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Abstract We explore some implications of our previous
proposal, motivated in part by the Generalised Uncertainty
Principle (GUP) and the possibility that black holes have
quantum mechanical hair that the ADM mass of a system
has the form M + βM2

Pl/(2M), where M is the bare mass,
MPl is the Planck mass and β is a positive constant. This
also suggests some connection between black holes and ele-
mentary particles and supports the suggestion that gravity is
self-complete. We extend our model to charged and rotat-
ing black holes, since this is clearly relevant to elementary
particles. The standard Reissner–Nordström and Kerr solu-
tions include zero-temperature states, representing the small-
est possible black holes, and already exhibit features of the
GUP-modified Schwarzschild solution. However, interesting
new features arise if the charged and rotating solutions are
themselves GUP-modified. In particular, there is an interest-
ing transition below some value of β from the GUP solutions
(spanning both super-Planckian and sub-Planckian regimes)
to separated super-Planckian and sub-Planckian solutions.
Equivalently, for a given value of β, there is a critical value
of the charge and spin above which the solutions bifurcate
into sub-Planckian and super-Planckian phases, separated by
a mass gap in which no black holes can form.

1 Introduction

Any final theory of physics must amalgamate quantum the-
ory, which applies in the microscopic domain, with gen-
eral relativity, which applies in the macroscopic domain.
Key features of these regimes are the (reduced) Compton
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wavelength, rC = h̄/(Mc), relevant to particles, and the
Schwarzschild radius, rS = 2GM/c2, relevant to black
holes. As shown by the blue curves in Fig. 1, these two length
scales intersect where

rS = rC �⇒ Mmin = MPl/
√

2, rmin = √
2 �Pl , (1)

where �Pl = √
h̄G/c3 ∼ 10−33cm and MPl = √

h̄c/G ∼
10−5 g are the Planck scales at which quantum gravity
becomes significant. This has the important implication that
any attempt to probe a particle above the Planck energy will
result in the formation of a black hole, so that one probes the
Schwarzschild radius instead. This is referred to as the ‘self-
completeness’ of gravity [1–8], although the precise meaning
of this term will be modified as a result of the considerations
of this paper.

Of course, one would not expect the standard expressions
for rS and rC to apply all the way down to the Planck scale, so
Eq. (1) is questionable. For example, as one approaches the
Planck point from the left, it has been argued [9–11] that the
Heisenberg Uncertainty Principle (HUP) should be replaced
by a Generalized Uncertainty Principle (GUP), which corre-
sponds to a generalized reduced Compton wavelength of the
form

r ′
C = h̄

Mc

[

1 + α

(
M

MPl

)2
]

(M < MPl) , (2)

where α is a dimensionless constant. On the other hand, as
one approaches the intersect point from the right, it has been
argued that the Schwarzschild expression should be replaced
by a generalized event horizon (GEH) of the form

r ′
S =

(
2GM

c2

) [

1 + β

2

(
MPl

M

)2
]

(M > MPl) , (3)

where β is another dimensionless constant. For example, this
is expected in the N-portrait model of Dvali et al. [12]. The
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Fig. 1 The blue lines show the Schwarzschild and Compton scales,
the Schwarzschild solution being self-complete in the sense that the
intersection gives the smallest resolvable length scale. The red dotted
lines give the (inaccessible) continuations of these curves. The upper
magenta curve shows the unified Compton and Schwarzschild scale
(rCS) if the BHUP correspondence with β > 0 applies. The lower
magenta curve applies for β < 0 but this does not provide a unification

condition r ′
S = r ′

C then gives

Mmin =
√

β − 1

α − 2
MPl , rmin = 2 − αβ√

(α − 2)(β − 1)
�Pl , (4)

which reduces to Eq. (1) for α = β = 0. However, Eqs. (2)
and (3) might merely give the lowest order terms in a more
precise theory, in which case Eq. (4) would be modified.

Although the self-completeness condition circumvents the
pathology of the singularity in the Schwarzschild metric, the
discontinuity at Mmin corresponds to a critical point which
represents some type of phase transition between black holes
and particles. The implication is that Mmin corresponds to
both the lightest possible black hole and the heaviest pos-
sible particle. However, the similarity of Eqs. (2) and (3)
suggests another view, in which there is some deep con-
nection between the Uncertainty Principle (which underlies
the Compton expression) on small scales and black holes on
large scales, so that there is a smooth transition between the
two expressions. This is termed the Black Hole Uncertainty
Principle (BHUP) or Compton–Schwarzschild (CS) corre-
spondence [13–15] and is manifested in a unified expression
for the Compton wavelength on sub-Planckian mass scales
(M < MPl) and the Schwarzschild radius on super-Planckian
(sometimes termed trans-Planckian) mass scales (M > MPl).
So the issue is whether there is some way of merging the
expressions for r ′

C and r ′
S.

The simplest way to amalgamate Eqs. (2) and (3) would be
to put α = 2 and β = 1, so that the curves are identical rather

than intersecting. However, a model with no free parameters
has little appeal to either GUP or GEH advocates. A more
natural (one-parameter) amalgamation is

rCS = βh̄

Mc
+ 2GM

c2 , (5)

as illustrated by the upper curve in Fig. 1. This has a smooth
minimum for β > 0 and is formally equivalent to Eq. (3),
except that it applies for both M < MPl and M > MPl.
Eqn (5) is not formally equivalent to Eq. (2) because the free
parameter is associated with the first term rather than the
second. However, this seems plausible because the Compton
scale arises in various physical contexts, each correspond-
ing to a different value of β [15]. It would be unnatural to
associate the free parameter with the second term because
the expression for the Schwarzschild radius is exact. Note
that the coefficient in the Heisenberg Uncertainty Principle
is precise, since �x = h̄/(2�p), but the issue is how ones
goes from �x and �p to rS and M .

In our previous paper [16], we suggested a simple realiza-
tion of this proposal, in which the ADM mass of a system
(i.e. the mass measured gravitationally at large distances) is
related to the bare mass M by

MADM = M + βM2
Pl

2M
(6)

for some positive constant β. Thus MADM ≈ M for M �
MPl but scales as 1/M for M 	 MPl and has a minimum
value of

√
2β MPl at M = √

β/2 MPl. We described this
as the ‘M + 1/M’ model and it might be motivated by the
approach of Dvali et al. cited above, with the 1/M term being
be regarded as quantum mechanical hair. It may be argued
that M is related to the invariant energy

√
s for a hypothetical

collision at the Planck energy. Note that rCS only has a smooth
minimum in Fig. 1 for β > 0. For β < 0, it reaches 0 at M =√|β|/2 MPl, as illustrated by the lower (magenta) curve in
Fig. 1, but there is no Compton curve on the left because
rCS is negative. Since r ′

S = 0 at this point, one effectively
has G → 0 (no gravity), which relates to models involving
asymptotic safety [17]. For the rest of this paper we focus on
the β > 0 case.

