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Abstract: The development of Ce-based materials is directly dependent on the catalyst surface
defects, which is caused by the calcination steps required to increase structural stability. At the
same time, the evaluation of cerium’s redox properties under reaction conditions is of increasing
relevant importance. The synthesis of Ce-UiO-66 and CeZr-UiO-66 and their subsequent calcination
are presented here as a simple and inexpensive approach for achieving homogeneous and stable
CeO2 and CeZrOx nanocrystals. The resulting materials constitute an ideal case study to thoroughly
understand cerium redox properties. The Ce3+/Ce4+ redox properties are investigated by H2-TPR
experiments exploited by in situ FT-IR and Ce M5-edge AP-NEXAFS spectroscopy. In the latter
case, Ce3+ formation is quantified using the MCR-ALS protocol. FT-IR is then presented as a high
potential/easily accessible technique for extracting valuable information about the cerium oxidation
state under operating conditions. The dependence of the OH stretching vibration frequency on
temperature and Ce reduction is described, providing a novel tool for qualitative monitoring of
surface oxygen vacancy formation. Based on the reported results, the molecular absorption coefficient
of the Ce3+ characteristic IR transition is tentatively evaluated, thus providing a basis for future
Ce3+ quantification through FT-IR spectroscopy. Finally, the FT-IR limitations for Ce3+ quantification
are discussed.

Keywords: MOFs-derived oxides; Ce-UiO-66; CeZr-UiO-66; CeO2; CeZrOx; Ce3+ quantification;
FT-IR; AP-NEXAFS

1. Introduction

Ce-based catalysts are of great interest for their redox properties in a wide range
of catalytic reactions such as CO oxidation, CO2 hydrogenation, water–gas shift, and
many more [1–10]. The catalyst surface reactivity is strongly dependent on the presence
of coordinatively unsaturated sites (CUS) [11–13]. The CUS can be simply described as
surface defects where the site instability provides a higher energy state, enhancing the
target reaction. The CUS concentration is synthesis-dependent since high-temperature
calcination treatments induce crystallite sintering and a consequent loss of defects [14].
Nevertheless, most of the investigated reactions occur at elevated temperatures or pressures,
which require a certain degree of catalyst stability. The synthesis of the catalyst should
therefore require a simple preparation procedure which at the same time provides a high
number of defective sites which are also stable at the operating temperatures of the catalyst.

The commonly used sol–gel methods generally involve long and complex synthesis
procedures [4,15–17]. On the contrary, direct precursor calcination has shown a great
potential for the direct preparation of catalysts [18–22]. In the latter approach, promising
results have been reported for direct calcination of metal–organic frameworks (MOFs) at

Nanomaterials 2023, 13, 272. https://doi.org/10.3390/nano13020272 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13020272
https://doi.org/10.3390/nano13020272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-2183-4293
https://orcid.org/0000-0002-0505-7722
https://orcid.org/0000-0002-7257-1027
https://doi.org/10.3390/nano13020272
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13020272?type=check_update&version=1


Nanomaterials 2023, 13, 272 2 of 13

moderate temperatures (300–500 ◦C) [20–29]. Indeed, depending on the employed linkers,
MOF synthesis can be very simple and cheap [30]. Furthermore, the natural separation
of the oxide-based clusters by organic ligands prevents crystals from sintering even at
high calcination temperatures, thus preserving the surface defects of the catalysts. It is
noteworthy that Ce-based MOFs were recently studied as replacements for oxides in sev-
eral chemical reactions [31–33]. However, the MOFs’ stability still limits their practical
applications [34,35]. For this reason, MOF calcination is still preferred for preparation
of stable nanocatalysts. Considering Ce-based oxides, while CUS reduce the activation
energy of the reaction, the key catalytic redox role is usually played by Ce3+/4+ interconver-
sions [1,2,12,13]. For this reason, tracking the cerium oxidation state is of major interest for
understanding catalytic mechanisms. The oxidation state of cerium is often monitored by
electron paramagnetic resonance (EPR) or X-ray-based techniques such as photoelectron
spectroscopy (XPS), absorption spectroscopy (XAS) and near-edge absorption fine structure
(NEXAFS) [36–40]. However, from a catalytic viewpoint, only XAS spectra collected with
hard X-rays at Ce K- or L3-edges can access Ce3+/Ce4+ ratios under high temperature and
pressure conditions. Unfortunately, these measurements are limited to synchrotron sources,
which limits their availability. However, the presence of Ce3+ can also be identified with the
less expensive/more available infrared spectroscopy. Indeed, it is well known that the Ce3+

