delay.

Finally, we show how strict are the bounds on costs that can be obtained by the central authority. Fig. 11 shows a histogram
f the ratios 𝐿𝐵

𝑡
(𝑓, 𝑞)∕𝐶(𝑓, 𝑞) for the last iteration 𝑡 = 37 for all bundles 𝑞 ∈ 𝑄𝑓 , 𝑓 ∈  . The bounds 𝐿𝐵

𝑡
(𝑓, 𝑞) are computed as

in problem (32). For 96% of the bundles, the lower bound is less than 90% of the true cost value. Fig. 12 shows a histogram of
̃𝑡
21

𝐶(𝑓, 𝑞)∕𝑈𝐵 (𝑓, 𝑞) for 𝑡 = 37. The first bin of the histogram highlights that for 86% of the bundles no upper bound can be obtained
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Table 2
Transactions (in the first column, ‘‘r1’’ stands for ME1204, ‘‘r2’’ stands for
MKK04; ‘‘k1’’ is the first TW, ‘‘k2’’ is the second etc.).
TW seller buyer payment

r1 k1 f33 f48 e 22.81
r1 k3 f48 f11 e 0.00
r1 k4 f24 CA e 0.00
r1 k5 f29 f24 e 2.70
r1 k6 f11 f29 e 0.00
r1 k18 CA f63 e 7.26
r1 k21 f63 f13 e 0.00
r1 k22 f13 CA e 0.00
r1 k23 f16 f23 e 10.80
r1 k24 f23 f16 e 0.00
r1 k30 f3 f14 e 24.03
r1 k31 f14 f59 e 10.80
r1 k32 f59 f3 e 0.00
r1 k37 f41 f27 e 12.65
r1 k38 f27 f38 e 10.75
r1 k39 f38 f41 e 0.00
r1 k44 f62 f26 e 8.99
r1 k45 f26 f5 e 7.27
r1 k46 f5 f62 e 2.70
r1 k48 f28 f54 e 23.12
r1 k49 f54 f28 e 10.80
r2 k4 f19 f18 e 5.40
r2 k5 f18 f19 e 0.00
r2 k7 f10 f33 e 76.36
r2 k10 f33 f48 e 46.51
r2 k11 f24 f2 e 39.56
r2 k12 f48 f10 e 21.61
r2 k13 f2 f24 e 10.80
r2 k14 f43 f34 e 5.40
r2 k15 f22 f43 e 1.01
r2 k16 f34 f22 e 0.34
r2 k24 f60 f12 e 143.94
r2 k25 f12 f60 e 104.63
r2 k28 f36 f44 e 30.51
r2 k31 f15 f17 e 17.53
r2 k32 f44 f63 e 21.27
r2 k33 f17 f36 e 4.05
r2 k34 f63 f15 e 2.70
r2 k35 f16 f20 e 2.03
r2 k36 f20 f52 e 13.94
r2 k37 f52 f49 e 2.38
r2 k38 f49 f16 e 0.68
r2 k45 f3 f23 e 0.00
r2 k46 f23 CA e 0.00
r2 k47 CA f3 e 0.00
r2 k48 f50 f61 e 44.34
r2 k49 f61 f50 e 22.53
r2 k50 f21 f1 e 13.59
22
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Fig. 11. Histogram of the ratio between the lower bound on the cost and the true cost.

Fig. 12. Histogram of the ratio between the true cost and the upper bound on the cost (broken 𝑦 axis).

(i.e. problem (32) is unbounded). The bounds 𝐿𝐵𝑡(𝑓, 𝑞) used to compute the stepsize are even less strict. This means that in practice
the cost elicitation procedure described in Section 4.2.1 does not pose a privacy risk for the airlines.

Appendix E.1 reports some additional computational experiments performed on real instances of different sizes with the duality
gap equal to zero.

6.5. Resolution of duality gaps

The duality gap was always zero in all the previous examples. However, our experiments confirm the expectations that the
percentage of problem instances for which the duality gap is zero decreases as the instance size (in terms of number of flights and
regulations) increases. Here, we discuss how to handle these situations, and also the cases where the subgradient algorithm returns
a solution that provides bundles that cause some slot overloads.