There are other possible forms for rCS, more compli-
cated than Eq. (5), which asymptote to rC for M 	 MPl

and rS for M � MPl. For example, whereas Eq. (5) corre-
sponds to a linear GUP, one could consider quadratic forms
(MADM ∼ √

M2 + 1/M2), such as arise in Loop Quantum
Gravity [14]. Whatever the form, this suggests some connec-
tion between black holes and elementary particles, with the
sub-Planckian black holes having a size of order the Comp-
ton wavelength for their mass. In this case, the distinction
between an elementary particle and a black hole, assumed in
the original formulation of gravitational self-completeness,
no longer applies. The proposal that elementary particles
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could be black holes originally arose in the context of the
‘strong’ gravity model of the 1970s [18,19] and was moti-
vated by the similarity of the J (M) relations for hadrons (viz.
their Regge trajectories) and extreme rotating black holes
[20]. Of course, with standard gravity, an elementary parti-
cle of mass m is larger than its Schwarzschild radius by a
factor of (MPl/m)2, this being 1038 for a proton, so it could
only be a black hole if the strength of gravity were increased
by this factor. Recently this idea has been revived in a more
modern context [21] and it might also be associated with the
effects of extra compact dimensions [22].

In this paper we extend our previous analysis to the
Reissner–Nordström (RN) and Kerr solutions. Since most
elementary particles have spin and charge, and since quantum
black holes created in ultra-high-energy environments and
particle collisions are also likely to be initially charged and
rotating, such an extension is very natural and indeed required
[23]. The charge will be an integer multiple of the electron
charge and the spin will be a multiple of Planck’s constant.
Determining how much charge and spin each solution allows
is conducive to a better understanding of the nature of these
quantum black holes. Although the first part of our analysis
does not explicitly invoke the BHUP correspondence, we will
show that the charged and rotating solutions exhibit features
of the ‘M + 1/M’ solution if they are far from extremal.

We then turn to the ‘M + 1/M ′ solutions themselves
and address two aspects of the Planck-scale behaviour: self-
completeness and possible BHUP modifications to the met-
ric. In the first case, we are interested in determining the
minimum (maximum) possible mass of a black hole (par-
ticle) such that solutions are self-complete. In the second
case, we modify the RN and Kerr metrics subject to the
M → M+1/M correction and calculate the associated ther-
modynamic quantities. For RN black holes, we find that the
BHUP modification allows for complete evaporation (T = 0)
in the M = 0 limit, so long as the charge of the black hole
is small. In the extremal limit, the temperature profile bifur-
cates to admit a classical sub-Planckian black hole, as well as
a new sub-Planckian object. Although these solutions are of
great physical interest, it should be stressed that they exhibit
the sort of mass gap which the BHUP correspondence was
originally intended to remove.

The plan of this paper is as follows. Section 2 reviews our
previous work, describing self-complete and GUP-modified
Schwarzschild black holes. Section 2 discusses the standard
self-complete RN black hole. The M+1/M (GUP-modified)
version of this is then discussed in Sect. 3 and reveals similar
behaviour to the Schwarzschild M + 1/M case, at least for a
suitable range of parameters. Section 4 discusses the standard
self-complete and GUP-modified Kerr solutions, the results
being qualitatively similar to the charged case. We draw some
general conclusions in Sect. 5, with particular emphasis on

self-completeness and the link between black holes and ele-
mentary particles.

2 Self-complete and GUP-modified Schwarzschild
black holes

The simplest way of implementing the BHUP correspon-
dence is to use the GUP-modified Schwarzschild metric
obtained in Ref. [16]:

ds2 = f (r)dt2 − f (r)−1dr2 − r2d�2 (7)

with

f (r) = 1 − 2MADM

M2
Plr

, d�2 = dθ2 + sin2 θ dφ2 , (8)

where MADM is given by Eq. (6) and henceforth we use units
with G = M−2

Pl and h̄ = c = 1 throughout this paper.
This modification to the metric ensures that the event horizon
radius is given by Eq. (5), allowing the possibility of both the
standard super-Planckian black holes with rCS = 2M/M2

Pl
and sub-Planckian black holes with rCS = β/M . It also
smooths out the self-complete discontinuity. There is an inter-
esting connection here with the quantum N-portrait model of
Dvali et al. [24–28], which regards a black hole as a weakly-
coupled Bose–Einstein condensate of gravitons. From holo-
graphic considerations, the number of gravitons (entropy
states) in the black hole is

N ≈ ABH

�2
Pl

≈ M2

M2
Pl

, (9)

where ABH is the black hole area. As noted in Ref. [29], one
can then argue that the black hole radius is

rCS ≈ 2M

M2
Pl

(
1 + β

2N

)
= 2MADM

M2
Pl

(M > MPl) , (10)

which is equivalent to Eq. (5).
Given the metric (7), one can obtain the black hole tem-

perature from its surface gravity [30,31]:

kT = κ

2π
= 1

4π

dF

dr

∣∣∣∣
rCS

= M2
Pl

8πM(1 + βM2
Pl/2M2)

. (11)

This is plotted in Fig. 2a and the limiting behaviour in the
asymptotic regimes is

kT ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M2
Pl

8πM

[
1 − β

2

(
MPl
M

)2
]

(M � MPl)

M
4πβ

[
1 − 2

β

(
M
MPl

)2
]

(M 	 MPl).

(12)

The large M limit is the usual Hawking temperature but, as
the black hole evaporates, the temperature reaches a max-
imum at M = √

β/2 MPl and then decreases to zero as
M → 0.
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(a)
(b)

Fig. 2 a Temperature implied by surface gravity argument as a func-
tion of mass in ‘M + 1/M’ model for β = 1 (red, bottom), β = 0.5
(blue, middle) and β = 0.1 (green, top). The temperature reaches a
maximum and then decreases, so that the black hole cools to a config-

uration with M = T = 0. b This gives the temperature in the more
general case with both α and β for α < 2β (cf. ‘M + 1/M’ model),
α = 2β (cf. Hawking solution) and α > 2β (cf. Adler’s solution)