4f ground state splits into doublet 2F5/2 and 2F7/2 energy levels. They are separated by
about 2000 cm−1 and the 2F5/2→2F7/2 electronic transition is observed in the infrared range
at 2127 cm−1 [14,41–46]. The presence/absence of this absorption band was then related
to the occurrence of Ce3+ and it has been recently used to qualitatively monitor cerium
reduction in a NiCeO2 sample [18]. From the infrared viewpoint, the hydroxyl stretching
vibration could also be used to selectively monitor Ce3+ formation on the catalyst surface.
In fact, the ν(OH) position (≈3600 cm−1) depends on the hydroxyl-cation bond order,
which is directly affected by Ce oxidation state, i.e., Ce3+ increases the bond order, causing
a hypsochromic shift of the vibration [47]. The ν(OH) frequency can then be used to identify
the formation of Ce3+-VO sites on the catalyst first surface layer, which is inaccessible to
any other X-ray techniques as it represents a penetration depth of at least few nm. The use
of infrared spectroscopy to safely monitor cerium’s oxidation state would then provide an
incredible boost to redox mechanism evaluation since FT-IR and DRIFT cells capable of
operating under several thermochemical conditions are now available [48–50].

In this work, we have then prepared three MOF samples with the UiO-66 structure
and different Ce:Zr ratios on the clusters, i.e., 100% Ce, 50:50 Ce:Zr and 5:95 Ce:Zr. The
three samples were calcined under aerobic conditions at 450 ◦C to obtain three stable
and defective oxides containing the respective Ce:Zr ratio. FT-IR spectra of the three
CeO2 and CeZrOx derived-oxides were recorded during temperature programmed oxi-
dation/reduction experiments to monitor ν(OH) and Ce3+ infrared bands. Moreover, to
compare and quantify Ce3+ evolution, the same experiment was repeated with an ambient
pressure NEXAFS set-up. Ce M5-edge NEXAFS spectra were recorded under in situ condi-
tions and Ce3+ was quantified through MCR-ALS routine. Ce3+ quantification was then
combined with Ce3+ IR absorbance to determine its infrared molar absorption coefficient.

2. Materials and Methods
2.1. Samples Preparation

The MOF syntheses were carried out following a procedure described in the liter-
ature [51]. The corresponding amounts of aqueous solutions of cerium(IV) ammonium
nitrate (Sigma-Aldrich, ≥99.99%) and/or zirconium(IV) dinitrate oxide hydrate (Sigma-
Aldrich, 99%) (0.53 M) were added to a Pyrex reactor containing terephthalic acid (Sigma-
Aldrich, 98%) (260 mg) and N,N-dimethylformamide (DMF) (VWR Chemicals, ≥99.8%)
(see Table S1). Finally, and only in the case of Ce/Zr-UiO-66 materials, a known amount of
formic acid (Sigma-Aldrich, 98%) (2.07 mL) was employed as a modulator. The resulting
mixtures were magnetically stirred at 100 ◦C for 15 min. Then, the glass vessel reactors were
cooled to RT and the reaction medium was collected by centrifugation. Finally, the MOFs
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were washed three times with DMF and twice with acetone. The as-obtained materials
were allowed to dry at RT overnight prior to the analyses.

The MOF-derived materials were obtained by a thermal treatment under aerobic
conditions. The corresponding amount of the MOF (Table S2) was calcined up to 450 ◦C
with a ramp of 5 ◦C/min with a total flow of 0.5 mL/min (air). This temperature was
maintained for 4 h to completely remove the organic components.

2.2. Thermogravimetric (TG) Analysis

The TG profile was collected with a TA Instruments Q600 thermobalance under an air
flow (100 mL/min) with a ramp of 5 ◦C/min from RT to 600 ◦C with about 5 mg of sample
in an alumina crucible.