A straightforward way to find a feasible solution is to allow only a subset of the flights to exchange time windows, while the rest
of the flights will maintain their FPFS allocation. We run the subgradient algorithm until the objective value is close to its minimum.
We consider the time windows for which the overload is 𝑂𝐿𝑡

𝑘 > 0. For each of these, we remove from the market mechanism one
of the 𝑂𝐿𝑡

𝑘 flights demanding that time window at time 𝑡, and assign the FPFS bundle to them. This means that the size of the set
 on which the optimisation is performed is reduced. The time windows belonging to these FPFS bundles are removed from the set
 of time windows available for exchange, meaning that the feasible bundles of all flights in  are filtered from these. Then, the
subgradient algorithm is run again on this reduced instance, with the hope that the duality gap will be now zero. In the case it is,
the feasible solution of the reduced optimisation problem is implemented. In the case the duality gap is still different from zero, the
above procedure of constructing a smaller instance is repeated one or more times. This procedure obviously guarantees to terminate
with a feasible solution, since in the limit all flights are removed from  and the FPFS allocation for all flights is implemented. In
practice, we found that just one iteration is often sufficient.

As an example, we used an instance with 5 regulations and 832 flights, depicted in Fig. 13 as a graph. A node corresponds to
a regulation in , and an edge is drawn between every pair of regulations which are connected by at least one flight, in the sense
23
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Fig. 13. Instance structure.

Fig. 14. Histogram of non-zero prices.

that the flight crosses the two regulations consecutively. The edge weight represents the number of connections. The delay cost of
the initial FPFS allocation is equal to e 24364.04 and the savings from the TW allocation (5) are equal to 82.9%. The duality gap
for this instance is 0.14.

For such large instance, it is necessary to decrease the parameter 𝛾 appearing in Eq. (46), because convergence is expected to
be slower with respect to the four cases encountered before. We set 𝛾 = 1.2. After 371 subgradient iterations on the entire instance,
the objective function reaches 100.0002% of its minimum value and there are only 4 overloaded time windows. At this point, after
removing the 4 flights in excess with respect to the capacity, the duality gap becomes zero. Restarting the subgradient algorithm, an
optimal solution is obtained after 410 iterations, with an optimal cost of e 4184.67. By adding the cost of the FPFS bundles of the
4 removed flights, we obtain the cost of the feasible solution for the entire instance, e 4184.67 + e 6.79 = e 4191.46. This cost is
very close to the optimal cost for the entire instance, e 4170.23. In other words, the value of this feasible solution is only e 21.23
lower than the value of the optimal solution. It is also worth noting that the prices obtained are close to the optimal prices. More
precisely, for 70% of the time windows the price is less than 10% away from the optimal price. The maximum price is e 179.81,
and 25% of the time windows have prices equal to zero. Fig. 14 shows a histogram of the non-zero prices.

Appendix E.2 reports other computational experiments performed on real instances of different sizes with the duality gap different
from zero.
24
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Table 3
Number of flights, cost and delay of the FPFS solution and the optimal solution, for the two single regulations and in total.

Section 6.1 Section 6.2 Section 6.3 Section 6.4
LBSAU04,
LBSCU04

LOVS04N,
LOWB304A

LHSUH04A,
LONE3504

ME1204,
MKK04

first
regulation

n◦ flights 39 60 159 39
cost FPFS e 319.82 e 1783.97 e 5421.41 e 713.04
cost opt. sol. e 121.13 e 340.64 e 1005.92 e 477.66
% of change opt.sol. vs. FPFS –62% –81% –81% –33%
delay FPFS 23 min 171 min 554 min 66 min
delay opt. sol. 27 min 172 min 556 min 64 min
n◦ flights out of reg. in FPFS 0 0 2 1
n◦ flights out of reg. in opt. sol. 0 0 1 1

second
regulation

n◦ flights 87 112 116 40
cost FPFS e 746.96 e 2027.90 e 1755.64 e 1020.92
cost opt. sol. e 236.26 e 426.82 e 264.08 e 564.30
% of change opt.sol. vs. FPFS –68% –79% –85% –45%
delay FPFS 84 min 192 min 172 min 87 min
delay opt. sol. 100 min 162 min 189 min 92 min
n◦ flights out of reg. in FPFS 1 1 0 1
n◦ flights out of reg. in opt. sol. 1 0 0 1

both
regulations

n◦ flights 111 145 233 64
cost FPFS e 960.20 e 2689.30 e 6328.80 e 1159.90
cost opt. sol. e 263.36 e 661.93 e 1121.86 e 619.72
% of change opt.sol. vs. FPFS –73% –75% –82% –47%
delay FPFS 100 min 268 min 651 min 105 min
delay opt. sol. 109 min 280 min 666 min 106 min

6.6. Concluding remarks on computational experiments

Summing up, the five examples introduced in this section provide some guidelines on how to deal with our problem in practice,
hen it is not known if we are dealing with zero dual-gap instances.