Before proceeding, it is useful to compare Eq. (11) with the
temperature derived with other approaches. In the standard
picture, one can calculate the black hole temperature from
the HUP by identifying the Schwarzschild radius with �x
and the black hole temperature with a multiple η of �p. This
gives

kT = η�p = η

�x
= ηM2

Pl

2M
, (13)

which is precisely the Hawking temperature if we take
η = 1/(4π). This approach can also be used to derive the
black hole temperature for a model in which one adopts GUP
but assumes that the expression for the black hole size is
unchanged (i.e. β = 0). In particular, Adler et al. [9–11] cal-
culate the modification required if �p and �x are related by
the linear GUP,

�x = 1

�p
+ α

�p

M2
Pl

. (14)

Since �x is still identified with the Schwarzschild radius,
one obtains

kT = ηM

α

⎛

⎝1 ±
√

1 − αM2
Pl

M2

⎞

⎠ . (15)

The negative sign just gives a small perturbation to the stan-
dard Hawking temperature in the super-Planckian regime:

kT ≈ ηM2
Pl

2M

[

1 − αM2
Pl

4M2

]

(M � MPl) . (16)

However, the solution becomes complex when M falls below√
α MPl, corresponding to a minimum mass, and it then con-

nects to the positive branch of Eq. (15). This asymptotes to

2ηM/α, which is presumably unphysical since it exceeds the
Planck temperature. Note that Eq. (4) with β = 0 gives

Mmin = 1√
2 − α

MPl , rmin = 2√
2 − α

�Pl , (17)

so the modified Compton and Schwarzschild radii only inter-
sect for α < 2.

The Adler solution has the unpalatable feature that it
introduces a thermodynamic instability. This problem can
be cured by going beyond the GUP and also modifying the
relationship between the black hole radius �x and M (i.e.
by introducing the parameter β in the expression for the gen-
eralised event horizon). This can be achieved by replacing
M in Eq. (15) by MADM and then regarding α and β as
independent parameters. However, since MADM has a min-
imum value of

√
2β MPl, one never reaches the limiting

Adler mass of
√

α MPl for α < 2β. In this case, as in the
‘M + 1/M’ model, the temperature reaches a maximum and
then decreases rather than going complex. The dependence
of T on M in the asymptotic limits can then be approximated
by

kT ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηM2
Pl

2M

[
1 −

(
2β−α

4

) (
MPl
M

)2
]

(M � MPl)

ηM
β

[
1 −

(
2β−α

β2

) (
M
MPl

)2
]

(M 	 MPl) .

(18)

As expected, this is equivalent to Eq. (12) if α = 0. The
overall behaviour of T is shown by the lowest curve in Fig. 2b.
For α > 2β, T has the same qualitative form as in the Adler
model. In the special case α = 2β, the effects of the α and
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β terms cancel and one obtains the solution [14]

kT = min

[
ηM2

Pl

2M
,

2ηM

α

]

. (19)

This is indicated by the middle curve in Fig. 2b. The first
expression in Eq. (19) is the exact Hawking temperature,
but one must cross over to the second expression below
M = √

α/4 MPl to avoid the temperature going above the
Planck value TPl = MPl/k. The second expression in Eq. (19)
can be obtained by putting �x = α/(2M) in Eq. (13). The
temperatures given by the surface gravity and GUP argu-
ments agree to 1st order but not to 2nd order.

Since there are independent arguments for the GUP and
GEH expressions, α and β could in principle be unrelated,
with Eq. (2) applying for M < MPl and Eq. (3) for M > MPl.
However, we note that Eq. (12) (when applied for M < MPl)
already implies a GUP effect. When one combines the α and
β terms, as in Eq. (18), one therefore superposes two GUP
contributions to the temperature. These cancel for α = 2β,
so that the exact Hawking formula still applies, but this is
not required for the BHUP correspondence. Indeed, it seems
more natural to use the ‘M + 1/M’ solution, since this
removes the thermodynamic instability of the Adler solu-
tion and unifies the Compton and Schwarzschild expressions
without introducing the complication of an extra degree of
freedom. We therefore use Eq. (5) in extrapolating to the
charged and rotating case and drop the parameter α for the
rest of this paper.

3 Self-completeness of Reissner–Nordström solution

The RN spacetime has the well-known metric (cf. Ref. [32]),

ds2 = f (r)dt2 − dr2

f (r)
− r2d�2 , (20)

with

f (r) = 1 − rS

r
+ r2

Q

r2 . (21)

Here rS = 2M/M2
Pl and rQ = Q/MPl are characteristic

gravitational and charge length scales. Since Q = ne, where
e = √

αe is the electron charge and αe ≈ 1/137 is the fine
structure constant, we can write the metric function as

f (r) = 1 − 2M

M2
Plr

+ αen2

M2
Plr

2
. (22)

The outer (+) and inner (−) horizons are then given by

f (r±) = 0 �⇒ r± = M

M2
Pl

⎛

⎝1 ±
√

1 − αeM2
Pln

2

M2

⎞

⎠ .

(23)

For a black hole which is far from extremal (M �√
αe nMPl), this can be written as

r± ≈

⎧
⎪⎪⎨

⎪⎪⎩

2M
M2

Pl

(
1 − γ M2

Pl
M2

)
(+)

2γ
M

(
1 + γ M2

Pl
M2

)
(−)

(24)

where γ ≡ αen2/4. The form of the outer and inner horizons
for different values of n are shown by the upper and lower
parts of the solid curves in Fig. 3, respectively. The outer
horizon asymptotes to 2M/M2

Pl (upper dotted curve) at large
r and the inner horizon to 2γ /M at low r .

For each n, the two horizons merge on the line r =
M/M2

Pl (lower dotted curve) at the minimum value of M and
have an infinite gradient (dr/dM) there. This corresponds to
a sequence of “extremal” solutions (shown by the dots in
Fig. 3) with a spectrum of masses given by

1 − αeM2
Pln

2

M2 = 0 �⇒ Mn = √
αe nMPl . (25)

For given n, there are no solutions with M less than this since
these would correspond to naked singularities. In particular,
n could be at most the integer part of 1/

√
αe (i.e. 11) for a

Planck-mass black hole. It is interesting that Eq. (24) has two
asymptotic behaviors in the M � MPl regime: the outer hori-
zon corresponds to Eq. (3) but with a negative value of β; the
inner horizon corresponds to Eq. (2) but with a positive value
of α and it nearly asymptotes to the Compton wavelength for
n = 16, this being the integer part of

√
2/αe.