2.3. Powder X-ray Diffraction (PXRD)

PXRD patterns were collected with a Panalytical X-Pert diffractometer in the 3–50◦

and 10–100◦ 2θ range for UiO-66 and oxides samples, respectively. The crystallite size was
extracted through peak shape refinement using Thompson–Cox–Hastings (TCH) function
implemented in FullProf software [52,53].

2.4. Specific Surface Area (SSA)

SSA was determined by applying the Brunauer–Emmett–Teller (BET) equation to N2
adsorption/desorption isotherms collected at 77 K obtained with a Micromeritics ASAP
2020 physisorption analyzer. The samples were previously evacuated at 120 ◦C (for the
UiO-66 samples) and 400 ◦C (for oxides).

2.5. Transmission Electron Microscopy (TEM)

TEM was exploited to obtain morphological and structural information of the samples.
The analyses were carried out by using a TEM Jeol JEM 3010 UHR (300 kV, LaB6 filament)
equipped with X-ray EDS analysis by a Link ISIS 200 detector. The samples, in the form of
powders, were deposited on a Cu grid coated with a porous carbon film.

2.6. In Situ Fourier Transform-Infrared (FT-IR)

FT-IR spectra were collected with an Aabspec cell suitable for thermal treatments
under gas flows. The cell was mounted in a Bruker Invenio R spectrophotometer. Spectra
were collected in transmission mode in the 4000–500 cm−1 range with 2 cm−1 resolution.
CeO2 was pressed in a self-supported pellet of area ≈ 10 cm2. The pellet was held in a
gold envelope and placed in the cell sample holder. The measurement protocol (Figure S1)
consisted of two parts: (I) The CeO2 surface was cleaned from adsorbed species (H2O,
carbonates, etc.) by heating the pellet from RT to 400 ◦C (5 ◦C/min) under 50 mL/min of
N2 (99.9999%):O2 (99.99999%) (1:1) stream. The temperature was then held at 400 ◦C for 60
minutes and then cooled to RT. To prevent self-reduction, the oxidising gas mixture was
maintained until 150 ◦C, while from 150 ◦C to RT, the gas stream consisted of pure N2 only.
(II) Depending on the performed temperature programmed oxidation (TPO, Figure S1a)
or reduction (TPR, Figure S1b) experiment (i.e., O2-TPO or H2-TPR, respectively), the gas
mixture was replaced with a N2:O2 (99.9999%) or N2:H2 stream at 25 ◦C and held for 15′.
After that, the TPO or TPR experiment was performed by heating the pellet from RT to
300 ◦C at 5 ◦C/min rate with a final holding at 300 ◦C for 30′. Both measurements were
performed on the same pellet to guarantee experimental reproducibility.

2.7. Ambient Pressure Near-Edge X-ray Absorption Spectra (AP-NEXAFS)

AP-NEXAFS spectra were measured at APE-HE beamline of the Elettra Italian Syn-
chrotron radiation source. CeO2 was placed in a specially designed reactor cell allowing
thermal treatments in the RT–400 ◦C range under a gas atmosphere of 1 bar. The total
electron yield (TEY) mode was used to record the experimental spectra. Ce M5-edge
spectra were collected from 880 to 910 eV with 0.01 eV energy resolution. The measure-
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ment protocol followed the same steps as described for the in situ FTIR measurements
(Figure S1) with N2 replaced by He (99.99999%) and with the maximum temperature lim-
ited to 350 ◦C. Spectra were energy aligned to a reference CeO2 measured simultaneously
with the MOF-derived material. Spectra were background subtracted and energy aligned
with the Thorondor software [54]. A 6th order polynomial was used for background sub-
traction. Ce3+/Ce4+ spectral pure components and their concentration evolution were
extracted using MCR-ALS implemented in MATLAB. The MCR-ALS protocol lead to lack
of fit (LOF) of 3.9% with PCA and 6.2% with experimental spectra, with 99.6% of variance
explained [55]. Spectra and concentration were constrained to positive values while the
closure condition was applied to concentrations. Notably, to increase the variance between
spectra, the H2-TPR was conducted until 350 ◦C to improve Ce4+/Ce3+ spectra separation.
Moreover, to guarantee reproducibility of the MCR-ALS protocol for the three samples,
the collected spectra were analysed together in the same dataset. Ten replicas of CeO2
and CeF3 reference spectra were added at the end of the dataset to support the MCR-ALS
protocol in finding Ce4+ and Ce3+ pure spectra components.