When the subgradient algorithm is stopped three situations may occur. If we find a feasible solution that satisfies the
omplementary slackness conditions, we are in presence of a zero dual-gap instance and the algorithm has individuated a Walsarian
quilibrium. If the solution does not satisfy the complementary slackness conditions but it is feasible for (𝐼𝑃 ), this solution is capacity
ompliant and individual rational, but may or may not be weakly budget balanced (see Section 6.2 for a weakly budget balanced
nstance). If the solution is not feasible for (𝐼𝑃 ) the heuristic proposed in Section 6.5 can be applied.

Table 3 summarises the properties of the optimal solution (‘‘opt. sol.’’) compared to the FPFS solution in the four cases with
wo regulations presented from Section 6.1 to Section 6.4, respectively. The total delay is not the sum of the two regulations’ delay
ecause the delay of flights passing through both regulations does not have to be double counted, and similarly for the number of
lights and the cost. We notice that cost savings are always significant (from 33% to 85%), despite sometimes a small increase in
he delay is experienced. The table also reports the number of flights delayed beyond the upper bound of each regulation period
‘‘n◦ flights out of reg.’’), both in the FPFS and in the optimal allocation. These are flights occupying a dummy TW. Since their
umber, if any, is always very low, the presence of these TWs is not expected to pose problems from an operational point of view.
imilarly to capacity violations addressed in Section 6.3, in practice it might happen that the ATFM controllers and/or the airlines
ould re-allocate such flights in a cost-efficient manner.

. Conclusions and future perspectives

In this paper, we propose a market-based mechanism for the allocation of time windows in case of multiple interacting ATFM
egulations. We show that significant delay cost reductions are possible for airlines with respect to the First Planned First Served
llocation policy currently adopted in Europe.

This market mechanism is allocative efficient, individual rational and weakly budget balanced. It is based on the Lagrangian
elaxation of an integer optimisation problem that can be implemented in a distributed way with the subgradient method. We
ave successfully tested the mechanism on real data instances and discussed possible problems that can arise in convergence of the
ubgradient method. In particular, the choice of stepsize for the subgradient method is a delicate matter, which requires to find a
ompromise between fast convergence and ‘‘robust’’ convergence (i.e. convergence in all instances).

It should be noted that optimised hardware can partially help to resolve this trade-off, but the inevitable uncertainty that plagues
ost values makes it questionable to spend excessive computational time on finding a solution whose value is approximated anyway.
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We have shown that convergence to an optimal solution, or even just a feasible solution, is not always possible. A possible future
evelopment would be to try to design a Lagrangian heuristic (Fisher, 2004) to slightly modify nearly feasible Lagrangian solutions
o satisfy the capacity constraint while maintaining individual rationality and weak budget balance.

Another possibility for future experiments could be to leverage the fact that delay costs are not completely unknown and that
ecent advances in predicting rerouting costs (Khan et al., 2021) provide reliable thresholds for airlines to assess whether the
cceptance of the delay is economically viable. For example, before running the subgradient method, to set the stepsize sequence
e could initialise prices of time windows with the optimal dual prices of the allocation problem solved with the estimated costs
vailable by the central authority. This would facilitate and speed up convergence towards optimal solutions.

A challenging perspective would be to try to apply the model on a large-scale instance, possibly a whole day of air traffic data.
he difficulty is that the duality gap for such large instance is probably non-zero. Also, this would require to find another rule for
he stepsize, because solving a linear optimisation problem at each iteration would be too computationally expensive.
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ppendix A. Discussion on incentive compatibility

In the paper, we assume the incentive compatibility property is always respected, i.e., all participants in the market report their
references honestly. Some of the consequences that may occur if this assumption is violated are discussed below, extending similar
onsiderations already made for the case of a single regulation, i.e., || = 1 (Castelli et al., 2011b).

In the centralised mechanism (Section 3), each flight communicates the value of each bundle to the central authority which
llocates them to all flights, maximising the overall value. Some airline could therefore be tempted to communicate false values to
ain an advantage (i.e., declare costs greater than the real 𝐶(𝑓, 𝑞) in order to receive a better position in the optimal allocation).

This possibility is however mitigated by the fact that, operating in a competitive environment, an airline would need to have perfect
knowledge of other participants’ costs in order to be sure that its utility would not decrease when cheating.