The Compton line intersects the outer black hole horizon,
as required by the self-completeness condition [32], where

rC = r+ (26)

and this yields the mass-scale

M = MPl√
2 − αen2

≈ MPl√
2 − n2/137

. (27)

This assumes the standard definition of the Compton wave-
length, although this may be modified in the ‘M + 1/M’
approach. The relation between the Compton and outer hori-
zon scales is shown in Fig. 3. For n = 0, the intersect
mass is MPl/

√
2 but it increases with n and tends to MPl as

n → √
137 (middle curve). This implies a constraint n ≤ 11

on the charge of a self-complete RN black hole. The Compton
line still intersects the inner horizon for

√
137 < n <

√
274,

with n = 16 (right curve) being the last solution which
allows this. However, these solutions do not exhibit self-
completeness since they penetrate the r < �Pl region where
quantum gravity applies. For n >

√
274, not even the inner
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Fig. 3 The solid curves show the outer and inner horizons for a stan-
dard RN black hole withn = 5, 11, 16 (left to right). For eachn, the hori-
zons meet at the extremal mass on the line r = M/M2

Pl (green dotted)
and are bounded from above by the Schwarzschild radius rS = 2M/M2

Pl
(black dotted line). The Compton curve is shown by the dashed line and
the inner horizon asymptotes to this for n = 16. Solutions with n < 11
penetrate the sub-Planckian RN regime and are discussed in Sect. 4

horizon intersects the Compton line, ensuring a clear distinc-
tion between particles and black holes.

Since most elementary particles have charge, this suggests
some connection with the BHUP correspondence, although
we note that all known charged fundamental particles have
n = 1. In any case, the condition n <

√
137 suffices to

account for the quantum black holes produced in typical par-
ticle collisions (e.g. pp → N , pn → N ′ etc.). This cre-
ates a symmetry in the convergence to the critical point in
the self-completeness diagram. None of these masses falls
on the Compton curve and through Schwinger processes the
masses make discrete jumps up towards the r = 2M/M2

Pl
Schwarzschild lines. In Sect. 4, we will consider values of
n for curves below the Compton line, corresponding to sub-
Planckian RN black holes.

The temperature of the RN solution for quantized charge
Q = n

√
αe is calculated from the surface gravity as

kT = 1

4π

d f

dr

∣∣∣∣
r+

=
M2

Pl

√
M2 − αen2M2

Pl

2π (M +
√
M2 − αen2M2

Pl )
2

. (28)

Figure 4 shows the function T (M). It asymptotes to the
Hawking expression (T ∝ M−1) for M � MPl but, as
M decreases, it reaches a maximum and then goes to zero
as M tends to the minimum mass

√
αe nMPl. An important

distinction between Schwarschild and RN black holes, how-
ever, is that the latter also loses charge through the Schwinger
mechanism [33], this operating even for extremal black holes,

despite their having zero temperature. The general emission
formula for a particle of frequency ω and charge q is

dN

dtdω
= �(ω, T, q�)/2π

exp[(ω + q�)/T ] ± 1
, (29)

where � is the electrostatic potential and � is the absorp-
tion coefficient for the relevant mode. This is equivalent to a
thermal spectrum with a chemical potential proportional to
the black hole charge Q and covers both the thermal emis-
sion associated with non-zero T and the athermal emission
at T = 0. The thermal emission is a stochastic process, in
which emitted particles can have either sign [34], whereas
the athermal emission produces particles with the same sign
as the black hole charge, so that the latter is always reduced.

Recently Lehmann et al. [35] have analysed this pro-
cess in considerable detail and argued that the Planck mass
relics of evaporating primordial black holes are likely to
be charged, thereby providing detectable dark matter can-
didates. Although we have some issues with this conclusion,
primarily because Eq. (28) is not a complete representation
of the Schwinger effect, a proper analysis of this mecha-
nism is certainly relevant for the potential identification of
fundamental particles with sub-Planckian black holes. This
is because no elementary particles have charge greater than
e, whereas self-complete black holes can have charge up to
11e. Since the Schwinger mechanism reduces the black hole
charge, perhaps it can resolve this problem.

For this purpose, we recall the circumstances in which
black holes are not expected to retain charge, as discussed
by Gibbons [36] and Carter [37]. The electrostatic forces on
a test particle with mass m and charge q near the black hole
can overcome the gravitational pull unless

Q

M
<

m

q
, (30)

where the masses in the present discussion are in Planck units,
so that m/q ∼ 10−21 for the electron and 10−18 for the pro-
ton. This means that a black hole with just one electron charge
can retain a positron only if M � e2/me ∼ 1020MPl ∼ 1012

kg, of order the mass for which the PBH lifetime is compara-
ble to the age of the Universe. On the other hand, the rate per
unit volume of electron–positron pair production through the
Schwinger mechanism is

�S � (eE)2

4π3 e−Ec/E , (31)

where Ec = πm2
e/e is the critical field required for the pro-

cess. Thus one requires

Q

r2+
≥ πm2

e/e . (32)
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Fig. 4 The function T (M) for a standard RN black hole with n =
2, 4, 6, 10 (left to right). The curves end at M = n

√
αeMPl, corre-

sponding to a charged remnant with T = 0

If n = 1, this condition becomes

M ≤
√

αe

4π

1

me
. (33)

This implies that pairs are copiously produced for M �
e/me ∼ 1021MPl ∼ 1013 kg. Gibbons [36] derives a third
constraint by combining Eq. (33) with the extremal condi-
tion Q = M . This gives M < e/m2

e ∼ 1043MPl ∼ 1035 kg
(i.e. 105M�). In conclusion, if the black hole is not mas-
sive enough to overcome the electrostatic repulsion, it would
undergo a sudden discharge not only via standard evaporation
but also due to the Schwinger effect. Ruffini and colleagues
have proposed that stable charged black holes could explain
gamma-ray bursts [38,39] but Page has pointed out that such
charged configurations are implausible due to the aforemen-
tioned discharge [40].

Our model has some similarity to the renormalization
group approach of Bonanno and Reuter [41], their ‘improved’
Schwarzschild metric resembling the RN solution. More pre-
cisely, the renormalization group equation leads to a running
gravitational constant

G(k) = G0

1 + ωG0k2 , (34)

where k is the wave-number, G0 is the Newtonian value (oth-
erwise denoted as G) and ω is some constant. This implies a
scale dependence

G(r) ≈ r3

γG0M
(35)

at small r , leading to a 1/r3 correction in the potential and

f (r) ≈ 1 − 2G0M

r

(
1 − ωG0

r2

)
. (36)

This is similar to Eq. (21) but with a 1/r3 rather than 1/r2

term and it leads to an analogous zero-temperature extremal
solution at some critical mass of order MPl. Hawking evap-
oration stops at this mass, as in the Adler model, and below
it the central singularity is either removed, leaving a smooth
de Sitter core, or becomes milder. Such a feature is com-
mon to many quantum-gravity-corrected black hole models,
for example, the non-commutative geometry inspired mod-
els [42,43], the string T-duality corrected black holes [44],
the Hayward model [45], the holographic screen model [5]
and a class of GUP modified metrics [46,47].