3. Results and Discussion

Ce-UiO-66 and CeZr-UiO-66 were synthesized following the procedure described by
Lammert et al. [56] and reported in Materials and Methods section. The resulting solids
showed the fcu topology characteristic of the UiO-66 materials (Figure 1a), as it can be
deduced from the PXRD patterns reported in Figure 1b and Figure S2a. The PXRD patterns
also presented a shift in Bragg reflections towards higher 2θ values with Zr concentration
(Figure S2b), in line with the smaller ionic radii of Zr4+ (0.84 vs. 0.97 Å of Ce4+) [57]. On the
other hand, the N2 adsorption isotherms revealed the microporous nature of these MOFs.
The evaluated SSA was 1000–1440 m2/g, in line with the values reported in the literature
(Figure S4 and Table S3) [56]. Thermogravimetric (TG) analysis (Figure 1a) showed ~40% of
weight loss in the 300–500 ◦C temperature range, which corresponded to the degradation
of the organic linker and the subsequent transformation of the MOFs into the metal oxide.
The increase in the onset temperature with the Zr content was related to the known higher
stability of pure Zr-UiO-66 [58]. MOF calcination was then conducted at 450 ◦C to eliminate
the organic components, in line with the temperatures range reported in the literature [26–29].
C100-UiO-66 calcination could have been conducted at lower temperature (≈350 ◦C); however,
this would have induced an inhomogeneity in the samples’ thermal treatments. In fact, all
the successive measurements applied heating steps up to 400 ◦C. The calcination of the
three MOFs at 450 ◦C then guaranteed the derived-oxides’ stability within the RT–400 ◦C
temperature range. The PXRD pattern of the obtained yellowish powder (Figure 1c) presented
Bragg peaks ascribable to a cubic (Fm-3m) CeO2 phase (JCPDS file number 34–394). As for
the initial MOFs, Bragg reflections shifted to higher 2θ values with Zr concentration, in line
with the Zr4+/Ce4+ ionic radii differences (Figure S2c,d). TEM images (Figure 1a,d) and
crystallite size determined by PXRD Rietveld refinement (Figure S3, Table S3) confirmed
that particles of among 5–10 nm were well defined and not agglomerated. An EDX analysis
(Figure 1d) unveiled that the obtained oxides maintained the MOF composition, i.e., C100
(pure CeO2), C50Z50 (Ce:Zr 49:51 wt%), and C5Z95 (Ce:Zr 5:95 wt%) with an homogeneous
distribution of Ce and Zr on the surface of the samples, confirming solid solution formation.
The obtained oxides presented a significant drop in SSA (Table S3), in line with the collapse of
the UiO-66 structure. Moreover, hysteresis necks (Figures 1e and S4) were not observed in any
of the samples. This indicated the absence of interparticle porosity, which is in line with the
non-agglomerated particles observed by microscopy results.
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Figure 1. (a) Reported Ce-UiO-66 and CeO2 structures (Ce atoms/clusters in orange, O in red). TG
analysis of C100-(red line), C50Z50-(green line), and C5Z95-UiO-66 (blue line) are shown in the top
inset. The C100 TEM image is shown in the bottom inset. The PXRD pattern of (b) C100-UiO-66 and
(c) C100 samples. (d) C50Z50 and C5Z95 TEM images and EDX maps. (e) N2 adsorption–desorption
isotherms collected at 77 K over C100-UiO-66 (empty squares) and C100 (full squares) samples.

To obtain the best achievable information on the Ce oxidation state through FT-IR
spectroscopy, O2-TPO and H2-TPR were collected over previously activated C100, C50Z50,
and C5Z95 samples. The sample activation was conducted following the protocol described
in the experimental section with the aim of cleaning its surface from adsorbate species (i.e.,
H2O, carbonates, and organic compounds). While the O2-TPO experiment was conducted
to have a reference spectrum of oxidised CeO2 at the different temperatures, the H2-
TPR experiment was expected to introduce Ce3+ and oxygen vacancies (VO) into the
sample. Indeed, as reported in Equation (1), the exposure of Ce4+-O-Ce4+ sites to H2 at high
temperatures can cause a redox reaction leading to cerium reduction and water formation.