Another action that could be a consequence of dishonest attitudes is the rejection of the allocated bundle because it does not
match the desired one. This possibility is mitigated by not requiring anyone to participate in the mechanism. Even if the market
mechanism is individual rational (each participant has a non-negative profit from entering the market), there should be no obligation
from an airline to participate in it. Exactly as with the UDPP (Pilon et al., 2016), if an airline does not want to participate, it remains
with the slots allocated through the FPFS. Only those airlines that wish to be in the market participate. In our setting, this is possible
by including in the set 𝐹 ′ introduced in Section 5.2 (flights that are not requested to participate in the market mechanism) also the
flights that do not wish to participate in it. Those who participate are then required to accept the solution provided. Of course, an
airline that agrees to participate in the centralised mechanism could still provide false cost values to the authority. However, this
case falls under the one described in the previous paragraph.

Alternatively, applying an iterative procedure similar to the one illustrated in Section 6.5 (‘‘The idea is to allow only a subset
of the flights to exchange time windows, while the rest of the flights will maintain their FPFS allocation’’), one could also think
of a multi-step scheme in which an airline can reject the solution proposed by the market mechanism. In the first step, the TW
allocation is made to all flights. Within a certain instant of time, the airline decides whether to accept or keep the FPFS slot and
then the allocation is performed again only on those who accepted. Reasons for refusal could be either because you have tried
to cheat the system or because, in good faith, you have made an incorrect assessment of your costs. The flight dispatcher might
not accept the market solution because he/she knows from experience that FPFS is better. Clearly, this whole process should be
regulated (e.g., a maximum number of refusals or penalties for refusals could be envisaged) in order to avoid continual attempts
by airlines to test the system until the desired bundle is obtained, and to give stability to the solution of those who do adhere. A
detailed design of this scheme is, however, outside the scope of this study and may be the subject of future work.

In the distributed case (Section 4), at each iteration the central authority communicates the TW prices and each flight identifies
the optimal bundle for it at those prices. For example, for flight 𝑓1 the optimal bundle contains the TW called 𝑎1 available at price
𝑝1. 𝑓1 could actually communicate another bundle that, for example, contains 𝑎2 instead of 𝑎1 to lower the price of the latter at the
next iteration. This operation is risky, however, since 𝑎1 could also be requested by another flight 𝑓2 willing to pay 𝑝1 for it, and
thus 𝑓1 has to make content with 𝑎2 from which it obtains a lower payoff. As in the case of the centralised mechanism, the existing
26
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Appendix B. Construction of feasible bundles

Algorithm 1 describes how to generate the set of feasible bundles 𝑄𝑓 for any flight 𝑓 . Bundles are constructed in sequence,
rom the one having the smallest delay to the one with the largest delay. The first bundle in 𝑄𝑓 is the bundle whose time windows
ontain the expected times of entry 𝐸𝑓 . This bundle will have zero delay. Then, the idea is to shift a sequence of time instants 𝑡,
nitialised with 𝐸𝑓 , towards the right of the discretised timeline and keep track of which time windows contain 𝑡 in each element

of 𝑅𝑓 ; as soon as the time windows change, a new bundle will be appended to 𝑄𝑓 . Starting from 𝑡 = 𝐸𝑓 and shifting 𝑡 towards
higher times, you will remain inside the same time windows until you encounter the first upper border of a time window. When an
upper bound (or more than one) is encountered, you take the next time window in the slot allocation list of this resource(s), while
the other time windows stay the same, and append this new bundle to 𝑄𝑓 . The delay will be the temporal distance between the
lower bound of the new time window and the expected time over the corresponding resource. This procedure is repeated iteratively
until either the maximum delay 𝑀𝑎𝑥𝐷𝑒𝑙𝑓 is reached, or the end of all slot allocation lists is reached. In the case that 𝑀𝑎𝑥𝐷𝑒𝑙𝑓 is
reached before all time windows become dummy time windows, the empty bundle corresponding to flight cancellation is added to
𝑄𝑓 .

Algorithm 1: Construction of feasible bundles
Input: 𝑅𝑓 , 𝐸𝑓 , {𝐿̂𝑟 for 𝑟 ∈ 𝑅𝑓 },𝑀𝑎𝑥𝐷𝑒𝑙𝑓
Output: 𝑄𝑓

1 𝑛 ← |𝑅𝑓 |;
2 𝑡 ← 𝐸𝑓 ;
3 𝑞 ← [𝑇𝑊1,… , 𝑇𝑊𝑛] where 𝑇𝑊𝑖 is such that 𝐼𝑇𝑊𝑖

≤ 𝑒𝑖 ≤ 𝑈𝑇𝑊𝑖
for 𝑖 = 1,… , 𝑛;