4 GUP-modified Reissner–Nordström black holes

The above analysis considered the circumstances in which
the standard RN horizon intersects the standard Compton
wavelength (the self-completeness condition). If this does
not happen, there is a clear distinction between particles and
black holes. Even if it does, Fig. 3 shows that there is still
a discontinuity in the gradient dr/dM at the intersect point,
allowing the possibility of some form of phase transition sep-
arating black holes from elementary particles. However, one
does not expect either of the standard expressions to apply
close to the intersect point due to quantum gravity effects. In
accord with the BHUP correspondence, we therefore seek a
smooth function rCM(M) which asymptotes to the standard
expressions for rC for M 	 MPl and rS for M � MPl.

As in the Schwarzschild case, we consider the M + 1/M
approach, replacing M by MADM = M + βM2

Pl/(2M) in
the RN metric but leaving the charge term unchanged. In
principle, one could also modify the electrostatic term but
that would be inconsistent with the Compton wavelength of
a particle not depending on its charge. Note, however, that
one no longer preserves M → 1/M duality in the charged
case with this approach, even though this was one of the
original motivations for the Compton–Schwarzschild corre-
spondence. The RN metric therefore becomes

f (r) = 1 − 2M

M2
Plr

(

1 + β

2

M2
Pl

M2

)

+ αen2

M2
Plr

2
. (37)

For arbitrary β, the horizons are at

r± =
(

M

M2
Pl

+ β

2M

)
⎛

⎜⎜⎜⎜
⎝

1 ±
√√√√√√

1 − n2αeM2

M2
Pl

(
β
2 + M2

M2
Pl

)2

⎞

⎟⎟⎟⎟
⎠

,

(38)
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which gives the following values in the super-Planckian and
sub-Planckian regimes:

M � √
βMPl �⇒ r+ ≈ 2M

M2
Pl

, r− ≈ αen2

2M
= 2γ

M
,

(39)

M 	 √
βMPl �⇒ r+ ≈ β

M
, r− ≈ αen2M

2M2
Pl

= 4γ M

βM2
Pl

.

(40)

The form of r+ is shown by the upper (solid) curves in Fig. 5
for β = 2. Since r+ is a monotonic function of MADM, its
minimum occurs at the minimum of MADM, which corre-
sponds to

M = Mcrit ≡ √
β/2 MPl , r+ = [√2β +

√
2β − n2αe ] �Pl .

(41)

The form of r− is shown by the lower (dash-dotted) curves
in Fig. 5 for β = 2, with a maximum at

M = Mcrit ≡ √
β/2 MPl , r− = [√2β −

√
2β − n2αe ] �Pl .

(42)

Thus it occurs at the same value of M as the minimum but at
a smaller value of r . Note that the Compton–Schwarzschild
correspondence might suggest that the Compton wavelength
becomes 2β/M in this case, which would also modify the
self-completeness condition.

For a given value of β, the square root term in Eq. (38) is
real at the minimum or maximum for

n ≤ nmax = [√2β/αe ] , (43)

where square brackets denote the integer part. As n increases,
the minimum of r+ decreases and the maximum r− increases
until they meet when n reaches nmax (corresponding to the
extremal case). Equivalently, for a given value of n, there is a
minimum value of β and a minimum (sub-Planckian) value
of Mcrit:

β ≥ βmin ≡ 1

2
αen

2 ⇒ Mcrit ≥ n
√

αe

2
MPl ≈ 0.043 nMPl .

(44)

Table 1 shows the value of βmin and Mcrit for different values
of n. The value of nmax for each value of β in the middle col-
umn can also be inferred from the entries in the left column.
Conditions (43) and (44) are required if we wish to extend
the BHUP correspondence to charged black holes.

For β < βmin for given n, or n > nmax for given β, the
solution has the form indicated in Fig. 6. There are now two
branches, a RN-type solution above MPl and a particle-type
solution below MPl, with a mass gap in between. The sig-
nificance of the sub-Planckian branch is unclear but it can

Fig. 5 Outer (top, solid) and inner (bottom, dash-dot) horizons for
GUP-RN black holes with β = 2 and n = 10 (red), n = 16
(blue) and n = 23 (black). The dashed/dotted lines show the usual
Schwarzschild/Compton scales. There is a discontinuity whenn exceeds
23, this being the closest to the extremal solution. The inner horizon is
nearly asymptotic to the Compton wavelength at large M for n = 16

Table 1 This shows the minimum value of β required for r+ to have a
smooth minimum for a given value of the charge n. If this condition is
violated, the solution has the RN form with the black hole having the
minimum mass indicated

n βmin Mcrit/MPl

2 0.015 0.086

10 0.365 0.430

12 0.526 0.516

14 0.715 0.602

16 0.934 0.688

18 1.182 0.774

20 1.460 0.860

22 1.767 0.946

24 2.102 1.032

be obtained from the super-Planckian branch by replacing
M with the dual mass γ M2

Pl/M . Although these solutions
do not exhibit continuity between particles and black holes,
they are clearly of physical interest and we examine them in
more detail below. This shows that β = βmin marks a tran-
sition from the BHUP form, naturally linking particles and
black holes, to the RN form, with a clear distinction between
them. Thus the expression for Mcrit in Eq. (44) specifies the
minimum possible mass for the RN solution for given n.
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Fig. 6 Outer (solid) and inner (dash-dot) horizon size for GUP-RN
black hole with β = 2, showing the pre- (n = 23, black) and post-
(n = 25, blue, andn = 30, red) phase transition behaviour. The horizons
for n > 23 reach their maximum (left) or minimum (right) size at M1
and M2, respectively. There are no black holes in the mass-gap between
these values

The novel behaviour in Fig. 6 can be explained as follows.
From Eq. (38), horizons exist only for

MADM ≥ √
αenMPl ⇒ M2

MPl
− √

αenM + β

2
MPl ≥ 0 .

(45)

The sign of the discriminant,

ξ ≡ αen
2 − 2β, (46)

gives three possible situations. For ξ < 0, there is an horizon
for all values of M . This means that sub-Planckian black
holes are admissible but none of them is extremal. To find
the minimal size of the event horizon, one can use the chain
rule:

0 = dr+
dM

=
(

dr+
dMADM

) (
dMADM

dM

)
. (47)

The factor dr+/dMADM is non-zero for MADM >
√

αen MPl

and

dMADM

dM
= 1 − β

2

M2
Pl

M2 , (48)

so there is a minimal (non-extremal) horizon radius for the
mass Mcrit indicated by Eq. (41). For ξ > 0, there are hori-
zons for

M < M1 = MPl

2

(√
αen −

√
αen2 − 2β

)

M > M2 = MPl

2

(√
αen +

√
αen2 − 2β

)
, (49)

with M1 < Mcrit < M2. Thus there is a mass gap M1 < M <

M2 with no black holes, as observed in Fig. 6. The values M1

and M2 correspond to extremal solutions. For β 	 1
2αen2

one has

M1 ≈ MPl

2

β√
αen

, M2 ≈ √
αenMPl . (50)

For n = 1, this corresponds to M1 ≈ 8.3 βMPl and M2 ≈
0.09MPl, both being sub-Planckian. For ξ = 0, one has the
borderline case M1 = M2 = Mcrit with

MADM = √
2β MPl = √

αe n MPl . (51)

This corresponds to a lower bound for the size of the event
horizon. For n = 1, one finds M = Mcrit = 0.04MPl.