Ce4+ −O− Ce4+ + H2 → Ce3+ −VO − Ce3+ + H2O (1)

Even though CeO2 and CeZrOx infrared spectra have been known for decades, we
here aim to show how to exploit spectral fingerprints related to the Ce oxidation state. C100
spectra collected after thermal activation (described in SI) presented three bands in the
ν(OH) region (Figure S5′) at 3704, 3684, and 3657 cm−1 ascribed to monodentate (m-OH),
bidentate (b-OH), and tridentate (t-OH) hydroxyl groups (Figure S6), respectively. After
the thermal activation, O2-TPO was conducted (Figure 2a) to track the reference variation
in ν(OH) positions with temperature. During heating under O2, the absorbance of m-
and b-OH bands decreased until a single broad band centered at 3696 cm−1 was formed.
At the same time, the broad band centered at ~3500 cm−1, related to physisorbed water,
decreased in intensity. In constrast, the t-OH lost intensity and its position shifted linearly
to lower wavenumbers, (Figure 2b, red line) until it was stabilized when T = 300 ◦C. The
band position bathochromic linear shift is associated with crystal lattice expansion. Instead,
the loss of band integrated area could be related to either a decrease in surface OH groups
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(i.e., sample dehydration) or to a temperature dependence of the OH molar absorption
coefficient (ε) [59,60]. Indeed, following the Beer–Lambert Law (Equation (2)), a variation
in ε would directly affect the integrated band area. However, this can be excluded since
surface dehydration was observed from the corresponding decrease in the broad band
at 3500 cm−1. After having determined the spectral behavior under heating conditions,
H2-TPR was conducted on the activated catalyst. First of all, by observing the physisorbed
water band (~3500 cm−1), we noticed that the band intensity was relatively higher than
the first spectra of the O2-TPO experiment. During H2-TPR, the band intensity initially
decreased, indicating water desorption, while it increased again at higher temperatures.
Water formation under H2/300 ◦C is the first evidence of cerium reduction with parallel
formation of oxygen vacancies (VO), as described in Equation (1).
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Figure 2. (a) Detail of FT-IR spectra ν(OH) region collected during the O2-TPO experiment (tempera-
ture rise is shown as from black to red). (b) Position of t-OH maximum during H2-TPR (blue line)
and O2-TPO (red line) experiments compared with Ce3+ band integrated area (green circles) observed
during the H2-TPR experiment. The temperature profile is reported with a dashed red line. Detail
of FT-IR spectra (c) ν(OH) and (d) Ce3+ 2F5/2→2F7/2 regions (baseline corrected) collected during
H2-TPR experiments (temperature rise is shown as from black to blue).

Moreover, the higher intensity of the band in the spectra under H2/RT conditions
suggested that surface reduction had already started at RT.

Considering the Ce-OH groups, m-OH and b-OH were rapidly consumed, whilst the
t-OH band underwent a non-linear bathochromic shift (Figure 2c). Since t-OH presented
a higher stability during thermal treatment, we focused on its band maximum position
(Figure 2b, blue line). In particular, we observed that: (I) the frequency increased from
3658 cm−1 to 3661 cm−1 at T = 25 ◦C when the gas environment changed from N2 to N2:H2
(see protocol Figure S1). (II) The frequency decreased when the temperature increased to
300 ◦C, in line with lattice expansion, and (III) the frequency shifted to 3650 cm−1 (8 cm−1

higher than the final position reached under O2, i.e., 3542 cm−1) as soon as the temperature
was stabilized at 300 ◦C. The origin of the t-OH shift under H2 can be further understood
from the Ce3+ 2F5/2→2F7/2 electronic transition occurring at 2127 cm−1. Indeed, while this
band was not observed under O2 (Figure S5b”), it presented a relevant intensity under
H2 (Figure 2d). To understand the t-OH hypsochromic shift, it should be considered that
during cerium reduction, Ce3+-VO-Ce3+ sites are formed (Equation (1)). The t-OH can then
arrange over the Ce3+-VO-Ce3+ site, formally becoming a t’-OH group (Figure S6). Ce3+