4 𝑑𝑒𝑙𝑎𝑦 ← 0 seconds;
5 𝑄𝑓 ← ∅;
6 while 𝑑𝑒𝑙𝑎𝑦 < 𝑀𝑎𝑥𝐷𝑒𝑙𝑓 do
7 𝑑𝑞𝑓 ← 𝑑𝑒𝑙𝑎𝑦;
8 𝑄𝑓 ← 𝑄𝑓 ∪ 𝑞;
9 if all 𝑇𝑊𝑖 ∈ 𝑞 are dummy then break;
10 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← [𝑈𝑇𝑊1

− 𝑡1,…𝑈𝑇𝑊𝑛
− 𝑡𝑛];

11 𝑔𝑎𝑝 ← 𝑚𝑖𝑛(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙);
12 𝑞 ← [𝑇𝑊𝑖 + 1 if 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 = 𝑔𝑎𝑝 else 𝑇𝑊𝑖 for 𝑖 = 1,… , 𝑛];
13 𝑠ℎ𝑖𝑓 𝑡 ← 𝑔𝑎𝑝 + 1 second;
14 𝑡 ← [𝑡1 + 𝑠ℎ𝑖𝑓 𝑡,… , 𝑡𝑛 + 𝑠ℎ𝑖𝑓 𝑡];
15 𝑑𝑒𝑙𝑎𝑦 ← 𝑑𝑒𝑙𝑎𝑦 + 𝑠ℎ𝑖𝑓 𝑡;
16 end
17 if any 𝑇𝑊𝑖 ∈ 𝑞 is not dummy then
18 𝑄𝑓 ← 𝑄𝑓 ∪ [] ;
19 end

Appendix C. Algorithm for FPFS

This appendix provides an algorithm, adapted from Ranieri (2010), for computing the FPFS bundle 𝑎𝑓 for all 𝑓 ∈  . Here we
will denote 𝑒𝑓𝑟 the ETO of flight 𝑓 in regulation 𝑟. We will consider the set 𝑄𝑓 as ordered by increasing delay, and with a little
abuse of notation we will identify a bundle 𝑞 with its index in the ordered list 𝑄𝑓 , for example the most-preferred bundle is 𝑞 = 1.
We will denote 𝑇𝑊𝑟 ∈ 𝑞 the time window in 𝑞 which belongs to regulation 𝑟.

The algorithm begins with variable initialisation at lines 1–9. Variable 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐(𝑓 ) is the tentative FPFS allocation for flight 𝑓 .
During the course of the algorithm, a time window can be assigned to multiple flights according to 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐, but at the end of the
algorithm at most one flight has assigned any time window. Variable 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑟) is 𝑇 𝑟𝑢𝑒 whenever the time window assigned to
𝑓 in regulation 𝑟 is not assigned to another flight whose ETO is smaller.

The algorithm applies the FPFS policy independently on each regulation (lines 11–15). This implies that the bundle assigned
y the FPFS in one regulation might not respect the FPFS order in another regulation, thus the algorithm iteratively adjusts the
llocation (lines 16–26) until the FPFS property is respected for each flight (line 10) and the capacity constraint is satisfied. At the
nd of the while loop, also the Most Penalising Regulation rule is satisfied. The second while loop (lines 31–42) checks whether
27

ome flights can be assigned a bundle with a smaller delay without breaking the FPFS rule and the capacity constraint.
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Algorithm 2: FPFS
1 for 𝑓 ∈  do
2 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐(𝑓 ) ← 𝑁𝑜𝑛𝑒;
3 for 𝑟 ∈ 𝑅𝑓 do
4 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑟) ← 𝐹𝑎𝑙𝑠𝑒;
5 end
6 end
7 for 𝑟 ∈  do
8 𝐹𝑟 ← 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑓𝑙𝑖𝑔ℎ𝑡_𝑙𝑖𝑠𝑡(𝑟);
9 end
10 while 𝑎𝑙𝑙_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑() = 𝐹𝑎𝑙𝑠𝑒 do
11 for 𝑟 ∈  do
12 for 𝑓 ∈ 𝐹𝑟 do
13 if 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐(𝑓 ) = 𝑁𝑜𝑛𝑒 then
14 𝑎𝑠𝑠𝑖𝑔𝑛_𝑓𝑖𝑟𝑠𝑡_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑓, 𝑟, 1);
15 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑟) ← 𝑇 𝑟𝑢𝑒;
16 else if 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑟) = 𝐹𝑎𝑙𝑠𝑒 then
17 if 𝑖𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐(𝑓 ), 𝑓 , 𝑟) = 𝑇 𝑟𝑢𝑒 then
18 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑟) ← 𝑇 𝑟𝑢𝑒;
19 else
20 for 𝑧 ∈ 𝑅𝑓 ∶ 𝑧 ≠ 𝑟 do
21 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑧) ← 𝐹𝑎𝑙𝑠𝑒;
22 end
23 𝑎𝑠𝑠𝑖𝑔𝑛_𝑓𝑖𝑟𝑠𝑡_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑓, 𝑟, 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐(𝑟));
24 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑟) ← 𝑇 𝑟𝑢𝑒;
25 end
26 end
27 end
28 end
29 end
30 𝑛𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 𝐹𝑎𝑙𝑠𝑒;
31 while 𝑛𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝐹𝑎𝑙𝑠𝑒 do
32 𝑛𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 𝑇 𝑟𝑢𝑒;
33 for 𝑓 ∈  do
34 for 𝑞 ∈ 𝑄𝑓 ∶ 𝑞 < 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐(𝑓 ) do
35 if 𝑎𝑙𝑙_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑞, 𝑓 , 𝑟) = 𝑇 𝑟𝑢𝑒 then
36 𝑑𝑜_𝑎𝑠𝑠𝑖𝑔𝑛(𝑓, 𝑞);
37 𝑛𝑜𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 𝐹𝑎𝑙𝑠𝑒;
38 break;
39 end
40 end
41 end
42 end
43 for 𝑓 ∈  do
44 𝑎𝑓 ← 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐(𝑓 );
45 end