The Hawking temperature for the RN-GUP black hole is
evaluated from the surface gravity as

kT =
M2

Pl

√
M2

ADM − αen2M2
Pl

2π

(
MADM +

√
M2

ADM − αen2M2
Pl

)2 . (52)

Unlike the usual RN case, this specifies a temperature for
both super-Planckian and sub-Planckian masses, whatever
the value ofn. Figure 7 shows theT (M) function forβ = 2. A
comparison of the upper (lower) curves with Fig. 2 confirms
the expected consequences of the BHUP correction. How-
ever, as with the horizon curves, the extremal case introduces
a discontinuity in the connection between the sub-Planckian
and super-Planckian regimes. This shows that the presence
of extremal configurations has an important impact on the
thermodynamics.

We now discuss the different cases in more detail. The
ξ < 0 case does not admit any extremal solutions and so one
expects a temperature profile very similar to that found in the
neutral M + 1/M model, the asymptotic behavior being

T (M) ∝
{
M for M 	 MPl

1/M for M � MPl .
(53)

Indeed, Fig. 7 reduces to Fig. 2a in the n = 0 limit, so we
just recover the GUP-Schwarzschild temperature, as can also
be seen from Eq. (52). The ξ > 0 case has the same asymp-
totic limits but T (M) → 0 for M → M−

1 and M → M+
2 .

The fact that the temperature also vanishes for M → 0 and
M → ∞ implies the presence of two maxima for the tem-
perature, where phase transitions occur. For the M > M2

branch, the phase transition is from a negative to a posi-
tive heat capacity regime, i.e. the prelude to the black hole
SCRAM1. The M < M1 branch is anomalous because the

1 This is the cooling down phase during the final stages of evaporation,
leading to a stable zero-temperature configuration. The term SCRAM,

123



1166 Page 10 of 14 Eur. Phys. J. C (2020) 80 :1166

extremal black hole with M = M1 is no longer the end-point
of the positive heat capacity (SCRAM) cooling phase. Rather
it represents an unstable configuration with T = 0. Any per-
turbation of such a configuration (e.g. loss of charge via the
Schwinger effect) would slightly increase the temperature
before triggering a heating phase in a negative heat capac-
ity regime. Such heating up can be dubbed anti-SCRAM and
would terminate with a maximum temperature where a phase
transition to positive heat capacity cooling takes place. The
hole evaporates without leaving any remnant since T and M
go to zero together.

For the ξ = 0 case, there is a remnant due to the double-
zero of the temperature,

T (M) ≈ 0 for M → M±
crit , (54)

and this is expected to have both SCRAM and anti-SCRAM
features. This means that a black hole with initial mass
M > MPl might not end up with mass Mcrit but follow the
whole curve down to M = 0. The small and large oscilla-
tions with mass gaps in Fig 7 confirm this behaviour. We
note that the double-zero case occurs only if β is subject to
a quantization rule: for ξ = 0, one obtains the value βmin

given by Eq. (44), this relation establishing a connection
between the GUP and electrodynamics. The temperature dip
just reflects the fact that the black hole temperature goes
to zero as one approaches the extremal solution. The intro-
duction of a Planck-scale oscillatory behaviour for increas-
ing values of n was previously observed in the study of an
extra-dimensional GUP-modified Schwarzschild spacetime
and dubbed a lighthouse effect [46].

We conclude this section with some considerations of the
Schwinger effect. The introduction of the mass parameter
MADM modifies Eqs. (30) and (32). With masses in Planck
units, Eq. (30) becomes

Q

M + β/(2M)
<

m

q
. (55)

This implies negligible Coulomb interaction for

M <
qQ − √

q2Q2 − 2βm2

2m
or M >

qQ + √
q2Q2 − 2βm2

2m
(56)

for sub-Planckian and super-Planckian black holes, respec-
tively. If m is the mass of the electron, me ∼ 10−22, it is
reasonable to assume 2βm2 	 q2Q2, so that the discrimi-
nant in the square root is positive. Thus the inequality in the
super-Planckian regime becomes equivalent to Eq. (30) with

introduced in Ref. [43] and borrowed from nuclear reactor technology,
is an acronym for “Safety Control Rod Axe Man”, was coined by Enrico
Fermi during the Manhattan Project in 1942 and still used to indicate
the emergency shutdown of a nuclear reactor.

Fig. 7 Hawking temperature curves for the GUP-RN black hole with
β = 2 and n = 10 (blue), n = 16 (green), n = 23 (black), n = 25
(red) and n = 30 (purple). The curves for n > 23 have vanishing
temperatures at the masses M1 (left) and M2 (right) defined by Eq. (49).
T = 0 endpoints in the super-Planckian regimecorrespond to stable
charged remnants

the same mass limits. On the other hand, the inequality in the
sub-Plankian regime leads to the condition

M <
βm

2qQ
= βm

2nαe
, (57)

where we put q = e at the last step. For n ∼ β ∼ 1 and
m = me, the Coulomb interaction therefore dominates over
gravity for masses in the range from 10−28 to 1012 kg. This
can be compared with the mass range implied by Eq. (32),

Q

r2+
>

Q

4[M + β/(2M)]2 ≥ πm2

e
. (58)

In the super-Planckian regime, one obtains the same con-
dition as from Eq. (32). In the sub-Planckian regime, the
inequality implies

M ≥ β

2

√
π

eQ
m = β

2

√
π

nαe
m . (59)

For n ∼ β ∼ 1 and m = me, this corresponds to M � 10−29

kg. This bound is slightly larger than the mass of the produced
particle (i.e. the electron) because the size of a sub-Planckian
black hole is its Compton wavelength. However, the extremal
case MADM = Q leads to even stricter limits. In the super-
Planckian regime, one finds the result of the previous section,
M < 1035 kg, but in the sub-Planckian regime, the bound
becomes

M >
βπm2

2e
. (60)

For β ∼ 1 and m = me, one has M > 10−43MPl ∼
10−51 kg, a limit that reveals the implausibility of extremal
stable configurations. We conclude that sub-Planckian black
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holes have relevant electrodynamics effects for masses
exceeding that of the electron. They undergo a sudden dis-
charge via both standard evaporation and Schwinger emis-
sion. Only for masses below 10−28 kg can they retain electric
charge.