increases the hydroxyl bond order causing a hypsochromic shift of the t’-OH vibration [47].
Furthermore, the Ce3+ integrated band absorbance intensity reported in Figure 2b (green
circles) followed the same trend as the t-OH hypsochromic shift. In fact, the Ce3+ area (I)
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increased when H2 was added to the gas environment at a constant temperature of 25 ◦C,
(II) it decreased during heating, and (III) it rose dramatically at T > 250 ◦C. This confirms
the relationship between Ce3+ content and t-OH shift. A direct comparison of t-OH position
with Ce3+ area gave a complete (non-quantitative) view of Ce3+-VO formation on both the
catalyst surface (ν(OH)) and in the bulk (Ce3+ band). Notably, the H2O, ν(t-OH) or Ce3+

band area which highlights surface cerium reduction under H2, showed that the reaction
had already begun at RT. This is in line with cerium’s higher reducibility in the case of
MOF-derived CeO2 samples [26–29].

Nevertheless, the amount of available information extractable from FTIR spectra de-
creased in the case of CeZrOx solid solutions, i.e., C50Z50 and C5Z95. In the former, the
even distribution of Ce/Zr within the lattice increased the hydroxyl species population
with potential similar vibrational frequencies (see Figure S6). This caused a broadening
of the observed band which prevented a precise evaluation of the t-OH shift reported
in Figure S7a. On the contrary, in the C5Z95 sample, the lower Ce content reduced the
broadening of the OH band. This allowed observation of the same behavior noticed for
C100, i.e., m-OH was consumed, b-OH was preserved, and t-OH presented a non-linear
bathochromic shift. Moreover, the maximum position of the latter presented an hyp-
sochromic shift at T ≈ 150 ◦C, prevailing over the lattice expansion-induced bathochromic
shift (Figure S7f). As showed by NEXAFS measurements (see discussion hereafter), C5Z95-
ox already contained Ce3+. This indicated that at 150 ◦C, the Ce3+-VO surface concentration
was sufficiently high to induce the observed shift. Concerning the Ce3+ 2F5/2→2F7/2 band,
the higher Ce content in the C50Z50 sample allowed observation of the band formation
(Figure S7b) which highlighted that Ce4+ reduction began at around 250 ◦C (Figure S7c).
On the contrary, in C5Z95, the low Ce content did not allow observation of the band
(Figure S7e).

To quantify cerium reduction, Ce M5-edge AP-NEXAFS spectra were collected under
the same conditions employed for the IR experiment, i.e., H2-TPR was performed after
having heated the sample for 30 minutes at 300 ◦C under O2:He. Starting with C100,
the as-prepared material presented a spectrum (Figure 3a) comparable to reference CeO2
(Figure 3b inset). However, during heating under He:H2 (Figure S8a), the Ce4+ bands
initially gained intensity and lost the shoulder at 891 eV. The presence of this shoulder
suggested a minor contribution of Ce3+ in C100 after oxidation. At T > 200 ◦C, the main
edge lost intensity again, while a two-band shoulder arose at around 891 eV. These bands
became structured around 300 ◦C, and at 350 ◦C they had a final shape clearly attributable
to Ce3+. As we recently reported, Ce3+/Ce4+ can be quantified from M5-edge NEXAFS
spectra with a driven MCR-ALS protocol where 10 replicas of CeO2 and CeF3 references
spectra are added at the end of the dataset [40]. This method allowed to improve the
identification of principal components whilst simultaneously adapting the references to
the dataset. The procedure identified two principal components (Figure 3b) describing
99.6% of the variance. The component spectra were clearly related to the pure spectra of
Ce4+ and Ce3+, though with a band width specifically related to these samples. Moreover,
the CeO2 concentration profiles reported in Figure 3c indicated an evolution very close to
the one observed in FT-IR experiments. We noticed that a minor content of Ce3+ (≈8%)
was already present in the sample after oxidation which completely disappeared during
heating. Ce3+ was then formed again at T > 200 ◦C and it reached levels of 10% and 30% at
300 ◦C and 350 ◦C, respectively. Even though the initial 8% of Ce3+ is within the MCR-ALS
protocol error, we clearly observed that Ce3+ fingerprints were already present in C100 at
RT (Figure S8b), confirming the reliability of the performed quantification.
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Figure 3. (a) C100 Ce M5-edge experimental NEXAFS spectra collected under 50 mL/min H2:He
(3:2) from RT (black line) to 350 ◦C (blue line). The full spectra dataset is reported in Figure S4a. Ce4+

(red line/squares) and Ce3+ (blue line/squares) (b) spectral component and (c) concentration profiles
extracted from unbiased MCR-ALS routine (99.6% of variance explained). CeO2 and CeF3 reference
spectra are reported in the top inset with red and blues line, respectively.