The function 𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑓𝑙𝑖𝑔ℎ𝑡_𝑙𝑖𝑠𝑡(𝑟) returns the list of flights crossing 𝑟 ordered by increasing 𝑒𝑓𝑟 .
The function 𝑎𝑙𝑙_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑() returns 𝑇 𝑟𝑢𝑒 if 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑓, 𝑟) = 𝑇 𝑟𝑢𝑒 for all 𝑓 ∈  , 𝑟 ∈ 𝑅𝑓 .
The function 𝑎𝑙𝑙_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑞, 𝑓 , 𝑟) returns 𝑇 𝑟𝑢𝑒 if 𝑖𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑞, 𝑓 , 𝑟) = 𝑇 𝑟𝑢𝑒 for all 𝑟 ∈ 𝑅𝑓 .
The function 𝑎𝑠𝑠𝑖𝑔𝑛_𝑓𝑖𝑟𝑠𝑡_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑓, 𝑟, 𝑖) assigns to 𝑓 the first bundle in 𝑄𝑓 whose index is at least 𝑖 and such that 𝑇𝑊𝑟 ∈ 𝑞 is

either not assigned to any other flight, or for all flights 𝑔 to which it is assigned it holds 𝑒𝑔𝑟 > 𝑒𝑓𝑟 . In this latter case, we also set
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑(𝑔, 𝑟) ← 𝐹𝑎𝑙𝑠𝑒.

The function 𝑖𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑞, 𝑓 , 𝑟) returns 𝑇 𝑟𝑢𝑒 if 𝑇𝑊𝑟 ∈ 𝑞 for flight 𝑓 has not been assigned to any other flight.
28

The function 𝑑𝑜_𝑎𝑠𝑠𝑖𝑔𝑛(𝑓, 𝑞) assigns bundle 𝑞 to flight 𝑓 .
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t

For the sake of efficiency, the five functions described above make use of a data structure which maps every time window to

he set of flights that are currently assigned to it according to 𝑝𝑟𝑜𝑣𝑎𝑙𝑙𝑜𝑐.

Appendix D. Proof of bounds

D.1. Bound on optimal value

Problem (33) is the same as the linear relaxation of problem (5) with the objective function coefficients 𝑉 (𝑓, 𝑞) substituted by
lower bounds 𝐿𝐵𝑡(𝑓, 𝑞). The feasible region of (33) is the same as the feasible region of the linear relaxation of (5), and the objective
function of (33) is everywhere lower than the objective function of (5). In fact, from

𝐿𝐵𝑡(𝑓, 𝑞) ≤ 𝑉 (𝑓, 𝑞) ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓

it follows, since 𝑥 is feasible and so 𝑥(𝑓, 𝑞) ≥ 0,

𝐿𝐵𝑡(𝑓, 𝑞)𝑥(𝑓, 𝑞) ≤ 𝑉 (𝑓, 𝑞)𝑥(𝑓, 𝑞) ∀𝑓 ∈  , 𝑞 ∈ 𝑄𝑓

and by summing over 𝑓 ∈  and 𝑞 ∈ 𝑄𝑓
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝐿𝐵𝑡(𝑓, 𝑞)𝑥(𝑓, 𝑞) ≤
∑

𝑓∈

∑

𝑞∈𝑄𝑓

𝑉 (𝑓, 𝑞)𝑥(𝑓, 𝑞).