From this viewpoint, charged black holes, described by
either the RN or GUP-RN solutions, are transient states.
They may be produced in the early Universe but they will
decay to neutral configurations quite rapidly. In GUP case,
the metric (8) represents the ground state in the black hole
parameter space. In contrast to the RN case, however, both
Eqs. (57) and (59) allow the identification of elementary par-
ticles with black holes. A hypothetical sub-Planckian black
hole with M = me would not undergo rapid discharge
since both Coulomb and Schwinger effects are negligible
for such a mass. Therefore, apart from spin effects, the elec-
tron might be interpreted as a sub-Planckian black hole in its
non-extremal configuration.

5 Self-completeness and GUP-modification of Kerr
black holes

Following our analysis of the RN and GUP-RN black hole
solutions, we now turn to the Kerr solution, first reviewing
its standard classical features. The metric for a Kerr black
hole of mass M and angular momentum J is

ds2 =
(

1 − rSr

ρ2

)
dt2 − ρ2

�
dr2 − ρ2 dθ2

−
(
r2 + a2 + rSra2

ρ2 sin2 θ

)
sin2 θ dφ2

+2rSra sin2 θ

ρ2 dt dφ , (61)

where r is the spheroidal radial coordinate and

rS = 2M/M2
Pl , a = J

M
, ρ2 = r2 + a2 cos2 θ ,

� = r2 − rSr + a2 . (62)

The horizon structure is more complicated than in the RN
case, since the spin introduces a non-spherical ergosphere
region. For present purposes, however, we will restrict atten-
tion to the outer and inner horizons, defined by

� = 0 �⇒ r± = M

M2
Pl

⎛

⎝1 ±
√

1 − a2M4
Pl

M2

⎞

⎠ . (63)

For a black hole which is far from extremal, this gives

r± ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2M
M2

Pl

(
1 − γ ′M4

Pl
M4

)
(+)

2γ ′M2
Pl

M3

(
1 + γ ′M4

Pl
M4

)
(−)

, (64)

where γ ′ ≡ n2/4 (different from γ in the RN case by a factor
of αe) and J = n (in units with h̄ = 1). The first expression
is no longer of the form given by Eq. (5) but corresponds
to the quadratic version of the GUP [14], while the second
expression differs from the Compton wavelength.

The extremal case corresponds to the spectrum of masses,

M = √
n MPl . (65)

On the other hand, the condition rC = r+ (required for self-
completeness) implies

1

M
= M

M2
Pl

⎛

⎝1 ±
√

1 − a2M4
Pl

M2

⎞

⎠ ⇒ M = MPl

√
1 + n2

2
.

(66)

So the analysis is similar to the RN case and the qualitative
features of Fig. 3 still apply. However, the Compton line
intersects the outer horizon for all values of n (eg. at MPl/

√
2

for n = 0 and MPl for n = 1). This contrasts with the RN
case, where n could not exceed 1/

√
αe ≈ 11 for the intersect

with r+ and
√

2/αe ≈ 16 for the intersect with r−. The
temperature can be shown to be

T = 1

4π

r+ − r−
r2+ + (n/M)2

, (67)

which vanishes for the extremal solutions given by Eq. (65).
The evaporation of the black hole determines a spin-down

process. Due to the conservation of the angular momentum,
the emitted particle has to have a spin aligned with the angu-
lar momentum of the black hole. The spin-down also occurs
because of the superradiant modes scattered by the hole,
an effect known as Starobinsky-Unruh radiation [48–50]. In
much the same way as for the charged case in the previous
section, metric (8) turns out to be the ground state. How-
ever, the decay of rotation is expected to be slower than the
discharge [37]. These considerations have interesting impli-
cations for the link between elementary particles and black
holes. While black holes can match elementary particles at
the end of the spin down phase, the spin of those formed by
particle collisions can be at the most the sum of the spin of
the particles. For example, for black holes created by the col-
lisions of spin 1/2 particles, the total angular momentum will
be ±1 or 0, depending on the spin alignment. Particles with
higher spin can be conjectured (e.g. the Rarita–Schwinger
field [51] of the spin-3/2 gravitino) but these would form a
black hole only if anti-aligned and this also applies for higher
spin fields in string theory.

The Kerr metric can be modified to include the GUP-
modified mass MADM term by changing � to

� = r2 − 2MADMr

M2
Pl

+
(

n

MADM

)2

. (68)
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The condition � = 0 then gives outer and inner horizons at

r± = MADM

M2
Pl

±
√

M2
ADM

M4
Pl

− n2

M2
ADM

(69)

and their form as functions of M is shown in Figs. 8 and 9 for
β = 2. For n < 2β, the horizons have a similar form to that
shown in Fig. 5. Since r+ is a monotonic function of MADM,
it has a minimum at the minimum at MADM, corresponding
to

M = Mcrit = √
β/2 MPl ,

r+ =
[√

2β +
√

2β − n2/(2β)

]
�Pl . (70)

Similarly r− has a maximum at

M = Mcrit = √
β/2 MPl ,

r− =
[√

2β −
√

2β − n2/(2β

]
�Pl . (71)

These features are illustrated in Fig. 8. The minimum and
maximum merge for the extremal solution (r+ = r−) when
n = 2β. For n > 2β, the minimum and maximum no longer
exist and the horizons have the form shown in Fig. 9, which
might be compared to Fig. 6. There are horizons for M > M+
and M < M− where

M± = MPl

2

(√
n ± √

n − 2β
)

, (72)

these values corresponding to the extremal condition MADM =√
n MPl. Thus solutions with n > 2β exists in two self-

complete phases, representing either sub-Planckian or super-
Planckian black holes. The transition at n = 2β resembles
that for the RN-GUP black hole shown in Fig. 5, with the
black hole bifurcating into two separate solutions with dual
masses M and M2

Pl/M . The temperature is

T = 1

4π

r+ − r−
r2+ + (n/MADM)2

(73)

and its behaviour as a function of M is indicated in Fig. 10.
It vanishes for the values of M given by Eqs. (71) and (72).