Interestingly, since the FT-IR absorbance of the Ce3+ band and Ce M5-edge NEXAFS
results followed the same trend, we attempted to extract the Ce3+ 2F5/2→2F7/2 transition
molar attenuation coefficient. By exploiting the integrated Beer–Lambert law [61] (Equa-
tion (2) where A = absorbance, ε = molar attenuation coefficient, c = Ce3+ concentration,
w = Ce content, and S = pellet area), we reported for the same temperature the evaluated
Ce3+ concentration (through Ce M5-edge fit) with respect to the Ce3+ FT-IR band integrated
area (Figure S9).

A
(

cm−1
)
= ε

(
cm

µmol_Ce

)
∗ c

(
wt% Ce3+

)
∗ w(µmolCe)

S(cm2)
(2)

The slope of the scatter plot linear fit (Figure S9) indicated that ε = 0.39± 0.02 cm/µmol_Ce.
This approach is conventionally used for determining ε of adsorbed species [62–65]. In contrast,
this is so far the first attempt to evaluate the Ce3+ molar extinction coefficient and it could
potentially be used in the future to evaluate Ce3+ concentration from FT-IR measurements.

Regarding the mixed oxides, cerium showed a higher reducibility to Ce3+ with an
increase in Zr content. In particular, we noticed that C50Z50 and C5Z95 presented 5 and
18% of Ce3+ in the prepared sample, respectively. At 350 ◦C under H2, the Ce3+ content
increased to 40% for C50Z50 and 60% for C5Z95 (Figure 4). Indeed, it is well known that
Ce reducibility increases in CeZrOx solid solutions due to lattice straining induced by the
different ionic radius of Zr [1,66].
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Figure 4. (a) C50Z50 and (c) C5Z95 Ce M5-edge NEXAFS spectra measured during heating under
50 mL/min H2:He (3:2) from RT (black line) to 350 ◦C (blue line). The full spectra dataset is reported
in Figure S10. (b) C50Z50 and (d) C5Z95 concentration profiles of Ce4+ (red squares) and Ce3+ (blue
squares) obtained from MCR-ALS protocol applied to the experimental spectra in panels (a,c). CeO2

and CeF3 reference spectra are reported (Figure 3b).

It is noteworthy that the latter sample contained ≈18% of Ce3+ at 150 ◦C, confirming
that the significant t-OH hypsochromic shift (Figure S7f) observed at this temperature
was related to the high Ce3+ content (Figure 4c). Moreover, by combining the calculated
ε with C50Z50 integrated absorbance after H2-TPR at 300 ◦C (≈1.09 cm−1, Figure S7c),
we calculated a Ce3+ ≈ 14%, in agreement with the 13.6% of Ce3+ evaluated from the Ce
M5-edge NEXAFS at the same temperature (Figure 4b).

4. Conclusions

Ce/Zr-UiO-66 calcination was presented as a cheap and simple synthesis pathway to
obtain nanoparticles of CeO2 and homogeneous CeZrOx solid solutions. The MOF calcina-
tion temperature was determined by TG analysis whilst PXRD and EDX measurements
confirmed a Ce/Zr homogenous dispersion. Due to their nanosize and homogeneity, the
obtained oxides are ideal candidates for a deep understanding of their FTIR and NEXAFS
spectra properties under reducing conditions. Cerium reduction occurred at RT under H2
and it was related to the use of a MOF as a precursor. Moreover, Ce reducibility increased
with the Zr content. A careful analysis of CeO2 FT-IR H2-TPR spectra unveiled that the
Ce3+ 2F5/2→2F7/2 transition can be used to monitor CeO2 bulk reduction. Moreover, we
reported that the ν(OH) hypsochromic shift can be used to qualitatively determine the
absence/presence of Ce3+-VO sites on the catalyst surface. Ce3+ was quantified by applying
the MCR-ALS protocol to in situ Ce M5-edge NEXAFS spectra. NEXAFS results reproduced
the infrared results, hence confirming the reliability of the latter.