Therefore, 𝑍𝐿𝐵𝑡 ≤ 𝑍𝐿𝑃 . Analogously, if 𝐿𝐵𝑡(𝑓, 𝑞) is substituted by an upper bound 𝑈𝐵𝑡(𝑓, 𝑞), we obtain that the optimal value of
(39) is an upper bound for the optimal value of the linear relaxation of (5).

D.2. Non-negativity of a bound

The lower bound 𝑅𝐸𝑆𝑡 on 𝑍𝐿𝑅(𝜆𝑡) −𝑍𝐿𝑃 is given by

𝑅𝐸𝑆𝑡 = 𝑆𝐺𝑡 ⋅ 𝜆𝑡 − max
𝑥∈𝑆

∑

𝑓∈

∑

𝑞∈𝑄𝑓

(

𝑝𝑡(𝑞) − 𝑝𝑡(𝑞∗𝑡𝑓 )
)

𝑥(𝑓, 𝑞). (47)

If the duality gap 𝑍𝐼𝑃 − 𝑍𝐿𝑃 is zero, the maximisation problem appearing in (47) has always an integer optimal solution, since
its feasible region is the same as the feasible region of the linear relaxation of problem (5). Let {𝑞◦𝑡𝑓 }𝑓∈ be the set of bundles
corresponding to the optimal solution. Then we can write

𝑅𝐸𝑆𝑡 =
∑

𝑘∈
𝜆𝑡𝑘

(

1 −
∑

𝑓∈

∑

𝑞∈𝑄𝑓 ∶𝑞∋𝑘
𝑥𝑡(𝑓, 𝑞)

)

−
∑

𝑓∈

(

𝑝𝑡(𝑞◦𝑡𝑓 ) − 𝑝𝑡(𝑞∗𝑡𝑓 )
)

=
∑

𝑘∈
𝜆𝑡𝑘 −

∑

𝑓∈

∑

𝑞∈𝑄𝑓

∑

𝑘∈𝑞
𝜆𝑡𝑘𝑥

𝑡(𝑓, 𝑞) −
∑

𝑓∈

(

𝑝𝑡(𝑞◦𝑡𝑓 ) − 𝑝𝑡(𝑞∗𝑡𝑓 )
)

=
∑

𝑘∈
𝜆𝑡𝑘 −

∑

𝑓∈
𝑝𝑡(𝑞∗𝑡𝑓 ) −

∑

𝑓∈
𝑝𝑡(𝑞◦𝑡𝑓 ) +

∑

𝑓∈
𝑝𝑡(𝑞∗𝑡𝑓 )

=
∑

𝑘∈
𝜆𝑡𝑘 −

∑

𝑓∈
𝑝𝑡(𝑞◦𝑡𝑓 ) ≥ 0

where the inequality follows from the fact that {𝑞◦𝑡𝑓 }𝑓∈ are capacity-compliant, thus they share no time windows.

Appendix E. Additional computational results

E.1. Instances with zero duality gap

Tables 4 and 5 present some additional computational experiments performed. The table has been split for reasons of space. The
first four rows (a, b, c and d) are the four cases already presented in Sections 6.1–6.4. The duality gap was zero for all cases in the
table.

Table 4 contains the following columns: names of the regulations, number of regulations, total number of flights, number of
flights subject to at least two of the regulations.

Table 5 contains: number of iterations, final overload, whether or not the solution found is optimal, surplus, cost of the FPFS
allocation, cost of the optimal allocation, cost of the allocation found (in case it is not optimal). Notice that if the overload is nonzero,
the latter cost can be smaller than the optimal cost, since the allocation found is not a proper solution. All these costs are unknown
to the central authority. The cost savings are between 47% and 85%, and the cost of the solution found is at most 6% higher than
29

the optimal cost.
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Table 4
Description of the instances, zero duality gap.

regulations num. reg. num. flights num. flights
with 𝑅𝑓 > 1

a LBSAU04, LBSCU04 2 111 15
b LOVS04N, LOWB304A 2 145 27
c LHSUH04A, LONE3504 2 233 42
d ME1204, MKK04 2 64 15
e RMZU04E, RQXU04E 2 143 39
f EGKKA04, RJS04 2 163 25
g KCHI104A, LOW3504A 2 259 73
h EDDLA04, EDWSUD04 2 119 10
i LHNLMU04, LHWSEN04, LOVSC04 3 82 13
j EDGN004M, GL67W04, YB3LL04M 3 114 20
k GL67W04, PDMX04M, YB3LL04M 3 123 25
l EHYR04M, RESTU04, RG04A 3 170 30
m KDON1D04, KFFM2404, KWUR1C04 3 221 54
n K11UFX04, LHENH04, LHENU04 3 275 39
o EDMBBG04, EDMHAG04, K11UFX04 3 206 25
p GL12W04, GL5W04, MGY04A, ZM3404 4 363 36
q KDON104N, KFFM1C04, KFFMC04A 3 414 99