6 Conclusions

In this paper, we have studied the self-complete behaviour
and thermodynamics of both the Reissner–Nordström (RN)
and Kerr black holes, as well as their GUP-modified versions.
For each solution, we have shown that self-completeness (i.e.
the condition that the Compton line intersects the outer black
hole horizon) introduces a spectrum of minimum masses pro-
viding the charge or spin parameter is not too large. For self-
completeness the maximum value of n is 11 for RN but there
is no limit on n for Kerr.

Fig. 8 The outer (solid) and inner (dash-dot) horizons for the GUP-
Kerr black hole with β = 2 and n = 1 (blue), 3 (purple) and 4 (red).
The n = 4 curves have a discontinuity at M = MPl and r = 2�Pl, cor-
responding to a phase transition. The dashed line is the Schwarzschild
radius and the dotted curve is the Compton wavelength

Fig. 9 The outer (solid) and inner (dash-dot) horizons for the GUP-
Kerr black hole with β = 2 and n = 5 (blue), 8 (purple) and 10 (red),
showing the mass gaps for n > 4. The dotted line is the Schwarzschild
radius, r = 2M/M2

Pl , and the dashed curve is the Compton wavelength

For the GUP-modified versions of the RN metric, we
have shown that the outer horizon behaves as in the GUP-
Schwarzschild case [16], thus providing a continuous tran-
sition between the gravitational (rCS ∝ M) and Compton
(rCS ∝ M−1) scaling. As n increases, the smoothness of the
minimum becomes sharper until the charge reaches a max-
imum value of n which depends on β but differs from the
value of 11 for the self-complete RN case. Beyond this crit-
ical value, there is a phase transition that introduces a mass

123



Eur. Phys. J. C (2020) 80 :1166 Page 13 of 14 1166

Fig. 10 Hawking temperature for the GUP-Kerr black hole for β = 2.
Curves correspond to the parameters n = 1 (blue), 3 (black), 4 (red),
5 (purple) and 10 (green). The critical value n = 4 introduces a phase
transition, similar to that for the extremal RN-GUP black hole, beyond
which there is a mass gap with no black holes. T = 0 endpoints in the
super-Planckian regime correspond to stable spinning remnants

gap. This replicates the behaviour of the standard RN inner
and outer horizons, so we have speculated that these solu-
tions represent a super-Planckian black hole on the right and
a sub-Planckian black hole or Compton-like object (i.e. a
particle) on the left.

We have also demonstrated that the GUP-RN black hole
acquires a temperature similar to the GUP-Schwarzschild
one, with a zero-temperature remnant for some range of
charge up to the maximum value of n. The temperature also
exhibits Planck-scale oscillatory behaviour for decreasing
M , similar to the well-known ‘lighthouse effect’ [46]. This
phase transition is also evident in the M-dependence of the
Hawking temperature. The GUP-Kerr metric exhibits simi-
lar behaviour but there is a critical spin instead of a critical
charge and this determines the subsequent phase transition.

In both the charged and rotating cases, the black hole char-
acteristics in the sub-Planckian regime correspond to dimen-
sional reduction from (3 + 1)-D to an effective (1 + 1)-D
spacetime, as with the GUP-Schwarzschild solution [16].
Indeed, an interesting feature of the conventional RN and
Kerr metrics, previously unnoticed as far as we are aware, is
that the inner horizon radius for far-from-extremal RN black
holes scales as 1/M , which is the same relation for the hori-
zon of a (1 + 1)-D black hole [52]. This also applies for the
outer horizon in the sub-Planckian part of the BHUP solu-
tion. Dimensional reduction is an expected feature of a final
theory of quantum gravity [53], so we suggest that this fea-
ture indicates that gravity within the horizon may itself be
lower-dimensional.

We should also mention some general conceptual implica-
tions of this work. One prediction of this paper is that there is
a fundamental link between elementary particles and black
holes. This proposal goes back to the 1970s, when it was
motivated in the context of strong gravity theories by the
link between Regge trajectories and extreme Kerr solutions.
In our case, it is prompted by the Compton–Schwarzschild
correspondence, which is based on the M → 1/M dual-
ity. Indeed, this suggests that elementary particles could be
black holes with sub-Planckian mass. However, this duality
no longer applies in the charged and rotating cases since the
Compton wavelength is independent of Q and J for a parti-
cle. So do we just drop this duality or do we modify the elec-
trostatic term in the RN solution and the angular momentum
term in the Kerr solution in such a way that it is preserved? We
have argued against this and the presence of mass-gap solu-
tions confirms that large charge and/or angular momentum
destroys this duality but perhaps this issue requires further
consideration.

If there is a link between elementary particles and black
holes, what is the evidence for this and what are the impli-
cations? One puzzling feature is that no fundamental par-
ticles have charge exceeding e or spin exceeding 2h̄. By
contrast self-completeness implies that standard RN has a
maximum charge of 11 or even 16 if one includes solu-
tions in which the inner horizon intersects the Compton line.
Although super-Planckian black holes necessarily discharge
through the Schwinger mechanism, we have shown that sub-
Planckian ones in the GUP-modified RN solution can main-
tain their charge for sufficiently small masses.

There is also the important issue of the interpretation of the
mass M in gravitational theory and how it should be defined
in the sub-Planckian and super-Planckian regimes. Its usual
role is to instruct spacetime how to curve but GUP effects
change the instructions, so that the standard Schwarzschild,
RN and Kerr metrics no longer apply. For large classical
black holes, M is the ADM mass, while for particles it is
related to the centre-of-mass energy, as calculated for parti-
cle collisions. In between these limits, all we know is that the
physical mass around the Planck scale has to be some mix-
ture of these two definitions. This inevitably reflects the fact
that the Planck scale is the confluence of the scales of grav-
ity and quantum mechanics. While the exact expression is
uncertain, we have argued that Eq. (5) is at least a consistent
amalgamation.

Finally, this work is important for the concept of “gravi-
tational self-completeness”. This concept has a long history
and has the important implication that any attempt to probe a
particle above the Planck energy will result in the formation
of a black hole. Most minimal-length mechanisms include
this feature. However, if there is a duality between particles
and black holes, this also has the implication that any attempt
to produce a black hole below the Planck length will probe
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the Compton scale instead, so that the singularity at the centre
of a black hole is inaccessible. But is self-completeness the
notion that experiments cannot go below the Planck scale or
does it also imply a distinction between particles and black
holes, corresponding to some critical point in the (M, R) dia-
gram)? In the latter case, our ‘M + 1/M’ model solutions
would not qualify. However, they still have the feature that
one cannot probe below the Planck length, so we would advo-
cate extending the definition of self-completeness to include
this case.
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