Eventually, by combining CeO2 FTIR and Ce M5-edge NEXAFS spectra, the Ce3+ 2F5/2→
2F7/2 molar absorption coefficient was calculated. The coefficient was further used to cal-
culate Ce3+ content in mixed CeZrOx, leading to results in line with Ce M5-edge NEXAFS
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quantification. This proved that the determined molar absorption coefficient value could be
further employed for Ce3+ quantification during operational FT-IR experiments.

We then demonstrated that the CeO2 FTIR spectrum presents excellent markers to
extract valuable information on the reduction state of bulk and surface Ce3+. These fin-
gerprints can be potentially monitored under relevant reaction conditions with a time
resolution an order of magnitude faster than NEXAFS (seconds vs. minutes).

Nevertheless, the integrated area of the Ce3+ band and ν(OH) vibration are easily
disturbed in case of doped Ce-based solid solutions (i.e., CeZrOx) where, depending on Ce
content and its dispersion, only one of the two was meaningful. On the contrary, Ce M5-
edge NEXAFS spectra were sensitive to Ce even with loading ≈ 5%, giving the technique
access to all the possible combinations of Ce-based materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13020272/s1. Table S1. Employed reactants quantities for
the MOF synthesis. Table S2. Quantities of MOFs employed and quantities of oxides obtained after
MOFs calcination. Table S3. Elemental composition, textural and structural properties of the six
samples. a ICP results. b EDX results. Figure S1. Thermal protocol employed for (a) O2-TPO and
(b) H2-TPR measurements. Figure S2. PXRD pattern of (a) C100-UiO-66 (red line), C50Z50-UiO-66
(green line) and C5Z95-UiO-66 (blue line) and (c) CeO2 (red line), C50Z50 (green line) and C5Z95
(blue line). Detail of fcu and Fm-3m main Bragg reflections are reported in panels (b,d), respectively.
Figure S3. (a) C100, (b) C50Z50 and (c) C5Z95 PXRD experimental data (black line), refined pattern
(red line) and difference function (blue line). Figure S4. N2 adsorption/desorption isotherms of
(a) C100-UiO-66 (red line), C50Z50-UiO-66 (green line) and C5Z95-UiO-66 (blue line) and (b) C100
(red line), C50Z50 (green line) and C5Z95 (blue line). Figure S5. FT-IR spectra collected on C100
during the: (a) protocol step I (temperature rises from black to green line), (b) O2-TPR (temperature
rises from black to red line) and (c) H2-TPR (temperature rises from balck to blue line). Detail
of ν(OH) and Ce3+ 2F5/2→2F7/2 electronic transtion are reported in the smaller panels indictaed
with ’) and ”), respectively. Figure S6. Examples of possible OH groups species potentially formed
over CeO2 and CeZrOx. surface. Ce4+ and Ce3+ atoms are represented with red and blue colours,
respectively. Figure S7. FTIR spectra collected during H2-TPR experiment on (a–c) C50Z50 and (d–f)
C5Z95 samples. Detail of (a,d) ν(OH) and (b,e) Ce3+ 2F5/2→2F7/2 regions (temperature increases
from black to blue line). (c) C50Z50 Ce3+ 2F5/2→2F7/2 integrated area (black squares) respect to
temperature evolution (red squares). (f) C5Z95 t-OH position (blue line) respect to temperature
evolution (red squares). Figure S8. C100 (a,b) Ce M5 edge NEXAFS spectra collected during H2-TPR
experiment. Temperatures are reported in the graph legend. Figure S9. (a) Ce3+ concentration
evaluated by Ce M5-edge NEXAFS fit reported with respect to the Ce3+ FT-IR band integrated area
collected at the same temperature. Linear fit is reported with red line whilst its equation and the
Pearson R value are reported in the graph. (b) Residual plot for the employed linear fit model.
Figure S10. (a) C50Z50 and (b) C5Z95 Ce M5-edge NEXAFS spectra measured during heating under
50 mL/min H2:He (3:2). Temperature increases from black to blue line. References [51–55,67] are
cited in supplementary materials.
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