Table 5
Computational results, zero duality gap.

num. iter. overload is sol. opt. surplus FPFS cost opt. cost solution cost

a 83 0 true e 0.00 e 960.20 e 263.36
b 100 0 false e 13.15 e 2689.30 e 661.93 e 662.93
c 131 1 false e 44.57 e 6328.80 e 1121.86 e 1068.50
d 37 0 true e 7.26 e 1159.90 e 619.72
e 141 0 false e 11.37 e 6559.48 e 1021.94 e 1070.14
f 122 0 true e 0.00 e 9537.10 e 1823.13
g 184 1 false e 73.12 e 10,932.82 e 2153.40 e 2228.41
h 111 1 false e 46.27 e 11,640.81 e 1981.35 e 1897.21
i 66 0 true e 14.82 e 2055.24 e 1042.56
j 109 0 true e 58.08 e 3761.87 e 843.38
k 141 0 true e 8.89 e 4484.10 e 913.96
l 138 0 false e 95.87 e 6375.28 e 911.90 e 932.05
m 157 0 false e 34.42 e 8675.39 e 1612.18 e 1660.24
n 169 0 false e 36.31 e 21,496.61 e 3800.02 e 4031.79
o 183 0 true e 58.67 e 13,792.50 e 2107.29
p 191 0 true e 0.00 e 12,195.43 e 3964.32
q 223 2 false e 90.36 e 18,380.43 e 3460.63 e 3518.02

E.2. Instances with nonzero duality gap

Tables 6 and 7 present additional computational experiments performed with the algorithm of Section 6.5. In all cases the
uality gap was reduced to zero after the first iteration of the algorithm and the optimal solution of the reduced problem (which is
feasible solution of the whole problem) was found in the second iteration. The first row of the table is the case already presented in
ection 6.5. The columns of Table 7 are: number of iterations performed on the whole problem, number of iterations on the reduced
roblem, magnitude of the duality gap, number of flights removed, cost of the FPFS allocation, cost of the optimal allocation of
he whole problem, cost of the feasible solution found. The cost of the feasible solution is most often less than 10% more than the
ptimal cost, and at most 50% higher, and the savings with respect to the FPFS solution are between 71% and 89%.

Table 6
Description of the instances, nonzero duality gap.

regulations num.
reg.

num.
flights

num. flights
with 𝑅𝑓 > 1

a LHENT04L, LHLYBA04, LHSUH04A, LONE3504, LOVS04N 5 832 81
b CBHRE04, EGKKA04, EHYR04M, RJS04 4 345 85
c MAB04L, MRAEE04L 2 61 13
d LEBLA04A, MMF04A 2 82 10
e EKHR04, RMZU04E, RQXU04E 3 165 50
f EDMBBG04, EDMHAG04, K11UFX04 3 206 25
g KFFM204A, KWUR04A 2 253 66
h KFFM2404, KTGO1T04, KWUR04, KWUR2404, LHWSUH04 5 475 120
i EDGN004M, GL67W04, PDMX04M, YB3EH04M, YB3LL04M 5 426 51
j CPBDL04, K11UFX04, KHVL1H04, LHENLM04, LOE1504 5 703 80
30
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Table 7
Computational results, nonzero duality gap.

num. iter.
first round

num. iter.
second round

duality gap num. flights
removed

FPFS cost opt. cost solution cost

a 371 410 0.14 4 e 24,364.04 e 4170.23 e 4191.46
b 387 484 1.66 4 e 31,779.53 e 3396.45 e 3499.92
c 83 233 0.06 1 e 1145.10 e 171.72 e 224.23
d 185 386 0.23 1 e 1741.77 e 286.01 e 286.14
e 552 366 2.35 1 e 6798.12 e 1104.81 e 1296.86
f 600 370 0.17 4 e 13,777.47 e 2131.83 e 2276.11
g 154 204 8.97 6 e 8885.98 e 1685.85 e 2532.98
h 479 505 8.40 4 e 15,992.62 e 2704.83 e 2836.05
i 563 341 0.88 6 e 15,002.05 e 3376.16 e 3766.67
j 537 442 0.73 3 e 36,963.43 e 7754.63 e 7890.24
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